Rizzini, Mattia, Fawcett, Chris, Vallati, Mauro, Gerevini, Alfonso Emilio and Hoos, Holger (2015) Portfolio Methods for Optimal Planning: an Empirical Analysis. In: Proceedings of the 27th IEEE International Conference on Tools with Artificial Intelligence. IEEE Computer Society, pp. 494-501.
Abstract

Combining the complementary strengths of several algorithms through portfolio approaches has been demonstrated to be effective in solving a wide range of AI problems. Notably, portfolio techniques have been prominently applied to suboptimal (satisficing) AI planning. Here, we consider the construction of sequential planner portfolios for (domain- independent) optimal planning. Specifically, we introduce four techniques (three of which are dynamic) for per-instance planner schedule generation using problem instance features, and investigate the usefulness of a range of static and dynamic techniques for combining planners. Our extensive experimental analysis demonstrates the benefits of using static and dynamic sequential portfolios for optimal planning, and provides insights on the most suitable conditions for their fruitful exploitation.

Library
Documents
[thumbnail of optimalPlanningPortfolioAnalysis.pdf]
Preview
optimalPlanningPortfolioAnalysis.pdf - Accepted Version

Download (157kB) | Preview
Statistics

Downloads

Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email