Abstract
In this work we present SOMA: a Trend Mining framework, based on longitudinal data analysis, that is able to measure the interestingness of the produced trends in large noisy medical databases. Medical longitudinal data typically plots the progress of some medical condition, thus implicitly contains a large number of trends. The approach has been evaluated on a large collection of medical records, forming part of the diabetic retinopathy screening programme at the Royal Liverpool University Hospital, UK.
Information
Library
Documents
Statistics