Search:
Computing and Library Services - delivering an inspiring information environment

Investigations into the Performance and Emission Characteristics of a Biodiesel Fuelled CI Engine under Steady and Transient Operating Conditions

Tesfa, Belachew Chekene (2011) Investigations into the Performance and Emission Characteristics of a Biodiesel Fuelled CI Engine under Steady and Transient Operating Conditions. Doctoral thesis, University of Huddersfield.

[img]
Preview
PDF - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3658kB) | Preview

    Abstract

    The stringent emission laws, the depletion of petroleum reserves and the relation of fuels with politics have forced the world to find alternatives to fossil fuels. Biodiesel is one of the biofuels which is renewable and environmentally friendly and can be used in diesel engines with little or no modifications. For the last two decades, many researchers have reported extensive work on the performance and emission characteristics of engines running with biodiesel during steady state operation. However, there are numbers of knowledge gaps that have been identified which include limited information on biodiesel physio-chemical properties and their effects on combustion behaviour and performance and emission characteristics of the engine. In this study after an exhaustive literature review, the following four research areas have been identified and investigated extensively using available numerical and experimental means.

    The initial focus was to investigate the most important properties of biodiesel such as density, viscosity and lower heating value using experimental and numerical techniques. The effects of biodiesel blend content on the physical properties were analysed. For each property, prediction models were developed and compared with current models available in literature. New density and viscosity prediction models were developed by considering the combined effect of biodiesel content and temperature. All the empirical models have showed a fair degree of accuracy in estimating the physical properties of biodiesel in comparison to the experimental results. Finally, the effects of density and viscosity on the fuel supply system were investigated. This system includes the fuel filter, fuel pump and the engine combustion chamber in which air-fuel mixing behaviour was studied numerically. These models can be used to understand the effects of changes in the physical properties of the fuel on the fuel supply system. In addition, the fuel supply system analysis can be carried out during the design stage of fuel pump, fuel filter and injection system.

    The second research objective was the investigation into a CI engine’s combustion characteristics as well as performance and emissions characteristics under both the steady and transient conditions when fuelled with biodiesel blends. The effects of biodiesel content on the CI engine’s in-cylinder pressure, brake specific fuel consumption, thermal efficiency and emissions (CO2, NOx, CO, THC) were evaluated based on experimental results. It has been seen that the CI engine running with the biodiesel resulted in acceptable engine performance as well as reduction in main emissions (except NOx). Following this study, a detailed analysis on the transient performance and emission output of the CI engine has been carried out. During this analysis, the emission changing rate is investigated during speed transient and torque transition stages. Further to this, a transient emission prediction model has been developed using associated steady and transient emission data. The model has been shown to predict the transient emission reasonably accurately.

    The third research objective was to develop a method for on-line measurement of NOx emission. For this purpose the in-cylinder pressure generated within a CI engine has been measured experimentally along with mass air flow and these parameters have been used in the development of a NOx prediction model. This model has been validated using experimental data obtained from a NOx emission analyzer. The predicted data obtained from NOx prediction model has been compared with measured data and has shown that the deviation is within acceptable range.

    The final research objective was to develop a simple, reliable and low-cost novel method to reduce the NOx emission of the CI engine when using biodiesel blends. A potential solution to this problem has been found to be in the form of direct water injection which has shown to be capable to reduce NOx emission. Using a water injection technique, the performance and emission(NOx and CO) characteristics of a CI engine fuelled with biodiesel has been investigated at varying water injection flow rates. Intake manifold water injection reduces NOx emission by up to 40% over the entire operating range without compromising the performance characteristics of the CI engine

    Item Type: Thesis (Doctoral)
    Subjects: T Technology > TJ Mechanical engineering and machinery
    T Technology > TL Motor vehicles. Aeronautics. Astronautics
    Schools: School of Computing and Engineering
    Depositing User: Carol Doyle
    Date Deposited: 26 Jul 2011 16:10
    Last Modified: 01 Jun 2013 01:38
    URI: http://eprints.hud.ac.uk/id/eprint/11072

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©