This paper investigates the torsional load capacity of three sizes of V-section band clamps when assembled onto rigid flanges by comparing experimental data with a developed theoretical model. This mode of failure is of particular interest for turbocharger applications where, in use, they are subjected to torsional loading via thermal and vibrational effects. The theoretical model developed allows the impact on torsional load capacity of a number of joint parameters to be investigated and good correlation of the results, incorporating variations in coefficients of friction and dimensions, has been shown for the two larger band sizes. For smaller diameter bands, the experimental data suggests that as the band is tightened, contact with the flange is localised rather than being over the full circumference of the band. The coefficients of friction, in particular that between the flanges, and the position of the contact point between band and flange have been shown to have a significant impact on the theoretical torsional load capacity of V-section band clamps.
Downloads
Downloads per month over past year