Charles, Guy, Dixon, R. and Goodall, Roger M. (2008) Least Squares Method Applied to Rail Vehicle Contact Condition Monitoring. In: Proceedings of the 17th IFAC World Congress, 2008. International Federation of Automatic Control, pp. 7451-7456. ISBN 9783902661005
Abstract

The dynamics of a railway vehicle are driven by the geometry and conditions at the wheel-rail contact. Typically the condition and shape of the wheel and rail are monitored separately and off line. The work presented here is part of ongoing research into on-line model-based estimation of parameters in the wheel-rail contact dynamics. This paper outlines a practical approach to estimating a nonlinear function within a dynamic system by using a piecewise cubic functions. The parameters for the cubic functions are estimated with a least squared approach applied to the dynamic measurements taken from the system. A simplified plan-view wheelset and suspended mass model is introduced to use as an application of this technique. A contact geometry term, conicity, which is a nonlinear function of the relative lateral wheel-rail position, is included in the rail vehicle model. The conicity is successfully estimated using the least-squares method outlined in the paper.

Information
Library
Documents
[img]
Guy_Charles_ifac_2008.pdf - Published Version
Restricted to Repository staff only

Download (625kB)
Statistics
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email