This paper proposes a new method of roughness peaks curvature radii calculation and its application to tribological contact analysis as characteristic signature of tribological contact. This method is introduced via the classical approach of the calculation of radius of asperity. In fact, the proposed approach provides a generalization to fractal profiles of the Nowicki's method [Nowicki B. Wear Vol.102, p.161-176, 1985] by introducing a fractal concept of curvature radii of surfaces, depending on the observation scale and also numerically depending on horizontal lines intercepted by the studied profile. It is then established the increasing of the dispersion of the measures of that lines with that of the corresponding radii and the dependence of calculated radii on the fractal dimension of the studied curve. Consequently, the notion of peak is mathematically reformulated. The efficiency of the proposed method was tested via simulations of fractal curves such as those described by Brownian motions. A new fractal function allowing the modelling of a large number of physical phenomena was also introduced, and one of the great applications developed in this paper consists in detecting the scale on which the measurement system introduces a smoothing artifact on the data measurement. New methodology is applied to analysis of tribological contact in metal forming process.
Downloads
Downloads per month over past year