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ABSTRACT 

The stringent emission laws, the depletion of petroleum reserves and the relation of fuels 
with politics have forced the world to find alternatives to fossil fuels. Biodiesel is one of 
the biofuels which is renewable and environmentally friendly and can be used in diesel 
engines with little or no modifications. For the last two decades, many researchers have 
reported extensive work on the performance and emission characteristics of engines 
running with biodiesel during steady state operation. However, there are numbers of 
knowledge gaps that have been identified which include limited information on biodiesel 
physio-chemical properties and their effects on combustion behaviour and performance 
and emission characteristics of the engine. In this study after an exhaustive literature 
review, the following four research areas have been identified and investigated 
extensively using available numerical and experimental means. 
 
The initial focus was to investigate the most important properties of biodiesel such as density, 
viscosity and lower heating value using experimental and numerical techniques. The effects 
of biodiesel blend content on the physical properties were analysed. For each property, 
prediction models were developed and compared with current models available in literature. 
New density and viscosity prediction models were developed by considering the combined 
effect of biodiesel content and temperature. All the empirical models have showed a fair 
degree of accuracy in estimating the physical properties of biodiesel in comparison to the 
experimental results. Finally, the effects of density and viscosity on the fuel supply system 
were investigated. This system includes the fuel filter, fuel pump and the engine combustion 
chamber in which air-fuel mixing behaviour was studied numerically. These models can be 
used to understand the effects of changes in the physical properties of the fuel on the fuel 
supply system. In addition, the fuel supply system analysis can be carried out during the 
design stage of fuel pump, fuel filter and injection system. 
 
The second research objective was the investigation into a CI engine’s combustion 
characteristics as well as performance and emissions characteristics under both the steady and 
transient conditions when fuelled with biodiesel blends. The effects of biodiesel content on 
the CI engine’s in-cylinder pressure, brake specific fuel consumption, thermal efficiency and 
emissions (CO2, NOx, CO, THC) were evaluated based on experimental results. It has been 
seen that the CI engine running with the biodiesel resulted in acceptable engine performance 
as well as reduction in main emissions (except NOx). Following this study, a detailed 
analysis on the transient performance and emission output of the CI engine has been carried 
out. During this analysis, the emission changing rate is investigated during speed transient 
and torque transition stages. Further to this, a transient emission prediction model has been 
developed using associated steady and transient emission data. The model has been shown to 
predict the transient emission reasonably accurately. 
 
The third research objective was to develop a method for on-line measurement of NOx 
emission. For this purpose the in-cylinder pressure generated within a CI engine has been 
measured experimentally along with mass air flow and these parameters have been used in 
the development of a NOx prediction model. This model has been validated using 
experimental data obtained from a NOx emission analyzer. The predicted data obtained from 
NOx prediction model has been compared with measured data and has shown that the 
deviation is within acceptable range. 
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The final research objective was to develop a simple, reliable and low-cost novel method to 
reduce the NOx emission of the CI engine when using biodiesel blends. A potential solution 
to this problem has been found to be in the form of direct water injection which has shown to 
be capable to reduce NOx emission. Using a water injection technique, the performance and 
emission (NOx and CO) characteristics of a CI engine fuelled with biodiesel has been 
investigated at varying water injection flow rates. Intake manifold water injection reduces 
NOx emission by up to 40% over the entire operating range without compromising the 
performance characteristics of the CI engine  
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CHAPTER ONE 

1. INTRODUCTION 

 

This chapter provides a brief introduction into the general application of biodiesel as a 

fuel. In particular, it considers biodiesel production and its physical characterisation, 

engine performance and emission characteristics during steady and transient operations 

and current emission legislations. From a general review, the research problems have been 

identified, from which the aim of this study was set. 
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1.1 Background  

Globally, over the past several years, considerable efforts have been made to develop 

renewable and alternative fuels for transportation industries. The primary drives for such 

growing interest are the stringent regulations inform of automotive emission laws and the 

international efforts to reduce reliance on petroleum fuels which are available largely from 

potentially vulnerable regions [1]. In addition, biofuels also have the properties of both 

biomass and carbon neutral sources and can reduce atmospheric carbon dioxide which is the 

main greenhouse gas that causes global warming [2]. It is also forecasted that current fossil 

fuel reserves may become depleted in the coming four decades [3] which the world relies 

heavily on for energy needs. The automotive sector uses limited alternative energy sources 

compared to that used in power generation and its 98% of the energy sources depend on oil 

[4]. Currently, growth in world energy consumption stands at approximately 2% per annum 

[5]. Presently there are more than 600 million passenger cars in world; production of new cars 

increased by 20% between 1999 and 2009[6], as shown in Figure 1-1. These figures are 

increasing rapidly, especially in India and China [7]. 

 

Figure 1-1 Total number of cars manufactured in the world [6]   

 
In order to meet such increasing energy demands and to supplement fossil fuel reserves, 

biofuel application in the transport sector is being promoted heavily. Biofuel is defined as 
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a solid, liquid or gaseous fuel obtained from lifeless biomass and developed into fuel 

within a short time span. The major types of biofuel include biodiesel, bioethanol, ethyl 

tertiary butyl ether (ETBE), fischer-troppsch (FT) and developmental bioethanol [8]. The 

dominant products in the current market are bioethanol and biodiesel. Due to the 

dominance of the diesel engines in the automotive sector and the usage of biodiesel in such 

engines without requiring modification, biodiesel is now the most common biofuel used in 

diesel engines [9]. Biodiesel is one of the renewable energy sources produced from 

vegetable-based oils by the transesterification process which consists of short chain alkyl 

(methyl or ethyl) esters. Biodiesel is used in compression-ignition (CI) diesel engines 

without requiring any engine modification and can be used in different percentage blends 

[1], [10-12].  

 
The use of vegetable-based oils in transportation is not new. In 1895, Dr Rudolf Diesel 

developed the first CI engine to run specifically on peanut oil. During that time due to 

easily availability and the low cost of mineral oil, biodiesel use was unsuccessful: Dr 

Diesel commented that ‘...there will be time when it will be important...’ [3]. However, 

vegetable oils were being used in diesel engines up until the late 1920s. During this period, 

a number of diesel engine manufacturers modified engines to use lower viscosity petro-

diesel, rather than biodiesel [1]. 

 

On August 31st 1937, Chavanee of the University of Brussels was granted a patent for 

“Procedure for the transformation of vegetable oils for their uses as fuels”. Due to the 

mid-1970s petroleum crisis, the fuel prices have increased alarmingly and environmental 

pollution laws have become more stringent. Early in 1980, the use of vegetable oil as an 

alternative renewable fuel was proposed. The 1990s saw many European countries 

opening biofuel plants and launching different usage legalisations. In 1991, the first 

biodiesel standard was set by the Austrian Standardisation Institute. In 2007, EU energy 

ministers agreed to increase the share of bio-fuels used in transport to 10% by 2020[13]. 

 

Furthermore, in 2008, a total of 214 biodiesel production facilities were ready to produce 

up to 16 million tonnes of biodiesel per year.  The overall annual growth of the biodiesel 

sector in European Union (EU) countries is shown in Figure 1-2. Compared to Italy, 

Germany and France, the UK biodiesel production is very slow. In 2002 the total biodiesel 
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production in EU was 1,065,000 tonnes, while in 2010 the production rate growth is 

almost up by 20 times to 21,904,000 tonnes [14].  

 

Figure 1-2 Biodiesel production trend of EU countries [14], [15] 

 
At present, most countries are maximising their use of biodiesel as an alternative energy 

source. China has planned to produce 12 million tonnes of biofuel in 2020 [16] and USA 

and EU are planning to  use 20% blend by 2017 [17] and 2020 [18] respectively. The UK 

has set a target of 5% of fuel sales to be from renewable resources by 2010–2011; 

currently the UK government supports the uptake of biofuel through the use of 20 pence 

per litre fuel duty differential for biodiesel produced from waste oil [19].  

 

To meet these targets a lot of research work has been carried out throughout the world on 

the biodiesel production, physical properties, engine performance, engine emission and 

engine durability. It has been reported that biodiesel is technically viable, economically 

acceptable and environment friendly. Currently, extensive research is being conducted in 

different countries in the areas of: optimisation of biodiesel production, characterisation 

of biodiesel, facilitation of transportation, storage, and improvement of engine 

performance and emission characteristics, while using biodiesel as fuel. 
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1.2 Biodiesel Production and Physical Characterisation 

Researchers and scientists have developed various methods of biodiesel production using 

different biofuels, with the main objective being to reduce oil viscosity. As a straight 

replacement for petroleum oil, vegetable oils have too high a viscosity for use in most 

existing diesel engines [10], [20], [21]. Furthermore, plant oils usually contain free fatty 

acids, phospholipids, sterols, water, odorants and other impurities. In order to utilise plant 

oils in car engines, purification of such impurities is mandatory.  There are a number of 

ways to reduce vegetable oils’ viscosity. Dilution, microemulsification, pyrolysis, and 

transesterification are the four techniques applied to solve problems encountered with 

high fuel viscosity. Currently, the major method used in the production of biodiesel from 

oil-seed crops (rapeseed, sunflower, soybean and animal fats), is transesterfication [10], 

[22-24]. Transesterfication is a sequential chemical conversion of oil into its 

corresponding fatty acid methyl esters (FAME), as described in [22]. Fossil methanol and 

ethanol have been used in the transesterification process. Transesterfication is a base-

catalysed, acid-catalysed, enzyme catalysed or non-catalysed process [25]. The biodiesel 

production process from vegetable oils is shown Figure 1-3. 

 

 
 
 
 
 
 
 
 
  
    
  
 
 
 
 
 
 

Figure 1-3 Biodiesel Production Process [22] 

   
Today, most biodiesels are produced using the base-catalysed reaction [22], [23] due to 
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conversion and requiring simple production facilities. In the production process methyl 

alcohol and base-catalysed (KOH) has been used. As the Stoichiometric material balance 

shows, the ratio of ester to alcohol is 100:11 and the ratio of biodiesel to Glycerol is 

100:10[26] in the transesterification process described in Figure 1-4. Transestrification of 

triglycerides produces fatty acids, alkyl esters and glycerol. Due to density differences, 

the glycerol layer settles down at the bottom of the reaction vessel. Diglycerides and 

monoglycerides are the intermediates in this process. 

  

 
   

Figure 1-4 General equation of transesterification process [10]  

 
To facilitate the formation of the esters, different types of techniques can be used, for 

example, adding more alcohols to shift equilibrium towards the formation of ester and 

also using alkali or acid catalysts [10] .  

 

Biodiesel properties depend heavily on various plant feed stocks, growing climate 

conditions, soil type, plant health and plant maturity upon harvest. These parameters 

affect the physical and chemical properties which also have a direct relationship with 

performance and emission characteristics of the engine [20]. Among the biodiesel 

properties, kinematics viscosity, density and heating value are the most important 

parameters which affect engine performance and emission characteristics [27]. Viscosity 

is one of the most important properties of biodiesels since it affects the operation of fuel 

supply systems, such as fuel pumps, fuel filters and fuel injectors. Higher viscosity leads 

to poor atomisation of fuel spray and less efficient operation of the fuel injectors. The 
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conversion of triglycerides into methyl or ethyl esters through the transesterfication 

process reduces viscosity by a factor of eight. Biodiesel’s viscosity decreases with an 

increase in temperature. The second important property of biodiesel is density. The 

density of biodiesel is slightly higher than diesel (860-895kg/m3 at 288K). Due the 

availability of 11% oxygen molecule in biodiesel, the lower heating value (calorific 

value) of biodiesel is less than petrol-diesel[20], [24], [28], [29]. In relation to the physical 

properties, the basic problems with biodiesel are its higher density and viscosity as well as its 

lower heating values. 

1.3 Performance and Emission Characteristics of CI Engines Running 

with Biodiesel 

The inventions of different internal combustion engines and subsequent developments in 

engine technology have led to extensive exploitation of the petroleum reserves, which are 

being depleted at a rapid rate [9]. Currently, biofuels are being investigated in detail for 

application in IC engine with exciting potential opportunities to increase energy security 

and reduce gas emissions. This could have significant effects on economic development 

and poverty reduction programmes throughout the world. The main findings from the 

literature reviewed indicate that biofuels, when used in engines, have comparable power, 

brake specific fuel consumption (BSFC) and brake thermal efficiency, as compared to 

engines running with diesel. Biodiesel also has advantages of significant portability, 

higher combustion efficiency, lower sulphur and aromatic content, a higher cetane 

number and higher lubrication effects. Moreover, it has unique advantages of being 

available around the world. Furthermore, it has been observed that the use of biofuel in an 

engine produces lower emission of total hydrocarbon (THC), carbon monoxide (CO) and 

carbon dioxide (CO2) as well as lower exhaust gas temperatures [30-32]. Biodiesel has 

been shown to emit lower values of non-regulated emission which cause mutagenic and 

carcinogenic problems in human [33]. One of the unique disadvantages of biodiesel is its 

higher nitrogen oxides (NOx) emission, when used as fuel in CI engines [34]. Suitable 

mechanisms are therefore required to be developed to reduce NOx emissions associated 

with biodiesel.  

In the most of the reviewed papers, extensive investigations have been reported on the 

engine performance and the emissions of the engine running with biodiesel during steady 

state operation. However, in passenger cars, both steady and transient conditions occur 
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frequently. Transient, in engines, is the change of engine speed and/or torque as a 

function of time. The transient phenomena can be observed in most automotive drive 

routes, such as engine start, warm up, accelerations and decelerations. The examples of 

acceleration and deceleration transient phenomenon for an engine for the speed and 

torque) are shown in Figure 1-5. The profiles include three parts, which are pre-transient 

steady state condition, transient conditions and post-transient conditions.  

 

 

 

 

 

 

Figure 1-5  Speed and Torque transient profile a) acceleration, b) deceleration 

 
These driving phenomena can be initiated by driver’s driving behaviour and the slopes 

and geometric features of the road [35]. It has been reported that road’s geometric 

features, such as road gradients and horizontal road curvatures (roundabouts), 

considerably influence the performance and emission characteristics of engines [36]. 

Bazari [37] reported that during the transient process, the performance and emissions 
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characteristics of turbo-charged diesel engines are significantly worse than those under 

steady conditions. This is mainly because of the difficulties associated with optimising 

the transient response of the intake, injection and combustion systems [37]. Armas[35] et 

al. also investigated the effects of biodiesel blends on the smoke-opacity reduction during 

transient conditions [35]. They reported that the use of biodiesel blends in diesel engines 

reduces the smoke-opacity significantly, not only in steady conditions, but also during 

transient engine operation.   

1.4 Emission Regulations  

The first emission legislation was introduced in California in 1959, in order to control 

carbon monoxide (CO) and hydrocarbon (HC) emissions from gasoline engines [38]. In 

Europe, concerns surrounding atmospheric pollution have been rising steadily since the 

1980s and since January 1993, all new petrol passenger vehicles sold within European 

countries have been fitted with catalytic converters [39]. The major diesel exhaust 

emissions, regulated in many areas of the developed world, are CO, NOx, HC and 

particulate matters (PM). Carbon monoxide (CO) is a colourless, odourless and tasteless 

gas which is slightly lighter than air, and which when combined with haemoglobin, 

reduces the blood’s capacity to carry oxygen (O2) to vital organs in the body[40]. NOx is 

generic term for the mono-nitrogen oxides, NO and NO2, which are produced from the 

reaction of N and O2 at higher temperature during the combustion process. In this 

process, 90% of NOx is contributed by NO. Exposure to high levels of nitrogen dioxide 

(NO2) has been linked to respiratory problems and long term exposure may affect lung 

function and increase the response to allergens [40]. Moreover, HCs contribute to ground 

level ozone formation which may lead to damage of the respiratory system [40]. The fine 

particles of PM also have an adverse effect on the respiratory system and have been 

associated with advancing the deaths of those suffering from respiratory illness [40]. 

Although CO2 is not directly harmful to human health, it is the most significant of the 

greenhouse gases which contributes to climate change. In response to these concerns, at 

the Kyoto Conference on Climate Change in December 1997, many developed countries 

agreed to legally binding targets in order to reduce greenhouse gas emissions of 1990, by 

5.2% in 2010 [41]. A number of measures have been introduced in the UK to incentivise 

the purchase and use of efficient vehicles in order to lower CO2 emission. Since March 

2001, a system of gradual vehicle excise duty has been in operation for new cars, based 
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onn the level of CO2 emission and since April 2002, company car tax has also been based 

on the CO2 emissions of vehicle provided to employees for their private use [42]. Table 

1.1 shows the permissible limits for past, present and future exhaust emissions for diesel 

passenger cars [38]. The emission standard’s trend shows that stringent regulations are 

being set for NOx and PM in Euro VI to be effective from 2014 compared with the 

previous emission standards. To approve new cars, various driving test cycles have been 

set for both steady and transient operating conditions for new engines [39]. 

 

Table 1-1 EU emission standard for passenger diesel cars [38] 

Stage Date CO HC HC+NOx NOx PM 

                                                    g/km 

Euro I  1992.07 2.72 (3.16) - 0.97 (1.13) - 0.14 (0.18) 

Euro II,  1996.01 1.0 - 0.7 - 0.08 

Euro II, DI 1996.01 1.0 - 0.9 - 0.10 

Euro III 2000.01 0.64 - 0.56 0.50 0.05 

Euro IV 2005.01 0.50 - 0.30 0.25 0.025 

Euro V(a) 2009.09a 0.50 - 0.23 0.18 0.005 

Euro V(b) 2011.09b 0.50 - 0.23 0.18 0.005 

Euro VI 2014.09 0.50 - 0.17 0.08 0.005 

 
a - 2011.01 for all models 

b - 2013.01 for all models 
 

1.5  Research Problem and Aims 

Puppàn[3] has reported that the world’s available oil reserves may deplete in 30-79 years. 

Such reserves are concentrated in certain regions that are vulnerable to political, economic, 

social and military instability which could potentially pose serious problems in future [3]. It 

has also been observed that petrol prices have fluctuated considerably over the past few years 

depending on the political situations in countries rich in fossil oil reserves. Such trends will 

continue to adversely affect the world’s economy in the future. On the other hand, engine 
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design and manufacturing companies have largely concentrated on petroleum dependent 

engine research instead of research on sustainable and alternative energy source driven 

engines [43]. To alleviate these problems biodiesel is being considered as one such 

alternative fuel which has the potential to become a carbon neutral fuel. For the last two 

decades the number of research publications has increased exponentially in the areas of: 

biodiesel, blends and sustainability, life cycle assessment, production, development, 

performance and emission. Most of the works have been reported on performance and 

emission characteristics of diesel engines operating under steady state conditions [44]. There 

are still many operational problems associated with biodiesel physical properties, engine 

performance and emissions which have hardly been addressed by the research community. 

Some of these challenges have been described in the following.  

 
The direct utilisation of biodiesel within diesel engines, particularly in direct injection 

systems has been reported to result in problems of coking and trumpet formation on the 

injectors. This formation occurs to such an extent that fuel atomisation does not occur 

properly or is largely prevented [10], [45]. This may be due to the occurrence of plugged 

orifices due to carbon deposits and the thickening or gelling of the lubricating oil as a result 

of contamination by vegetable oils. In addition, biodiesel is easily oxidised with air at high 

temperatures [14], [46], [22]. All these problems are directly or indirectly related to the 

physical and chemical properties of the biodiesel. To understand the influence of physio-

chemical properties of biodiesel on engine health, performance and emission, further research 

is required and this forms the first facet of this work. In particular, the higher density and 

viscosity of biodiesel can be attributed to the majority of these problems. 

 
Stringent environmental regulations on climate change are one of the driving forces for 

seeking alternative methods to reduce emissions from all sectors, specifically the transport 

sector. Currently, 98% of the transport sector uses fossil fuel energy sources which contribute 

more than 30% to the total global emissions [8]. Biodiesel is known to significantly affect the 

performance characteristics of engines designed for diesel fuel. The research conducted in 

this area has highlighted both the positive and negative effects of using this fuel. Most of the 

existing work is limited to analysing the effectiveness of biodiesel under steady state 

operation of diesel engines. However, the most frequent operation of automotive vehicles in 

urban environments is in the transient mode. Emission characteristics during the transient 

mode are considerably worse than those generated during steady state conditions [35]. 

Measuring engine performance and emission characteristics during transient operation is 
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more difficult as both the speed and/or load of the engine change as a function of time and 

this time span is relatively short [47]. It is therefore necessary to understand the effectiveness 

of biodiesel as a fuel under the transient condition of operation, both on engine performance 

as well as emissions. This forms the second facet of the present research. 

 

It is observed that an engine fuelled with biodiesel provides comparable engine performance 

and significant reductions in CO2, CO and THC emission. However a considerable number of 

researchers have reported that the engines running with biodiesel emit higher NOx 

concentrations in exhaust [44], [48], [49]. NOx and PM are the major toxic emissions that 

need to be regulated [50]. This highlights need for online measurement of NOx emissions. 

The currently available methods of measuring/predicting NOx emissions include: analyser 

(direct measuring), engine map methods and artificial neutral network.  Measurement of 

oxides of nitrogen on a dry basis, by means of a heated chemiluminescent detector (HCLD) 

with a NO2/NO analyser is widely used.  However, the analyser has disadvantages of higher 

associated costs, requiring large space, demanding frequent calibration and the possible 

effects of soot. In addition, its responses are very slow, which affect the transient NOx 

emission measurement [51]. The development of a method to predict NOx emissions online 

forms the third section of this present research. 

 

The regulatory requirement to have NOx emission within a prescribed limit has resulted in 

major research and development works being undertaken in order to reduce NOx emissions. 

Various methods have been used to reduce NOx emissions successfully that are emitted from 

compression-ignition when engines running with diesel as a fuel. Some of these methods 

include: exhaust gas recirculation (EGR), catalytic conversion (post combustion method) and 

water injections/emulsion [52]. In present work, a technically viable and economically 

acceptable method would be developed in order to alleviate NOx emission problem of 

engines running with biodiesel. This forms the fourth section of this present research. 

 
The general aim of this study is to investigate, both experimentally and numerically, the 

physical property of biodiesel and the performance and emission characteristics of 

compression ignition (CI) engines running on biodiesel and its blends during steady and 

transient operations. It is also aimed at developing new method for the reduction of NOx 

emission and to develop NOx emission predicting models from the in-cylinder pressure 

measurement.The objective of this study has been set in Chapter two which includes the 

literature review on different facets discussed above. This has been done to identify the 
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knowledge gaps in the identified research areas. In Chapter two extensive literatures reviews 

have been done and the spesfic problems have been identified. Based on the identified 

problems, the objectives of this study have been listed in section 2.5.2. 

1.6 Organisation of Thesis 

The basic outline of the thesis is as follows: 
 
Chapter one: Brief introduction of the current scenario of biodiesel, biodiesel production and 

physical characterisation, performance and emission characteristics of engine running with 

biodiesel during the steady and transient operation conditions, and the emission legislation 

are given. Finally, the research problem has been identified from the general review and the 

aim of this study was identified. 

 

Chapter two: This chapter presents the literature review on the biodiesel characterisation, 

performance and emission characteristics of CI engines running with biodiesel, NOx 

emission reduction techniques and NOx prediction models. In the first section the basic 

physical properties of biodiesel, such as the density, the viscosity and the heating value of the 

biodiesel have been discussed and the effects of temperature and biodiesel fraction on the 

physical properties are highlighted. The prediction models of the density, viscosity and 

heating value of the biodiesel are discussed in detail. In second section reviews on the CI 

engine combustion characteristics, break specific fuel consumption, brake effective power, 

thermal efficiency and emissions (NOx, CO2, CO, THC and PM) have been included. It also 

highlights the factors affecting combustion, performance and emission characteristic of CI 

during steady and transient operations running with biodiesel. The third section provides 

methods on NOx formation, and available methods of NOx reduction in diesel engines. The 

NOx formation section discusses three well known methods of NOx formation in diesel 

engines in detail. In addition, this chapter discusses the NOx predicting models available in 

literature. Finally the scope and specific objective of this research was presented depending 

on the literature review and lists out the specific objectives of the study. 

 

Chapter three: This chapter gives a brief description of the biodiesel characterisation 

facilities, the test engine’s characteristics and specifications, and also describes the test rig 

and instrumentation. The list of measured parameters, data acquisition system and application 

software are described in this chapter. It also outlines measurement procedures for density, 

viscosity, and lower heating value of biodiesel and its blends. 
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Chapter four: This chapter provides the results and discussions of biodiesel 

characterisation. It outlines the effects of biodiesel fraction and temperature on the main 

fuel properties, such as density, viscosity and lower heating value based on experimental 

investigation. It also includes new predicting models developed to predict these 

properties.  

 

Chapter five: This chapter is focused on the experimental investigation carried out on a CI 

engine, which is fuelled by biodiesel and its blends during steady state operation. In particular 

engine’s combustion performance and emission characteristics have been evaluated. The 

effects of feedstock source and the biodiesel blend fraction on the engine performance and 

emission are discussed in the first section. Furthermore, the effects of biodiesel physical 

properties on the engine performance are also reported.  

 

Chapter six: This chapter provides the performance and emission characteristics of the test CI 

engine running with biodiesel during transient operation. The effects of transient operation on 

fuel flow rate, exhaust temperature and emission characteristics of CI engine fuelled with 

biodiesel and its blends have been investigated in detail. In addition, the engine parameters 

effects on engine emissions have been quantified and an emission prediction model during 

transient operation has been developed. 

 

Chapter seven: This chapter presents the development of NOx predicting model from the 

experimentally measured in-cylinder pressure. The accuracy of the predictive model has 

also been established in this chapter. 

 
Chapter eight: This chapter provides the experimental results as well as analysis and 

discussion on effects of water injection in a CI engine running with biodiesel. It includes the 

effects of water injection on fuel combustion parameters, engine performance and emission 

in a CI engine.  

 

Chapter nine: This chapter presents the conclusions and future work based on this research. 

The conclusions have been categorised in different sections for biodiesel characterisation, 

engine performance and emission during both steady and transient operation, the effects of 

water injection on the engine performance and emission and the newly developed NOx 

emission prediction model. 
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1.7 Summary on Chapter One 

Chapter one is presents a brief introduction regarding the research conducted in this 

study.  It presents general introduction about the importance of biofuel in the transport 

industries, the production process and physical characterisation of biodiesel, the engine 

performance and emission characteristics. In addition, the general research problems have 

been identified and the aim of the study has been set. In the next chapter, previous 

researchers’ works, industrial technical reports and standards have been reviewed and the 

specific research problems have been identified. 
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CHAPTER TWO 

2. BIODIESEL CHARACTERISATION AND PERFORMANCE AND 

EMISSION CHARACTERISATION OF CI ENGINES RUNNING 

WITH BIODIESEL 

 

Chapter two presents the literature review on various facets of the research discussed in 

chapter one. Its main objective is to review the previous works on the biodiesel 

characterisation, performance and emission characteristics of CI engines running with 

biodiesel, NOx emission reduction techniques and NOx prediction models. Depending on the 

extensive review the specific research problems have been identified. In the first section basic 

physical properties of biodiesel, such as the density, the viscosity and the heating value of 

biodiesel have been reviewed and the effects of temperature and biodiesel fraction on the 

physical properties have been highlighted. The prediction models of the density, viscosity and 

heating value of the biodiesel are reviewed in detail. The second section reviews the CI 

engine’s combustion characteristics, break specific fuel consumption, brake effective power, 

thermal efficiency and emissions (NOx, CO2, CO, THC and PM). It also highlights the 

factors affecting combustion, performance and emission characteristic of CI engines during 

steady and transient operations when running with biodiesel. The third section provides 

review of methods on NOx formation, and available methods for NOx reduction in diesel 

engines. The NOx formation section discusses three well known methods of NOx formation 

in diesel engines in detail. In addition, this chapter discusses the details of NOx predicting 

models available in literatures. Finally the scope and specific objective of the present research 

is presented based on the literature review and lists out the specific objectives of the study. 
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2.1 Biodiesel Characterisation 

Biodiesel fuels are characterised by a number of physio-chemical properties. Some of these 

are: viscosity, density, cetane number, cloud and pour points, flash point, ash content, sulphur 

content, carbon residue, acid value and lower and higher heating values. Although most of 

the biodiesel properties are similar to those of diesel fuels, there are considerable differences 

in some of the basic fuel properties such as density, viscosity and lower heating values [1], 

[45]. The parameters, which define the quality of biodiesel, can be divided into two groups. 

The first group contains the general physical parameters used for characterising mineral oil 

based fuels. The second group parameters describe the chemical composition of biodiesel and 

purity of fatty acid alkyl esters [10]. Austria was the first country in the world to define and 

approve the standards for biodiesel to use as a fuel in 1991[45]. Other countries, such as 

Germany, Italy, France, the Czech Republic and the United States have also developed 

standards to maintain the quality of the biodiesel to be used in Diesel engines. Currently, in 

order to use biodiesel in diesel engines, biodiesel properties should meet the EN-14213 

specifications in Europe [53] and D-6751 specifications in United States of America [54], 

both of these are presented in Table 2-1. 

 

Biodiesel characteristics depend heavily on: various feed stock plants, growing climate 

conditions, soil type, plants health and plants maturity upon harvest [20], [55]. These 

parameters affect the physical and chemical properties, which also have direct bearing on 

performance and emission characteristics of the engines [56]. In addition, the molar ratio of 

alcohol to vegetable oil and the reaction temperature significantly affect the biodiesel 

characteristics [1]. Of all biodiesel properties, kinematics viscosity, density and heating value 

are the most important parameters which affect engine performance and emission 

characteristics considerably [6], [27], [20], [56], [57]. One of the major shortcomings of the 

biodiesel when used in a diesel engine is the detrimental effects caused by the high viscosity 

of the fuel. Higher viscosity causes poor fuel atomisation during the spray, increases the 

carbon deposition on fuel filter, demands more energy from the fuel pump and wears the fuel 

pumps and injectors [27], [20].  

  

Furthermore, higher viscosity causes the mixture to burn lean in the engine as fuel moves 

slowly through the fuel filter and fuel lines [58]. In addition, higher viscosity of biodiesel fuel 

affects the start of injection, injection pressure and the fuel spray characteristics. All these 

parameters affect engine performance and exhaust emissions considerably [59]. The density 
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of diesel fuel is also a very important parameter which has been correlated against other 

crucial performance parameters of engine, such as cetane number and heating value [28].   

 

Table 2-1 Standard Specification Biodiesel, B100 and diesel fuel [1], [54]  

 

The density and viscosity of the fuel affect the power output and the fuel spray characteristics 

of the engine. In order to improve viscosity and density of the biodiesel, the available 

techniques being used are mixing the diesel with biodiesel and/or pre-heating the biodiesel 

[10], [58],[60].  

  
The effects of mixing biodiesel with diesel on density and viscosity  of biodiesel blends, 

effect of temperature on biodiesels’ density and viscosity and the chemical structure of 

biodiesels (fatty acid, position and number of double bond), are well reported. Different 

empirical correlations have been developed which relate various performance parameters 

Property Units EN-14214 ASTM-D6751 

  Biodiesel Diesel Biodiesel Diesel 
Specific gravity  0.86-0.90 - - 0.82 -0.86 

Viscosity Mm2/s 3.50-5.00 1.3 – 4.1 1.9-6.0 2 – 4.5 

Calorific value MJ/Kg 37-40 42.7 - - 

Flash point oC 120 min  130 min  

Cetane number  51  47  

Sulphur mg/kg 10.0 max  15.0 max  

Phosphorus content mg/kg 10.0 max  10.0 max  

Acid number mg KOH/g 0.50 max  0.80 max  

Free glycerine % mass 0.02 max  0.02 max  

Total glycerine % mass 0.25 max  0.24 max  

Sulphated ash content % mass 0.02 max  0.020 max  

Methanol content % mass 0.02 max    

Mono-glycerides % mass 0.80 max    

Di-glycerides % mass 0.20 max    

Ester content % mass 0.20 max    

Linolenic acid ME % mass 96.5 min    

Carbon residue % mass   0.050  

Iodine value    120 max  
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with density and viscosity of biodiesel [28], [20], [56], [57], [61], [62], [63]. Previous 

researchers’ works on biodiesel density, viscosity and lower heating value have been 

summarised below.  

2.1.1 Density of Biodiesel  

Density is an important property of biodiesel fuel. It is defined as its mass per unit volume, 

whereas the specific gravity of biodiesel is defined as the ratio of its density to the density of 

water at a specific temperature and pressure, typically at 4°C and 1atm. The specific gravity 

of biodiesel has been investigated by many researchers. Density of biodiesel has values 

between 0.848 and 0.885g/cm3 at 311.15 K, according with previous reports [27], [64]. Tat 

and Garpen[28] measured experimentally the specific gravity of 20%, 50%, 75%, and 100% 

soybean biodiesel as a function of temperature in the temperature range of crystallization 

temperature to 100oC, using the standard hydrometer method. The results indicate that the 

biodiesel and its blends demonstrate temperature dependent behaviour. A first degree linear 

regression equation (2-1) was developed which is shown below: 

  

bTaSG +=         (2-1) 

Where SG is the specific gravity of blended biodiesel, T is the temperature in oC, and a and b 

are constants that depend on different percentages of biodiesel blends.  

 

Tat et al. [56] also reported similar linear equation for three different biodiesels namely, 

canola oil biodiesel, soybean oil biodiesel and fish oil biodiesel. These equations were 

developed based on the data obtained from a capacitance type liquid level meter over a 

temperature range from 20oC to 300oC. Clements (referenced in [56]) suggested that equation 

(2-2) could be used to determine the specific gravity of different biodiesel blends at a 

standard temperature. In this equation, the specific gravity of the blends has been considered 

to be proportional to mass fractions of the constituents: 

 

∑= iiblend MSGSG        (2-2) 

Where SGblend is the specific gravity of the blend, SGi is the specific gravity of the component 

i, and Mi is the mass fraction of the component i.   

 

Alptekin and Canakci [27] carried out experimental tests on different biodiesels made from 

soybean oil, waste palm oil, sunflower oil, corn oil, canola oil, and cotton seeds. They 
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suggested a first degree empirical equation, which relates the density of a biodiesel blend 

with the percentage of biodiesel used in the fuel as shown in equation (2-3): 

BAx +=ρ        (2-3) 

Where  � is density (g/cm3), A and B are constants which vary with the type of the biodiesel 

and X is the biodiesel fraction.  

 

Benjumea et al. [65] measured the densities of palm oil biodiesel and diesel fuel blends at 

various temperatures (from 289 to 373 K) and at five biodiesel concentrations (B0, B5, B20, 

and B100). These authors reported that, for a given temperature, there is a linear variation of 

density relative to the biodiesel content in the mixtures. Also, they found that density was a 

linear function of temperature for the palm oil biodiesel, diesel and different biodiesel blends. 

 

Currently, biodiesel is blended with petroleum diesel and then used within diesel engines 

with no or minor modifications in engine systems. These engines are also subjected to a wide 

variety of operating temperatures. The most of the available temperature dependent density 

prediction models have been developed for pure biodiesel only. In this study, appropriate 

models will be developed to correlate the density of biodiesel blends as a function of the 

biodiesel fraction and the operating temperature. These newly developed models can then be 

used to predict density values for a given biodiesel blend at wide variety of operating 

temperatures. This information will be of considerable use in characterising fuel supply 

systems, engine combustion and evaluating the engine performance and emissions.  

2.1.2 Viscosity of Biodiesel  

Viscosity is the property of a fluid by virtue of which it offers resistance to the flow. As the 

temperature of a fluid substance is increased, its viscosity decreases and it is therefore able to 

flow more readily. Viscosity affects the operation of fuel injection equipment, especially at 

low temperatures. High viscosity fuel leads to poorer atomisation of the fuel spray and less 

than desirable operation of the fuel injectors [1]. The viscosity of a typical biodiesel is higher 

than the viscosity of fossil-diesel and some researchers have reported that the biodiesel 

viscosity can be up to  1.6 times that of diesel at 40oC [66]. This ratio increases especially 

when the temperature is below 25oC. Blending of biodiesel with diesel and preheating of 

biodiesel improves the viscous characteristics significantly [58]. The viscosity of biodiesel 

can be estimated from well known mixing laws such as the Grun-Nissan and Katti-Chaudhri 

laws, which were originally proposed by Arrhenis [67]. The laws are expressed in 

mathematical form as written in form of equation (2-4). 
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)ln()ln()ln( 2211max ηηη xx +=      (2-4) 

Where, maxη  is the kinematic viscosity (mm2/s) of the mixture, 1η  and 2η  are kinematic 

viscosities (mm2/s) of components 1 and 2 and X1 and X2 are the volume fractions of 

components 1 and 2. 

 

Alpetekin and Canakci investigated the variation of the viscosity as a function of different 

percentages of blends of biodiesel. The tests were conducted at 40oC for a wide variety of 

biodiesels, such as waste palm oil, sunflower oil, soybean oil, corn oil, cotton seed oil and 

commercial diesel. They developed a second degree empirical equation (2-5) to calculate the 

viscosity of blended biodiesel, as a function of the fraction of biodiesel in the mixture. It was 

found that the estimated values from the equation were fairly close to the measured values:  

 

11
2

1 CxBxAblend ++=η      (2-5) 

Where η is the kinematic viscosity (mm2/s), A1, B1 and C1 are coefficients and X  is the 

biodiesel fraction.  

 

Riazi and Al-Otaibi developed equation (2-6) for estimating the viscosity of liquid 

hydrocarbons and petroleum mixtures at various temperatures from their refractive index 

values (I). However, in this model the equation needs the values of molecular weight, specific 

gravity, boiling temperature and refractive index of compounds as inputs:   

 

I

B
A 2

2

1
+=

µ
       (2-6) 

In the above equation, µ  is the dynamic viscosity (cP), A2 and B2 are constants specific to 

each component and I is the refractive index. 

 

A modified equation was proposed by Tat and Van Gerpen[20] to determine the viscosity of 

biodiesel at different temperatures. The equation is shown below: 

 

2
)ln( 33

3

T

C

T

B
A ++=η .     (2-7) 

Where A3, B3 and C3 are constants, T is temperature in K, and η  is the kinematic 

viscosity (mm2/s).  
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In Tat and Van Gerpen’s equation, the constants A3, B3 and C3, vary with the biodiesel type 

and the biodiesel fraction and this limits the general use of this equation. Pegg et al. [68] 

developed the equation 2-8 to calculate the dynamic viscosity of B100 as a function of 

temperature in the temperature range of 277K to 573K: 

 

2

29352366.216
4343.2)ln(

TT
++−=µ      (2-8)  

Where η is the dynamic viscosity (mPa s) and T is the temperature (K). By considering the 

carbon number, Krisnangkura et al.[69] proposed equation 2-9 and equation 2-10, to 

determine viscosity of biodiesels with long and short carbon structure at different 

temperatures: 

CN
TT

CNCC

772.10966.403
202.0177.2)ln(

1812
++−−=−η   (2-9)  

 

CN
TT

CNCC

35.10312.492
158.0915.2)ln(

126
++−−=−η   (2-10) 

Where 
126 cc −µ  and  

1812 cc −µ   are the kinematic viscosities of biodiesels with number of carbon 

atoms varying from 6 to 12 and 12 to 18, respectively, in mm2/s ,T is the temperature in K, 

and CN  is carbon number. 

 

In Krisnangkura’s [69] equations, number of the carbon atoms is required a-priori which 

limits the use of the equation. Most of the available methods for the estimation of biodiesel 

viscosity at different temperatures are fairly complicated and depend on a number of different 

input parameters. In addition, these empirical correlations vary depending on the biodiesel 

source [70]. In this study, simple and comprehensive viscosity prediction models are 

developed by considering the effects of biodiesel blend percentage and temperature. 

Furthermore, in this research a new model is developed by correlating the density and 

viscosity of biodiesel. 

2.1.3 Heating Value of Biodiesel  

Heating value can be defined as the energy content of the biodiesel. In other words, the 

heating value is the amount of heat released during the combustion of one gram of fuel to 

produce CO2 and H2O at its initial temperature and pressure [63]. It is one of the most 

important parameters for estimating the design parameters and is vital for numerical 
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simulation of combustion [71], [57], [62]. The design and operation of biodiesel combustion 

systems significantly relies on biodiesel characteristics, such as the heating value, moisture 

content, elemental composition, ash properties etc. The heating value of fuel can be reported 

in two ways: the higher heating value (HHV), or gross calorific value, and the lower heating 

value (LHV), or net calorific value. HHV refers to the heat released from the fuel combustion 

with the original and generated water in a condensed state, while LHV is based on gaseous 

water as the by product [72]. Though the term higher heating value has wider acceptance in 

the fuel characterisation, the engine performance estimation models usually use lower heating 

values of the fuel [73]. For this reason, in this study the lower heating values of the biodiesel 

blends have been used in further investigation. 

 

Many researchers have reported the measurement of the heating value of the fuel from 

experimental results using an adiabatic bomb calorimeter, proximate and ultimate 

analyses.    The conventional analysis is a complicated and time consuming process 

which requires specialised set-up, measurements and calculation procedures [72].  

Therefore, many attempts have been made to estimate the heating values based on 

correlating heating value of fuels from the experimental values obtained from bomb 

calorimeter [23], [24],  [71], [72], [73], [74]. Various correlation for predicting heating 

value which were proposed by previous authors have been summarised in Table 2-2.The 

gross heats of combustion of different biodiesel fuels have been measured and calculated 

by Freedman et al.[57] and Krisnangkura[62] using a parr adiabatic calorimeter according 

to ASTM D240 and D2015 standards. They developed a linear correlation between the 

heating value, carbon number and molecular weight. They concluded that the HHV of 

triglycerides increased with increasing carbon number and molecular weight. 

Demirbas[75] has reported that the heating value of vegetable oils can be calculated using 

saponification point and iodine data of oils. He also determined the HHV of vegetable 

oils, alcohols and alkane experimentally and correlated these with their density and 

viscosity values [1], [74] . Sadrameli et al. [63] measured the heating values of pure fatty 

acids using a Parr bomb calorimeter. They developed a correlation of LHVs of fatty acids 

with their molecular weight, density and carbon number. They also found that the heating 

value increases with increasing molecular weight and density of saturate fatty acid. The 

heating values of the vegetable oils and biodiesel were predicted based on the bond 

energies of their fatty acid/methyl ester constituents. 
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Table 2-2 The heating value predication correlations developed by previous authors  

 
 

 

Author  Correlations Accuracy Remark 

Freedman and Bagby, 1989 [57] HHV=76.71+154.77CN, HHV(kg.cal/mole) 

HHV=-431.08+11.03Mw 

R2 =0.99 

R2 =0.99 

HHV calculated from Carbon 

number(CN), and Molecular 

weight of methyl esters 

Demirbas, 2000 [74] ��� � 79.014 
 43.126�, HHV(kJ g-1),  �(g cm-3) 

 

HHV=37.945+0.0491µ , HHV(kJ g-1), µ(mm s-2) 

R2 =0.938 

Average difference 

=0.01% 

R2= 0.998 

HHV calculation calculated from 

density and viscosity of vegetable 

oils 

Sheng and Azevedo, 2005[72] ��� � 
1.3675 � 0.3137� � 0.7009� � 0.0318� 

HHV (MJ kg-1), C, H, O (wt%) 

90% predictions, +- 5% 

error 

HHV calculation from composition 

of main elements 

Sadarameli et al., 2008 [63] ��� � 0.0518�� � 29.76 ,  HHV(MJ kg-1) 

��� � 
93.4� � 122.67,   �(kg m-3) 

HHV=0.7271CN+31.419 

R2= 0.9895 

R2= 0.9798 

R2= 0.9895 

HHV calculation from molecular 

weight(Mw), density(�) and 

carbon number(CN) of fatty acids 

Demirbas, 2009[75] ��� � 
0.0382� � 74.468, HHV(MJ kg-1),   �(kg m-3) 

��� � 0.6154� � 38.998,      µ(mm s-2) 

R2= 0.8922 HHV calculation from biodiesel 

density 

Mehta and Anand, 2009 [73] LHV=0.0109��/��� 
 0.3516��/��� �
             4.2000��/�� � 21.066 
 0.11� ! 

LHV=0.0011��/��� 
 0.0785��/��� �
             2.0409��/�� � 20.992 
 0.100� ! 

R2 =0.99 

 

R2 =0.99 

LHV calculation from carbon to 

oxygen ration and number of 

double bond 
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They measured 17 different vegetable oils and 15 differently processed fuels of which has 

heating values of 37MJ/kg and 38MJ/kg, respectively [73]. Most of the heating value 

correlations have been developed for pure fatty acids or biodiesel fuels. However, 

currently, biodiesel used in the transport sector is blended with petrol diesel. To 

investigate the combustion characteristics, performance and emission of the engine, the 

LHV of the blended biodiesel is required. This problem has also been addressed in the 

present investigation. 

2.1.4 Effects of Physical Properties of Biodiesel on Fuel Supply System  

It is well documented that biodiesel and diesel fuels have almost similar thermodynamic 

properties, although differences in physical properties such as density, viscosity and the 

bulk modulus have been reported [27], [20], [56], [57]. These physical properties strongly 

affect fuel pump performance, injection pressure, injection rate and fuel air-

characteristics. These effects also extend to the performance and emission characteristics 

of the engine. Limited numbers of authors have investigated the effects of the physical 

properties of biodiesel fuels on the fuel pump performance characteristics, fuel injection 

operation and air-fuel mixing behaviour[76-80]. Bannikov et al. [76] studied the effects 

of viscosity of the fuel on fuel pump performance characteristics by testing sunflower oils 

and biodiesel blends. The authors reported that the engine fuelled with more viscous 

blends could not develop its rated power. Yamane et al. [77] investigated the influence of 

the physical properties of fuels on the injection characteristics using computer simulation. 

They reported that when biodiesel fuels were used, the fuel injection pressure increased 

and furthermore the injection timing advanced with a decrease in fuel temperature. The 

spray characteristics of inedible oil which include spray penetration, spray cone angle, 

spray tip speed and Sauter mean diameter (SMD) were studied by Gao et al.[78] using 

both numerical and experimental techniques for various biodiesel fractions. Their 

experimental results showed that as the ratio of biodiesel in the blends increased, spray 

penetration and spray speed increased, but the spray cone angle decreased. Furthermore, 

the SMD of blend fuels was found to be greater than that of diesel. Lee et al.[79] 

investigated the atomization characteristics of biodiesel-blended fuels, including spray tip 

penetration, SMD and mean velocity distribution  using a spray visualization system and 

phase Doppler particle analyzer. The authors concluded that the biodiesel blended fuels 

had similar spray tip penetrations to conventional diesel but higher SMD. This 
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phenomenon was explained on the basis that viscosity and surface tension of the biodiesel 

were higher than those of the conventional diesel fuel.  

 

Bannikov et al. [76] studies were focused on the investigation of biodiesel with a 

viscosity of almost 5 times that of a commercial biodiesel. It was concluded that use of 

highly viscous biodiesel resulted in highly distorted performance characteristics of the 

fuel pump.  

 

This review highlights the lack of research in considering the effects of biodiesel 

viscosity and density on the fuel pump. Therefore, further investigation is required to 

understand fuel pump characteristics at different operating conditions when fuelled with 

different biodiesel blends. Even though the effects of high viscosity and density of 

biodiesel results in fuel filter clogging and fuel flow rate variations [58], [81], [82], there 

is a lack of numerical and experimental investigations to quantify such effects. In order to 

overcome problems experienced with the fuel filter, further work is required in adapting 

traditional fuel filter designs to suit biodiesel physical properties. 

 

The effects of density and viscosity on the SMD have been reported by previous authors 

mentioned in above [77-79]. However, these studies were carried out over a limited range 

of engine operating conditions. Under normal operating conditions the engine operates at 

various engine speeds and loads in which the effects of density and viscosity of the fuels 

need to be investigated further.  

2.1.5 Summary of Knowledge Gaps in Biodiesel Characterisation 

Research 

In this chapter the research works on physical properties of biodiesels, such as density, 

viscosity and heating value were reviewed from the published literature. The prediction 

models for the density, viscosity and heating value of biodiesel have been analysed in detail. 

Most of the empirical correlations described above are dependent on some constants and vary 

with type of biodiesel and percentage of blends. It is very important to adopt a simple, stable 

and reliable estimation method of viscosity as a function of biodiesel fraction, temperature 

and density of biodiesel. These relations will be of immense use in engine intake, 

combustion, and exhaust modelling. Furthermore, the properties of biodiesels affect the 

dynamic flow phenomena in the fuel pump; the fuel filter and injector spray [77]. Based on 
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the above requirements, following two objectives have been formulated which need further 

investigation.  

1. Identify the effect of temperature and biodiesel fraction on density and viscosity of 

biodiesel blends, as well as  develop  correlations to predict the density, viscosity and 

heating value from biodiesel fraction or/and temperature values. Further, an attempt 

will be made to inter-relate density, viscosity and heating values as density of the 

fuels can be measured relatively easily. 

2. Investigate and quantify the effect of density and viscosity of biodiesel and its blends 

on the fuel supply system, such as fuel pump, fuel filter, fuel injector and spray 

characteristics.  

2.2 Combustion, Performance and Emission Characteristics of CI 

Engines Running with Biodiesel  

2.2.1 Combustion Characteristics of CI Engines Running with Biodiesel 

Combustion of fuels is one of the most important processes which affect the performance and 

emission characteristics as well as engine durability. The important parameters that signify 

the combustion process effectiveness are in-cylinder pressure, ignition delay, combustion 

duration, heat release and cumulative heat release rate [83], [84].  The other important 

combustion parameters, such as combustion duration and intensity, can be easily estimated 

from the heat release rate (HRR) variation over an engine cycle. The HRR diagram provides 

key input parameters, for example temperature and pressure values, in the prediction models 

for NOx emissions. The heat release rate is estimated from the first law of thermodynamics as 

given below: 

 

"#
"$ � %.

&
&'(

")
"$ �

(
&'(�

"*
"$       (2-11)  

   

��+� � ),
&-'(�

),
� ./ � 1 
 012+ 
 �/� 
 234�+�(/�5              (2-12)  

Where, dQ/dθ is rate of heat release (kJ/deg), P is the in-cylinder gas pressure, V is the in-

cylinder volume, γ is the ratio of specific heats, Vd is the engine displacement, θ is crank 

angle and R is the ratio of connecting rod length (l) to crank radius (a). 

 

In equation (2-11), the cylinder content is assumed to be a homogeneous mixture of air 

and combustion products. It is further assumed that a uniform temperature and pressure 
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exists at any moment during the combustion process. In order to determine the heat 

release rate within the internal combustion engine (equation 2-11), the engine geometry 

specifications, as described in Table 3-1, and cylinder pressure values recorded during the 

tests, were used. Furthermore, the cumulative heat release (Qcum) is calculated by the 

equation (2-13): 

  

             6078 � 9:6 � 9 ; &
&'(:� �

(
&'(  �:;     (2-13)  

Most of the researchers have reported that the engines running with biodiesel blends 

result in an advancement in injection timing and the start of combustion as the biodiesel 

content in the blends increases [83], [77], [78], [81], [85]. Gao et.al[78] investigated the 

spray penetration, spray cone angle and spray tip speed characteristics  using a high-speed 

camera for different biodiesel blends. The experimental result showed that as the ratio of 

biodiesel in the blends increased, the spray penetration and spray speed increased. The 

spray cone angle, however, decreased. They also reported that the Sauter mean diameter 

of blended fuels was greater than that of diesel under similar operating conditions. 

Furthermore, Zhang and Van Gerpen[86] investigated the effects of blends of methyl 

esters of soya bean oil and diesel in a turbo-charged, four-cylinder, direct injection diesel 

engine. They found that these blends gave a shorter ignition delay and combustion 

characteristics were found to be similar to diesel [86]. Yusuf and Milford [87] studied the 

in-cylinder pressure and heat release rate characteristics of a six-cylinder, direct injection 

306 kW diesel engine, using blends of esters of methyl as a fuel. The peak rate of heat 

release, peak cylinder pressure, indicated mean effective pressure (IMEP) and charge of 

temperature for this blend were found to be lower than that of diesel, [87] Recently, 

Gumus [83] reported results of an investigation into the combustion and heat release 

characteristics of biodiesel fuelling direct-injection compression ignition engines. The 

tests were conducted for different biodiesel blends and the in-cylinder pressure was 

measured. The combustion duration, heat release rate and cumulative heat release were 

calculated from the in-cylinder pressure values. It was concluded that the engine running 

with biodiesel did not show any significant deviation from the engine fuelled with diesel 

in parameters characterising combustion [83]. Modifications, such as increasing the 

injection timing, compression ratio, and injection pressure, provided significant 

improvements in combustion and the heat release characteristics. 
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However, as the biodiesel content in the blend increased, shorter ignition delays and pre-

mixed stage durations were observed. As this review highlights, the studies in combustion 

characteristics on Biodiesel blends are fairly in-consistent. There is a lack of systematic 

investigation to quantify biodiesel characteristics and combustion characteristics 

interdependence. More investigations are required in order to understand the phenomena of 

combustion and to improve the performance and emission characteristics of engines running 

with biodiesel blends. 

2.2.2 Performance Characteristics of CI Engines Fuelled by Biodiesel  

The performance of engines is represented by a number of different parameters. The common 

parameters includes: brake specific fuel consumption, brake effective power and thermal 

efficiency. Many researchers have investigated the performance characteristics of engines 

running with biodiesel and its blends and compared it against its performance when running 

with normal diesel.  

2.2.2.1  Brake Specific Fuel Consumption (BSFC) 

Brake specific fuel consumption (BSFC) is the ratio of the engine fuel consumption to the 

engine power output, as measured at the flywheel. Many authors reported the BSFC of 

biodiesel as being higher than the diesel during the steady state operation of engines. 

Canakci [30] carried out extensive tests on a John Deere 4276T, 4-cylinder, 4-stroke, 

variable speed, turbo-charged direct injection diesel engine, to obtain  performance and 

emission characteristics  when running with  20 % soybean oil methyl ester (SME), under  

steady state operating conditions. The analysis showed that the use of SME resulted in 

higher BSFC than the commercial diesel. He further reported that the neat SME and 20 % 

SME resulted in 13.9% and 2.8% increase in BSFC, respectively. Dorado et al. [88] used 

transesterfied waste olive oil on a 3-cylinder, 4-stroke, water-cooled, direct injection 

diesel engine. Their results revealed a slight increase in BSFC. Monyem and Gerpen [89] 

also tested neat biodiesel, 20% blend, and a base diesel fuel on a John Deere 4276T 

turbo-charged DI diesel engine at a single speed of 1400 rpm, with 100% and 20% loads. 

The biodiesels used were both oxidised and un-oxidised. They reported that the oxidised 

and un-oxidised neat biodiesels resulted in 15.1% and 13.8% higher BSFC than the diesel 

fuel, respectively. Ramadhas et al. [90] tested rubber seed oil on a four-stroke direct 

injection, naturally aspirated single cylinder diesel engine at a speed of 1500 rpm under 

various loads. They reported that when the applied load increased, the BSFC decreased 
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until the engine attained a 60–70 % load condition. In the same analysis, it was seen that 

as the percentage of biodiesel increased the BSFC of the engine also increased.  Lin C 

and Lin H [50] reported that the BSFC of fuels decreased with increasing speeds of the 

engine under a constant engine torque. Lapuerta et al.[44] and Xue et al.[91] carried out a 

thorough review of publications   on the BSFC of engines using  biodiesel and its blends. 

They found that in excess of 87.1% of researchers agreed that the fuel consumption of an 

engine fuelled with biodiesel was higher than that of engines run with diesel as shown in 

Table 2-3. 

 
It can be concluded from the reviewed literature that engines running with biodiesel result 

in  a higher BSFC than when running with diesel, as the former has lower heating value 

and hence  higher amount of fuel is consumed in order to maintain the same brake power 

[30], [89], [88]. These studies indicate that the fuel consumption is, on average, 

proportional to the loss of heating values, irrespective of whether heavy-duty or light-

duty engines were tested. For example, Hasimoglu et al. [92] obtained 13% higher BSFC 

with a biodiesel having LHV 13.8% lower as compared to diesel on a 4-cylinder, TU and 

DI diesel engine. Armas et al. [93] found that the BSFC of B100 biodiesel, with a LHV 

(low heating value), 12.9% lower than that of diesel, had increased approximately by 

12%, compared to the diesel on a 2.5L, DI and TU, common-rail diesel engine operating 

at 2400rpm and 64Nm. Furthermore, Lin et al. [94] investigated the BSFC of eight 

different types of biodiesel on a single-cylinder, 4-stroke, DI diesel engine and found the 

diesel engine had a higher BSFC within the range of 9.45–14.65% than that of diesel 

which had (12.9–16%) higher value of LHV as compared to the biodiesels. 

 

In some papers it is reported [95], [32] that the increased fuel consumption was not 

proportional to the loss of heating value for biodiesel. For example, Gumus and Kasifoglu 

[95] found that the brake specific energy consumption (BSEC) for B100 was higher than that 

of diesel by 4.8%, due to a lower heating value (about 7.4%) and higher viscosity. Some 

works have also reported [96-99] decrease in fuel consumption for biodiesel, compared to 

diesel. For instance, Ulusoy et al. [96] observed that the fuel consumption of frying oil 

biodiesel was 2.43% less than that of diesel on a 4-cylinder, 4-stroke 46kW diesel engine 

under similar operating conditions. Other than the effects of heating value on BSFC, some 

researchers have also reported that the BSFC of biodiesel could be affected by the biodiesel 

content [100-102], biodiesel physical properties[94], [103], [104], engine type and operating 
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conditions[101], [102] and additives[105], [106]. In addition, some researchers have 

reported that the BSFC may increase due to changes in combustion timing caused by 

biodiesel’s higher cetane number, as well as the injection timing [89]. Lapuerta et al. [44], 

[91] and Xue et al. [87] reviewed 158 and 162 articles respectively about biodiesel engine 

performance and emissions, published by highly rated journals in scientific indexes covering 

up to 2010.  

Table 2-3 Estimated share of literature (in % number of publications) on effect of pure 

biodiesel on engine performance and emission in comparison with Diesel [44], [91] 

Parameters  Increasing trend 

number of papers 

(%) 

Similar trend 

number of papers 

(%) 

Decreasing trend 

number of papers                      

(%) 

Lapuerta et al Xue etal. Lapuerta et al Xue et al. Lapuerta et al Xue et al. 

Power performance 0 7.4   2 22.2 96 70.4 

BSFC 98 87.1   2 3.2 0 9.7 

Thermal efficiency 8 NR   80 NR 4 NR 

NOx emission 85 65.2   10 5.8 5 29.0 

PM emission 3 9.6   2 2.7 95 87.7 

THC emission 1 NR   3 NR 95 NR 

HC emission NR 5.3   NR 5.3 NR 89.5 

CO emissions  2 10.6   7 3.0 90 84.4 

CO2 NR 46.2 NR 15.4 NR 38.5 

Aromatic compounds NR 0 NR 15.4 NR 84.6 

Carbonyl compounds NR 80.0 NR 0 NR 20.0 

NR: not reported  
 

It is shown in Table 2-3that from total reports reviewed on the engine running with 

biodiesel, 98% and 87.1% of them agreed that the engine running with biodiesel resulted 

in higher BSFC as per Lapuerta et al. [44], [91] and Xue et al. [87] reports respectively.    

2.2.2.2 Brake Effective Power 

The brake power is the measure of the engine power available, at the flywheel, to perform 

work [107]. Many authors report that the power output delivered with biodiesel is lower than 

diesel during steady state condition of operation. Kaplan et al. [43] compared the 

performance with sunflower methyl esters and diesel on a 2.5 litre, 4-cylinder Peugeot 
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XD3P157 engine at full and partial load conditions. The loss of the torque and power for 

biodiesel ranged in between 5% -10%, compared to diesel. Cetinkaya et al. [108] 

investigated the engine performance on a 4-stroke, 4-cylinder, 75 kW Renault Megane diesel 

engine in winter conditions, using ‘used’ cooking oil and diesel. The torque and power of the 

engine with cooked fuel was less by 3-5% as compared to when used  with diesel fuel. Utlu 

and Kocak [97] found that the respective average decrease of torque and power values of an 

engine running with waste frying oil methyl ester (WFOME), was 4.3% and 4.5% (due to a 

higher viscosity and density and lower heating value (8.8%)) as compared to when used with 

diesel fuel. Hansen et al. [109] observed that the brake torque loss was 9.1% for B100 

biodiesel, relative to D2 diesel at 1900rpm as a result of variations in heating value (13.3%), 

density and viscosity. Moreover, Murillo et al. [110] reported a 7.14% loss of power for 

biodiesel, compared to diesel on a 3-cylinder, naturally aspirated (NA), submarine diesel 

engine at full load. In the above investigations the heating value of the biodiesel used was 

about 13.5% lower as compared to diesel. 

 

Some authors have investigated the effects of biodiesel blends and have reported that the use 

of biodiesel blends in different percentages did not necessarily follow the above trends. For 

instance, Gumus and Kasifoglu [95] found that the power increased with addition of 

biodiesel content in blends up to the B20 (20% biodiesel, 80% diesel) blend. When the 

biodiesel content continued to increase in the blends, the power started to decrease and 

reached below that of the diesel fuel and reached minimum value for B100. Likewise, 

Usta et al. [111] showed that the power initially increased with the addition of biodiesel, 

reached a maximum value, and then decreased with a further increase in the biodiesel 

content.  The aforementioned researchers explained this decrease of power in biodiesel, in 

relation to the higher viscosity and lower heating value of the biodiesel [97], [98], [110]. 

 

Some researchers have also reported that biodiesel delivered more torque and power, in 

comparison to diesel under similar engine operating conditions [98], [112], whilst others also 

reported of no significant power loss due to the biodiesel application on engines. Xue et al. 

reviewed 27 papers published in between 2000 and 2010 on the biodiesel power performance, 

and reported that 70.4% of them reported that the brake power of the engine fuelled with 

biodiesel decreased. 



Chapter 3: Test Rig Instrumentation and Test Procedures 

 

61 
 

Investigations into the Performance and Emission Characteristics of a Biodiesel Fuelled CI Engine 

under Steady and Transient Operating Conditions                   by:Belachew Chekene Tesfa   July 2011 
 

2.2.2.3 Thermal Efficiency 

Thermal efficiency is a dimensionless parameter that indicates the effectiveness of energy 

conversion process in thermal devices, such as internal combustion engines etc. It is 

calculated by comparing the power output at the flywheel with the theoretical power 

available from fuel combustion. Canakici [30], based on his experiments concluded that  the 

thermal efficiency of the engine running with  the soybean oil methyl ester (SME) and SME 

blends had almost the same thermal efficiency when running with diesel. Similarly, Monyem 

and Gerpen [89] in their research found that the thermal efficiency of the engine running with 

biodiesel and its blends had the same thermal efficiency as the base diesel. Ramadhas et al. 

[32] tested rubber seed oil on a 4-stroke direct injection, naturally aspirated single cylinder 

diesel engine at a speed of 1500 rpm and at various load. They reported that when the applied 

load increased, the thermal efficiency also increased. Contrary to the other authors, they 

reported that 10% biodiesel blend had more thermal efficiency than the other blends and base 

diesel. Lin C. and Lin H [50] also reported that the brake thermal efficiency obtained with 

biodiesel was higher than that obtained with diesel. They reasoned that as biodiesel has 

higher oxygen content, it improves its burning characteristics. A number of researchers have 

also reported similar findings when using biodiesel fuels [44], [113]. 

2.2.3  Emission Characteristics of CI Engines Running with Biodiesel 

Current and future emission regulations are, and will become, more stringent and as a 

consequence, the transport sector is undergoing rapid transformation in order to comply with 

these regulations. In addition, fossil fuel demand is continuously increasing globally, the 

result of which is the rapid depletion of fossil fuel deposits [114]. Such problems are 

compelling countries to now focus on developing or finding alternative fuels [115].  The 

major alternative fuels being used in automotive transport are ethanol, hydrogen and 

biodiesel. Ethanol technology is successfully established and commercialised in both 

developing and developed countries. However, ethanol use is limited only to spark ignition 

engines. Furthermore, ethanol use is also limited to maximum blend strengths of up to 15% 

only because higher blend strengths result in fuel injection system problems [116].  

Hydrogen- based fuel cells could become a viable alternative to fossil fuels. However, to 

make its use commercially viable, many technical challenges need to be addressed, for 

example, complexity in hydrogen production, requirements of special infrastructure for its 

storage, and high fuel cell production costs. In spite of research advances on hydrogen-

powered fuel cells, diesel engines are expected to remain in use for high-power applications, 
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such as rail road locomotives, ships and over land transport trucks [4]. A large number of 

studies have shown that biodiesel is one of the most promising renewable, alternative and 

environmentally friendly biofuels which could be used in diesel engines, with little or no 

requirement of engine modifications [90], [117-120]. It has also been shown that biodiesel 

has significant potential to reduce CO2, CO, THC and PM emissions [88], [97].  

2.2.3.1 Nitric oxides(NOx) 

Oxides of nitrogen are chemical compounds formed by the combination of nitrogen and 

oxygen under extremely high temperatures which occur during a combustion event in an 

internal combustion engine. Most of the literature reviewed showed that the use of 

biodiesel fuels caused increases in NOx emission[23], [60], [96], [100], [109-111], [121], 

[122] [123], [124], [125]. As presented in Table 2-3 Lapuerta et al.[44] and Xue et al.[91] 

carried out a thorough review of publications on the NOx emission of engines using 

biodiesel and its blends. Lapuerta et al.[44] and Xue et al.[91] reported that in excess of  

85% and 65% of researchers agreed that the NOx emission of an engine fuelled with 

biodiesel was higher than that of engines running  with diesel respectively. Candace 

[125]carried out a test on a John Deere 4276T, 4-cylinder, 4-stroke, variable speed, turbo-

charged DI diesel engine, for engine performance and emission analysis when running 

with 20% soybean oil methyl ester (SME) under steady conditions. The test analysis 

showed that NOx emissions of the CI engine were higher for biodiesel and its blends than 

for diesel. The 20% and 100 % biodiesel blends had increased the engine emissions by 

0.6% and 11.2 %, respectively. Marshall et al.[124] tested a Cummins L10E engine under 

transient conditions, with diesel fuel, and 20% and 30% biodiesel blends. They reported 

that the NOx emission increased by 3.7% and 1.2% for 20% and 30% biodiesel blends, 

respectively over and above the diesel emission. Furthermore, a maximum of 15% 

increase in NOx emissions for B100 was observed at a high load condition which may be 

because of 12% oxygen content of the B100 and higher gas temperature in combustion 

chamber [93]. Lin et al. [23] compared 8 kinds of biodiesel as mentioned earlier and 

observed that using biodiesels in the diesel engine yielded higher NOx emissions. This 

NOx emission ranged from an increase of 5.58% to an increase of 25.97% when 

compared to petrol diesel over a wide range of operating conditions. Three main 

arguments have been used in previous works to explain the observed increase in NOx 

emissions when using biodiesel fuels [44], [91]. The first reason behind this observation 

is advanced engine combustion when running with biodiesel as a consequence of the 
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advanced injection derived from the physical properties of biodiesel such as viscosity, 

density, compressibility and speed of sound [126]. When biodiesel is injected, the 

pressure rise produced by the pump is quicker as a consequence of its lower 

compressibility (higher bulk modules) and the pressure wave  propagates more quickly 

towards the injectors as consequence of its higher sound velocity [77], [89], [126], [127]. 

This causes earlier ignition which results in higher temperature peaks and NOx formation 

rates. The second argument frequently proposed to explain the higher NOx emissions of 

engine running with biodiesel is the increased cetane number of biodiesel which leads to 

an advanced combustion by shortening the ignition delay [89], [112], [128], [129]. 

However, the argument of higher cetane number for higher NOx emission is 

questionable. The higher cetane number will not only lead to early burn, but will also 

lower premixed combustion which will lead to smaller changes in cylinder pressure and 

temperature, which may lower NOx formation [91]. The third argument is related with 

oxygen content of biodiesel which enhances the formation of NOx.  The relationship 

between NOx values and the mass percent of oxygen in fuel had been investigated 

experimentally by Laybacks and Slavinskas [130] on a 4-stroke, 4-cylinder, direct 

injection diesel engine. The results showed that the NOx emissions increased 

proportionally with the mass percent of oxygen in the rapeseed methyl ester diesel blends 

 

A small number of researchers have reported that the NOx emissions are reduced when 

biodiesel is used as a fuel [9], [88], [93], [97], [101], [128], [131].  For example, Dorado 

et al. [88] ran transesterfied waste olive oil in a 3-cylinder, 4–stroke, water-cooled, 18.5:1 

compression ratio, direct-injection diesel engine Perkins AD 3-152. In this test, the NOx 

emission of the engine had reduced by 32%, compared to when used with diesel fuel. 

Puhan et al.[128] found that the average reduction of NOx in the case of biodiesel was 

around 12% compared with the diesel fuel over the whole range of loads. Qi et al.[9] 

carried out emission analysis on a single cylinder, naturally aspirated, four stroke, and 

high speed diesel engine with a bowl in piston combustion chamber which was run with 

biodiesel produced from soybean. They reported NOx emission was reduced by 5% 

compared with the normal diesel.  
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Insiginficant numbers of researchers have reported that engines running with biodiesel do not 

show significant difference in NOx emission between biodiesel and diesel fuels [12], [132], 

[133].  

2.2.3.2 Carbon monoxide (CO) 

CO is a toxic gas which forms due to inadequate oxygen amount present in combustion 

chamber. In diesel engines, CO is formed during the intermediate combustion stages. CO 

discharged from the engine into the exhaust manifold is oxidised to form CO2, if adequate 

oxygen is present and the gases remain hot enough with a sufficient residence time. 

Most of the previous works have indicated that the CO emissions of engine running with 

biodiesel are lower than that engine running with diesel[60], [96], [100], [109-111], [121], 

[122] [123], [124], [128], [129], [134]. The Lapuerta et al.[44] and Xue et al.[91] have 

reported that 90% and 84% of the reviewed papers shows decrease in CO emissions, when 

the engines ran with biodiesel. Krahl et al. [134] found about 50% reduction in CO 

emissions for biodiesel from rapeseed oil compared to diesel. A higher reduction in CO 

emissions was shown by Raheman and Phadatare[101], who observed that the CO 

emission reduced in the range of 73–94% for the karanja methyl ester (B100) and its 

blends (B20, B40, B60 and B80) as compared to diesel. Canakci [30] reported that for 

biodiesel and its blends, the CO emission was observed to be lower than that of normal diesel 

in the aforementioned test. He further added that the emission decreased with an increase in 

the blend percentage. Ramadhas et al. [32] tested rubber seed oil on a 4-stroke direct- 

injection, naturally aspirated single cylinder diesel engine. The carbon monoxide emission 

rose with increasing load levels, due to an air-fuel ratio decrease. Durbin et al. [12] 

experimented with biodiesel, biodiesel blends and synthetic diesel in four Ford and Dodge 

light heavy-duty diesel vehicles. CO emissions of the engine were significantly lower for all 

alternative biodiesel blends compared to diesel in this test. Wang et al. [132] conducted field 

work on Heavy Duty Chassis Dynamometer with Cummins 855 engines at West Virginia 

University using 35 % biodiesel blend under steady and transient conditions. The authors 

reported that during acceleration, CO increased in the engine running on biodiesel and 

decreased during the deceleration process. The main reason for reduction of CO emission is 

due to the extra oxygen content of biodiesel which enhances the complete combustion and 

leads to the reduction in CO emissions [9], [111-113], [123], [124], [127], [128],[131], 

[135]. 
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2.2.3.3 Carbon dioxide (CO2) 

CO2 is one of the gases emitted during combustion of carbon in fuel. There is no universal 

consensus on the effect of biodiesel on emission of CO2 from CI engines.  Some authors have 

reported that when a CI engine runs with biodiesel the CO2 emission increases as compared 

to  petrol diesel[30], [32], [96], [128]. Ramadhas et al. [32] measured the CO2 emissions of 

the engine running with biodiesel and its blends over a wide range of loads. For all blends of 

biodiesel used in this work, the CO2 emissions of the engine rose with increasing load. For 

lower percentages of biodiesel blends, the CO2 emission of the engine running with biodiesel 

was lower than that of the emission of engine running with diesel. However, when 100% 

biodiesel was used, CO2 emission of biodiesel was higher than diesel. Canakci [30] reported 

that the CO2 emissions of the biodiesel and its blends were slightly higher than that of diesel. 

The 100% and 20% blends of biodiesel increased the CO2 emissions from the engine by 0.5 

and 0.1 %, respectively.  The researchers suggested that this was due to biodiesel having a 

lower carbon-hydrogen ration than diesel fuel. In contrary to this some researchers reported 

that the CO2 emission rise when CI engines run with biodiesel as compared to when used  

with diesel [50], [97], [104], [136]. Lin C. and Lin H [50] experimented using soybean 

biodiesel (Sample 1 and 2 biodiesel, commercial biodiesel) and ASTM No. 2D in a 4-

cylinder, 4-strokes, naturally aspirated, direct-injection diesel engine with a displacement 

volume of 3.856 litre,  under constant torque and variable engine speeds of 850 to 2000 rpm. 

The CO2 emission index decreased with an increase in engine speed for diesel and biodiesel 

blends.  

2.2.3.4 Total Hydrocarbon (THC) 

The incomplete combustion of fossil fuels and fuel evaporation from the open areas are 

being the major sources of hydrocarbons (HC) in the atmosphere. When hydrocarbons 

combine with NOx and sunlight, ozone is formed. This is a serious form of air pollution 

and a key component of smog. Most reviewed literatures show a sharp decrease in the THC 

emissions when substituting conventional diesel fuel with biodiesel fuels in engines [30], 

[32], [60], [96], [100], [109-111], [121], [122], [123], [128], [134]. For example, Puhanet 

et al. [128] reported that the HC emissions reduced by an average of around 63% of when 

the CI engines run with biodiesel as compared to diesel. Durbin et al. [12] reported that 

THC emissions were generally lower for biodiesel and synthetic diesel, compared to 

California Diesel. The 100% biodiesel fuel resulted in the lowest THC. Monyem and Gerpen 

[89] tested neat biodiesel, 20% blends, and the diesel on a John Deere 4276T turbo-charged 
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DI diesel engine. The HC emissions for all the biodiesel fuels were less than that of the base 

fuel. Several researches also showed that there was no significant difference in THC 

emission caused by biodiesel and diesel [91], [130], [137]. Also the trend of THC 

emissions increase with the use of biodiesel was found in several publications 

[54,112,113]. Most authors have agreed that the primary cause of the formation of THC 

is the presence of oxygen content in the biodiesel molecule, which leads to a more 

complete and cleaner combustion [9], [111-113], [128], [124], [127], [128], [131], [135]. 

The higher cetane number of biodiesel reduces the combustion delay, and such a 

reduction results in reduction of THC [89], [112], [128], [129], [138].  

2.2.4 Summary on Knowledge Gaps on Combustion, Performance and 

Emission Characteristics of CI Engines Running with Biodiesel 

The performances of the CI engines running on biodiesel and its blends under steady 

conditions have been reported extensively in the aforementioned literature review. The main 

performance parameters, such as brake power, specific fuel consumption and thermal 

efficiency, variations with biodiesel blending percentage, engine speed, engine load, and 

engine types, have not been investigated in-depth. It can be concluded from this discussion 

that BSFC shows complex behaviour with biodiesel use in comparison to diesel and more 

investigations are required to understand these effects thoroughly. As per the knowledge of 

the researcher, there are limited works available on systematic investigation on engine 

performance when running with biodiesel and its blends during transient operations. The 

transient conditions of operation are mainly observed in urban area due to the ‘stop and go’ 

nature of vehicular traffic. This study, therefore, includes the investigation on the usefulness 

of biodiesel and its blends during such transient conditions of operation. 

 

Detailed research has been conducted on the emissions of biodiesel during steady operations, 

considering different operating conditions. The effect of biodiesel blending fraction and the 

impact of speed and load variation on the engine have been investigated in detail. Most of the 

reports are focused on the steady state operations. Furthermore, established mathematical 

models for diesel and biodiesel emissions during transient conditions are yet to be developed. 

This study, therefore, will focus on the investigating the engine emissions during transient 

conditions. In addition, a mathematical model will be developed for prediction of emissions 

during transient conditions. Prediction of performance and emission characteristics of the 

engine running with biodiesel during transient operations is therefore will be attempted in the 
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present work. Furthermore, attempts will be made to test usefulness of steady state data 

(commonly available) in predicting transient behaviour of the engine running on biodiesel.   

The literature review clearly identified that the engine running with biodiesel resulted in 

significant reduction in emissions of CO2, CO and THC. However, the engines running with 

biodiesel emit more NOx than the engine running with conventional diesel. So it is very 

important to develop on-line measuring methods for monitoring NOx emission as well as to 

develop novel NOx reduction techniques. Therefore, the next section focuses on the NOx 

emission measurement, NOx formation in combustion chamber and NOx reduction 

techniques. 

2.3 NOx Measurement Techniques and Prediction Models 

The current available methods of measuring/predicting NOx emissions are: analyser use 

(direct measuring), engine map method and artificial neutral network.  Measurement of 

nitrogen oxides on a dry basis, by means of a heated chemiluminescent detector (HCLD) with 

a NO2/NO analyser, is widely used.  However, the analyser has disadvantages of higher 

initial costs and larger space requirement well as it demands frequent calibration and can be 

affected by soot. In addition, its responses are very slow, which affect transient NOx 

emission measurements [51]. However, the formation of NOx is the most significant 

phenomena under transient engine operations especially when biodiesel is used as a fuel.  

These effects are mainly seen during engine acceleration or load increases, owing to the 

momentary increase in fuel injection which contributes to higher cycle temperatures and, 

hence NO production [35], [36]. An engine map method includes a NOx database generally 

based on measurements of a series of settings of engine speed and torque, or power of the 

engine, under stationery conditions. Most maps have the disadvantages of not considering the 

effects of all the significant variables on NOx emission levels. This causes deviations 

between real NOx emissions estimated from the engine map. In addition, it estimates the 

transient conditions from discrete steady state values [51].  The third method, which needs 

the artificial neural network (ANN) system, has the advantage of training from real life data 

taken under transient conditions. However, in the neural network there is no explicit 

mathematical representation of the physical process, and the predicting capability is limited 

only to the specific engine type for which the neural network is trained [139].  

 

NOx formation is the thermal mechanism, which occurs in the post-flame burned gases, and 

as described by the extended Zeldovich mechanism, which is described by equations (2-14 to 

2-16), and includes the reactants, products and rate constants. In order to derive the rate of 
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change of NO concentration in equation (2-17), it was assumed that the concentration of the 

N is minor in comparison to the concentrations of the other species, so that the rate of change 

in N can be set equal to zero. This assumption has been made due to the smallest value of 

the activation energy for oxidation of N atoms [140], [141]. During fuel-lean flame, the 

rate of consumption of free nitrogen atoms becomes equal to the rate of its formation and 

therefore an equilibrium state can be established and rate of change of N can be assumed 

almost zero. The rate constants for equation (2-17) have been measured in numerous studies 

and critically evaluated [137], [140], [142], [143], [196] .The reaction rates used in this NOx 

model are given in Table 2-4. In Table 2-4 the (-) sign indicate the backward reaction. The 

[N2] and [O2] concentrations were determined at ambient condition of the atmospheric air. 

2.4 Techniques to Reduce NOx Emission  

2.4.1 NOx Formation in Diesel Engines  

NOx formation process in IC engines can be categorised as, prompt NOx formation process, 

fuel NOx formation process and the thermal NOx formation process. Although the NOx 

emission release amount varies, each of the three pathways of NOx formation contributes to 

the overall NOx emission into the environment [52]. Prompt NOx is produced when 

hydrocarbon fragments (mainly CH and CH2) react with nitrogen in the combustion chamber 

to form fixed nitrogen species, such as HCN. HCN reacts with the atmospheric nitrogen to 

form NOx.  Prompt NOx formation is only common in fuel-rich combustion. Diesel engines 

run fuel lean; therefore, the probability of prompt NOx formation is limited. In addition, in 

biodiesel the carbon to hydrogen ratio is lower as compared to carbon to hydrogen ratio in 

diesel fuel. Therefore, the contribution of prompt NOx formation from biodiesel within fuel 

engines can be ignored. The second method of NOx formation occurs when nitrogen which 

has been chemically bound in the fuel, combines with excess oxygen during the combustion 

process.  This is not a problem for biodiesel again, which does not contain nitrogen inherently 

[140].  

 

The thermal NOx formation process is the main contributor to NOx emissions from diesel 

engines. It occurs during fuel combustion in combustion cylinders when the atmospheric 

oxygen and nitrogen combines at higher temperature. The possible kinetic reaction 

mechanisms of emissions generation in the engine cylinder are described as the Zeldovich 

extended mechanism [144] equations (2-14 to 2-16): 
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N2 + O       NO + N                 (2-14)     

N + O2    NO + O                                (2-15) 

N + OH    NO + H                                    (2-16) 

Table 2-4 Rate constants for thermal NOx formation [140] 

Rate constants Values [(m3/(gmol s)] 

k1  1.8<10=>'�=�?@/A 

k-1 3.8<10?>'B�C/A 

k2 1.8<10BD>'BE=@/A 

k-2 3.8<10�D>'�@=�@/A 

k3 7.1<10=>'BC@/A 

k-3 1.7<10=>'�BCE@/A 

 
 
Where k1, k2 and k3 are the rate constants for the forward reactions as given in Table 2-4. 

Assuming quasi-steady state for the formation of N, the net rate of the NOx formation 

through the above reactions is given by the following formula (equation (2-17)):  

 

  
"FG
"H � 2k(.�5.��5

J('KLMKLN.OP5NKM.ON5KNPN Q
R(S KLM.OP5

KN.PN5TKU.PV5W
    gmol/(m3 s)   ( 2-17) 

To solve equation (2-17), in addition to the concentration of N2 and O2, both concentrations 

of O and OH are needed.  The concentration of O radicals can be calculated from either an 

equilibrium approach or partial-equilibrium approach equation (2-18) and equation (2-19), 

respectively. 

 

.�5 � 3.97 < 10CD'(/�.��5(/�>'�(@X@/A        gmol/m3     (2-18) 

.�5 � 36.64D(/�.��5(/�>'�?(��/A              gmol/m3      (2-19) 

The concentration of OH molecules can be calculated from the following equation (2-20): 
  

.��5 � 2.129< 10�D'@.C?>'BCXC/A.��5(/�.���5(/�    gmol/m3   (2-20) 

K±2 

K±3 

K±1 
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For most fuel lean cases, such as in diesel engines, the thermal NOx formation equation (2-

16) can be neglected and [OH] is no longer needed. This is due to the equilibrium constant of 

[O2] being much higher than the equilibrium constant of [OH].  

 

The thermal NOx formation rate is primarily a function of temperature and the residence time 

of nitrogen at that temperature. These reactions occur at high temperatures, usually in the 

range 300-5000K [59]. In addition, turbulence and amount of excess oxygen are two other 

important factors to consider.  In order to reduce the rate of NOx formation by thermal 

method in the cylinder, the only possible way to do so is by reducing the reaction rate in 

equation (2-17). The rate of reaction can be reduced by lowering the combustion chamber 

temperature. The chamber temperature can be reducing by a number of methods.  

 

There are different methods used to reduce NOx emission from compression-ignition engine, 

such as exhaust gas re-circulation (EGR), catalytic conversion (post-combustion method) and 

water injections/emulsion [52].  The following section highlights the merits and demerits of 

each method. 

2.4.2 Methods of NOx Reduction  

Biodiesel is one of the renewable energy sources, which consists of short chain (methyl or 

ethyl) esters, produced from vegetable-based oils by transesterification. A large number of 

studies have shown that biodiesel is one of the most promising renewable, alternative and 

environmentally friendly biofuels which could be used in diesel engines with little or no  

requirement of engine modifications [117-120], [90]. It has also been shown that biodiesel 

has significant potential to reduce CO2, CO, THC and PM emissions [88], [97].  

 

Although biodiesel provides engine performances comparable to engine performances using 

diesel, a considerable number of researchers have reported that engines running with 

biodiesel emit higher NOx concentrations in exhausts [44], [48], [49]. NOx and PM 

emissions are major toxic emissions which are being regulated with emission regulations 

which are becoming increasingly more stringent [50], as shown in Figure 2-1[145]. This 

regulatory requirement has resulted in major research and development works being 

undertaken in order to reduce NOx emissions. Different methods have been used to reduce 

NOx emission successfully from compression-ignition engine. Some of these include: 

exhaust gas re-circulation (EGR), catalytic conversion (post-combustion) and water 
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injection/emulsion [52]. The working principles, advantages and disadvantages of these 

methods are summarised below. 

2.4.2.1 Exhaust Gas Recirculation (EGR)  

The main principle employed in EGR is re-circulation of a portion of an engine's exhaust 

gas back to the engine cylinders. The re-circulated exhaust gas decreases the local 

temperature in the combustion chamber. It is mostly effective in particular time/space zones 

during which NOx emissions are produced, specifically during fuel injection and after the end 

of injections [146]. 

 

    
 

Figure 2-1 Passengers cars NOx emission overview of past and future requirements [38] 

In an EGR system, the heat of combustion from the fuel is used to heat the exhaust gas. The 

exhaust gas is essentially inert and therefore does not react in the combustion chamber and 

only absorbs heat [52].  Although EGR has a potential of reducing NOx by 50%, it has an 

inherent drawback of increasing the PM emissions [115], [147], [148]. In addition, the heat 

absorption by exhaust inert gas in the cylinder chamber also results in small amounts of 

power loss from the engine.  

2.4.2.2 Post-Composition Control Method  

The other method used to reduce NOx emissions is the post-composition control of exhaust 

gas. One such method being used for SI engines is a three-way catalytic converter. The 

catalytic-converter changes NOx to N2, CO to CO2 and unburned hydrocarbons (HC) into 

H2O and CO2. However, the materials used in catalytic converters include platinum, 
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palladium, and rhodium, which are expensive. In addition, the catalytic convertors work best 

at a stoichiometric air-fuel ratio of about 14.1:1. Most of diesel engines tend to run lean 

which makes the catalytic converter less effective in reducing NOx emission [149]. Running 

lean also produces more NOx emission due to an increase in engine temperature. The other 

catalytic method used to reduce NOx is selective catalytic reduction (SCR). This method has 

been used for several years in stationery combustion installations to reduce NOx, by injecting 

ammonia in the presence of the catalyst. In vehicles applications, however, instead of 

ammonia, an aqueous solution of urea (NH2CONH3) is used. The SCR can result in NOx 

reductions by 90% [150]. However, the application of SCR is used mainly in heavy vehicles 

and is rarely in use in passenger cars. This is due to exhaust gas temperatures in diesel car 

being low that makes SCR less effective. In addition, urea/ammonia management is quite 

costly and requires modification of the exhaust system for catalyst space. Furthermore, 

provisions for a new urea/ammonia infrastructure and maintenance of the system need to be 

made [151]. 

2.4.2.3 Water Injection/Emulsion 

The third method used to reduce local combustion temperature and, consequently, NOx 

emission is the injection of water into an engine system [152-156]. One of the advantages of 

the water injection, as compared to the EGR and the catalytic converter, is the enhanced 

possibility of reduction of NOx over the entire engine load range, without affecting the PM 

emission negatively [115].  Although water is inert, in the combustion cylinder it decreases 

the local adiabatic flame temperature by absorbing heat of water vapour [157-159]. As a 

result, the NOx emission, which depends on the peak flame temperature, is reduced [15], 

[160], [50]. In addition to the reduction of NOx, water emulsion also reduces the HC, soot 

and particulate matter. There are three main methods that are used to introduce water into a 

diesel engine. These are direct water injection into the cylinder using separate injectors, 

injecting water/diesel emulsion and spraying/injecting water into the intake manifold[154] 

[161], [162]. 

 

The first water-based injection system involves direct injection of water within the 

combustion cylinder. This method provides an option of controlling the water and fuel ratio 

[163]. Southwest Research Institute and Delphi Diesel Systems have developed a real-time 

water injection system for application in heavy-duty diesel engines. The system is integrated 

with an electronic control unit which controls the pump that delivers metered volumes of 

water to an electronic injector, forming a diesel and water mixture at the injector tip. It has 
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been reported that this method enables NOx emission to be reduced by up to 42%, and in 

combination with EGR, this method enables NOx emission to be reduced by up to 82% 

[164]. The drawbacks of this method, however, is the level of complexity involved in 

integrating additional components into the existing engine system, and further requirements 

needed in the re-design of a fuel supply system integrated within the engine.  

 

The second water-based injection system involves the use of emulsification of water and fuel 

in the presence of some surfactants in an appropriate mixer. It has been also shown that 

adding water to the fuel improves atomisation and the mixing characteristics which are 

attributed to droplet micro-explosions. Micro-explosions phenomena are induced by volatility 

differences between the water and the fuel [162]. The water-fuel emulsion methods, however, 

have several shortcomings which impede emulsion fuels from becoming widely used in the 

practice. The effects of water emulsion on the performance of the engine vary with the 

operational modes of the engine. In most of the previous studies, water emulsion has been 

shown to have a positive effect on engine performance parameters [160], [165].  The water 

diesel emulsion, however, has some drawbacks. First, the emulsions needs a more advanced 

and well developed infrastructure for the implementation of a complex on-board, water-in-

diesel emulsion production system integrated with the engine. This increase the engine cost 

[115]. In order to produce smaller and well-scattered water droplets, the engine operating 

parameters need to be controlled with very high degree of accuracy [162]. Second, the 

physical properties (viscosity, density and bulk modules) of the fuel emulsion may change. It 

was observed that the viscosity and density of water-emulsified fuel have higher values, than 

the normal fuel [166]. Changes in these parameters can significantly affect the performance 

of the fuel injection system. 

 

The third method of water-based injection systems is intake manifold water injection. 

Currently, this method is widely used in large marine diesel engines. Water can be injected 

either downstream or upstream of the compressor [152-155],[156], [163]. Tauzia et.al [115] 

investigated the effects of water injection into the intake manifold of a HDDI diesel engine. 

They reported a NOx reduction of up to 50% at an injection rate of between 60-65 % of water 

based on fuel consumption over a wide load range. The main advantage of water injection 

into the intake manifold is the simplicity and ease with which it can be integrated within 

existing engines and also with any new design. Since in this system water is injected through 

a separate valve and does not mix with fuel directly, it does not affect the fuel flow properties 
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in fuel supply line. It can be seen from the above discussion that water injection into the 

intake manifolds, has the potential to be the most effective method of NOx reduction.  

The reasons behind temperature reduction in combustion chamber because of water 

injection/emulsion can be one or more of the following [115], [152]: 

• Decrease of the cylinder gas temperature due to the absorption of heat by water to 

form vapour. 

• Water cooling effects due to evaporation of water from combustion chamber 

surfaces 

• Increase of heat capacity due to higher trapped mass 

• Increase of specific heat capacity due to air dilution with vapour 

• Increase of heat loses at the cylinder wall, lining and piston head 

• Combustion delay due to increase in ignition delay 

• Decrease of the chemical reactions rate due to the inert ‘chemical’ water 

For an adequate control of the reduction of NOx emission by using water injection in diesel 

engines, a tool has to be available to accurately and quickly measure or predict the NOx 

emissions during both steady and transient conditions. In next section a summary on detailed 

reviews has been presented on the available NOx prediction models and corresponding merits 

and demerits.   

2.4.3 Summary and Knowledge Gaps on NOx Emission Reduction 

Techniques and Predicting Models 

In this chapter available technologies for NOx reduction were reviewed. It can be seen that 

the application of water injection to an engine running with diesel in order to reduce NOx 

emission, has been reported extensively. However, little attention has been paid to 

understanding and investigating the effects of water injection on engines’ performance and 

emission when running with biodiesel and biodiesel blends. To use the water injection system 

for NOx reduction, thermodynamic effects of water injection on the combustion behaviour, 

the performance and emission characteristics of a CI engine need to be investigated. The 

available NOx measurement or predicting methods such as heated chemiluminescent 

detector (HCLD), engine map and artificial neutral (ANN) system, are limited either only for 

steady state operations or limited for only some engine operations. Therefore, it is vital to 

develop new real-time NOx emission prediction models for engine transient study and on-line 

diagnosis. 



Chapter 3: Test Rig Instrumentation and Test Procedures 

 

75 
 

Investigations into the Performance and Emission Characteristics of a Biodiesel Fuelled CI Engine 

under Steady and Transient Operating Conditions                   by:Belachew Chekene Tesfa   July 2011 
 

2.5 Scope and Objective of the Study  

2.5.1  Scope of the Study   

It has been reported that Biodiesel and its blends differ from diesel and have different physio-

chemical properties. These properties are a function of operating temperature. The available 

literature does not provide complete information regarding this. Furthermore, there is no 

model which indicates the effect of such properties on filter, fuel pump and air-fuel mixing 

behaviour. Hence, the first facet of this work is to investigate the most important properties of 

biodiesel such as density, viscosity and lower heating value, both experimentally and 

numerically. The effects of the biodiesel blend content on the physical properties are also 

proposed to be analysed. For each property mentioned above it is proposed to develop 

accurate predicting models which will be validated through models available in literature and 

experimental results. It is proposed to develop new density and viscosity predicting models 

by considering the combined effect of biodiesel content and temperature. Finally the effect of 

the density and viscosity on the fuel supply system such fuel filter, fuel pump and air-fuel 

mixing behaviour will be established through numerical investigations.  

 

The second facet of this research is to investigate the combustion as well as engine 

performance and emission characteristics of a CI engine under both steady and transient 

conditions of operation when operating with biodiesel. The knowledge available in this 

regard is sketchy and a systematic investigation is required in this regard. The effects of the 

biodiesel properties and the biodiesel content on the CI engine’s in-cylinder pressure, brake 

specific fuel consumption, thermal efficiency and emissions (CO2, NOx, CO, THC) will be 

discussed on the basis of the experimental results. For each parameter the effects of the 

biodiesel blends will be quantified. A detailed analysis on transient performance and 

emission characteristics of CI engines would be also carried out.  

 

During the literature search, it has been noticed that there is a lack of available methods to 

predict and measure NOx emission during transient state of engine operation. Hence the third 

facet of this work is to predict NOx by using the measured in-cylinder pressure and air flow 

rate. The NOx emissions are well known drawbacks of using biodiesel as a fuel. In absence 

of any well known method for NOx reduction for engines running with biodiesel, research is 

necessary to investigate existing methods used for diesel engines to understand their 

suitability in reducing NOx. Hence, the final facet of this dissertation is to develop a simple, 

reliable and inexpensive method (water injection) to reduce the NOx emission from the CI 
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engine fuelled by biodiesel. By varying the water injection flow rates, the performance and 

emission characteristics (NOx and CO) of CI engine fuelled with biodiesel would be 

investigated.  

2.5.2 Objectives of the Study   

In the literature review four research problems have been identified in areas of biodiesel 

physical properties, engine performance and emission behaviour during transient operation as 

weel as NOx emission measurement technique and complexity of NOx emission during the 

utilization of biodiesel in CI engine. Taking the identified specific problems into account, this 

study has the following specific objectives: 

1. To analyse the physical properties such as density, viscosity and lower heating value 

of biodiesel and its blends experimentally by considering biodiesel content and 

temperature variation.   

2. To develop predictive models for physical and chemical properties of biodiesel and 

its blends from the experimental data which can correlates the physical properties 

with biodiesel content and temperature. 

3. To investigate numerically the effects of the biodiesel physical properties on the fuel 

supply system such as fuel filter, fuel pump and engine combustion chamber. 

4. To analyse experimentally, the combustion characteristics such as in-cylinder 

pressure, heat release rate and cumulative heat release of CI engine fuelled by 

biodiesel and its blends during both steady and transient conditions. 

5. To examine analytically the brake specific fuel consumption, thermal efficiency and 

in-cylinder peak pressure of CI engine systems from experimental data obtained from 

engine using biodiesel and its blends during both steady and transient conditions. 

6. To examine, numerically and experimentally the emissions of CI engine systems, 

from engine running on biodiesel and its blends during both steady and transient 

conditions. 

7. To develop a method to estimate NOx emission under steady and transient operation 

using in-cylinder pressure, specific heat and mass air flow rate. 

8. To develop direct water injection system for use in CI engine running with 

biodiesel and investigate the combustion characteristics, performance and NOx 

emission of the engine during steady mode of operation. 



Chapter 3: Test Rig Instrumentation and Test Procedures 

 

77 
 

Investigations into the Performance and Emission Characteristics of a Biodiesel Fuelled CI Engine 

under Steady and Transient Operating Conditions                   by:Belachew Chekene Tesfa   July 2011 
 

2.6 Summary on Chapter Two 

In Chapter two an extensive literature review work on the biodiesel characterisation, 

performance and emission characteristics of CI engines running with biodiesel, NOx 

emission reduction techniques and NOx prediction models have been carried out. The 

reviews have identified the specific research problems. Depending on the research problems, 

the specific objectives of this study have been identified. In the next Chapter the test 

apparatus and test procedures have been explained in detail.  
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CHAPTER THREE 

3. TEST RIG INSTRUMENTATION AND TEST PROCEDURES 

 
 
This chapter gives a detailed description of the experimental facilities required for biodiesel 

characterisation, the test engine’s characteristics and specifications, and also describes the 

test rig and instrumentation. The details of measured parameters, data acquisition system and 

application software are also provided. In addition, test procedures have been described in 

detail.  Under test procedures the methodology of biodiesel blending, the new steady and 

transient test procedures, water injection system and injection procedures have been 

developed. Finally, methods to ensure accuracy of measurements have been discussed. The 

test apparatus and procedures have been selected after reviewing previous similar works and 

specification of various instruments.  
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3.1 Biodiesel Characterisation Facilities  

3.1.1 Materials-Biodiesel and Diesel 

In this study, three common types of commercially available biodiesels (corn oil biodiesel, 

rapeseed oil biodiesel, and waste oil biodiesel), obtained from a local company, have been 

used for analysis. The corn oil biodiesel and rapeseed oil biodiesel were produced by the 

transesterfication process from ‘virgin’ oil using methanol. The waste oil biodiesel was 

produced by the same process, although the raw feed was from cooking oil waste. Normal 

diesel fuel was obtained from a local fuel supplier. The red diesel, which is exactly the same 

as regular diesel by its combustion, performance and emission behaviour, was used in all 

tests. The red diesel was selected due to its low fuel tax for off-road engines. The biodiesel 

was blended with diesel fuel at 5%, 10%, 20%, 50%, 75% and 100% on a volume basis. Six 

samples were prepared for each biodiesel. In total, (including diesel) 19 samples were used in 

density and viscosity measurements.  

3.1.2 Density measurement: Apparatus and Procedures 

In order to measure the density, standard procedures: BS EN 3675, have been followed [167]. 

A glass hydrometer with specific gravity in the range of 0.7 to 1.0 with an accuracy of three 

decimal places was used. To collect the temperature-dependent data, a 100ml graduated 

cylinder containing a biodiesel sample was placed in a temperature controlled bath. The water 

bath temperature varied from room temperature to 95oC. The test was repeated twice and the 

average values were taken as the representative value. In addition to the hydrometer 

measurements, the mass/volume method for density measurement was also used for 

comparison at 15.6oC.  

3.1.3  Viscosity measurement: Apparatus and Procedures 

The Standard Method [Petroleum products: Determination of kinematic viscosity and 

calculation of dynamic viscosity, the European standard EN ISO 3104:1996] [168] was 

used to measure the viscosity of the biodiesel samples. This method is commonly used to 

measure the kinematic viscosity of liquid petroleum products. Since biodiesel fuels also 

have similar properties as fossil fuel, this method was considered appropriate for the 

measurement of viscosity of the samples. Kinematic viscosity is determined by measuring 

the time taken for a known volume of fuel flowing under gravity to pass through a 

calibrated glass capillary viscometer tube.  A Cannon-Fenske Viscometer tube (size B) 

and Selecta viscosity bath were used for this purpose. The size B viscometer had 
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approximate constants of 0.01 and kinematic viscosity ranged from 2-10mm2/s. The 

water bath temperature used had a temperature range from room temperature to 85oC. 

The viscosity values below room temperature were determined from the regression 

correlation developed from the data obtained from this study and previous reports. For the 

experimental data to be acceptable, the EN ISO 3104:1196 standards required the tests to 

be performed twice and that the first and second measurements to be within an accuracy 

of 0.02mm2/s. If the accuracy condition was satisfied, the average of the two tests was 

taken. The tests were repeated twice and the average value was taken as representative 

value. The viscosity measurement apparatus is shown in Figure 3-1. 

 

 

      

 

 

 

 

Figure 3-1 Capillary viscometer apparatus  

3.1.4 Lower Heating Value: Apparatus and Procedures  

The heating value of the diesel and biodiesel blends (0B, 10B, 20B, 50B, 75B and 100B) was 

determined in a Parr Adiabatic Oxygen Bomb Calorimeter, Model 230/5. The Auxiliary 

equipment included a bucket-filling system, a temperature-controlled reservoir and automatic 

pipette for dispensing repeatable 2000ml of distilled water at pre-set temperature into a 

Viscometer stand 
Heater (15oC – 85oC) 

Thermometer 
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stainless-steel bucket, digital thermometer and ignition switch.  The water heater maintained 

and delivered hot water at a controlled temperature to allow adjustment of the calorimeter 

jacket temperature. The water cooler provided a uniform supply of cooled water for adjusting 

the jacket temperature. The main components of the bomb calorimeter are shown in Figure 

3-2. The heating value was measured using the official standard, DIN 51900 as explained in 

appendix A.   

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3-2 Bomb calorimeter apparatus  

3.2 CI Engine and Test Bed Facilities 

3.2.1 Engine Dynamometer Specifications 

The CI engine test setup is available within the Automotive Laboratory, Huddersfield 

University, U.K. It has a transient test unit with a 200kW AC Dynamometer, 4 Quadrant 

Regenerative Drive with Motoring and Absorbing Capability. It is integrated with speed 

sensors, pressure transducers, thermocouples, air flow metres, fuel flow metres and an in-line 

torque meter. It has a four-cylinder, four-stroke, turbo-charged direct injection engine with a 

bore of 103 mm, a stroke of 132 mm, a displacement of 4.4 litre and a compression ratio of 

18.3. Full engine characteristics of the engine are described in Table 3-1. The layout of the 

experimental set up and the experimental facilities are depicted in Figure 3-3 and  
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Figure 3-4 respectively. The engine was fully instrumented, and the steady state and transient 

cycle was programmed using the CADET software integrated within the engine system. The 

power and torque curves of the JCB engine have been presented in Appendix B. 

 

Table 3-1 Characteristics of JCB engine 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3-3 Experimental engine facilities   

 
 

Technical parameters Technical data 

Engine type  Turbo charged diesel engine 

Number of cylinders  4 

Bore 103mm 

Stroke 132mm 

Inlet valve diameter  36.5mm 

Exhaust valve diameter 33.2mm 

Compression ratio 18.3:1 

Number of valves 16 

Injection system Direct injection 

Displacement 4.399 litre 

Cooling system Water 

Nominal Idling speed 800 rpm 

Maximum rating gross intermittent 74.2 @ 2200rpm 

Maximum torque  425Nm @ 1300rpm 
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Figure 3-4 Engine test facilities lay out  

 

3.2.2 Oil and Coolant System 

A water cooling system was fitted to the JCB engine. In order to avoid cold starts and to help 

maintain the running temperatures of the engine, the facility had two Eltron Chromalox oil 

heaters mounted in the engine sump and one Watlow Industries 3kW domestic immersion 

water heater mounted within the coolant circuit. These had dedicated pumps and could be 

activated without the need to have the engine running. Both the coolant and oil circuits 

contained thermostatically controlled valves, which allowed the fluids to be circulated only in 

the engine until pre-set temperature of 90° C was attained. When the oil or coolant 
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temperatures surpassed this limit, the respective thermostats opened and the fluid was 

diverted through two separate heat exchangers, where heat generated by the engine was 

rejected to a constant water supply from cooling tower. This system replaced the standard 

vehicle radiator. The engine coolant was a 50:50 mixture of water and anti-freeze, ethylene 

glycol. The specification of the cooling system has been presented in Table 3-2. 

 

Table 3-2 Cooling system specification 

Parameters Values 

Coolant capacity –engine only 7ltrs 

Water pump flow rated speed  200ltr/min 

Heat to reject by heat exchanger at maximum power 52kW 

Thermostat temperature 90oC 

Cooling liquid maximum temperature 110oC 

Maximum pressure in the cooling circuit 1bar  

Coolant specification approved ASTM D6210 

 

3.2.3 Measurement System for Operating Parameters of the Test Engine  

In order to acquire accurate and repeatable engine test data for diesel engine combustion, 

performance and emission characteristics, the engine system was  instrumented with 

state-of the art measuring facilities as shown in Figure 3-4. The combustion pressure, 

temperature, engine speed, engine load, crank angle, air flow rate, fuel flow rate and TDC 

position were the main parameters measured. The signal from the outlined instruments 

required some form of signal conditioning prior to being connected to the data acquisition 

system. It was, therefore, necessary to use amplification in order to increase the resolution 

of low level signals and to distinguish them from background noise. In order to achieve 

the highest clarity, the signals needed to be amplified so that the maximum voltage range 

of the conditioned signals was equal to the maximum input range of the analogue-to-

digital converter (ADC). This was used for transformation of the acquired data from 

analogue to digital form, enabling a computer to read, save and process the collected data.  

3.2.3.1 In-cylinder Pressure 

The in-cylinder pressure was measured using a Kistler 6125A11 model air-cooled piezo-

quartz pressure sensor mounted on the cylinder head. The cylinder pressure signal was passed 
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through a Bruel & KJaer 2635 charge amplifier to give outputs of 0-10volts for the calibrated 

pressure range of 0-25MPa. It was calibrated to read a maximum pressure of 25MPa. The 

configuration of the in-cylinder pressure measurement system is presented in Figure 3-5. 

Since the piezo-electric pressure measurement system does not supply absolute values, it is 

AC coupled and the signal must be referenced to the intake manifold pressure in order to 

eliminate the signal drift. The reference in-cylinder pressure can be obtained by averaging the 

signals at 100°CA around BDC at the end of the air intake stroke. At the end of air intake 

stroke, it was safe to assume that the in-cylinder pressure was same as the intake manifold 

pressure. As the manifold pressure was measured in absolute terms, it was used to calculate 

the offset for the in-cylinder pressure around BDC.  

  

 

 

 

 

     

 

       
  
 
 
 
  

Figure 3-5 In-cylinder pressure measurement system 

 
This offset was then applied, during post processing of the data, across the whole cycle to 

give the absolute normalised in-cylinder pressure values as shown in equation 3-1[169]: 
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Where Preal is the actual in-cylinder pressure, Poffset is offset in-cylinder pressure due to the 

ambient conditions, Ksens   is the sensor sensitivity constant which is given by the sensor 

producer, and Pmeasured is the pressure measured in the cylinder. 

3.2.3.2 Fuel Flow 

The specific fuel consumption was measured using a 2 litre FMS-1000 Gravimetric fuel 

meter which was controlled and monitored by a CADETV12. The FMS-1000 works on 

the gravimetric measuring principle and has a measuring accuracy of 0.05% for the 

readings. The fuel meter apparatus with its specification is shown in Figure 3-6. 

 

 
 

 

Figure 3-6 FMS-1000 Gravimetric fuel meter apparatus and its specifications 

 
The entire section of the fuel meter was made of stainless steel which is compatible with 

biofuels. The fuel temperature variation due to the return fuel was conditioned by Fuel 

Conditioning Unit (FCU). It also cancelled out any vibration mechanically, as the 

construction is stiff and it has no moving parts. The fuel weigher used a 20N load-cell to 

measure the consumed fuel. The FMS-1000 was capable of monitoring fuel during a period 

of a transient cycle, for a specific time as short as 100ms. It has a measuring range of 0 -

300kg/hr. 

3.2.3.3 Air Flow 

The air-consumption was measured using the standard BOSCH-HFM5 hot-film air-mass 

meter, part number 0280217123. The basic principle of this method is that the heated sensor 

element in the air-mass meter dissipates heat to the incoming air. The higher the air flow, the 

more heat is dissipated. The resulting temperature differential is a measure of the air mass 

flowing past the sensor. An electronic hybrid circuit was used to condition the signals that the 

Compatible fuel type Petrol, diesel 

Mass signal interface 0 to 5V DC 

Flow range O to 300kg/hr 

Temperature range 0 to 65oC 

Accuracy ±0.05% of reading 
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air-flow quantity could be measured precisely. The air mass flow meter with its specification 

has been shown in Figure 3-7. 

  
 
 

 

Figure 3-7 Hot-film air mass flow meter with its specification 

3.2.3.4 Engine Speed, TDC Mark and Crank Angle Position 

A Hengler RS58 speed sensor was used to measure the engine speed and was triggered 

simultaneously with the cylinder pressure sensor. The crankshaft position was obtained using 

a crank angle sensor to determine the cylinder pressure as a function of the crank angle. A 

reference point was required to compare the collected data and to perform time domain and 

angular domain averages of the signals. This was achieved by using an HED-6000 optical 

encoder, which was connected to the crankshaft (at the engine’s front) using a rubber tube. 

Consisting of a rotating disk, a light source, and a photo detector, the encoder enabled data 

collection to start at exactly the same crank angle position and also gave a pulse for every 

complete turn of the crankshaft, allowing the time domain averaging to be performed. 

3.2.3.5  Engine Torque  

The engine torque measurement was carried out from the load cell mounted on the 

dynamometer and amplified by a Nobel Elektronik AST 3P analogue signal transmitter. The 

amplifier incorporated an analogue output filter with variable bandwidths, which was 

adjusted in order to reduce the unwanted, naturally oscillating torque profile produced by the 

engine. The torque measurement system with its specification has been shown in Figure 3-8. 

3.2.3.6 Pressure Measurement  

Air intake pressure measurements were made using DRUCK PMP-4010 series sensors 

pressure transducer, with a range of 0-5bar, which were mounted in the air intake manifold. 

Supply voltage range  8 to 17V 

Output voltage  0 to 5V 

Input current  <0.1A 

Measuring range 8 to 370kg.h 

Accuracy  ≤3% 

Temperature range -40 – 120oC 
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An amplifier was built in-house for these transducers and the arrangement was calibrated 

within the data acquisition system to give the required output pressure ranges.   

  
 
 
 
 
 
 
 
 
 

 

 
 

Figure 3-8 Torque measurement system with its specification 

 

A pressure transducer (RS sensors with part number 249-3943) has been used to measure low 

fuel pressure, with a range of 0-6 bar, mounted before the high pressure pump in order to 

ensure that the low pressure fuel supply was maintained by the high pressure pump. A second 

pressure transducer, with a range of 0-6bar, was mounted in the oil circuit and was used to 

monitor oil pressure. An amplifier was built in-house for these transducers and the 

arrangement was integrated within the CADET system to give the required output pressure 

ranges. The pressure measurement transducers have been shown in Figure 3-9.  

 

 

 

 

 

 

 

 

 

 

Figure 3-9 DRUCK PMP-4010 series sensors and RS-249-3943 pressure transducer  

 

 

DRUCK Pressure transducer RS Pressure transducer 

Nominal Torque  1000Nm 

Nominal sensitivity 
(Frequency output)            

5kHz 

Sensitivity  -49984 to 4998.4Hz 

Linear deviation  0.006 to 0.002% 

Nominal output signal 

(positive torque) 

15kHz 

Nominal output signal 

(negative torque) 

5kHz 
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3.2.3.7 Temperature Measurement 

The exhaust temperature has been measured by K-type thermocouple with stainless steel 

wire. The exhaust, air intake, water, oil and the fuel circuit temperatures were measured using 

PRT K type Chomel-Alumel thermocouple probes. The micro-voltage outputs from these 

thermocouples were processed by the CADET software to give values in degrees centigrade 

for data logging and engine monitoring purposes. Three thermocouples were included in the 

fuel system. This was required between: the intercooler and the input to the high pressure 

pump, between the return from the high pressure pump and the plate cooler, and after the 

plate cooler, to ensure that the fuel returning to the fuel meter had sufficiently reduced in 

temperature.  

3.2.3.8 Emission Measurement 

For the measurement of gaseous emissions, a gas test bench HORIBA EXSA – 1500, 

which is shown in Figure 3-8 has been used. The sample line of the equipment has been 

connected directly to the exhaust pipe and it has been heated to maintain a wall 

temperature of around 191oC to avoid the condensation of hydrocarbons into the line. The 

insulated line has been extended from the exhaust pipe to the equipment’s unit where the 

analysers have been located. All emission analysers (NOx, CO, CO2 and THC) have been 

set on one bench. However, each emission analysers uses different principles in order to 

measure emissions. The hydrocarbon emission has been measured by using a flame 

ionisation detector (HFID), Oxides of nitrogen were measured on dry basis, by means of 

a heated chemiluminescent detector (HCLD) with a NO2/NO converter. The carbon 

monoxide and carbon dioxide have been measured with an analyser of the non-dispersive 

infrared (NDIR) absorption type, whilst a paramagnetic detector was employed for the 

measurement of O2 concentration in the exhaust flow. The exhaust gas sample line is 

connected directly to the exhaust pipe and it is heated to maintain a wall temperature of 

around 191oC and avoid the condensation of hydro carbons into the five meter long line. 

The sample flow rate is approximately 3litre/min.  In order to minimise the misalignment 

of the measured emission gas concentration, due to the difference between the sampling 

transport time and the analyser’s response time, 20 seconds duration was used as per 

manufacturer specification.  The data from the analyser bench have been acquired using 

high speed data acquisition system ADC. The emission analyser type and measuring 

range is provided in Table 3-3 
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Figure 3-10 HORIBA EXSA-1500- Emission analyser  

 

Table 3-3 The emission analyser type and measuring range 

Emission 

type 

Emission analyser type Measuring range Accuracy 

CO non-dispersive infrared (NDIR) 0 – 2000ppm ±2% 

CO2 non-dispersive infrared (NDIR) 0 –100%a ±2% 

NOx heated chemiluminescent detector 

(HCLD) 

0 – 5000ppm ±2% 

THC heated flame ionisation detector (HFID) 0 – 100ppm ±1% 

O2 paramagnetic detector 0 – 25%a ±1% 

(a)  the % is from the total exhaust gas  

Emission value  
display(C02, CO, 
NOx, THC) 

Oxygen level  

Synthetic air 
level  

Water filter  System 
temperature  

Soot filter  

CPU  
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3.2.3.9 Data Acquisition System  

All the signals collected from the test rig needed to be converted from an original 

analogue form to a digital form. This has been achieved by using CED Power 1401 

Analogue to Digital Converter (ADC) interface between the transducers and the 

computer. The Analogue to Digital Converter (ADC) had 16 channels and 500MHz 

bandwidth. The ADC and measured parameters are shown below in Figure 3-11. 

3.2.3.10 CADET V12 Software 

CADET V12 software is a fully integrated Windows 2000-XP based engine and vehicle test 

system designed and built to meet the exact needs of automotive and associated industries. 

CADET V12 supports direct digital control of up to 16 high speed PID control loops, and in 

addition, supports User-Definable Control Functions suitable for more complex non-linear 

control requirements. The digital proportional integral derivative (PID) controller system is 

supplied with a low level hardware and software device driver developed by CP Engineering, 

to provide the required real-time environment underneath Windows 2000-XP. The PID 

system currently supported 16 PIDs at up to 320 Hz control frequency. Through the CADET 

V12, the engine power, fuel flow rate, the coolant temperatures, exhaust temperature were 

measured in this study. 

  

  

 

 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
 
  

 
Engine speed Cylinder pressure  

TDC Mark  
Air flow meter 

Exhaust temperature  

Turbo speed 

Intake pressure  

Boost pressure 
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Figure 3-11 Analogue to Digital Converter (ADC) and measured parameters  

 

3.2.3.11 Calibration of Instruments  

The measuring sensors and instruments which have been shown in Figure 3-11 were 

calibrated through the data acquisition system before the test was conducted. To achieve 

this, readings were taken by the data acquisition as the input signals were swept through 

their operating ranges, in order to calculate the gain and offset values for each individual 

signal. The Kistler in-cylinder pressure transducer was calibrated by applying a known 

pressure to the sensor and measuring the voltage from the charge amplifier. The dead 

weight system used had an accuracy of 0.1%. These figures were then used to calculate 

the gain and offset values for the transducer. As the Kistler pressure transducer only 

generated a signal with a change in pressure, the cylinder pressure was referenced to the 

atmospheric pressure during the exhaust stroke, with the resulting offset being applied 

automatically in the data acquisition software. All other pressure transducers were 

calibrated using a Druck model portable pressure measurement instrument, capable of 

applying variable pressure to each sensor, to within an accuracy of 0.1%. The pressure 

measurements were taken through the data acquisition system and the appropriate gain 

and offset values for each transducer calculated. All emissions measurement equipment 

were calibrated daily prior to any experimental work according to the emission 

measurement procedures.   

3.3 Test Procedures  

In this section the testing procedures which have been applied in this study by using the 

apparatus and instruments in section 3.1 and 3.2 have been discussed in detail. The major 

testing procedures have been grouped into three catagories, namely biodiesel blends 

preparation, steady state and transient test cycle’s development and water injection 

system and procedures. In the next section procedure for biodiesel blend preparation has 

been disussed. 

3.3.1 Biodiesel Blend Preparation  

In this study, three neat biodiesels (rapeseed biodiesel, corn oil biodiesel and waste oil 

biodiesel) and petroleum diesel have been used in different proportions. The  biodiesel 

percentage volumetric fraction of  0%, 10%, 20%, 50%, 75% and 100%, formed the blends 



Chapter 3: Test Rig Instrumentation and Test Procedures 

 

93 
 

Investigations into the Performance and Emission Characteristics of a Biodiesel Fuelled CI Engine 

under Steady and Transient Operating Conditions                   by:Belachew Chekene Tesfa   July 2011 
 

0B, 10B, 20B, 50B, 75B and 100B respectively. The biodiesel was purchased from No-Fossil 

Fuel Corporation, Huddersfield, U.K. The corn oil biodiesel and rapeseed oil biodiesel were 

produced by the transesterfication process from ‘virgin’ oil using methanol, and waste oil 

biodiesel was produced from local cooking oil waste. Normal diesel fuel was obtained from a 

local fuel supplier. Currently, there are three major techniques used to produce biodiesel 

blend, which are splash blending, in-line blending and in-tank blending [175].These 

techniques are used to blend biodiesel with petrol diesel to a required volumetric fraction. 

Splash blending is an operation where biodiesel and diesel fuels are loaded into a vessel 

separately, with relatively little mixing occurring as the fuels are placed in the vessel. Once in 

the vessel, during driving, the two fuels gain sufficient agitation to allow the biodiesel and 

diesel fuel to mix thoroughly. The second method is in-line blending. In this method, 

biodiesel is added to a stream of diesel fuel as it travels through a pipe or hose, in such a way 

that the biodiesel and diesel fuel become thoroughly mixed by the turbulent movement 

through the pipe. The biodiesel needs to be added slowly and continuously into a moving 

stream of diesel fuel via a smaller line inserted in a large pipe. Biodiesel can also be added in 

small slug or pulsed quantities spread evenly throughout the time the petro-diesel is being 

loaded.  

 

 

 

 

 

 

 

Figure 3-12 Biodiesel blends prepared in the laboratory for performance and emission 

investigations 

 

In-take blending is the third method in which biodiesel and diesel fuel are loaded separately, 

or, in some cases, at the same time through different incoming sources. The high fill rate 

results in sufficient mixing without the need for additional recirculation or agitation. 

Comparing these three methods, splash blending is an effective and efficient technique which 

is widely used for commercial purposes.  

 

The biodiesel blends, for the purpose of the experiments, needed high measurement accuracy, 

large number of testing batches and lower quantities of biodiesel. Hence, in this study, the in-

    0B             10B              20B               50B                 75B               100B 
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tank blending method was used with some modifications. The following procedures were 

followed to prepare the biodiesel blend: 

I. The biodiesel and diesel were prepared in different PVC tanks. 

II. Based on the blend fraction, the volume of the biodiesel and diesel were calculated. For 

example, to prepare 25 litres of biodiesel blends, 20B, 20% biodiesel (5 litres) and 80% 

diesel (20 litres) was used. 

III. The diesel was measured by volume basis as per procedure II and the diesel was poured 

into empty tanks. The biodiesels were poured on the diesel surface evenly. This 

technique enhanced the mixing of diesel and biodiesel and avoided settling of biodiesel 

at the bottom of the tank due to its higher density [175].  

IV. The preparation tank cap was closed firmly and the tank was agitated for 3 minutes. The 

prepared biodiesel blend was added to the fuel tank, which was connected to the fuel 

supply system. 

The physical properties of the blend biodiesel which have been discussed in detail in 

Chapter four have been summarized in Table 3-4. 

  

Table 3-4 Physical and Chemical properties of Biodiesel and its blends  

Property  Diesel 10B 20B 50B 75B 100B 

 C 87 86 85 82 79.5 77 

Composition (%)  H 13 12.9 12.8 12.5 12.25 12 

  O  0 1.1 2.2 5.5 8.25 11 

Density( kg/m
3
)  853.36 859.00 865.00 871.76 872.50 879.30 

LHV ( MJ/Kg)  42.67 42.26 41.84 40.58 39.54 38.500 

Viscosity ( mm
2
/s)  3.55 3.91 4.28 4.68 4.74 5.13 

 

3.3.2 Engine Test Cycles 

Both steady and transient processes were designed to evaluate the performance and emission 

characteristics of the engine which was run using biodiesel and its blends as a fuel. The 

engine speed and load were the two parameters to be controlled in the test programme. The 

transient processes were programmed using the CADET program. More emphasis was given 

to represent the zones in the engine torque-speed map where the engine emissions restrictions 

were most important.  
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The engine performance and emissions (CO2, NOx, CO and HC) parameters for various 

biodiesel feedstock and blends have been measured according to the modified 13-mode 

European stationery Cycle (ESC) [38]. ESC has 13 modes of test points in engine speed 

and load curves which have been set for engine speed range of 62 – 95% engine and load 

range of 25 to 100%. The ESC mode does not consider the low speed range effects on the 

engine emissions. However, in real driving behaviour the lower engine speed ranges is 

very important especially in urban driving where stop-go traffic phenomena is dominant. 

Therefore, to analyse the emission characteristics of the lower engine speed range nine 

more testing points have been included in this study. As it is shown in Appendix B, the 

maximum rated speed and maximum torque of the test engine is 2200rpm and 425Nm. 

The modified steady state cycle is shown in Figure 3-13. The speed percentage and load 

percentage which have been shown in Figure 3-13 are based on the rated engine speed 

and maximum load. The CI engine power and torque curves have been shown in 

Appendix B. Each steady state was conducted for 2 minutes and the NOx emission and 

the fuel consumption have been used as stability control parameters for data acquisition. 

After reviewing the transient categories of previous researchers [33], [35], [37], [43], 

[50], [136],[170], [171], [139], [35], [172-174], [37], [175-177], [49]which are presented 

in Table 3-5 and a pilot test in the laboratory, the transient test cycles have been developed in 

order to study the effects of transient operations on the performance and emission 

characteristics of the engine.  

 
 

 

 

Figure 3-13 Range of engine speeds and engine loads for steady state testing cycle   
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Based on previous researchers and the pilot transient test, the transient operations in this 

study were developed by varying engine speed at constant load and varying load at a constant 

speed. Four different categories of transient operations were developed and CI engine’s 

performance and emission characteristics were analysed experimentally. The details of the 

transient categories have been explained in section 3.3.4. 

Table 3-5 Transient profiles values of previous research studies 

 

 

3.3.3 Testing Procedures and the Details of the Measured Parameters  

The experimental investigations have been carried out using the test rig explained in chapter 

three. The experiments have been carried out for a wide range of biodiesel feed sources, 

blends types and the test modes (steady and transient). The types of tests carried out in this 

investigation are listed below: 

1. Steady state test at different load values of 105Nm, 210Nm, 315Nm and 420Nm for 

engine speeds in the range of 900 to 1900rpm at 100rpm increment using COB, ROB, 

WOB and diesel fuels as per the testing cycle that has been shown in Figure 3-13.  

2.  Steady state test at different load values of 105Nm, 210Nm, 315Nm and 420Nm for 

speeds in the  range of 900 to 1900rpm at 100rpm increments using blends of diesel 

and ROB with blend fraction values of 0%(0B), 10%(10B), 20%(20B), 50%(50B) 

and 100%(B100) as per the testing cycles described in Figure 3-13. 

3. Speed transients of 1000-1500rpm and 1500-1000rpm for different engine load 

values of 105Nm, 210Nm, 315Nm and 420Nm.  

Authors Time(Sec) Engine speed(rpm) Torque (Nm) 

Lui et al.[170] 2.5 Sec 1100 – 2200  250 – 63.7 

 1.6 Sec 2000 – 867 250 - 69 

Benajes et al.[171]  1250, 1750, 2250  

 

Chan et al.[139] 

 1200 – 2500 50, 100, 150 

 1500 5 – 150 

 2000 5 – 150 

 2500 5 – 150 

 

Armas et al.[35] 

 0-  830 0 

 1661 26 -90 

 2398 26  - 90 

 2398 – 1661  90 
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4. Torque transitions of 210-420Nm and 420-210Nm for different engine speeds of 

100rpm, 1250rpm and 1500rpm. The details of the transient operation procedures 

have been described in the transient data analysis sections (section 3.3.4) 

Using these tests cycles for different biodiesels blends, the CI engine’s combustion, 

performance and emission parameters have been measured using the apparatus described in 

Chapter 3. The parameters are listed in Table 3-6. These parameters have been selected due 

to their importance of engine design and performace and emission evaluation. 

Table 3-6 Measured and calculated parameters during the engine test 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

During the testing process, after each test run the fuel lines were drained prior to filling them 

with the next fuel blend. The engine was operated using newly filled fuel for 10 minutes 

without collecting data. This was done to ensure that all previous fuel in flow meter, fuel 

filter and fuel pipes had been removed. On the day prior to the testing day, and in between 

each biodiesel blend test, a pre-conditioning procedure of high speed and high load operation 

was applied in order to purge any of the remaining previously tested fuel from the engine fuel 

system, and also to remove deposited hydrocarbons from the sample line. A computer-based 

data acquisition system was used to record the parameters of interest.  

 

The rated frequency of the data acquisition system was 37 kHz and the sampling time used 

was 60 seconds. This time duration was selected to ensure that the data is representative. 

All the signals collected from the test rig needed to be converted from an original 

analogue form to a digital form. This was achieved by using Analogue to Digital 

Measured parameters  Calculated parameters 

In-cylinder pressure  Heat release rate  

Crank angel Cumulative heat release rate  

Engine speed Thermal efficiency  

TDC mark Power 

Inlet pressure  

Boost pressure  

Fuel mass flow rate  

Brake specific fuel consumption  

Exhaust temperature   

Exhaust emissions(CO2, CO, NOx, THC)  
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Converter (ADC) interface between the transducers and the computer. The CED 1401 

power ADC is able to record waveforms data, digital (event) data and marker 

information. It can also generate waveform and digital outputs simultaneously for real-

time, multi-tasking experimental system using its own processor, clocks and memory 

under the control of the host computer. The Analogue to Digital Converter (ADC) has 8 

channels, 500 MHz bandwidth and 4Gs/s sampling rate. 

3.3.4 Transient Testing Cycles 

For the purpose of this, synthetic speed and torque test cycles were developed in order to 

study the effect of transients on CI engine performance and emission characteristics. The 

transients were studied during both acceleration and deceleration events independently 

for both speed and torque transient, as shown in Figure 3-14 and Figure 3-15.  

 

 

 

Figure 3-14 Speed transient profiles a) Acceleration 1000-1500rpm b) Deceleration (1500-

1000rpm) 
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Figure 3-14(a) shows the engine speed acceleration profile for a load value of 420 Nm. 

Before data collection, the engine was allowed to run for 10 minute to stabilize the 

operating conditions. During the transient engine test, the acceleration duration normally 

reported is in the range of 1.0 to 10 seconds [178].  

 

The steady and transient duration used in this test is 17 seconds and 8 seconds 

respectively, which are within the range specified. Finally, it was run at 1500 rpm for 35 

seconds at steady conditions. The deceleration of the CI engine operation is shown in 

Figure 3-14(b). The engine was run steadily for 17 seconds, then decelerated for 8 

seconds and then run for 35 seconds at steady conditions. The post-transient steady 

operation of the engine used was longer than the pre-transient steady operation. This was 

done in order to study the effects of transient operations on the next steady operation. 

 

 

  

Figure 3-15  Torque transition profiles a) Positive torque transition 210-420N b) Negative 

torque transition 420-210Nm 
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The positive and negative torque transition profiles at 1500rpm engine speed are shown in 

Figure 3-15. In this condition, the engine was run for 17 seconds under steady state 

conditions, then it was run for 8 seconds in transition mode during which torque changed 

from 210Nm to 420Nm and finally engine was run at 420 Nm for 35 seconds, as presented in 

Figure 3-15(a).  Similarly, the engine negative torque transition is shown in Figure 3-15(b). 

In the negative case apart from the torque value, the time segment values are similar to the 

positive torque transition condition.  

 
The rate change of the parameters during trainient operation has been calculated by equation 

(3-2). This equation is drived from the definition of transient phenomena, which state as 

transient is change of specified parameter in the given span of time. 

 

fg � hi'hiLM
Hi'HiLM         (3-2) 

Where fg  the rate change of species y, yi is the measured value of parameter at time ti, yi-1 is 

the measured value of parameter at time ti-1, ti is latest time step, and ti-1 is the previous time-

step.  

3.3.5 Water Injection System  

The water injection tests were carried out with the engine facilities and measuring 

instruments which are described in Chapter 3. This system was integrated with an additional 

water injection system to manage the performance and emission characteristics of the test CI 

engine. There are three methods of water-based injection system that have been used in the 

past: such as direct water injection to the combustion cylinder, emulsification of water and 

fuel in the presence of surfactant and injection of water at intake manifold. As it has been 

discussed in section 2.4, the direct injection to the combustion cylinder needs complex 

integration with the fuel supply system and it seems difficult to integrate this system with 

other existing engine systems. The water-fuel emulsion needs a more advanced and well 

developed infrastructure to be integrated with the engine which increases the engine cost 

[115]. In addition, the water-fuel emulsion process changes the physical properties (viscosity, 

density and bulk modules) of the fuel [166]. These changes negatively affect the performance 

of the fuel injection system. This may be a greater problem for biodiesel fuel which has 

higher density and viscosity than the diesel fuel. In this study a feasible and manageable 

technique: intake manifold water injection has been selected.   
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The main advantage of water injection into the intake manifold is its simplicity and ease with 

which it can be integrated within existing engines and any new designs. In this system, since 

water is injected through a separate valve and does not mix with fuel directly, it does not 

affect the fuel flow properties in the fuel supply line. 

 

The water injection system has been designed in order to inject the required amounts of 

water in the intake manifold. The system has been installed downstream of air 

compressor at the middle of the intake manifold. A 1mm diameter nozzle was connected 

to the intake manifold. The water injection was carried out by using AKL603 Seko 

diaphragm dosing electric pump. The pump has flow rate in the range of of 1-20l/h. The 

water was injected downstream of the compressor into the intake manifold. 

 

 

 

 

 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-16 Scheme of water injection system at intake manifold 
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The water flow rate was measured using two methods: the electric pump and a calibrated 

burette with stop watch. The scheme and photograph of water injection system is shown 

in Figure 3-16 and Figure 3-17. 

3.3.6 Water Injection Test Procedures 

The water injections have been carried out with the same engine steady state operational 

procedures described in section 3.3.2 and 3.3.3. The main controlled parameters were the 

engine speed, engine load and mass flow rate of water.  The operating conditions were 

selected with an aim to cover main engine operating speeds and loads. 

 
 
 

 
 

 
 

 
 

 

Figure 3-17 Water injection system configuration  

The in-cylinder pressure, brake specific fuel consumption and the emissions (NOx, CO, 

CO2, THC) have been measured with the measuring system described in section 3.1. To 

decide the amount of water to be injected into the CI engine previous works have been 

Measuring cylinder  Electric pump  

Water injection point  Intake Manifold  

Water tank  
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reviewed and summarized in Table 3-7. The limitations of water injection are its effects 

in the cylinder chamber parts and its significant influence on the CO emission[156], 

[158], [179]. In addition, the author has suggested that the higher water injection may 

cause higher plume smoke in in exhaust due to the formation of vapour in the cylinder. In  

Table 3-7, it can be seen that the minimum water added to the engine has been 0% and 

the maximum value has been 40%.  In this study four water flow rates (0%, 10%, 15% 

and 25%) have been investigated. 

Table 3-7 Quantity of water injected by previous researchers 

Author  Water quantity 

Lin and Chen [179] 0%,15%  

Tauzia et al.[180] 0%, 3kg/h for 2liter engine 

Chadwell and Dingle[164] 0%, 10%, 20%, 30% 

Kegal and Pehan[156] 0%, 10%, 20% 

Park et al.[158] 0%, 20%, 40% 

   

The test engine has average fuel consumption rate of 12kg/h. Based on the average fuel 

consumption rate, the mass flow rate of the water has been calculated and presented in 

Table 3-8. During the data analysis in Chapter eight 10% water injection has been 

neglected due to insignificant effects on engine performance and emission. 

Table 3-8 Engine operating conditions and water mass flow rate 

Condition Speed(rpm) Load(Nm) Water mass flow rate 
A 900 – 1800 105  0kg/h ,1.2kg/h, 1.8kg/h, 3kg/h  

B 900 – 1800 210  0kg/h, 1.2kg/h, 1.8kg/h, 3kg/h 

C 900 – 1800 315  0kg/h , 1.2kg/h,1.8kg/h, 3kg/h 

D 900 – 1600 420  0kg/h , 1.2kg/h,1.8kg/h, 3kg/h 

 

The fuel from biodiesel tank was pumped to the fuel meter and then passes through the fuel 

pump to the fuel injector. The water injection was carried out by using an electric pump. The 

water was injected downstream of the compressor at intake manifold. The water flow rate 

was measured using two methods: the electric pump and calibrated burette with stop watch. 
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3.3.7 Procedure to Ensure Accuracy of Measurement 

During engine testing the measured parameters generally show some dispersion from the 

mean values. This is quantified in terms of measurement error which is the variation between 

measurements of the same quantity on the same test [181]. To quantify measurement error, 

the same test needs to be repeated several times. One of the common parameter used to 

quantify this error is standard deviation (SD). SD is a measurement of variability, or 

diversity, which illustrates the variation of ‘dispersion’ from the mean value. In this study, 

the SD value was calculated using equation (3-3): 

 

           jk � lmn∑ �pq 
 pr�snqtm u
m
s
       (3-3) 

Where SD is standard deviation, n is number of data, Xi is the measured data and vw is the 
mean value 
 
To estimate the repeatability of measurement and the accuracy of the procedure the tests were 

repeated three times and the mean values have been obtained for the detailed analyses. The 

parameters that were investigated include brake specific fuel consumption, thermal 

efficiency, peak effective pressure and emission during the steady state and transient 

operation conditions. It was observed that the SD varied with the operation conditions and as 

such, the values were plotted on the perspective graph. The binary data corresponding to 

exhaust emissions, air flow rate, and in-cylinder pressures were collected by setting the data 

acquisition system to acquire 36 segments (sample points) in 40 Sec. The SD of the data 

obtained on emissions and in-cylinder pressure was calculated by using the 36 segments 

during the steady state operations as well. As the parameters of the transient conditions varied 

from one segment to the other, the SD of in-cylinder pressure and emissions was determined 

from the three sets of tests conducted at same operating conditions. The standard deviation in 

this study has been represented by     on the graph. The value of standard devation and the 

size of the symbol are proportional. When the standard devation value becomes smaller, the 

symbol may approach to dot symbol. 

3.4 Summary on Chapter Three 

Chapter three has focused on the description of the experimental facilities required for 

biodiesel characterisation, test engine’s characteristics and specifications and measuring 

instrumentation. The detail specification of measurement system, data acquisition system and 

application software have been discussed. In addition, test procedures for the physical 
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characterisation of biodiesel have been elaborated based on the European biodiesel test 

standards. Under the test procedures section, the methodology of biodiesel blending, the new 

steady and transient test procedures, water injection system and injection procedures have 

been discussed. The next chapter is focused on the numerical and experimental investigation 

of the biodiesel physical characterisation.  
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CHAPTER FOUR 

4. BIODIESEL CHARACTERISATION 

This Chapter outlines the effects of biodiesel fraction and temperature on the main fuel 

properties, such as density, viscosity and lower heating value based on the experimental 

values. It also includes new predicting models developed to predict the above properties 

[27],[64],[65],[68]. Most empirical correlations describing the density, viscosity and 

heating value of biodiesel include constants which vary with the type of biodiesel and 

percentage of blends. It is very important to have a simple, stable and reliable estimation 

method for density, viscosity and heating value as a function of biodiesel fraction and 

temperature. These relations will have immense use in the design of intake manifold and 

modelling and analysis of combustion, performance and emission. Furthermore, the 

properties of biodiesels affect the dynamic flow phenomena in the fuel pump, fuel pipe, 

fuel filter and injector spray [77]. Based on the above requirements, in this Chapter, the 

effect of temperature and biodiesel fraction on density and viscosity of biodiesel blend 

have been investigated in detail. In addition, the effects of biodiesel fraction, density and 

viscosity on the heating value of biodiesel have also been investigated. Finally, 

correlations have been developed to correlate the main physical parameters. The effects 

of density and viscosity of the biodiesel and its blends have also been considered on the 

fuel supply system, such as the fuel pump flow rate, fuel filter flow rate and sauter mean 

diameter (SMD). 
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4.1 Effect of Biodiesel Fraction and Temperature on Density 

Density can be defined as the ratio of the mass of an object divided by its volume. The 

density of biodiesel has been measured in this study at various temperatures for different 

biodiesel blends. The density of the biodiesel has been measured by using hydrometer 

explained in section 3.1.2. Figure 4-1 presents the density variation of corn oil biodiesel, 

rapeseed oil biodiesel and waste oil biodiesel blends. Three of the biodiesels blends had 

similar density values, with a minimum value of 853kg/m3 at 0% biodiesel fraction and 

maximum value of 880 kg/m3 at 100% biodiesel fraction. The density of the blend 

increased with increase in the biodiesel volume fraction. Since three of the biodiesels and 

their blends had very similar density values, a common first degree regression equation 

was developed by taking the average slope and the interception point. The correlation is 

described by the equation (4-1)  

 

     (4-1)  

Where blendρ  is the density of diesel and biodiesel blends (kg/m3), and X is the volume 

fraction of biodiesel at 15.6oC. 

 

Figure 4-1 Variation of density of biodiesel with biodiesel fraction for different biodiesel 

source feeds 
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Table 4-1 presents density values of biodiesel corresponding to volume/mass method, the 

hydrometer method, mixing equation (2-2) and correlation equation (4-1) developed in 

the present study.  The density values have been compared with each other and the errors 

have been calculated. The hydrometer and mass/volume methods, hydrometer method 

and mixing equation, and the hydrometer method and regression correlation showed 

maximum absolute errors of 0.60%, 0.50%, and 0.29%, respectively. The regression 

correlation and the experimental values showed R2 of 0.9945. This suggests that if the 

densities of pure diesel and pure biodiesel are known, either equation (2-2) or equation 

(4-1) can be used to determine the density of biodiesel blend at any given blend 

percentage fraction with confidence. The comparison of the values obtained from the 

previous model and equation (4-1) which is presented in Table 4-1, validate that the new 

density predication model can used fairly to predict density of biodiesel blends. 

 

Figure 4-2 shows the effect of temperature on the density of 100% biodiesel measured in 

the present study, and the estimated density by Tat and Gerpen correlation [28]. The 

temperature varied from 290K to 360K for 100% corn oil biodiesel, rapeseed and waste 

oil biodiesel. Three of the biodiesel fuels had very similar density values at a given 

temperature, and the density of the biodiesel decreased with an increase in temperature. 

 

To generate the regression correlation, the average density of the biodiesel at a given 

temperature was taken and a linear-regression equation (4-2) was developed. The 

measured average biodiesel density and regression line had a maximum absolute error of 

0.25% and R2 of 0.9930. Similarly, the density of diesel as a function of temperature was 

experimentally determined and is described by equation (4-3). The empirical equation for 

density of diesel and the measured density values had a maximum absolute error of 

0.15% and R2 of 0.9962: 

 

       (4-2)  
   

                (4-3) 

Where biodρ  is the density of biodiesel and dieselρ  is the density of diesel and T is the 

temperature. 

 

107569.0 +−= Tbiodρ

1051657.0 +−= Tdieselρ



Chapter 4: Biodiesel Characterisation 

109 
 

Investigations into the Performance and Emission Characteristics of a Biodiesel Fuelled CI Engine 

under Steady and Transient Operating Conditions                   by:Belachew Chekene Tesfa   July 2011 
 

Table 4-1 Density of biodiesel blend by experimental methods, mixing equation and correlation equation at 15.6oC 

 
Type of 
Biodiesel 

 
 
Fraction of 
Biodiesel 
(%) 

 
 
 
Density, by 
mass/volume  

 
 
Density using 
hydrometer 

 
 
Density using 
mixing equation 
(2-2) 

 
 

Density using 
correlation 
equation (4-1) 

Absolute percentage error between 

Mass/volume 
and hydrometer   
methods 

Mixing equation(2-2)  
and hydrometer 
methods 

Correlation 
equation(4-1)  
and hydrometer 
methods 

   
 0 

 
853.36 

 
855.00 

 
853.36 

 
854.43 

 
0.1919 

 
0.0000 

 
0.1252 

   5 856.39 860.00 854.68 855.70 0.3049 0.3164 0.0799 

Corn oil   10 857.94 860.00 855.99 856.97 0.2406 0.2268 0.1121 

biodiesel 20 859.10 860.00 858.62 859.52 0.0112 0.1719 0.0491 

  50 866.61 865.00 866.50 867.15 0.1856 0.0120 0.0625 

  75 874.10 875.00 873.08 873.51 0.1025 0.1177 0.0680 

  100 879.65 885.00 879.65 879.87 0.6087 0.0000 0.0255 

                 

  5 854.96 855.00 854.68 855.70 0.4608 0.5008 0.0870 

Rapeseed oil  10 859.04 860.00 855.99 856.97 0.1115 0.3552 0.2407 

 biodiesel 20 856.97 860.00 858.62 859.52 0.3536 0.1924 0.2973 

  50 865.09 865.00 866.50 867.15 0.0102 0.1637 0.2384 

  75 871.77 870.00 873.08 873.51 0.2028 0.1499 0.1998 

  100 879.35 880.00 879.65 879.87 0.0739 0.0337 0.0591 

                 

  5 857.48 860.00 854.68 855.70 0.2944 0.3265 0.2069 

  10 857.58 855.00 855.99 856.97 0.3008 0.1854 0.0707 

Waste oil 20 860.25 850.00 858.62 859.52 1.1911 0.1892 0.0846 

 biodiesel 50 866.68 860.00 866.50 867.15 0.7710 0.0205 0.0540 

  75 875.32 875.00 873.08 873.51 0.0366 0.2565 0.2068 

  100 879.55 880.00 879.65 879.87 0.0512 0.0109 0.0364 
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Figure 4-2 Variation of density of biodiesel with temperature for different biodiesel 

source feeds 

These regression equations were compared with Tat and Gerpen’s linear-regression 

equation (2-1), and a maximum absolute error of about 3.5% was obtained. This 

difference is due to the differences between the biodiesels used in this study and those 

used by Tat and Gerpen [56]. In Figure 4-2, it can be seen that for temperature range 

of 320 to 330K, the density of biodiesel was similar to that of the normal diesel 

density (850kg/m3-860kg/m3). This implies that had there been a system to pre-heat 

the biodiesel to within the temperature range of 320- 330K, the density of biodiesel 

could have been matched to the density of pure diesel. In the present study, equation 

(4-4) has been developed to estimate the density of various biodiesel blends at a given 

temperature. For this purpose, mixing equation (2-2) developed by Clements 

(Referenced in [28]) and the regression equations 4-2 and 4-3 of this study have been 

used. Equation 4-4 was developed to determine the density of a binary blend of 

biodiesel and diesel at a given temperature and blending fraction(X): 
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1051657.0)4.24033.0( +−+−= TXTmixρ    (4-4) 

Where mixρ  is density of the binary (kg/m3), X is volume fraction of the biodiesel and 

T is the temperature (K). 
 
The density, as obtained from experiments for the rapeseed oil biodiesel, was 

compared to the estimated value of biodiesel density using equation (4-4) and a 

maximum percentage error of 0.54% was observed. This implied that equation (4-4) 

could be used with confidence to estimate the density of the biodiesel blend at any 

temperature and biodiesel fraction. 

4.2 Effect of Biodiesel Fraction and Temperature on Viscosity 

Viscosity is one of the most important fuel parameters that affects operation of fuel filter, 

fuel pump and injection equipment. High viscosity leads to poorer atomisation of the fuel 

spray and less accurate operation of the fuel injectors [1]. It also forms carbon deposit 

and sticks on the fuel pump and fuel filter. To modify the fuel supply system components 

such as fuel filter, fuel pump and fuel injectors and/or the viscosity of biodiesel, 

understanding of the effects of biodiesel viscosity on system’s response over a wide range 

of temperatures and biodiesel fractions is very important. Detailed studies have been 

conducted to estimate the viscosity of corn oil biodiesel, rapeseed oil biodiesel, and 

waste oil biodiesel blends at various temperatures. The viscosity of the biodiesel has 

been measured by Cannon-Fenske Viscometer tube (size B) apparatus. To measure the 

viscosity of the biodiesel blends, the official standard: EN ISO 3104:1996 which is 

explained in Appendix A, has been used. The effect of the biodiesel blends’ fraction 

and temperature on the kinematic viscosity of biodiesel was investigated and 

corresponding models have been developed. The models have been compared with 

models published. Figure 4-3 shows the kinematic viscosity of corn oil biodiesel, 

rapeseed oil biodiesel, and waste oil biodiesel blends as function of biodiesel volume 

fractions as used in the present study.  
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Figure 4-3 Variation of kinematic viscosity of biodiesel with biodiesel fraction for 

different biodiesel source feeds 

  
The biodiesel kinematic viscosity increased with increasing biodiesel blend fraction 

for all blends. The rapeseed biodiesel had a higher kinematic viscosity compared to 

corn oil biodiesel and waste oil biodiesel blends. The experimental data were 

correlated by an empirical second degree correlation described as equation (4-5). The 

coefficients A, B, and C used in equation (4-5) are described in Table 4-2. This 

equation could be used to estimate the viscosity of biodiesel-diesel blend for a given 

biodiesel fraction: 

CBxAxcorr ++= 2η        (4-5) 

Where corrη is the kinematics viscosity (mm2/s), A, B, C are coefficients of the second 

degree equation and X is biodiesel fraction. Table 4-2 also presents the experimentally 

measured viscosity, the calculated viscosity by equation (2-4), the regression 

correlation values (4-5) and R2 values, and the absolute error between the measured 

and calculated viscosities for the three biodiesel blends. 
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Figure 4-4 Variation of kinematic viscosity of biodiesel with temperature for different 

biodiesel sources feeds 

The kinematic viscosity of the biodiesel as obtained in the present study varied within 

the range of 3.55 to 5.48mm2/s.  The measured and regression correlations had a 

maximum absolute error of 0.299 and a maximum of R
2 value of 0.984. Both the 

Grun-Nissan correlation (equation (2-4)) and the empirical correlation proposed in 

this study were reasonably accurate in estimating the kinematic viscosity of the 

biodiesels. However, the regression coefficient variation with the type of biodiesel 

limited the use of correlation equation (4-5). Figure 4-4 shows the variation in 

kinematic viscosity of 100% corn oil, rapeseed biodiesel and waste oil biodiesel 

within a temperature range of 295K-360K. It can be seen that the kinematic viscosity 

of the biodiesel decreased with an increase in temperature.  

 
The empirical correlation for the kinematic viscosity as a function of temperature is 

described by equation (4-6) and has been developed based on the experimental 

results; the developed equation had a R2 value of 0.9999. Joshi et al. [68] and Tat & 

Gerpen [20] modified the Arrhens equation for the prediction of biodiesel viscosity at 

different temperatures. The viscosity values obtained from Joshi et al., Tat & 
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Gerpen’s viscosity correlations, and the regression correlation developed in this study, 

are shown in Figure 4-5. All the curves follow a similar trend. The empirical 

correlation of the kinematic viscosity and temperature is described by equation (4-6) 

which has been developed from the experimental results obtained in the present study. 

 

12.90219.0)ln( +−= Tη       (4-6) 

Where T is the temperature in K, and x is the kinematic viscosity in mm2/s 
 
Furthermore, the density and kinematic viscosity of biodiesel were correlated and an 

equation was developed relating viscosity as function of density, as shown below in 

equation (4-7). This equation could be used to estimate kinematic viscosity of the 

biodiesel for a known density of biodiesel. The values from the predicting model and 

the experimental values had a maximum absolute error of 0.37: 

 

     (4-7) 
Where is  the kinematic viscosity of the fuel biodiesel at a given temperature, and ρ 

is the density of the biodiesel at a given temperature. 
  

In addition, an attempt had been made to develop a correlation to predict viscosity of 

a biodiesel blend at a given temperature. For this a new equation (4-8) had been 

developed by combining equations (4-2), (4-3) and (4-7)), in order to determine the 

viscosity of the blend at a given temperature and biodiesel fraction. The modified 

mixing equation has a maximum absolute error of 0.50:  

 

      64.80234.0)8456.00012.0()ln( +−+−= TXTmixη    (4-8) 

Where mixη  is the viscosity of the biodiesel, X is the volume fraction of the biodiesel 

and T is the temperature (K).   

 

 

 

η

02.290357.0)ln( −= ρη
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Table 4-2 Kinematic viscosity of biodiesel and its blends at 40oC.  

 
Biodiesel  

 
 Blend 
(%) 

 
Measured 

 
A 

  
B 

  
C 

  
   R

2
 

Calculated kinematic viscosity Absolute error between measured 
and  

  

 Regression    
correlation 
equation(4-5) 

   Grun-Nissan   
equation(2-4)  

Regression          
correlation 

equation(4-5) 

Grun-Nissan  
 equation(2-4) 

  0 3.50 8x10
-6

 0.0147 3.593 0.984 3.5930 3.5000 0.0930 0.0000 

Corn oil  
biodiesel 
  
  

5 3.80         3.6667 3.5590 0.1333 0.2410 

10 3.74         3.7408 3.6190 0.0008 0.1210 

20 3.72         3.8902 3.7421 0.1702 0.0221 

50 4.35         4.3480 4.1370 0.0020 0.2130 

  75 4.54         4.7405 4.4978 0.2005 0.0422 

  100 4.89         5.1430 4.8900 0.2530 0.0000 

                  

  0 3.50 7*10
-6

 0.0143 3.537 0.987 3.5366 3.5000 0.0366 0.0000 

Rapeseed 
biodiesel  

  
  

5 3.76         3.6083 3.5793 0.1517 0.1807 

10 3.90         3.6803 3.6605 0.2197 0.2395 

20 4.08         3.8254 3.8283 0.2546 0.2517 

50 4.47         4.2691 4.3795 0.2009 0.0905 

  75 4.62         4.6485 4.8989 0.0285 0.2789 

  100 5.48         5.0366 5.4800 0.4434 0.0000 

                  

  0 3.50 5x10
-5

 0.0129 3.597 0.992 3.5970 3.5000 0.0970 0.0000 

  5 3.87         3.6628 3.5703 0.2073 0.2997 

Waste oil 
 biodiesel 
  

10 3.77         3.7310 3.6420 0.0390 0.1280 

20 3.95         3.8750 3.7898 0.0750 0.1602 

50 4.30         4.3670 4.2702 0.0670 0.0298 

  75 4.85         4.8458 4.7168 0.0042 0.1332 

  100 5.21         5.3870 5.2100 0.1770 0.0000 
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Figure 4-5 Variation of predicted kinematic viscosity of rapeseed biodiesel with 

temperature  

 
The combination effect of temperature and biodiesel fraction on the kinematic 

viscosity of biodiesel is shown in Figure 4-6. It can be seen that when the biodiesel 

fraction increases and temperature decreases, the kinematic viscosity of the biodiesel 

increases.  

 

The kinematic viscosity prediction models for biodiesel described by equations (4-6), 

(4-7) and (4-8) were used to determine numerically the kinematic viscosity at various 

temperatures, density and biodiesel fraction values. These models could be used in the 

design and investigation of fuel supply systems (fuel pump, fuel filter, fuel pipe, and 

injectors), as well as in predicting air-fuel mixing phenomena and combustion 

characteristics.   
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Figure 4-6 Variation of kinematic viscosity of biodiesel with temperature  

4.3 Effect of Biodiesel Fraction on Lower Heating Value 

Lower heating value is one of the most important parameters for the design of engine 

system and estimating the engine performance parameters such power torque, brake 

specific fuel consumption and thermal efficiency [71], [57], [62], [71]. The heating 

value of petroleum products is fairly standard. However, due to the variation of plants 

feed stock, growing climate conditions, soil type, plant health and production process, 

the biodiesel have been shown to have  different lower heating values [20], [55]. In 

addition, for use in engine application, the neat biodiesel (100B) is blended with the 

petrol diesel. To understand the effects of the biodiesel fraction on the lower heating 

value, detailed numerical and experimental investigation is vital.  Hence, in this 

section, the effects of biodiesel fraction, density and viscosity on lower heating value 

were investigated and predicting models were developed. 

 

Using the procedure mentioned in Appendix A, the heating value of the biodiesel and 

its blends have been obtained experimentally. Three runs of benzoic acid were carried 

out and averaged values were generated for the energy equivalent of the bomb 
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calorimeter. Similarly, three replicates were run for each sample of the biodiesel and 

averaged values were used to calculate the heating values. The difference in LHV 

obtained from these tests did not exceed 0.45MJ/kg and hence its maximum deviation 

has been limited to 1.15%. The temperature change verses the time during the fuel 

combustion in the Oxygen Bomb Calorimeter is shown in Figure 4-7. It can be seen 

that the biodiesel combustion yielded lower temperature as compared to the diesel by 

7.5%. 

 

Figure 4-7 Temperature change in Bomb calorimeter for various biodiesel source 

feed.  

The effects of the biodiesel volumetric blend fractions on heating value of the 

biodiesel blends are shown in Figure 4-8. From the figure it can be seen that as the 

biodiesel blend fractions increase, the lower heating values decrease. The rapeseed 

biodiesel, corn biodiesel and waste biodiesel resulted in lower heating values as 

compared to diesel by 9.96%, 10.19% and 9.67% respectively. The low heating value 

of the biodiesel could be explained on the basis that the 11% of the biodiesel 

molecular structure is occupied by oxygen molecules resulting in relatively lower 

number of carbon and hydrogen molecules.  
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Figure 4-8 Variation of lower heating value of biodiesel with biodiesel fraction for 

different biodiesel source feeds 

 
It is known that energy from the fuel results from the carbon and hydrogen molecules. 

The lower heating values of rapeseed oil, corn oil and waste oil biodiesel were shown 

to have a maximum difference of 1.48%. The lower heating values of the biodiesel 

were correlated with the biodiesel fraction, density and viscosity of the tested 

biodiesel. The correlation of lower heating value versus biodiesel fraction, lower 

heating value versus density and lower heating value versus kinematic viscosity are 

shown in equations (4-9), (4-10) and (4-11)  respectively. The correlations resulted in 

R
2 values of 0.991, 0.981 and 0.988 for correlation 4-9, 4-10 and 4-11 respectively: 

 

 y�� � 
0.041v � 42.32     (4-9) 

y�� � 
0.167� � 42.32     (4-10)    

y�� � 
2.27� � 50.84     (4-11) 

Where LHV is the lower heating value, X is biodiesel fraction, � is density of 

biodiesel and µ is kinematic viscosity  
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Demribus’s [75] and Sadrameli et al.s’ [63] have developed regression models which 

correlate density with lower heating value of neat biodiesel (100B). The measured 

and predicted lower heating values with percentage deviation values are presented in 

Table 4-3.  It can be seen that the predictions of this study and measured values 

showed only a maximum error of 0.87%. However, the measured values deviate from 

the values obtained from Demirbas[75]  and Sadrameli et al. [63]   predications by 

6.82% and 5.93%, respectively. This higher deviation can be due to their model being 

developed only for neat biodiesel. However, this study considered neat biodiesel and 

different blends fraction. 

 

Demribus’s [75] also developed a correlation between the lower heating value and 

kinematic viscosity of neat biodiesel which is provided in Table 2-2. The values 

obtained from Demribus’s [75] correlation, measured lower heating values and 

predicted lower heating values from the correlation developed in this study are 

presented in Table 4-4. It can be seen that the measured values are deviated by 1% 

and 10.31% from the values obtained from the correlation developed in this study and 

those from Demribus’s [75]. It is also seen that the deviation of the values obtained 

from Demribus’s [75] correlation as compared to the measured values decrease with 

increase of the biodiesel fraction. This indicates that the Demribus’s [75] correlation 

only predicts the lower heating value for neat biodiesel.  However, the correlation 

developed in this study results in acceptable percentage error in predicting the lower 

heating value for neat biodiesel and its blends. 

Lower heating value is one of the most important parameters for estimating the design 

parameters and is vital input parameter for numerical simulation of  combustion and 

estimating engine performances such as brake specific fuel consumption and thermal 

efficiency [71], [57], [62]. The new developed lower heating value models which 

correlate the heating values with biodiesel fraction, density, and kinematic viscosity 

will have significant application in investigation of combustion characteristics, engine 

performance and emission and in the development of new engines. 
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Table 4-3 Lower heating value prediction from the density of rapeseed oil biodiesel blends 

 

Biodiesel   

fraction (%) 

  

Density 

(kg/m
3
) 

Lower heating vale (MJ/Kg) The measured percentage deviation (%) 

Measured  This study 

correlation 

density 

Demribus’s 
[75]  density 

correlation 

Sadrameli et al.s’ 
[63] density 

correlation 

from this 

study 

correlation 

from Demribus’s 
[75] correlation 

from Sadrameli et 
al.s’ [63] 
correlation 

         

0.00 853.36 42.50 42.39 41.87 42.97 0.27 1.49 -1.09 

5.00 854.96 42.13 42.12 41.81 42.82 0.01 0.76 -1.64 

20.00 860.97 41.36 41.12 41.58 42.26 0.60 -0.52 -2.15 

50.00 865.09 40.08 40.43 41.42 41.87 -0.87 -3.34 -4.46 

75.00 871.77 39.19 39.31 41.17 41.25 -0.32 -5.04 -5.25 

100.00 879.35 38.27 38.05 40.88 40.54 0.57 -6.82 -5.93 

 

Table 4-4 Lower heating value prediction from the viscosity of rapeseed oil biodiesel blends 

 

Biodiesel   

fraction (%) 

  

 

Viscosity(mm
2
/s) 

Lower heating vale (MJ/kg) The measured percentage deviation (%) 

Measured by Viscosity  

correlation(this study) 
by  Demribus’s [75] 
viscosity correlation 

from this study 

correlation 
from  Demribus’s [75] 
correlation 

        

0.00 3.58 42.50 42.08 38.12 1.00 10.31 

5.00 3.67 42.13 41.83 38.13 0.70 9.50 

20.00 3.79 41.36 41.53 38.13 -0.39 7.82 

50.00 4.28 40.08 40.29 38.16 -0.52 4.81 

75.00 4.68 39.19 39.27 38.17 -0.21 2.59 

100.00 5.13 38.27 38.12 38.20 0.40 0.19 
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4.4 Development of integrated Mathematical Models of Fuel Supply 

System 

To evaluate the effects of density and viscosity of different biodiesel blends on the fuel 

supply system (fuel pump, fuel pipe, fuel filter and fuel injector), several key fuel supply 

parameters such as, head loss, flow rate and sauter mean diameter (SMD) have been predicted 

using well-accepted mathematical models for different fuel blends over a wide range of 

engine operating conditions. The characteristics of the compression ignition (CI) engine used 

in this prediction model are summarised in Table 3-1. The model has been used to determine 

the mass flow rate of fuel used to produce the required amount of power by the engine. The 

mass flow rate of fuel that needs to be injected for each cylinders and the power produced by 

the engine are calculated by the following equations [182]: 

  

             (4-12) 
 

       
(4-13) 

 
 
       (4-14) 
 

 
              (4-15)  

 

Where mf is the fuel mass rate of injection for each cylinder (kg/s), P is the power developed, 

n is the number of cylinders, η is the thermal efficiency calculated by equation (4-14), Qv is 

the calorific value of fuel(J/kg), ρ is the density of fuel(kg/m3), NR is the rotational speed of 

engine(rev/s), N is the number of cycles calculated by N = NR/2 for 4-stroke engine (cycles 

per sec), θ  is the crank angle duration for injection(degrees), V1 is  the volume at start of the 

compression process per cycle (m3), α is the compression ratio, β is the cut-off ratio in the 

diesel cycle (1.5), γ is the air specific heat ratio, q is the heat supply factor, A is the 

stoichiometric air fuel ratio, and, Rg is the gas constant of air (287J/kg.K), and T1 is the 

ambient temperature. 

 

One of the important fuel supply system components in the engine is a fuel filter. The main 

application of the fuel filter is to remove foreign matter of different sizes from the fuel as 

these could cause wear of the well polished materials. In addition, it filters any fraction of 

water left in the fuel to protect the equipment from corrosion. The filter flow characteristics 
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have been presented by Coulson and Richardsons [183] and modelled as described in 

equations (4-16) to (4-19). Equation (4-16) is the basic characteristic equation for filtration. 

By assuming constant pressure difference ( ∆ P), equation (4-16) can be modified to equation 

(4-18). Further Γ, v and A are assumed constants and fuel equation (4-19) was developed. 

Equation (4-19) shows the inverse relationships between fuel flow rate and the viscosity of 

the fuel in the filter media: 

  

  

           (4-16) 
 

            v

tPAV

ηΓ

∆−
=

)(

2

22

    
             (4-17)  

           t

C
Q

η
=

                   
(4-18) 

 

           (4-19) 
 

In the above equations, V (m3) is the volume of filtrate which passes through the filter in time 

t (s), A (m2) is the cross-sectional area of the filter cake, η (mm2/s) is the kinematic viscosity 

of the filtrate and ∆ P (pa) is the applied pressure difference, Γ (m
-2) is the filtration 

resistance constant, v is the volume of cake deposited by unit volume of filtrate, and C is 

filtration property constant given by equation(4-19) 

 

The effect of viscosity on fuel flow through a pump was investigated by calculating the head 

loss that occured in the pumping network. The head loss that occurs in pipes is dependent on 

the flow velocity, pipe length and diameter, and a friction factor based on the roughness of the 

pipe and the Reynolds number of the flow. In the simulation model, the frictional head loss in 

the section and head pipe was calculated by:  

 
          (4-20)  

       
 

Where hf   is friction head loss, Ff  is the dimension-less friction factor calculated by the 

equation 
25.0

0396.0
RE

fF =  for the turbulent flow, Re is Reynolds number, 
id

L
 is the equivalent 

length to pipe diameter ratio, u is the velocity (m/s) and g is the gravitational acceleration 

(m/s2). 
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The other important process which affects the performance of the engine system is the fuel-air 

mixing process in the engine cylinder. The penetration length, spray angle and sauter mean 

diameter (SMD) is the major parameters needed to quantify the efficiency of the mixing 

process. Since the viscosity and density of the fuel have less effect on the penetration length 

and the spray angle, the present work is focused only on the effect of biodiesel blending on 

the SMD. The SMD is the diameter of the model droplet, whose volume to surface area ratio 

is equal to the ratio of the sum of all droplet volumes (V) in the spray, to the sum of all droplet 

surface areas (A). There are different models to correlate the fuel properties and the injector 

characteristics with SMD. In this simulation, the model developed by Hiroyasu and Arai has 

been used [184]: 

 

            
z{ 
 � 0.38/>@.�C|>}'@.�� J~�~�Q

@.�?
������

'@.B?                                                        (4-21) 

Where lWe is the Weber number given by 
σ

ρ l

l

DV
We

2

= , Re is the Reynolds number given 

by 
l

luD

µ

ρ
=Re , V(m/s) is the velocity of  jet, lρ  (kg/m3) is the density of the liquid , lµ

(N.s/m2) is the dynamic viscosity of the liquid, Dn (m) is the nozzle hole diameter, gρ  is the 

density of the gas , and gµ is the dynamic viscosity of the gas (N.s/m2) , and σ  is the surface 

tension at the liquid-gas interface (N/m). 

4.5 Computational Procedures used for Models of Fuel Supply System  

The effects of biodiesel density and viscosity on the fuel supply system have been 

simulated using the following input parameters and computational steps. 

Input parameters: The input parameters used in fuel filter, fuel pump and sauter mean 

diameter simulation have been presented in Table 4-5. The input parameters have been 

obtained from the specification of the equipment and engine operating conditions. 

 

Computational steps: To calculate the effects of biodiesel physical properties on the fuel 

filter, fuel pump and air-fuel mixing phenomena the following computational steps have 

been used: 

Step 1:  The mass flow rate of fuel (�g �� has been calculated using equation 4-12. The 

input parameters in equation 4-12, such as the power, the thermal efficiency and 
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heat supply factor have been calculated using equations 4-13, 4-14 and 4-15 

respectively. 

Table 4-5 Input parameters for fuel supply system analysis 

 
 
Step 2: The mean injection velocity (Vin) has been calculated from the fuel mass flow rate 

as per step 1 and injector geometry specified in Table 4-5 

Step 3: The filtration constant (C), computed using equation 4-19 from filter parameters 

such as the filter area (A), applied pressure difference ( ∆ P), filtration resistance 

constant (Γ), volume of filter cake deposited by unit volume of filtrate (v). The fuel 

filter property has been presented in Table 4-5. 

Step 4: The fuel flow rate has been calculated as a function of time and viscosity using 

equation 4-18.   

Step 5: The velocity (u) has been computed from the pump geometry and engine 

operating conditions. 

Parameters  Values 

NR: Rotational speed 1000 to 1800rpm 

N:  Number of cycles 500 to 900rpm 

ß: Cut-off ratio 1.5 

γ: Air specific heat ratio  1.4 

dn: Injector nozzle diameter 0.16mm 

Nh: Number of holes in the fuel injector  2 

P1: Ambient pressure 101.32kPa 

T1: Ambient temperature 293K 

A: Filter cross-sectional area 0.05m 

∆P:  Applied pressure difference 137kPa 

Γ : Filtration resistance 1.6x1014m-2 

l/d: Equivalent length to pipe diameter ratio 250 

µl: Dynamic viscosity of fuel 2.18Pa.s to 7.74x10-3Pa.s 

µg: Dynamic viscosity of gas 1.5x10-5Pa.s 

�]: Density of fuel 853kg/m3 to 879kg/m3 

��: Density of gas  1.21kg/m3 to 4 kg/m3 

σ:  Surface tension  0.03N.m 
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Step 6: The Reynolds number of the flow in the pump has been obtained using velocity 

calculated in step 5 and fuel physical properties presented in  

Table 3-4 . Further, computation of the friction factor Ff  from the Reynolds  number by 

the relation discussed in equation 4-20 has been carried out. 

Step 7: The friction head loss as function of viscosity and fuel flow rate has been obtained 

using equation 4-20 from the friction factor and fuel pump geometry which have 

been presented in Table 4-5. 

Step 7: The Weber number and Reynolds number have been calculated using the 

equations:
σ

ρ l

l

DV
We

2

=  and 
l

luD

µ

ρ
=Re  

Step 8: The sauter mean diameter (SMD) has been calculated using equation 4-21 from 

the parameters defined in step 7 and fluid properties which are given in Table 4-5. 

Step 9: These predicted values obtained from the above have been compared with data 

available in this area.  

 

 Output parameters: The output parameters in fuel supply system model have shown the 

effects of density and viscosity of biodiesel on the fuel flow rate through filter(Q), the 

friction head loss of the pump(hf) and sauter mean diameter(SMD). These effects have 

been quantified and are discussed below.  

4.6 Effect of Density and Viscosity of Biodiesel on the Fuel Supply 

System Performance   

This section describes the results obtained by using the mathematical models described in 

section 4.4 to quantify the effects of the biodiesel viscosity and density on the fuel filter; 

fuel pump and injection spray characteristics in the engine cylinder. The simulation 

results obtained from the model have been explained below.Figure 4-9 illustrates the 

variation of the fuel flow rate through the fuel filter as function of time for different 

values of kinematic viscosity representing various biodiesel blends. It can be seen that the 

fuel flow rate decreased with time in the fuel filter media.  

 
This can be explained on the basis that at the start of filtration, the voids are active and the 

filtration rate is enhanced [183]. After a period of time, the numbers of active voids in the 

filter get reduced and the filtration rate became constant. Figure 4-10 also shows the 

effect of viscosity on the fuel flow rate through the fuel filter. It can be seen that when the 
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fuel viscosity increased, the fuel flow rate decreased. This could be attributed to a higher 

flow resistance encountered by highly viscous fluid. The fuel filter rate had direct effect 

on the fuel flow rate in the injector and hence the power produced by the engine. A higher 

viscosity meant a lower flow rate of fuel and lower engine power by the engine.  

 

 

Figure 4-9 Flow rate of fuel through filter with time for different kinematic viscosity  

values 

Figure 4-10 shows the fuel pump head loss versus the fuel flow rate of biodiesel and 

diesel fuel for different viscosity values. It can be seen that at a constant head, fuel with 

higher viscosity yielded a lower fuel flow rate than the fuel with a lower viscosity. A 

similar trend has been reported by Bannikov et al. [76]: 

 

Figure 4-11 shows the relationship between the kinematic viscosity and sauter mean 

diameter (SMD) of fuel at different engine speeds. The SMD value of the fuel in 

combustion cylinder was determined by using a well-accepted model of Hiroyasu and 

Arai [184]. It can be seen that when the engine speed increased, the SMD of the fuel in 

the cylinder decreased. 
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Figure 4-10 Variation of fuel pump head loss with fuel flow rate for various kinematic 

viscosity 

 
The same trend had been reported by Hiroyasu [185]. It can also be seen that when the 

kinematic viscosity of the biodiesel increased, the SMD also increased proportionally. 

This could be explained on the basis that when the kinematic viscosity and surface 

tension of the fuel increased, the cohesion and the surface viscosity between fuel 

molecules increased [186]. As a result, the SMD of the fuel increased in the cylinder 

chamber. The increase in the SMD resulted in a reduced surface area of the fuel droplet. 

As a result, the tendency of evaporation of fuel decreased and this could have decreased 

the performance of the engine and increased the emissions.  Geo et al. [78] compared the 

SMD corresponding to diesel, B5, B10, B20 and B100 of Jatropha oils blends. Their 

results showed that the SMD gradually increased with an increasing blend ratio of the 

biodiesel and the authors concluded that the kinematic viscosity was the major factor for 

this. The effect of kinematic viscosity of the biodiesel on the SMD has been reported by 

Geo et al and is shown in Figure 4-11. The reported values show the same trend with data 

as predicted in this study: 
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Figure 4-11Variation of sauter mean diameter with kinematic viscosity using Hiroyasu 

and Arai Model [184] 

 
Figure 4-12 Variation of sauter mean diameters with temperature using Hiroyasu and Arai 

Model [184] 
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The same trend has been also reported by Park et al.[187] for a SMD variation for 20% 

ethanol blend biodiesel (BDE20) and 100% biodiesel (B100). Since BDE20 has lower 

kinematic viscosity than B100, the former has a lower SMD. Figure 4-12 illustrates the 

SMD of the biodiesel fuel verses injected fuel temperature for different engine speeds. It 

cab be seen that the SMD of the biodiesel decreased with an increase in the injected fuel 

temperature. An explanation for this could be that when the temperature increased, the 

inter-molecular forces decreased. As a result, the SMD decreased in the engine cylinder. 

This facilitated the evaporation of the fuel and combustion rate in the engine cylinder. 

4.7 Summary on Biodiesel Charactersation  

In this chapter the effects of biodiesel fraction and temperature on the density, viscosity 

and LHV have been investigated. It has been noticed that the density and the viscosity of 

the biodiesel blends increase with increase of the biodiesel fraction. It is also seen that the 

density and viscosity of each blend decreases with increase in the temperature. The 

empirical equations to predict density, viscosity and LHV of the biodiesel and its blends 

as function of temperature have been developed. The empirical equations and the 

measured data are closely matched with acceptable error. This study models have been 

compared with previous models and the two models match closely. The comparison of 

the previous model and experimental results with new models which are presented from 

equation 4-1 to equation (4-11) validate that the new density predication model can used 

in prediction of density, viscosity and lower heating value of biodiesel blends. 

 
In the second section numerical simulations have been carried out on fuel supply system 

using the characteristics of the biodiesel obtained from the experimental work. From 

numerical simulation in can be seen that the density and viscosity of the biodiesel affect 

the performance of the fuel supply system including the fuel pump, fuel filters and air-

fuel mixing behaviour considerably. It has been seen that when the density and viscosity 

of the biodiesel increase the fuel pump head loss also increased and the flow rate of the 

fuel in filter reduced. A further noticeable effect was that the higher density and viscosity 

of biodiesel resulted in an increase in the sauter mean diameter of the spray droplet in 

combustion chamber. In next chapter the effects of the physical properties of biodiesel 

and its blends on the CI engine performance and emission have been investigated 

experimentally during steady state operations. 
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CHAPTER FIVE  

5. PERFORMANCE AND EMISSION CHARACTERISTICS OF A CI 

ENGINE RUNNING WITH BIODIESEL BLENDS DURING 

STEADY STATE  

 

The main aim of this chapter is to investigate the combustion, performance and emission 

characteristics of a compression ignition engine running on biodiesel and its blends during 

steady operating conditions. As per the previous review a lot of research has been carried out 

on the use of biodiesel in CI engines during steady state conditions. However, the researchers 

have not reported in detail the effects of biodiesel physical properties which have been 

discussed in Chapter four. In addition, to understand the transient combustion, performance 

and emission characteristics, the understanding of these characttrstics during steady state 

operation are very important.  Having these two objectives, the performance and emission 

characteristics of CI engine fuelled with different biodiesel blends have been investigated. 

Results are presented for all test conditions and attempts have been made to highlight the 

effects of different biodiesel physical properties and blends on the in-cylinder pressure, brake 

specific fuel consumption, thermal efficiency and emissions (CO2, NOx, CO, THC) during 

steady state operation. These effects have been discussed based on the experimental results 

obtained from the test CI engine. For each parameter, the effect of biodiesel content and its 

properties have been quantified.  
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5.1 In-Cylinder Pressure and Heat Release Rate of the CI Engine  

The in-cylinder pressure measurement is considered to be a very valuable source of 

information during the development and calibration stages of the engine. The in-cylinder 

pressure signal can provide vital information such as peak pressure, P-V diagram, 

indicated mean effective pressure, fuel supply effective pressure, heat release rate, 

combustion duration, ignition delay and so on[188] [169]. Moreover, based on ideal gas 

and first law of thermodynamics it can be used in more complex calculations for example 

in air mass flow estimation, combustion diagnosis and NOx prediction [188], [189]. In 

this section the P-V diagram, in-cylinder pressure variation with crank angle and the heat 

release rate variations for the test CI engine running with diesel and rapeseed biodiesel at 

50B and 100B have been compared and discussed. The 50B blend has been used in this 

investigation to understand the effects of biodiesel blend on the combustion 

characteristics.  

 

 Figure 5-1 depicts the P-V diagram obtained from the measurements on the test 

compression ignition engine, which was obtained at an engine speed 1300 rpm and at 

105, 210, 315 and 420Nm engine load conditions. The P-V diagram clearly shows the 

intake, compression, power and exhaust strokes. The results highlight that the power 

produced by the engine cylinder and calculated from the P-V diagram do not show any 

significant change for the different fuels, namely 50B, 100B and pure diesel at different 

engine loads of 105Nm, 210Nm, 315Nm and 420Nm. The maximum percentage 

difference between the power output of the CI engine running with diesel, 50B and 100B 

is less than 2% at 1300rpm and 210Nm. This indicates that the loss in power because of 

biodiesel’s lower heating value is compensated by larger brake specific fuel consumption 

[9],[44],[94] .  
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Figure 5-1 P-V diagrams for CI engine running with diesel and biodiesel blends at speed 

of 1300rpm and range of engine loads 

 
Figure 5-2 shows the variation of in-cylinder pressure within the combustion chamber of 

the test CI engine with crank angle when running with 50B, 100B and normal diesel fuels 

at a speed of 1300 rpm and at different engine loads of 105Nm, 210Nm, 315Nm and 

420Nm. The figure shows only part of combustion or power stroke section in stroke 

cycles. The figures depict that the peak cylinder pressure of the engine running with 50B 

and 100B is higher than the engine running with diesel by 4.5% and 3.4% at 420Nm 

respectively. For the rest of the load conditions, the difference is below 3%. The main 

reason for a higher in-cylinder pressure in the CI engine running with biodiesel is due to 

the advanced combustion process being initiated by the easy flow-ability of biodiesel and 

its other relevant physical properties such as viscosity, density and bulk modulus as 

claimed by Qi et al. [9].  
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Figure 5-2 Variation of in-cylinder pressure with crank angel for CI engine running with 

50B, 100B and diesel at engine speed of 1300rpm and range of engine loads 

 
The cumulative effects of these properties result in a short ignition delay and advanced 

injection timing for biodiesel. Furthermore, due to the presence of oxygen molecules in 

biodiesel, the hydrocarbons have achieved complete combustion [121], [190], [125] 

resulting in a higher in-cylinder pressure. Similar trends have been reported by Qi et 

al.[9]. Gumus[83] however  reported that the engine running with diesel resulted in higher 

in-cylinder pressure than that of biodiesel blends due to high viscosity and low volatility 

of the biodiesel which leads to poor atomization during the ignition delay period. Qi et 

al.[9] have argued that the higher viscosity and lower volatility can be compensated by 

the complex and rapid pre-flame chemical reactions at higher temperatures which result 

in cracking and creating of lighter biodiesel compounds. These compounds can result in 

earlier ignition. 
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Figure 5-3 Variation  of rate of in-cylinder pressure increase with crank angle for CI 

engine running with 50B, 100B and diesel at engine speed of 1300rpm and range of 

engine loads 

 
The Variation in the rate of pressure rise with crank angle for diesel and biodiesel blends 

at differnet engine loads are shown in Figure 5-3. It can be seen that at a lower engine 

load the rate of pressure rise for diesel is slightly higher than for biodiesel. The reason is 

at this operating condtion, a very small quantity of fuel is injected into the combustion 

chamber and combustion starts after TDC. However, the rate of pressure rise is higher for 

biodiesel at higher engine loads. This is due to the higher rate of heat release during 

premixed combustion phase as explained in the next section.  

 

Heat release rate is one of the most important parameters to characterise the combustion 

process in compression ignition engine. Using the heat release rate diagram, it is possible 
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release can be computed by using first law of thermodynamics and ideal gas laws as 

described in chapter two.  

 
Figurue 5-4 depicts that the heat release rates for a CI engine running on biodiesel blends 

and normal diesel, for a speed of 1300 rpm, and at different load values of 105Nm, 

210Nm, 315Nm and 420Nm. The engine running with diesel and biodiesel blends shows 

the same combustion stages at all load conditions except the slight variation of the peak 

heat release rate and ignition delay. Because of the vaporization of the fuel accumulated 

during ignition delay, at the beginning the curve a negative heat release is observed and 

after combustion is initiated, the heat release values become positive [9].  

 
As it is shown in Figure 5-6 the ignition of the biodiesel fuel has started earlier than the 

diesel fuel running with diesel fuel by 0.8deg, 1deg, 1.5deg and 1.2deg for 105Nm, 

210Nm, 315Nm and 420Nm load conditions. Gumus[83] also reported that the start of 

ignition for biodiesel made of hazelnut kernel oil methyl ester was advanced by up to 

1.65deg. The advanced start of ignition is attributed to  the physical properties of the 

biodiesel such as higher bulk modulus[52], [77], [81],[191], [192], higher viscosity [34], 

[191], [193] and higher cetane number[102], [112]. Further it can be seen that at lower 

load conditions the test CI engine running on diesel has a higher peak heat release rate 

than the biodiesel by 4%. At higher load conditions the engine running on biodiesel 

blends have higher heat release rates than when running on diesel. This phenomenon is 

attributed to the presence of additional oxygen molecules in biodiesel fuel[9], [112], 

[128], [135], [131], which results in the air-mixed fuel in the cylinder burning completely 

and increasing the heat release rate.  

 

The cumulative heat release is the other parameter, which shows the total heat released 

during the combustion stage. The cumulative heat values obtained from the experiments 

on engine running with diesel, 50B and 100B are shown in Figure 5-7. It can be seen that 

50B resulted in higher cumulative heat release as compared to the diesel by 4%, 3%, 

2.5% and 3.5% for different load values of 105Nm, 210Nm, 315Nm and 420Nm 

respectively. This is due to the dual effects of the complete combustion because of 

presence of the oxygen molecules in biodiesel and the higher heating value of 50% diesel 

as compared to 100B [83]. 
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Figure 5-4 Variation of heat release rate with crank angle for CI engine running with 50B, 

100B and diesel at engine speed of 1300rpm and range of engine loads. 
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Figure 5-5 Variation of cumulative heat release rate with crank angle of CI engine 

running with 50B, 100B and diesel at engine speed of 1300rpm and range of engine loads 
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5.2 Performance Characteristics of the Test CI Engine Running with 

Biodiesel Blends during Steady State Operating Condition  

In this section the engine performance characteristics have been evaluated based on 

experimental observations using different operating parameters. The common parameters 

used to evaluate engine performance are: the peak in-cylinder pressure, brake specific fuel 

consumption and the thermal efficiency. In the following, the effects of the feed stock, blend 

fractions, density, viscosity and heating value of the biodiesel have been investigated on the 

engine’s in-cylinder pressure, brake specific fuel consumption and thermal efficiency as well 

as exhaust emissions (CO2, NOx, CO, THC and O2).  

5.2.1 Effects of Biodiesel Feedstock Sources on the Engine Performance 

Parameters 

The overall scope of feedstock sources for biodiesel production becomes much broader over 

time. The most common biodiesel sources are edible oil such as rapeseed oil, corn oil, palm 

oil, and soybean oil [194]. In this study, two categories of biodiesel were investigated: 

biodiesel from ‘virgin’ vegetable (rapeseed oil (ROB) and corn oil biodiesel (COB) oil, and 

waste cooked oil (waste oil biodiesel (WOB)). The aim of this investigation was to establish 

whether biodiesel source has any effect on performance obtained from a biodiesel. The peak 

in-cylinder pressure, brake specific fuel consumption and thermal efficiency behaviour of the 

three biodiesels are presented here. 

 

The peak in-cylinder pressure of a CI engine running on diesel, ROB, COB and WOB, at a 

load of 420Nm and over a wide range of engine speeds, is shown in Figure 5-6(a). It can be 

seen that the in-cylinder pressure increased slightly with increasing engine speed. This is due 

to an increase in air/fuel ratio with engine speed increment. Figure 5-6(b) shows the in-

cylinder pressure deviation observed for the data on ROB, COB and WOB from the data on 

diesel. It can be observed that the peak in-cylinder pressure corresponding to COB and ROB 

are higher than normal diesel by 1.3%. The engine running with the ROB and COB did not 

show any significant difference in peak in–cylinder pressure values. However, the engine 

running on WOB showed an inconsistent variation in in-cylinder pressure across the range of 

engine speeds. 

 

Figure 5-7 shows the variation in the brake specific fuel consumption (BSFC) of the engine 

running on ROB, WOB, COB and normal diesel against engine speeds at two different loads 
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of 105Nm and 420Nm. The BSFC has been estimated from the brake power output of the 

engine and the mass flow rate of the fuel. At both load conditions, the BSFC has been seen to 

be higher at lower engine speeds. It then decreases with engine speed to a minimum value, 

eventually increasing again with engine speed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6 Variation of peak in-cylinder pressure with engine speed for CI engine running 

with ROB, COB, WOB and diesel at load of 420Nm  

 

This can be explained on the basis that, at low speeds, heat loss from the combustion 

chambers walls is proportionately greater and combustion efficiency is poorer, resulting in 

higher fuel consumption for the power produced. At higher speeds, the friction power 

increases at a rapid rate, resulting in a slower increase in power than in fuel consumption with 

a consequent increase in BSFC [195]. Pal et al. [99] and Hazar [121] also reported similar 

trends for BSFC and engine speed dependence. At a lower load (105Nm), the engine achieved 

its minimum BSFC between 1000-1200rpm. However, at the maximum load (420Nm), the 

engine reached its minimum BSFC between 1200-1400 rpm for all fuel types.  

Figure 5-7 also depicts the comparison of the engine’s BSFC when fuelled with biodiesels 

and normal diesel. It can be seen that the BSFC of the biodiesel was higher than the diesel by 

up to 15% at lower engine load and up to 7% at the higher engine load. Lapuerta et al.[44] 
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have also reported that, the BSFC of the engine running with neat biodiesel was higher than 

that of engine running with diesel by up to 18%. The increment of BSFC of the biodiesel 

compared to diesel is mainly due to the low heating value of the biodiesel as claimed by 

previous authors [34], [88], [89], [92-94] and discovered by the author in this study. Some 

authors have also explained the increase in the BSFC in relation to the higher density and 

viscosity of the biodiesel [32], [97], [98], [100].  In the lower heating value analysis, the 

heating value of the biodiesel was lower than the diesel by 11.1%.  The BSFC of the engine 

running on ROB, COB and WOB did not show any significant differences in BSFC values. 

The maximum difference in BSFC values corresponding to ROB, COB and WOB was limited 

to 1.25% for an engine speed of 1900rpm and load of 105Nm. 

 

 

Figure 5-7 Variation  of brake specific fuel consumption (BSFC) with engine speed of CI 

engine running with ROB, COB, WOB and diesel at load of 105Nm and 420Nm  

Furthermore, the thermal efficiency of the engine has been  computed from the BSFC and 

heating values of the COB, ROB, WOB and diesel using equation (5-1), for different engine 

speeds at two load conditions (105Nm and 420Nm). The result is presented in Figure 5-8: 
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� �
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!z���}�)
<100      (5-1) 

Where � is the thermal efficiency (%), BSFC is brake specific fuel consumption (g/kWh) of 

the biodiesel and LHV is lower heating value (kJ/kg) of the biodiesel.  

 

 

Figure 5-8 Variation  of thermal efficiency with speed for CI engine running with ROB, 

COB, WOB and diesel at load of 420Nm  
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the same thermal efficiency. Our work has however shown that the trends are mixed and 

depend on engine operating conditions.  

 

The brake thermal efficiency of the test engine when running with ROB and COB showed 

insignificant differences in thermal efficiency values at both lower and higher engine loads. 

However, the brake thermal efficiency of WOB has been seen to be higher than the ROB and 

COB by 1.51% and 1.9% at 105Nm, respectively. At the maximum load, the brake thermal 

efficiency of the WOB was lower than the ROB and COB by 1.69% and 1.86%, respectively. 

Graboski et al. [123] also tested a large number of methyl esters from different feedstock’s 

and reported that neither the oil origin, the length of the carbon chain, nor the number of the 

double bonds provided significant differences in thermal efficiency.  

As it is mentioned in chapter 4, the three biodiesels were produced by the same 

transestrification process. In this study, the biodiesel source was varied by source location 

(soil type and climate variation). The biodiesel production processes, however, were 

controlled and identical.  As discussed in chapter 4 the three biodiesels have almost similar 

density, viscosity and heating values with differences limited to 5%. It can be concluded from 

the study that the biodiesel feedstock does not have significant impact on the performance of 

the biodiesel. 

5.2.2 Effects of Biodiesel Feed Sources on the Engine Emission 

Parameters 

One of the benefits of using biodiesel as alternative fuel is its capability of reducing the 

pollutant emission to the environment. In this section the emission characteristics of the test 

CI engine running with diesel, ROB, COB and WOB have been investigated.  The main 

exhaust emission analysed in the present investigation are  carbon dioxide (CO2), carbon 

monoxide (CO), nitrogen oxides (NOx), total hydrocarbon (THC) and oxygen(O2). The CO2 

emission values of the CI engine running on ROB, COB, WOB and diesel fuel at a 420Nm 

load and at a range of engine speeds are shown inFigure 5-9(a). The ROB, COB, WOB and 

diesel resulted in maximum CO2 emissions of 4.85%, 4.74%, 4.80% and 6%, respectively.  As 

seen inFigure 5-9(b), the CI engine running on biodiesel emitted lower CO2 than when 

running on diesel by 17%. Comparing the three biodiesels ROB, COB and WOB, it can be 

seen that each fuel emitted almost equal amounts of CO2. Similar results have been reported 

earlier [44], [30], [32], [91]. However, some others have reported that the engine fuelled by 

biodiesel fuels emit higher CO2 [91], [94], [96], [196] .  Some investigations in the past have 

also shown same value of CO2 emission [98], [111]. 
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Figure 5-9 Variation of CO2 emission of CI engine running with ROB, COB, WOB and 

diesel at load of 420Nm  

 
Figure 5-10 (a) depicts the NOx emissions of the test CI engine running on the ROB, COB, 

WOB and diesel. The corresponding maximum engine emission values were observed to be 

1350ppm, 1355ppm, 1340ppm and 1040ppm, respectively, at a load of 420Nm over the 

engine speed range of 1000-1800 rpm. From Figure 5-10, it is apparent that the NOx 

emissions increased with increase in the engine speed. This can be primarily due to an 

increase in volumetric efficiency and gas flow motion within the engine cylinder under higher 

engine speeds and higher load operating conditions, which led to a faster mixing between fuel 

and air and hence shorter ignition delay [50],[97]. The ROB, COB and WOB resulted in 

higher NOx emissions than the normal diesel by up to 27%, as shown in Figure 5-10(b). This 

phenomenon is due to the resulting advanced injection because of  influence of physical 

properties of biodiesel, such as viscosity, density, compressibility and sound velocity [44], 

[77], [89], [91]. Some researchers argue that the main cause of NOx increase with biodiesel 

use is the increased cetane number [89], [130] which leads to an advanced combustion by 

shortening the ignition delay and the higher availability of oxygen [44], [91], [130], which in 

turn  promotes NOx formation.  However, when comparing the NOx emission of ROB, COB 
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and WOB, no significant differences in the NOx emission are apparent. The standard 

deviations values have been indicated with the mean value of the NOx emission for each 

condition. The maximum standard deviation was computed to be 15ppm at 1800rpm.  

 

Figure 5-10 Variation of NOx emission  with engine speed for CI engine running with 

ROB, COB, WOB and diesel at load of 420Nm and range of engine speeds 

 
The histogram shown in Figure 5-11(a) depicts the THC emission of CI engine running with 

ROB, COB, WOB and diesel at a load of 420Nm over a speed range of 1000-1800 rpm. From 

the figure, it can be seen that the THC emission decreased with an increase in engine speed. 

This may be due to better air-fuel mixing process and/or the increased fuel/air ratio at higher 

engine speeds [111], [9], [122]. The two ‘virgin’ biodiesels i.e. ROB and COB did not show 

any significant differences in THC emission values. However, the engine running on these 

two biodiesel has a reduced THC emission value by 28%, as compared to the neat diesel, as 

shown in Figure 5-11(b). The WOB use also reduced the THC; however the reduction was 

only about 5% as compared to diesel.  The standard deviations of the measurements are 

indicated along with the mean value of the THC emission for each condition in the figure. 

The maximum standard deviation has been computed to be 2ppm at 1800rpm.  
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Figure 5-11 Variation of THC emission with engine speed for CI engine running with ROB, 

COB, WOB and diesel at  load of 420Nm  

 
Figure 5-12(a) presents the CO emission for the engine running with ROB, COB, WOB and 

diesel at a load of 420Nm over an engine speed range of 1000-1800 rpm. In Figure 5-12, a 

clear trend can be seen that CO emission decreases with increasing engine speeds. This is 
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standard deviations of the measurements are indicated with the mean value of the CO 

emission for each condition, having a maximum standard deviation of 3.5ppm.  
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investigation the fuel properties have been varied by blending diesel with biodiesel in 

different proportions.     

Figure 5-12 Variation of CO emission with speedfor CI engine running with ROB, COB, 

WOB and diesel at a load of 420Nm  
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also increased with increasing biodiesel fraction. The neat biodiesel resulted in a maximum 

in-cylinder pressure (14% more than diesel). 

 

 

Figure 5-13 Variation of in-cylinder pressure with speed of CI engine running with 

biodiesel blends at load of 420Nm  
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been discussed in detail in section 5.2.1.  
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Figure 5-14(a,c) Variation of BSFC with engine speed for different biodiesel blends at 

105Nm and 420Nm (b,d) Variation of BSFC increment with engine speed for biodiesel 

blends at load of 105 and 420Nm   
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Figure 5-14(b) depicts that when the biodiesel blend percentages increase, the BSFC values 

also increase. The BSFC of the engine fuelled with 10B, 20B, 50B and 100B blends increased 

by 2.5%, 5%, 10% and 15% respectively, at a load of 105Nm as compared to BSFC when 

fuelled with Diesel only. However, at a higher load (420Nm), the difference between the 

BSFC of biodiesel blends and diesel narrowed, as depicted in Figure 5-14(c-d), which shows 

a maximum BSFC increment of 5%. Previous research have also reported similar trends [9], 

[32], [93], [100-102], [130], [9]. 

 

The effects of the engine load on the biodiesel blends’ BSFC values are shown in Figure 

5-15. It can be seen that the engine running at a lower load (105Nm) resulted in higher BSFC 

by corresponding amounts of 15%, 12% and 16% than the values observed at 210Nm, 315Nm 

and 420Nm load conditions at 1500 rpm engine speed.  

 

Figure 5-15 (a) Variation  of BSFC with biodiesel fraction at engine speed of 1500rpm 

and various engine loads (b) Variation  of BSFC percentage increment with biodiesel 

fraction at engine speed of 1500rpm and at various engine loads 
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It is also seen that the BSFC of the engine at a low load (105Nm) increased linearly with 

increase in the biodiesel fraction values. In general, it can be seen that at lower loads, the 

BSFC of the CI engine is higher and then decreases before increasing again very slowly. 

Similar trends in BSFC were reported by Gumus and Kasifoglu[95] for all blends investigated 

(B10, B20,B50, B100 and diesel) at different load conditions. One of the explanations for a 

decreasing BSFC with an increase in load is because of a higher increase in brake power, as 

compared to fuel consumption [91].  

5.2.4 Effects of Biodiesel Blend Fraction on Engine Emissions Parameters 

Experimental emission results obtained from the tests on CI engine fuelled with rapeseed 

biodiesel blends running at a range of engine speeds and at 420Nm load are shown in Figure 

5-16 to Figure 5-19. The higher load was selected for emissions investigation due to its 

sensitivity for emissions. Both the real values of the emissions and the percentage change of 

the emission over a wide range of conditions are reported.  

 

 

Figure 5-16 (a) Variation  of CO2 emissions with engine speed for CI engine running with 

biodiesel blends at load of 420Nm (b) Variation  of CO2 emissions percentage reduction 

with engine speed for CI engine running with biodiesel blends at load of 420Nm 
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Figure 5-16(a) provides the CO2 emissions of CI engines over a range of engine speeds. It can 

be seen that the CO2 emission reduced significantly with increase in the engine speeds. The 

CI engine’s CO2 emissions corresponding to neat diesel as well as various biodiesel blends 

(10B, 20B, 50B and 100B) have been compared and their percentage reductions in CO2 

emission are shown in Figure 5-16(b). The histogram shows that the CI engine’s CO2 

emission reduced by 7%, 27%, 85% and 35% corresponding to 10B, 20B, 50B and 100B as 

compared to diesel value respectively.  

 

The engines fuelled by 50B resulted in the maximum CO2 emission among the different 

blends used. Previous researchers recommended optimum biodiesel blends of 20% and 40%. 

The engine fuelled with biodiesel emitted lower CO2 emission than diesel due to the lower 

carbon to hydrogen ratio [50], [91]. The carbon content of biodiesel was 77%, whilst for 

diesel it was 87% as can be seen in Table 3-4. 

 
Figure 5-17(a) compares the NOx emissions from the test CI engine fuelled with diesel, 10B, 

20B, 50B and 100B, at a load of 420Nm over a wide range of engine speeds. It can be seen 

that the NOx emission increases with an increase in engine speed as discussed in section 

5.6.2. It can further be seen that a higher percentage of biodiesel blend emits higher values of 

NOx emissions, as shown in Figure 5-17(b).  

 
The use of biodiesel blend 10B increased the NOx emission by 10%, whilst the neat biodiesel 

increased the emission value by up to 32% at 1100rpm both as compared to the emission 

resulting from the use of diesel. Other researchers have also reported that NOx emission has 

been increased by 35% [37], [71] if biodiesel is used as fuel as compared to diesel. The main 

reasons for higher NOx emissions with increase in biodiesel content could be due to the 

advance injection and advance combustion, as a result of its higher viscosity [44], [77], [89], 

[91], higher oxygen content  which enhances NOx formation[44], [91], [130] and a higher 

cetane number which shortens ignition delay and advances the  combustion [89][130].  

 

The THC emission of the test CI engine running on diesel and biodiesel blends at various 

engine speeds and at 420Nm load is depicted in Figure 5-18(a). It can be noticed that at 

lower engine speeds (900rpm and 1100rpm), the diesel and rapeseed biodiesel blends did 

not show clear differences between the emission levels. However, at higher engine 

speeds, the biodiesel blends emitted lower THC emission as compared to diesel as shown 

in Figure 5-18. 
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 Figure 5-17 Variation  of NOx emissions with engine speed for CI engine running with 

biodiesel blends at load of 420Nm (b) Variation  of NOx emissions percentage reduction 

with engine speed for CI engine running with biodiesel blends at load of 420Nm 

 

The THC reduction reached to 45% at 1300rpm engine speed for 100B. Previous 

researchers have also reported that the engine fuelled with biodiesel could reduce the 

THC by 67% [30], [197], [128], [134], [135]. The reduction of the THC in CI engines 

running on biodiesel can be explained on the basis of lower content of carbon to hydrogen 

ratio than the normal diesel and presence of up to 11% oxygen in its molecular structure. 

 

The CO emission characteristics of the CI engine fuelled by the diesel and rapeseed biodiesel 

blends at the maximum engine load and at various speed conditions are shown in Figure 5-19. 

All the fuels used produced a higher amount of CO emissions at lower speeds and emitted 

less CO emissions at higher engine speeds. The effect of engine speed on CO emission is 

discussed in section 5.6.2.  
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Figure 5-18Variation  of NOx emissions with engine speed for CI engine running with 

biodiesel blends at load of 420Nm (b) Variation of NOx emissions percentage reduction 

with engine speed for CI engine running with biodiesel blends at load of 420Nm 

 
With increase in the biodiesel contents, the CO emission levels decreased on average by up to 

65%. Krahl et al. [134] and Raheman and Phadatre [101] reported that the engine running on 

biodiesel reduced the CO emission by 50% and 73-94%, respectively. The main reason for 

reduction of CO emission is the availability of oxygen in the biodiesel for better combustion.  
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Figure 5-19 Variation of CO emissions with engine speed for CI engine running with 

biodiesel blends at load of 420Nm (b) Variation of CO emissions percentage reduction 

with engine speed for CI engine running with biodiesel blends at load of 420Nm 

5.2.5 Effects of Physical Properties of Biodiesel on Engine Performance 

Parameters  
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engine performance and emission characteristics. The effects of the fuel density on the BSFC 
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engine loads i.e. 315Nm and 420Nm, the engine running at a speed of 1500 rpm resulted in a 

lower BSFC by approximately 3% and 6%, than the engine running at a speed of 900 rpm. 

The effect of engine speed on BSFC has been discussed in section 5.2.1.  

 

Figure 5-20 Variation  of BSFC with density of biodiesel at engine speed of 900rpm and 

1500rpm and various engine loads  

 
Figure 5-21 presents the effects of the kinematic viscosity of the fuels on the BSFC in the test 
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seen that when the kinematic viscosity of fuel increases the BSFC also increases. The effects 

of viscosity on the BSFC of the test engine can be explained on the basis that as the fuel 

viscosity increases, the fuel injection atomisation is affected and this leads to poor 

combustion and lower power for the same volume of fuel [97], [131]. Some authors argue 

that the higher viscosity of biodiesel enhances the fuel spray penetration and improves air-

fuel mixing [91].The effect of lower heating values of the fuels used on CI engines’ BSFC at 

various engine loads and at speeds 900 rpm and 1500 rpm are shown in Figure 5-22. 
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Figure 5-21 Variation of BSFC with viscosity of biodiesel at engine speed of 900rpm and 

1500rpm and various engine loads 
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Figure 5-22 Variation of BSFC with density of biodiesel at engine speed of 900rpm and 

1500rpm and various engine loads 

5.3 Summary on the Performance and Emission characteristics of the 

test CI engine during Steady State Operation 
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pressure in the CI engine running with biodiesel could be due to the advanced 

combustion process being initiated by the easy flow-ability of biodiesel and its other 

relevant physical properties such as viscosity, density and bulk modulus. 

3. The results highlight that the power produced by the engine as calculated from the P-

V diagram does not show any significant change with the diesel and biodiesel blends. 

This indicates that the offset of biodiesel lower heating value is compensated by 

higher mass flow rate. 

4. The engine running with diesel and biodiesel blends show the same combustion 

stages at all load conditions except for the slight variation in peak heat release rate 

and ignition delay. When using biodiesel, the ignition is seen to be advanced when 

compared to diesel fuel by crank angles of 0.8o, 1o, 1.5o and 1.2o for load values of 

105Nm, 210Nm, 315Nm and 420Nm respectively.  

5. It was noticed that when the density and viscosity of biodiesel is increased an increase in 

BSFC of CI engine is observed at all load conditions investigated. 

6. The use of biodiesel has been seen to increase the brake specific fuel consumption of the 

CI engine due to its low heating value, higher density and viscosity. However, this trend 

is seen to weaken as the proportion of biodiesel reduces in the blend. 

7. The emission analyses of the CI engine running with biodiesel highlights a significant 

reduction in CO2, CO and THC emission. It is also found that when the biodiesel content 

increases a further reduction in emissions is observed. This emission reduction is a result 

of the oxygen content in biodiesel and the low carbon hydrogen ratio. 

8. For all biodiesel contents and operating conditions the NOx emission increases during 

use in a CI engine. This increase is mainly due to the higher oxygen content present in 

biodiesel and the advanced injection characteristics. 

 

After extensive investigations into the steady state operating characterstics, the transient state 

operating behavours have been investagted in next chapter which is mainly focused on the 

performace and emission characterstics of CI engine running with biodiesel. 
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CHAPTER SIX  

6. PERFORMANCE AND EMISSION CHARACTERISTICS OF THE 

TEST CI ENGINE DURING TRANSIENT OPERATION  

 
The main aim of this chapter is to investigate the combustion, performance and emission 

characteristics of a compression ignition engine running on biodiesel and its blends during 

transient operating conditions. As per the previous review a lot of research has been carried 

out on the use of biodiesel in CI engines during steady state conditions as discussed in 

Chapter five. However, the performance and emission characteristics of CI engines running 

with biodiesel during transient operations have not been investigated extensively. Results are 

presented for all test conditions and attempts have been made to highlight the effects of 

different biodiesel blends on the in-cylinder pressure, fuel consumption rate and emissions 

(CO2, NOx, CO, THC) during transient state operation. These effects have been discussed 

based on the experimental results obtained from the test CI engine. Detailed analyses on the 

effects of biodiesel blends on emission of CI engine during both positive and negative 

transient operations have been carried out. In addition a transient emission prediction model 

has been developed from the data obtained from steady and transient state CI engine 

operations.  
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6.1 Performance Characteristics during Transient Operation 

To understand the effects of biodiesel blends on the CI engine performance during 

transient operation, the fuel consumption rate, exhaust temperature and in-cylinder 

pressure have been investigated. Since the fuel consumption rate data is more sensitive 

than the BSFC, the former has been selected to analyse the effects of biodiesel blends on 

engine performance. Exhaust gas temperature represents the temperature of the fuel 

mixture after combustion in the engine cylinder. It can be measured at exhaust manifold. 

Due to its high sensitivity for dynamic phenomena and its accessibility for measurement, 

the exhaust gas temperature has been used in detection of combustion 

anomalies[198][199], in the design of exhaust gas recirculation (EGR)[147], [200], [143], 

[155], prediction of emission models[201]. Due to this, the exhaust temperature has been 

selected as parameter to investigate the performance the engine running with biodiesel 

during a transient condition. Furthermore to get more in-depth information about 

combustion process in-cylinder pressure values have also been monitored. 

6.1.1 Fuel Consumption Rate 

The fuel flow rate has been measured by FMS-1000 gravimetric fuel measurement system 

during both steady and transient conditions. The variations of the fuel flow rate with the 

operating conditions have been reported here. Figure 6-1 shows the variation of fuel flow 

rate of diesel and biodiesel blends during the speed transient of 1000 to 1500rpm and 1500 to 

1000rpm at 420Nm load. It can be clearly seen that the fuel flow rate increases by 35% during 

the acceleration of the engine from 1000 to 1500 rpm and the fuel flow rate decreases by 33% 

during the deceleration of the engine from 1500 to 1000 rpm. The fuel flow rate increment 

with acceleration can be explained on the basis that  when the engine speed increases the 

cylinder charging rate increases as a consequent fuel flow rate increases [50], [195].  

In addition, during acceleration the friction horsepower increases because of a drop in the 

mechanical efficiency to maintain a fixed torque output, leading to an increase in the fuel 

consumption rate [202]. Figure 6-1(c-d) depicts that the fuel consumption of the engine 

running with 100B is higher than that of diesel by 16% during the acceleration and 14% 

during the deceleration transient operations respectively. This has occurred due to the effect 

of lower heating value of the biodiesel which is lower than the diesel by 11%.  Previous 

researchers have also reported similar trends [9], [32], [93], [100-102], [130] in fuel 

consumption based on  discrete engine speed tests. 
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Figure 6-1 (a) Variation  of Fuel flow rate with time for CI running with biodiesel during 

speed transient at 420Nm (b) Variation  of Fuel flow rate percentage increment with time 

by using biodiesel blends during speed transient at 420Nm 
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Figure 6-2 (a) Variation  of Fuel flow rate with time for CI running with biodiesel during 

torque transition at 420Nm (b) Variation  of Fuel flow rate percentage increment with 

time by using biodiesel blends during torque transition at 420Nm 
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The effects of the torque transient operation on fuel consumption rate for the engine 

running with diesel and two blends 20B and 100B are presented in Figure 6-2. The fuel 

consumption rate increases by 31% during the positive torque transition of 210-420Nm at 

1500rpm. Similarly, the fuel consumption rate decreases by 34% during the negative 

torque conditions of 420-210Nm. This is due to the increase in the fuel injection to attain 

the required higher total energy output at a given engine speed. Comparing the fuel 

consumption rates of CI engine running with the biodiesel blends and diesel, it can be 

seen in Figure 6-2(c-d) that the engine running with the former resulted in higher fuel 

consumption rate by 17% and 15% for both positive and negative torque operations 

respectively. 

6.1.1.1 Exhaust Gas Temperature  

The exhaust gas temperature values obtained from the test engine running with diesel, 

20B and 100B during speed transient of 1000-1500rpm and 1500-1000rpm and at a load 

of 420Nm are depicted in Figure 6-3. It can be seen that the exhaust gas temperatures of 

the diesel and biodiesel blends do not show any significant difference for both 

acceleration and deceleration transient conditions. In both the conditions, the maximum 

difference between the exhaust gas temperature of the engine running with diesel and 

biodiesel blends is limited to 2%. The exhaust temperature increases from 600K to 710K 

during the acceleration operation and decreases from 710K to 630K during the 

deceleration transient operations. This reason behind this can be explained as when the 

engine accelerate from 1000rpm to 1500rpm, the amount of fuel injected to the cylinder 

also increases in order to maintain a constant engine torque output. As a result, the heat 

release rate and the exhaust gas temperature increases from burning of the fuels [50].  

During the deceleration from 1500-1000rpm, the reverse phenomenon occurs in the 

cylinder.   

 

The effects of the torque transition operation on exhaust gas temperature for the engine 

running with diesel, 20B and 100B are presented in Figure 6-4. The exhaust temperature 

increases from 570K to 670K during the positive torque transient of 210-420Nm at a 

speed of 1500rpm (see Figure 6-4(a)). Similarly, the exhaust gas temperature decreases 

during negative torque conditions of 420-210Nm. This is due to the increase in the fuel 

injection to attain the required higher total energy input.  
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Figure 6-3 (a) Variation of exhaust temperature with time for CI engine running with 

biodiesel during speed transient at 420Nm (b) Variation  of exhaust temperature 

percentage increment with time by using biodiesel blends during speed transient at 

420Nm 
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Figure 6-4 (a) Variation of exhaust temperature with time for CI running with biodiesel 

during torque transition at 420Nm (b) Variation  of exhaust temperature percentage 

increment with time by using biodiesel blends during torque transition at 420Nm 
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Comparing the exhaust temperature of engine running with the biodiesel blends and 

diesel, it can be seen in (Figure 6-4) that the engine running with the former resulted in 

higher exhaust gas temperature by 7% for both positive and negative torque operations. In 

addition, the exhaust temperature increases with increasing the biodiesel fraction in the 

blends. This can be explained on the basis that as biodiesel have 11% oxygen in its 

molecular structure, the oxygen molecule enhances the complete combustion of fuel in 

the cylinder. As a result the in-cylinder temperature increases and consequently the 

exhaust temperature increases [44], [91]. 

6.1.1.2 In-cylinder Pressure  

One of the most valuable sources of combustion information during the development and 

calibration stages of the engine is obtained from the in-cylinder pressure. The in-cylinder 

pressure signal can provide vital information such as peak pressure, P-V diagram, 

indicated mean effective pressure, injector pressure, heat release rate, combustion 

duration, ignition delay and so on [188] [169]. In this section the in-cylinder pressure and 

its dependence on the fuel type have been discussed in detail. The peak in-cylinder 

pressure corresponding to  four operating conditions i.e. the speed acceleration from 

1000-1500rpm, the speed deceleration from 1500-100rpm, the positive torque transition 

from 210-420Nm and the negative torque transition from 420-210Nm are shown in 

Figure 6-5 to 6-6. Figure 6-5 shows the in-cylinder peak pressure within the CI engine 

fuelled by diesel, 20B and 100B fuels at a load of 420Nm and during speed transients of 

1000-1500rpm.  

 

As it can be seen in Figure 6-5(a), the CI engine fuelled with 100B and 20B resulted in a 

higher peak in cylinder pressure than the diesel by 15% and 7%, respectively in the 

transient sections of the operation. 

 

This phenomenon is due to the complete combustion of the carbon molecules to yield the 

maximum torque. The main cause for the higher peak in-cylinder pressure of CI engine 

running with biodiesel is the advanced combustion process initiated by easy flow-ability 

of biodiesel derived from the physical properties of biodiesel. In addition, due to the 

presence of oxygen molecules in biodiesel, the hydrocarbon receives complete 

combustion. The in-cylinder pressure changes almost uniformly with respect to time in 
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the pre-transient steady operation, as shown in Figure 6-5(b). However, due to the effect 

of the transient operation, during the post-transient operation in-cylinder pressure rate 

shows some irregularities. During the transient section, the in-cylinder peak pressure 

attained its peak rate in the middle of the time span of the transient operation.  

 

 
 

Figure 6-5 (a) Variation of in-cylinder peak pressure with time for CI engines running 

with different fuels during speed positive transient (b) Variation  of rate of change in-

cylinder peak pressure with time for CI engines running with different fuels during 

negative speed transient 
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The effects of positive torque transition from 210Nm to 420Nm on the in-cylinder peak 

pressure when fuelled with diesel, 20B and 100B fuels at 1500rpm, is shown in Figure 

6-7(a). In the pre-transient section, the diesel followed by 100B, resulted in a higher peak in-

cylinder pressure (higher by 9%). However, in the post-transient operation, the engine fuelled 

by 100B and 20B showed higher in-cylinder pressures than the engine fuelled by diesel by 

12% and 6%, respectively. Comparing the in-cylinder pressure rates during the transient 

section, the 100B resulted in a higher rate than the diesel and 20B by 45%, as shown in 

Figure 6-7(b).  

 

Figure 6-6 (a) Variation of In-cylinder peak pressure with time for CI engines running 

with different fuels during negative speed transient (b) Variation  of rate of change in-

cylinder peak pressure with time for CI engines running with different fuels during 

negative speed transient 
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in higher in-cylinder peak pressures. The in-cylinder pressure rate changed irregularly in the 

three sections. In the transient section, the rate change of the peak in-cylinder pressure was 

lower than that of the diesel. 

 

Figure 6-7 (a) Variation of In-cylinder peak pressure with time for CI engines running 

with different fuels during torque positive transient (b) Variation  of rate of change in-

cylinder peak pressure with time for CI engines running with different fuels during 

negative torque transient. 
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Figure 6-8 (a) Variation of in-cylinder peak pressure with time for CI engines running 

with different fuels during negative torque transient (b) Variation  of rate of change in-

cylinder peak pressure with time for CI engines running with different fuels during 

negative torque transient. 

6.1.2 Emission Characteristics of CI Engine during Transient Operation 

In this section the detailed investigation on the emission characteristics of CI engine 
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out in three stages. Firstly the measured engine emissions characteristics for different 
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have been computed. Finally, the amount by which emission reduced when using a range 
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between exhaust gas emissions with O2, the O2 release characteristics of the transient 

operation have also been investigated. 

6.1.2.1 The Carbon -dioxide (CO2) Emission  

Figure 6-9 shows the emission of CO2 from the CI engine fuelled with diesel, 20B and 100B 

at a speed transient of 1000rpm to 1500rpm and at a load of 420Nm.  It can be seen that the 

CO2 emission at 1000rpm was higher than that at 1500rpm by 25%, 35%, and 5% for diesel, 

20B and 100B fuels respectively which decreased during the acceleration stage. This can be 

explained on the basis that at higher engine speeds, the fuel/air equivalence ratio of the 

entering mix into the cylinder increased. To yield the maximum speed, the amount of fuel 

needed to burn completely in the cylinder increases, as result the CO2 emission production 

increases. The CO2 emission rate for the speed acceleration is depicted in Figure 6-9(b).  

 

Figure 6-9 (a) Variation of CO2 emission of CI engines with time for running with 

different fuels during positive speed transient (b) Variation  of rate of change CO2 

emission with time for CI engines running with different fuels during positive speed 

transient 
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The emission rates corresponding to the diesel, 20B and 100B were observed to be 

irregular. The engine fuelled with diesel showed the highest change rate, i.e. 0.8%/s.   

 
The transient effects on the CO2 emission continued after the transient operation stopped for 

about 13 seconds. The effect of the engine deceleration from 1500-1000rpm on CO2 is shown 

in Figure 6-10. During the deceleration operation, the CO2 emission increased when the 

engine speed decreased from 1500-1000rpm. It can be seen in Figure 6-10(b) that the 

emission rate change attained its maxium value after 1.5 seconds of the start of the transient 

time span. The CO2 change rate reached a stable values 13 seconds after the transient finished. 

Comparing the CO2 emission change rate, for acceleration (Figure 6-9(b)) and decelaration 

(Figure 6-10(b)) it can be concluded that  the former attained the stable condition earlier than 

the latter by 3seconds.  

 

Figure 6-10 (a) Variation of CO2 emission of CI engines with time for running with 

different fuels during negative speed transient (b) Variation  of rate of change CO2 

emission with time for CI engines running with different fuels during negative speed 

transient 
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The effects of the torque transitions on the operational parameters of the engine fuelled with 

diesel, 20B and 100B at 1500rpm are presented in Figure 6-11 and Figure 6-12. As seen in  

Figure 6-11(a), the CO2 emission increased during torque increase from 210-420Nm. 

Similarly, during the negative transition transient condition (Figure 6-12(b)), the CO2 

emission decreased during the torque decrease from 420-210Nm. In both conditions, the 

engine with the higher torque emitted higher CO2 emissions.  This can be explained on the 

basis that at the maximum engine load, the fuel/air equivalence ratio entering to the cylinder 

increased. To yield the maximum torque, the fuel needed to burn completely in the cylinder in 

order to produce higher CO2 emissions. As shown in Figure 6-11(b) and Figure 6-12(b), the 

rates of CO2 emissions are 0.35%/s and 0.30%/s, respectively. The emission rates for the 

diesel, 20B and 100B were observed to be irregular. During both the acceleration and 

deceleration transient, the engine running on 100B resulted in higher CO2 emissions.  

 

Figure 6-11 (a) Variation of CO2 emission of CI engines with time for running with 

different fuels during positive torque transient (b) Variation  of rate of change CO2 

emission with time for CI engines running with different fuels during positive torque 

transient. 
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Figure 6-12  (a) Variation of CO2 emission of CI engines with time for running with 

different fuels during positive torque transient (b) Variation  of rate of change CO2 

emission with time for CI engines running with different fuels during positive torque 

transient 
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engine with biodiesel blends during acceleration and deceleration at a load of 420Nm. During 

the acceleration operation, 20B and B100 reduced the CO2 emission by 53% and 122%, as 

shown in Figure 6-13. Similarly, during the deceleration operation, the CO2 emission from 

the engine fuelled with 20B and 100B was reduced by 50% and 107%, respectively. In both 

operation conditions, the maximum reduction was achieved during the transient operation.  

During the pre-transient and post-transient steady operations CO2 emission reduction was 
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Figure 6-13 Variation of CO2 emission percentage reduction of CI engine with time by 

using different biodiesel blends during speed transient condition  

 

Figure 6-14 depicts the CI engine’s CO2 emission reduction values during the torque transient 

operation. The positive torque transition resulted in inconsistent CO2 emission reduction 

values as shown in Figure 6-14(a). The CO2 emission was found to reduce by up to16% and 

19% when the engine was fuelled with 20B and 100B. During the negative torque transition, 

the CO2 emission reduced by 17% and 18%  when the engine was fuelled with 20B and 100B 

as compared to diesel respectively.  
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Figure 6-14 Variation of CO2 emission percentage reduction of CI engine with time by 

using different biodiesel blends during torque transient condition 

 
Among all operation conditions, the speed transient (1000-1500rpm) reduced the CO2 

emission by maximum amount. The primary reason for this result can be that biodiesel has a 

lower number of carbon molecules than diesel fuel (i.e. biodiesel: 77% and diesel: 87%, as 

described in Table 3-4.The combustion of the biodiesel with air resulted in lower CO2 

emission than diesel. 
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emissions. The NOx emission rates for the speed acceleration are depicted in Figure 6-15(b). 

The emission rate of the diesel, 20B and 100B at both pre-transient and post-transient process 

were fairly uniform as expected. The NOx emission rate change for engine operation with 

Biodiesel was lower than both 20B and diesel. The engine fuelled with diesel showed the 

highest change rate, i.e. 16ppm/s.   

 

Figure 6-15 (a) Variation of NOx emission of CI engines with time for running with 

different fuels during positive speed transient (b) Variation of rate of change NOx 

emission with time for CI engines running with different fuels during positive speed 

transient 
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Figure 6-16 (a) Variation of NOx emission of CI engines with time for running with 

different fuels during negative speed transient (b) Variation  of rate of change NOx 

emission with time for CI engines running with different fuels during negative speed 

transient 
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1500rpm during the torque transitions are presented in Figure 6-17 and Figure 6-18. As it 
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from 210 to 420Nm. Similarly, during the negative torque transition condition, the NOx 

emission decreased during the torque change from 420 to 210Nm, as shown Figure 6-18 

(a). In both conditions, the engine with the higher torque emitted higher NOx emission.  

This can be explained on the basis that at the maximum engine load, the fuel/air 

equivalence ratio entering into the cylinder increased. The rate change of the NOx 

emission is shown in Figure 6-17(b) and Figure 6-18(b). In both conditions, the 100B 

resulted in a higher rate of change in NOx emission, with maximum rate value of 95% 
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and 92% for the positive torque and negative torque transient, respectively. The pre-

transient and post-transient of NOx emission rates were almost zero for both positive and 

negative torque transition. The transition effects on the NOx emission continued for 10 

seconds after the assigned transition time.  

Figure 6-17 (a) Variation of NOx emission of CI engines with time for running with 

different fuels during positive torque transient (b) Variation  of rate of change NOx 

emission with time for CI engines running with different fuels during positive torque 

transient 

 

Figure 6-19 depicts the NOx emission increment of the CI engine fuelled by 20B and 

100B, during 1000-1500rpm acceleration and 1500-1000rpm deceleration at 420Nm. The 

NOx emission of the engine fuelled with 20B and 100B, increased by up to 3% and 16%, 

respectively as compared to engine running with diesel. Similarly, the deceleration 

operation also increased the NOx emission by up to 4% and 8% for 20B and 100B 

biodiesel blends respectively. 
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Figure 6-18 (a) Variation of NOx emission of CI engines with time for running with 

different fuels during negative torque transient (b) Variation  of rate of change NOx 

emission with time for CI engines running with different fuels during negative torque 

transient  

Figure 6-19(a) shows that the NOx emission increases steeply during the 1000-1500rpm 

transient. This can be explained on the basis that as the engine speed increased the in-

cylinder temperature increased and as a result the NOx emission also increased. Although 

during the deceleration operation the engine speed decreased, the in-cylinder temperature 
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NOx values. The effect of the torque transient on the NOx emission of the engine running 

on biodiesel at 1500rpm is shown in Figure 6-20. The NOx emission of the CI engine 

running on 20B and 100B increased by up to 8% and 20% respectively during the positive 

torque transient from 210-420Nm, as shown in Figure 6-20(a). Similarly, the NOx 

emission of the engine is increased by up to 20% and 27%, for 20B and 100B 

respectively. The main reason for higher NOx emission of biodiesel is due to the 

advanced combustion process initiated by the physical properties of biodiesel (viscosity, 

density, compressibility, sound velocity). When biodiesel is injected, the pressure rise 

produced by the pump is quicker as a consequence of its lower compressibility (higher 
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bulk modulus) and propagates more quickly towards the injectors. In effect, the cylinder 

gas gets richer by fuel producing higher peak temperature which enhances the formation 

NOx 

 

 

Figure 6-19 Variation of NOx emission percentage reduction of CI engine with time by 

using different biodiesel blends during speed transient condition 

6.1.2.3 The CO Emission  

Figure 6-20 shows the CI engine’s CO emission at a load of 420Nm and acceleration 

from 1000rpm to1500rpm. It can be seen that the CI engine emits higher CO emission 

during the lower engine speeds. This can be explained on the basis that at lower engine 

speeds, the gas temperature within cylinder was lower, which prevented the CO 

components to be effectively converted to CO2. The CO and CO2 emission values showed 

opposing trends, as shown in Figure 6-9(a) and Figure 6-20(a). At higher engine speeds, 

the air/fuel equivalence ratios increased, resulting in increase in the in-cylinder gas 

temperatures, which in turn lead to increase in the kinetic reaction rate from CO to CO2.  

This leads to lower CO emissions. The emission rate change of CO is depicted in Figure 

6-20(b). 
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Figure 6-20 Variation of NOx emission percentage reduction of CI engine with time by 

using different biodiesel blends during torque transient condition 

 
It can be seen that use of 20B resulted in the highest emission rate, followed by diesel in 

the transient stage. The effects of the transient operation were extended to the post-

transient steady CO emission behaviour. As seen in the Figure 6-20 the CO emission rate 

change extended for more than 16 seconds after the time span of the transient operation. 

The pre-transient and post-transient CO emission rate change was near zero; this indicates 

that in both operations the CO emission was constant. 

 
The CI engine’s CO emission during deceleration from 1500rpm-1000rpm is shown in  

Figure 6-22. It can be seen that the CI engine’s CO emission increased steeply with 

engine acceleration. However, the main effects of the transient operation on the CO 

emission appeared after the transient range. As seen in  Figure 6-22(b), the transient 

effects extended for 18 seconds after the transient time span. The diesel and 20B resulted 

in a maximum CO emission rate of 110ppm/s.  
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Figure 6-24. As it can seen in Figure 6-23(a)  and Figure 6-24(a), the torque transient did 

not show any significant effects on the CO emission for both positive transient and 

negative transient operations. In both cases, the emission rate varied between 0-3ppm/s, 

as indicated in Figure 6-23(b) and Figure 6-24(b), respectively. The maximum CO 

emission rate was 3ppm/s during positive and negative transients.  

 

 

Figure 6-21 (a) Variation of CO emission of CI engines with time for running with 

different fuels during positive speed transient (b) Variation  of rate of change CO 

emission with time for CI engines running with different fuels during positive speed 

transient 
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 Figure 6-22 (a) Variation of CO emission of CI engines with time for running with 

different fuels during negative speed transient (b) Variation of rate of change CO 

emission with time for CI engines running with different fuels during negative speed 

transient 

 
The effects of biodiesel blends on a CI engine’s CO emission during the speed transient and 

torque transition conditions are shown in Figure 6-25 and 6-26. During the former condition, 

the engine fuelled with 20B and 100B reduced the CO emission by up to 39 and 45%, 

respectively. The deceleration operation showed peak values of 122% and 124% for 20B and 

100B. The effect of the biodiesel blends on the CO emission of the engine running on 

biodiesel at an engine speed of 1500rpm during torque transient is shown in Figure 6-26. The 

CO emission of the CI engine running on 20B and 100B decreased by 22% and 24% for 

positive torque transition, and 18% and 22% for negative torque transition, respectively, as 

shown in Figure 6-26.  
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Figure 6-23 (a) Variation of CO emission of CI engines with time for running with 

different fuels during positive torque transient (b) Variation of rate of change CO 

emission with time for CI engines running with different fuels during positive torque 

transient 
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Figure 6-24 (a) Variation of CO emission of CI engines with time for running with 

different fuels during negative torque transient (b) Variation of rate of change CO 

emission with time for CI engines with different fuels during negative torque transient  
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Figure 6-25 Variation of CO emission percentage reduction of CI engine with time by 

using different biodiesel blends during speed transient condition 

 

Figure 6-26 Variation of CO emission percentage reduction of CI engine with time by 

using different biodiesel blends during torque transient condition 
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6.1.2.4 The THC emission  

Figure 6-27(a) shows the total hydrocarbon (THC) emission of the CI engine fuelled with 

20B and 100B at a load of 420Nm and a speed transient from 1000rpm-1500rpm. The 

THC emission decreased during engine acceleration from 1000rpm-1500rpm. The THC 

emission rate of the CI engine running with 100B was higher than the diesel and 20B in 

the transient section, as presented in Figure 6-27(b). It can be seen that the THC emission 

rate change at the pre-transient and post-transient stages was below 0.1%/s. The transient 

operation has not affected significantly the post-transient steady operations. The effects of 

the acceleration operation on the THC emission of the CI engine are depicted in Figure 

6-28(a). It can be seen that with decreases in engine speeds from 1500rpm-1000rpm, the 

THC emission increased steeply. The engine fuelled with diesel produced the highest 

THC emission rate, followed by 20B, as shown in Figure 6-28(b).  

 

Figure 6-27 (a) Variation of THC emission of CI engines with time for running with 

different fuels during positive speed transient (b) Variation  of rate of change CO 

emission with time for CI engines running with different fuels during positive speed 

transient. 
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The pre-transient and post-transient THC emission rates were almost zero. Similar to the 

acceleration operation, the transient operation resulted in minimal effects on the next steady 

operation.   

 

Figure 6-28 (a) Variation  of THC emission of CI engines with time for running with 

different fuels during negative speed transient (b) Variation  of rate of change CO 

emission with time for CI engines running with different fuels during negative speed 

transient. 
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Figure 6-29 (a) Variation  of THC emission of CI engines with time for running with 

different fuels during positive torque transient (b) Variation  of rate of change CO 

emission with time for CI engines running with different fuels during positive torque 

transient. 
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Figure 6-30 (a) Variation  of THC emission of CI engines with time for running with 

different fuels during negative torque transient (b) Variation  of rate of change CO 

emission with time for CI engines running with different fuels during negative speed 

transient. 
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Figure 6-31 THC emission percentage reduction of CI engine by using different biodiesel 

blends during speed transient condition 

 

Figure 6-32 THC emission percentage reduction of CI engine during torque transition 
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Table 6-1 Summary of the maximum emission reduction when using biodiesel blends as compared with diesel  

              during transient operations 

 

 

 

 

 

 

Table 6-2 The effects of transient operation on of the post- transient operation 

 
 
 

Operating Condition Maximum CO2 emission 
reduction(%) by  

Maximum NOx emission 
increment(%) by  

Maximum CO emission 
reduction(%) by  

Maximum THC emission 
reduction (%) by 

  20B 100B 20B  100B 20B 100B 20B 100B 

1000 – 1500rpm 36 61 3 16 64 45 9 45 

1500 - 1000rpm 25 53 4 8 124 122 30 48 

210 - 420Nm 16 19 8 20 22 24 21 63 

420 – 210Nm 17 8 20 27 18 20 28 66 

Operating Condition Post transient  CO2 emission 
extended time (sec.) 

Post transient  NOx emission 
extended time(sec.)  

Post transient  CO 
emission extended 
time(sec.) 

Post transient  THC 
emission extended 
time(sec) 

1000 – 1500rpm 13 30 13 6 

1500 - 1000rpm 14 16 20 6 

210 - 420Nm 14 30 23 12 

420 – 210Nm 18 3 23  15 
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6.2 Effects of Engine Parameters on Transient Emissions 

In the previous section the effects of biodiesel blends on the emission behaviour as well 

as the nature of emission after transient phenomena have been discussed extensively.   In 

this section for better understanding of the dependence of various types of emissions on 

engine operating parameters following cross plots have been developed. Figure 6-33(a) 

shows the variation of CO2 emission with respect to engine speed when running with 

diesel fuel during a positive speed transient for various engine torques. It can be see that 

for a given torque value, with increase in engine speed CO2 emission decreases. At a 

given speed, however, with increasing torque CO2 emission shows increasing trend. 

Similar trends are seen for engine running with neat biodiesel (Figure 6-33 (c)). The trend 

seems to change when engine runs with biodiesel blend (Figure 6-33 (b)). In this case, 

maximum CO2 emission is noticed for 315Nm torque. 

 

Figure 6-33  CO2 emission of CI engine running with various fuels during  speed 

transient of 1000-1500rpm at range of engine loads 
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1500 to 1000rpm the CO2 emission increases. At a given speed however with increasing 

torque, CO2 emission shows increasing trend. Similar trends are seen for engine running 

with neat biodiesel (Figure 6-34 (c)). The trends seem to change when engine runs with 

biodiesel blend as shown in Figure 6-34(b). In this case, maximum CO2 emission is 

noticed for 315Nm torque where as at the highest torque of 420 Nm, CO2 emission is 

lower than that at 315 Nm. Furthermore, it can be seen that the CO2 emission values 

during the positive and negative transient conditions are comparable at various engine 

loads.  

 

Figure 6-34 CO2 emission of CI engine running with various fuels during  speed transient 

of 1500-1000rpm at range of engine loads 

 

Figure 6-35(a) shows the variation of CO2 emission with respect to the engine torque 

when running with diesel fuel during a positive torque transient for various engine 

speeds. It can be seen that for a given speed value with increase in engine torque CO2 

emission increases. At a given torque, however, with increasing speed CO2 emission 

shows decreasing trend. This phenomenon has been also seen during speed transient 
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6-35(b)). Similar trends are seen for engine running with biodiesel blend (Figure 6-35(c)). 

In this case, maximum CO2 emission is noticed for 1250rpm speed where as at the 

highest speed of 1500rpm CO2 emission is lower than that at 1250rpm. 

 

Figure 6-35 CO2 emission of CI engine running with various fuels during torque 

transition of 210Nm to 420Nm and at range of engine speeds  

 
Figure 6-36(a) shows the variation of CO2 emission with respect to the engine torque 

when running with diesel fuel during a negative torque transient for various engine 

speeds. It can be seen that for a given speed value with decrease in engine torque CO2 

emission decreases. At a given torque, however, with increasing speed CO2 emission 

shows decreasing trend. Similar trends are seen for engine running with biodiesel blends 

(Figure 6-36(b)). The trends seem to change when engine runs with neat biodiesel (Figure 

6-36(c)). In this case, CO2 emission increases dramatically for a speed for 1250 rpm 

speed. 
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torques. It can be see that for a given torque value with increase in engine speed NOx 

emission increases in low speed range with almost no change in the high speed range. 

 
Figure 6-36 CO2 emission of CI engine running with various fuels during torque 

transition of 420Nm to 210Nm and at various engine speeds 

 

At a given speed, however, with increasing torque, NOx emission shows increasing trend. 

Almost similar trends are seen for engine running with biodiesel blends with almost no 

effect of speed on NOx emission over the entire speed range (Figure 6-37(c)). The trends 

seem to change when engine runs with biodiesel blend (Figure 6-37(b)). In this case, in 

the mid torque range NOx emission decreases with increasing speed. 
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NOx emission at 420Nm shows almost constant values over the entire range of engine 

speeds. Almost similar trends are seen for engine running with biodiesel blend (Figure 6-

38(b)). The engine running with neat biodiesel (100B) shows almost no effect of speed on 

NOx emission over the entire speed range (Figure 6-38(c)).  

 

 

Figure 6-37 NOx emission of CI engine running with various fuels during  speed transient 

of 1000-1500rpm at range of engine loads  

 
Figure 6-39(a) shows variation in the NOx emission with respect to engine speed when 

running with diesel fuel during a negative speed transient for various engine torque 

values. It can be seen that for a given torque value with decrease in engine speed NOx 

emission increases. At a given speed with increasing torque NOx emission shows 

increasing trend. Almost similar trends are seen for engine running with biodiesel blends  

(Figure 6-39(b)) and neat biodiesel (Figure 6-39(c)).  
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Figure 6-38 Variation of the NOx emission with respect to the engine speed for the test 

engine operating with different fuels during a negative  speed transient of 1500 rpm to 

1000 rpm at different engine torques. 
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blend(Figure 6-40(b)). For engine running with biodiesel NOx emission is almost 

independent of the torque but is a strong function of the speed (Figure 6-40(c)). 

 

 

Figure 6-39 NOx emission of CI engine running with various fuels during torque 

transition of 210Nm to 420Nm and at various engine speeds 
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emission remains constant. This trend was observed for all the torque values. The effect 
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neat biodiesel Figure 6-41(a)) and biodiesel blends (Figure 6-41(a)).  
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Figure 6-40 NOx emission of CI engine running with various fuels during torque 

transition of 420Nm to 210Nm and at various engine speeds 

 

The variation in THC emission with respect to the engine speed when running with diesel 

fuel during a negative speed transient for various engine torques are shown in Figure 

6-42. It can be seen that for a given torque value with decrease in engine speed THC 

emission shows only slight changes. This trend was observed for all the torque values. 

The effect of torque on THC emission was quite pronounced. It can be clearly seen that 

the THC emission decreases with increasing loads from 105Nm to 315Nm. However, at 

the maximum torque THC emission shows in-consistent trends. Similar trends have been 

observed for biodiesel blends (Figure 6-42(b)) and biodiesel (Figure 6-42(c)).  
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Figure 6-41 THC emission of CI engine running with various fuels during speed transient 

of 1000-1500rpm at range of engine loads  

 

Figure 6-42 THC emission of CI engine running with various fuels during speed transient 

of 1500-1000rpm at range of engine loads 
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Figure 6-43(a) shows variation in the THC emission with respect to the engine torque 

when running with diesel fuel during a positive torque transient for various engine 

speeds. It can be see that for a given speed value with increase in engine torque THC 

emission decreases, the decrease being more prominent at higher torque values. At a 

given torque however with increasing speed NOx emission shows decreasing trend. 

Almost similar trends are seen for engine running with biodiesel blends (Figure 6-43(b)) 

and neat biodiesel (Figure 6-43(c)) although not at the same rate as for diesel.  

 

 

Figure 6-43 THC emission of CI engine running with various fuels during torque 

transition of 210Nm to 420Nm and at various engine speeds 

 

Figure 6-44(a) shows variation in THC emission with respect to engine torque when 

running with diesel fuel during a negative torque transient for various engine speeds. It 

can be see that for a given speed value with decrease in engine torque THC emission 

increases. At a given torque however with increasing speed NOx emission shows mixed 

trend with higher emission in the mid-speed range. Almost similar trends are seen for 

engine running biodiesel blend (Figure 6-44(a)) as far as THC and torque relationship is 
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concerned and effect of speed is now more systematic with higher THC emission at lower 

speed and lower emission at higher speed. 

 

 

Figure 6-44 THC emission of CI engine running with various fuels during torque 

transition of 420Nm to 210Nm and at various engine speeds 

 

Figure 6-45(a) shows variation of the CO emission with respect to the engine speed when 

running with diesel fuel during a positive speed transient for various engine torques. It 

can be see that for a given torque value with increase in engine speed the CO emission 

remains constant for all except the highest torque value. For the highest torque, CO 

emission decreases initially with increasing torque before becoming independent. Similar 

trends have been seen for biodiesel blends (Figure 6-45(b)) and neat biodiesel (Figure 

6-45(c)). 
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1000rpm, CO emission remains constant for all except the highest torque value. For the 

highest torque, CO emission increases with decrease in engine speeds. Similar trends 

have been seen for biodiesel blends (20B)( Figure 6-46(b)) and neat biodiesel(100B)( 

Figure 6-46(c)). However, the engine running with neat biodiesel (100B) shows unique 

characterstics at maximum load values. 

 

 

Figure 6-45 CO emission of CI engine running with various fuels during  speed transient 

of 1000-1500rpm at range of engine loads 

 

Figure 6-47 shows the variation in CO emission with respect to the engine torque when 

running with diesel fuel during a positive torque transient for various engine speeds. It 

can be seen that for a given speed value with increase in engine torque CO emission 

remains largely constant. Only for lowest engine speed with increase in torque CO 

emission increases. Almost similar trends are seen for engine running with biodiesel 

blends (Figure 6-47(b)) and neat biodiesel (Figure 6-47(c)). 
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Figure 6-46 CO emission of CI engine running with various fuels during speed transient 

of 1500-1000rpm at range of engine loads 

 

Figure 6-47 CO emission of CI engine running with various fuels during torque transition 

of 210Nm to 420Nm and at various engine speeds 
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Figure 6-48(a) shows variation in the CO emission with respect to the engine torque when 

running with diesel fuel during a negative torque transient for various engine speeds .It 

can be see that for a given speed value with increase in engine torque CO emission 

remains largely constant except for the lowest speed tests. Only for lowest speeds with 

decrease in torque CO emission decreases significantly before attaining a constant value. 

Almost similar trends are seen for engine running with biodiesel blends (Figure 6-48(b)) 

and neat biodiesel (Figure 6-48(c)).  

 

Figure 6-48 CO emission of CI engine running with various fuels during torque transition 

of 420Nm to 210Nm and at various engine speeds 
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�8 � �( � ��� � ��D � �B�D � �C�� � �ED�     (6-1) 

Where Em is the emission from the engine, N is the engine speed, T is the engine torque 

and Ci,s are  coefficients for the predictive model. For the purpose of the development all 

the data corresponding to speed and torque transients (both positive and negative) have 

been combined. The table shown below gives the coefficients for different types of 

emission.  

 

To establish accuracy of predictions the predicted values of different emissions have been 

compared against the measured values and shown in the Figure 6-49 to Figure 6-52 for 

three different fuels. 

 
Figure 6-49  Accuracy of prediction models for CO2 emission estimation  
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Table 6-3  Emission predicting models coefficients of CI engine running with diesel and biodiesel blends 

Emission Fuel Predicting models coefficients 

  C1   C2    C3    C4   C5     C6 

       
  

CO2 

  

Diesel 3.61 -0.0070 0.0739 -0.000036 0.0000042 0.0000008 

B20 40.77 -0.0691 0.1258 -0.000018 0.0000277 -0.0001477 

B100 -3.82 0.0040 0.0719 -0.000013 -0.0000021 -0.0000381 

  

NOx 

  

Diesel 1166.79 -0.2066 -0.5213 0.001229 -0.0002440 0.0006013 

B20 1257.55 -0.7018 0.8151 0.001193 -0.0000488 -0.0010946 

B100 583.07 -0.3636 3.9243 -0.000598 0.0000505 -0.0032304 

  

THC 

  

Diesel 62.89 -0.0535 -0.1245 0.000005 0.0000211 0.0001813 

B20 40.01 -0.0219 -0.0437 -0.000013 0.0000077 0.0000678 

B100 5.77 0.0415 -0.1205 -0.000006 -0.0000178 0.0001961 

  

CO 

  

Diesel -234.28 0.3345 0.9456 -0.002245 0.0000360 0.0043628 

B20 -379.75 0.4040 1.5041 -0.002840 0.0000698 0.0049651 

B100 155.73 -0.2767 0.5873 -0.000820 0.0001721 0.0011742 
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Figure 6-49(a) shows the accuracy of prediction for CO2 emission when diesel is used as 

a fuel. It can be seen that the measured and predicted values match reasonably well and 

most of the data is within 10% error band.  The matching is not so good for biodiesel and 

biodiesel blend (Figure 6-49 (b and c)) indicating that the coefficients used in the 

equations are complex functions of other variables. 

 
Figure 6-50(a) shows the accuracy of prediction for NOx emission when diesel is used as 

a fuel. It can be seen that the measured and predicted values match reasonably well and 

most of the data is within 20% error band. The same trend us seen for biodiesel and the 

biodiesel blend used in this study (Figure 6-50(b and c)). All the figures shown above 

depict same level of scatter. The scatter is limited within 20% error band indicating that 

the coefficients used in the equations are functions of other variables and more 

experiments need to be conducted to make these equations more accurate. 

 

 
Figure 6-50 Accuracy of prediction models for NOx emission estimation 
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most of the data is within 20% error band. The same trend is seen for biodiesel and the 

biodiesel blend used in this study (Figure 6-51(b and c)). All the figures shown above 

depict almost same level of scatter. The scatter is limited within 20% error band 

indicating that the coefficients used in the equations are functions of other variables and 

more experiments need to be conducted to make these equations more accurate. 

 

 
Figure 6-51 Accuracy of prediction models for THC emission estimation 

 
Figure 6-52(a) shows the accuracy of prediction for CO emission when diesel is used as a 
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above comparisons have indicated that the equations developed show reasonable 

10 15 20

10

15

20

Predicted THC(ppm)

M
e
a
s
u
re

d
 T

H
C

(p
p
m

)

(a) Diesel

10 15 20

10

15

20

Predicted THC(ppm)

M
e
a
s
u
re

d
 T

H
C

(p
p
m

)

(b) 20B

10 15 20

10

15

20

Predicted THC(ppm)

M
e
a
s
u
re

d
 T

H
C

(p
p
m

)

(c) 100B



Chapter 6: Performance and Emission Characteristics of a CI Engine Running with Biodiesel during Transient 

Operation 

213 
 Investigations into the Performance and Emission Characteristics of a Biodiesel Fuelled CI Engine 

under Steady and Transient Operating Conditions                   by:Belachew Chekene Tesfa   July 2011 

 

dependence of emissions with engine operating parameters during transients. These 

equations can further be modified to improve accuracy of predictions.  

 

 
Figure 6-52 Accuracy of prediction models for CO emission estimation 
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acceleration and deceleration transient operations respectively. These values 

increased to 17% and 15% for positive and negative torque transition operations. 

2. In acceleration and deceleration conditions, the maximum difference between the 

exhaust temperature of engine running with diesel and biodiesel blends is less than 

2%. During torque transition operations, the engine running with biodiesel has higher 

exhaust gas temperature than that of running with diesel by 7%. 

3. Most of current online emission techniques being used are usually developed at 

specific engine working conditions under steady state conditions of operation. 

However, a typical diesel engine can work under different ambient conditions, loads, 

and other dynamic features reflecting a transient nature of operation. These operating 

conditions have wide ranging effects on performance and emission characteristics of 

the engines. 
4.  Transient emission predicting models have been developed using the available 

emission data for various biodiesel blends and transient operation conditions.  The 

models presented in equation (6-1) can be used for the prediction of emission during 

transient operation within acceptable error values. The equations given above (5-4) 

relate emissions with speed and torque.  
 
The next chapter has focused on the development of NOx prediction using the online 

measurement of in-cylinder pressure and air mass flow rate.   
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CHAPTER SEVEN 

7. PREDICTION OF NOx EMISSION FROM THE TEST CI ENGINE 

BASED ON THE IN-CYLINDER PRESSURE MEASUREMENT 

 
 
As it has been discussed in both Chapter five and Chapter six one of the drawback of 

biodiesel application in CI engine is its higher NOx emission. To manage the NOx emission 

it is very important that to have an accurate measurement system at both steady and transient 

conditions. This chapter is focused on the development of a novel method for prediction of 

NOx from the experimentally measured cylinder pressure for on-line monitoring. The in-

cylinder pressure and temperature curves have investigated for different engine operation 

conditions based on the experimental measurements. The NOx emissions of CI engine 

running with biodiesel and diesel have been predicted using the in-cylinder pressure and air 

mass flow rate. The model is validated by the experimental measured NOx emission values. 

This chapter have the following sections: NOx prediction model development, computational 

procedures for NOx prediction, parametric investigation on in-cylinder pressure and in-

cylinder temperature and validation for NOx prediction model. 
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7.1 NOx Prediction Model Development  

Internal combustion engines release NOx, which is one of the most toxic emissions for 

the public and the environment. Currently, there is a stringent emission law for NOx gas 

emission. NOx can only be monitored through state-of-the-art measuring techniques. 

Chapter two has clearly highlighted that NOx emission is biggest stumbling block in 

large scale uptake of biodiesel; furthermore it is still a big problem for diesel engines. As 

it is discussed in section 2.5 in detail, the available methods such as heated 

chemiluminescent detector (HCLD), engine map and artificial neutral network (ANN) 

system, are limited either only for steady state operations or limited for only some engine 

operations. Therefore, it is important to develop an online NOx emission which can be used 

universally for all operating conditions. NOx emission in CI engines is largely a thermal 

phenomenon and thus cylinder pressure and air flow rate can be used to make an accurate 

online quantitative prediction of NOx emission in real-time. In-cylinder pressure 

measurement has been chosen parameters for this purpose due to its well established 

relationship with in-cylinder temperature either with ideal gas law or thermodynamic 

equations [203]. Further, this relationship would be integrated with easily measurable engine 

dynamics data, for example, vibration and acoustic emission, to enable prediction of NOx 

emission with ease. 

 

The approach used to predict NOx emissions involves use of the in-cylinder pressure to 

obtain the in-cylinder temperature, and then use the in-cylinder temperature to obtain the 

NOx emission from the CI engine. NOx formation is a thermal mechanism, which occurs in 

the post-flame burned gases, which is modelled by the extended Zeldovich mechanism, 

described by equations (2-14 to 2-16). These equations include the reactants, products and 

rate constants. In order to drive the rate of change of NO concentration in equation (2-17), it 

was assumed that the concentration of the N is minor in comparison to the concentrations of 

the other species, so that the rate of change in N can be set equal to zero. The rate constants 

for equation (2-17) have been measured and critically evaluated in numerous studies [137], 

[196], [142], [143], [140]. The reaction rates used in this NOx model are given in Table 2-4. 

In Table 2-4, the (-) sign indicate the backward reaction. The [N2] and [O2] concentrations 

were determined at ambient condition of the atmospheric air. In order to predict the thermal 

NOx emission from the in-cylinder temperature, the ideal-gas equation of state, described by 

equation (7-1), has been used.  
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Figure 7-1 Flow chart for NOx prediction from in-cylinder pressure  

 
The flow chart of the NOx prediction from the in-cylinder pressure and air flow rate is 
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respectively. 
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The in-cylinder temperature has been estimated from the ideal gas law stated in equation 

(7-1) 

 

 D�+� � *�$�.)�$�
{c�$���                                                 (7-1) 

Where, T(θ) is the instantaneous in-cylinder temperature(K) at crank-angle θ, P(θ) is 

the instantaneous in-cylinder pressure(Pa) at crank-angle θ, Ma(θ) is the instantaneous 

mass in cylinder at crank-angle θ (kg) and Rg  is gas constant (J/kgK).  

 

 ��+� � ),
&'(�

),
� ./ � 1 
 012+ 
 �/� 
 234�+�'(/�  (7-2) 

Where V(θ) is the instantaneous cylinder volume (m3) at crank-angle θ, Vd is 

displacement volume given (m3), R is the ratio of connecting rod length to crank angle 

and rc is compression ratio.  

 

The NOx emission formation and emission rate have been discussed in detail in section 

2-4. In this section general NOx emission rate (equation 7-3), rate constants (Table 7-1), 

O estimation (equation 7-4 and 7-5) and OH estimation (equation 7-6) has been 

repeated for clarity in modelling of NOx emission prediction. 

 

           "FG"H � 2�(.�5.��5
J('KLMKLN.OP5NKM.ON5KNPN Q
R(S KLM.OP5

KN.PN5TKU.PV5W
    gmol/(m3 s)  ( 7-3) 

Table 7-1 Rate constants for thermal NOx formation [140] 

Rate constants Values [(m3/(gmol s)] 

k1  1.8<10=>'�=�?@/A 

k-1 3.8<10?>'B�C/A 

k2 1.8<10BD>'BE=@/A 

k-2 3.8<10�D>'�@=�@/A 

k3 7.1<10=>'BC@/A 

k-3 1.7<10=>'�BCE@/A 

 
Where k1, k2, and k3 are the rate constants for the forward reactions as given in Table 7-1.  
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.�5 � 3.97 < 10CD'(/�.��5(/�>'�(@X@/A         gmol/m3    (7-4) 

.�5 � 36.64D(/�.��5(/�>'�?(��/A               gmol/m3     (7-5) 

.��5 � 2.129< 10�D'@.C?>'BCXC/A.��5(/�.���5(/�     gmol/m3  (7-6) 

 

7.2 Computational Procedures for NOx Prediction from in-cylinder 

Pressure 

To predict the NOx emission using the in-cylinder pressure and air flow rate the 

following input parameters and computational procedures have been used. 

 

 The Input parameters:  The input parameters used in the NOx prediction are engine 

geometry, gas constant (Rg), air percentage composition, air-mass flow rate and in-

cylinder pressure. 

 Computational steps: The NOx emission can be predicted from in-cylinder pressure 

and in-cylinder temperature values. The steps used in these computations are outlined 

below.  

Step 1: The air flow rate and in-cylinder pressure data have been acquired by ADC as 

described in Figure 7-1. 

Step 2: The air mass flow rate and in-cylinder pressure have been calculated from the air-

flow meter readings and pressure sensor calibration coefficients. 

Step 3: The instantaneous cylinder volume has been calculated from engine geometry 

described in Table 3-1 and instantaneous crank angle. 

Step 4: The N2 and O2 concentration have been computed from the air composition and 

air flow rate. The percentage air composition for O2 and N2 are 20.9% and 79% 

respectively. 

Step 5: The O concentration has been computed using the maximum value obtained from 

equations 6-4 and 6-5. OH concentration has been calculated from equation 4-8. 

Step 6: The in-cylinder temperature has been computed from air-flow rate, air-gas 

constant, in-cylinder volume and in-cylinder pressure using ideal gas law which is 

described in equation 7-1. 

Step 7: The NOx formation reaction constants have been computed from the N2, O2, O 

and OH concentration which have been obtained in steps 4 and 5 using rate 

constant equations presented in Table 7-1. 
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Step 8: The NOx emission has been computed from the in-cylinder temperature 

calculated in step 6 and NOx reactions rate constants obtained in Step 7 using the 

extended Zeldovich mechanism which is described by equation 7-3. 

 

Output parameters: The output parameters from NOx prediction models are in-cylinder 

temperature and NOx emission. In the following section the measured in-cylinder 

pressure measured and in cylinder temperature characteristics simulated during 

combustion have been described with a view to understanding the NOx emission 

relationship with in-cylinder pressure. Finally, the predicted NOx emission values have 

been compared with measuerd NOx emission data for both diesel and biodiesel fuel. 

7.3 Parametric investigations (In-cylinder temperature and NOx)  

The diesel combustion flame temperature values, which have been calculated from the 

instantaneous in-cylinder pressure, cylinder volume and air flow rate, are depicted in 

Figure 7-2 for different engine speeds and loads ranges. The mathematical relation 

between the in-cylinder temperature and in-cylinder pressure has been discussed in 

section 7.1. It can be seen, in Figure 7-2(a), that when the load increases, the in-cylinder 

temperature also increases. Similarly, when the engine speed increases, the in-cylinder 

pressure also increases, as it is shown in Figure 7-2(b). It can be concluded from the 

above that when the engine speed and load increase, the in-cylinder pressure increases. 

Even though, the cylinder volume and cylinder pressure are inversely proportional, since 

the change in the magnitude of the in-cylinder pressure is higher, its effect dominates the 

in-cylinder temperature values. Similar trends have been seen for CI engine running with 

biodiesel (Figure 7-3). 
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Figure 7-2 In-cylinder temperature versus crank angle of CI engine running with diesel 

during: (a) engine speeds of 1300 rpm and various loads (b) engine loads of 420Nm and 

at various engine speeds. 

 
Figure 7-4 shows the in-cylinder temperature for biodiesel and diesel fuel at different 

operating conditions. The result shows that the flame temperature, corresponding to biodiesel 

operation, is higher than the diesel operation. The higher temperature of the biodiesel is 

caused due to the availability of additional oxygen molecule as mentioned earlier. As it will 

be discussed later, this is the main cause for the higher emission of NOx. On the contrary, 

Monyem et al [191] reported that for both constant–volume combustion and constant–

pressure combustion, the flame temperature for biodiesel is slightly below that for diesel fuel.  
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Figure 7-3 In-cylinder temperature versus crank angle of CI engine running with 

biodiesel(100B) during:  (a)  engine speeds of 1300 rpm and various loads (b) engine 

loads of 420Nm and at various engine speeds. 
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Figure 7-4 In-cylinder temperature versus crank angle of CI engine running with diesel 

and biodiesel for engine loads of 420Nm and range of speeds 

 
The predicted NOx emission corresponding to the biodiesel operation at a various loads and 

various engine speeds are shown in Figure 7-5. The NOx emissions were found to decrease 

with an increase in the engine speed at lower engine loads (Figure 7-5(a, b)), while the 

emission increases with engine speed at higher loads (Figure 7-5(c,d)). This can be explained 

on the basis that at lower loads and lower speeds, the volumetric efficiency and gas flow 

motion within the engine cylinder are decreased. These lead to slower mixing between air 

and fuel and increase the ignition delay [179]. As a result the nitrogen and oxygen molecule 

resident time is increased. This causes higher NOx emission at lower engine speeds and 

lower loads. At higher engine speed and load, the opposite phenomenon happens. 
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Figure 7-5 Variation of predicted NOx emission with crank angle of CI engine running 

with biodiesel at various loads and range of engine speeds 

 
Figure 7-6 shows the predicted value of nitrogen oxides (NOx) emission for engine running 

with biodiesel and diesel at various loads and engine speeds. It can be seen that the NOx 

emission, when the engine running with biodiesel, is higher than when it runs with diesel. 

The main reason for higher emission with biodiesel is the advanced combustion process 

initiated because of the physical properties of biodiesel (viscosity, density, compressibility, 

sound velocity) [204], [132]. When biodiesel is injected, the pressure rise produced by the 

pump is higher as a consequence of its lower compressibility (higher bulk modulus) and fuel 

propagates quickly towards the injectors. As a result, the cylinder gas becomes rich fairly 

quickly by fuel and reaches its peak temperature which speeds up the formation of NOx. 

Similar trend have been seen in Figure 7-7 for the engine running at 315Nm. 
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Figure 7-6 Variation  of predicted NOx emission with crank angle of CI engine running 

with biodiesel and diesel at engine load of 210Nm and various engine speeds. 

7.4 Validation of the NOx Prediction Model 

To investigate the accuracy of the NOx prediction model from the cylinder pressure, the 

measured and the predicated value of NOx emission of CI engine running with both 

diesel and biodiesel are presented in Table 7-2 and Table 7-3. It can be seen from the 

tables that the new NOx developed model can predict NOx emission for all engine 

operating conditions and fuel types. 
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Figure 7-7 Variation  of predicted NOx emission with crank angle of CI engine running 

with biodiesel and diesel at engine load of 315Nm and various engine speeds 
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Table 7-2 Measured and Predicted NOx emission values of CI engine running with biodiesel (100B) 

 
Speed 
(rpm) 

NOx emission(ppm)  NOx emission(ppm)  NOx emission  NOx emission(ppm) 

at 105Nm at 210Nm at 315Nm at 420Nm 

Measured Predicted Error 
(%) 

Measured Predicted Error 
(%) 

Measured Predicted Error 
(%) 

Measured Predicted Error 
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (%) 

900 538 456 15.24 854 702 17.79 896 666 25.66 1056 1057 0.13 

1100 478 435 9.07 583 604 3.64 638 712 11.62 1025 1053 2.69 

1300 471 476 1 566 594 4.89 644 635 1.38 1049 1072 2.18 

1500 469 474 1.15 565 481 14.85 655 781 19.24 1066 1095 2.7 

 

Table 7-3 Measured and Predicted NOx emission values of CI engine running with biodiesel (100B) 

Speed 
(rpm) 

NOx emission(ppm)  NOx emission(ppm)  NOx emission(ppm)  NOx emission(ppm)  

at 105Nm 210Nm 315Nm 420Nm 

Measured Predicted Error 
(%) 

Measured Predicted Error Measured Predicted Error 
(%) 

Measured Predicted Error 

(ppm) (ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm) (%) 
900 480 477 0.67 981 656 33.14 1011 675 33.26 1105 1057 4.33 

1100 423 438 3.62 692 511 26.11 918 682 25.71 1087 1053 3.1 

1300 417 483 15.91 554 598 7.98 680 676 0.6 1055 1072 1.65 

1500 414 462 11.54 542 486 10.32 649 794 22.4 1072 1095 2.14 
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7.5 Summary on NOx Prediction from In-cylinder Pressure  

In this chapter a model for predicting NOx emission has been developed which uses 

experimentally measured in-cylinder pressure as an input. Furthermore, the dependence of 

NOx formation on the in-cylinder temperature has been investigated based on the model 

developed. The efficacy of using the in-cylinder pressure to predict the NOx emission has 

also been investigated for a compression ignition (CI) engine running with different fuels 

including biodiesel. The temperature of the cylinder is predicted using the cylinder 

pressure by ideal-gas state equation. Using the predicted temperature the NOx emission is 

then calculated based the Zeldovich extended mechanism. The measured and prediction 

results of NOx emission are compared and it has been shown that the deviation of the 

values obtained from the model from the measured emission values with diesel and 

biodiesel are in acceptable error. The prediction model paves the way for real-time NOx 

emission estimation for engine transient study and on-line diagnosis. This model can be 

used during the design stage of engine to meet the emission standards requirements 

especially during transient operations. To become fully functional for road vehicles, it 

needs further integration to link the in cylinder temperature with engine dynamics such as 

engine vibration or acoustic emission. This can be achieved through correlating the in-

cylinder temperature with vibration or acoustic by using the in-cylinder pressure.   

 

The next chapter focuses on the effect of water injection on the engine performance and 

emission behaviour especially NOx when the engine fuelled by biodiesel. 
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CHAPTER EIGHT 

8. MANAGEMENT OF NOx EMISSIONS FROM A CI ENGINE 

OPERATING WITH BIODIESEL USING A WATER INJECTION 

SYTEM 

  
Chapter eight provides the experimental results as well as analysis and discussion on the 

effects of water injection in a CI engine running with biodiesel. Although the engine fuelled 

with biodiesel provide comparable performances and better emissions of CO2, CO and THC 

as compred to an engine running with diesel fuel, the experimental results in Chapter five and 

Chapter six indiacted that the engine running with biodiesel emitted more NOx emission than 

the engine running with diesel by up to 30% at maximum load condition. As discussed in 

section 2.2.2, NOx and PM emissions are major toxic emissions which are being regulated 

with emission regulations and these regulations are becoming increasingly more stringent 

[50], [145]. Therefore the main objective of this chapter is to investigate the effects of water 

injection on the NOx emission characteristics of the engine when it runs with biodiesel. This 

development can be used to manage NOx emission coming out of CI engines running with 

Biodiesel. The test apparatus and the procedures have been discussed in Chapter three. This 

Chapter has focused on the effects of water injection on in-cylinder pressure, heat release 

rate, brake specific fuel consumption, thermal efficiency and emission of NOx and CO when 

the CI engine is fuelled with biodiesel blends.  
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8.1  Effects of Water Injection on NOx and CO Emissions 

The effects of water injection on NOx emissions from a CI engine running with biodiesel 

have been investigated experimentally. To understand the effects of water injection on other 

exhaust emissions, the CO emission characteristics has been also discussed in detail. CO 

emission has been selected due to its sensitivity with water injection as per previous reports 

on the application of water injection with diesel fuel[60], [96], [100], [109-111], [121], 

[122] .  The NOx emission from the CI engine running on 100% biodiesel at loads of 105Nm 

201Nm, 315Nm and 420Nm over range of engine speeds and at different water injection rates 

(0kg/h, 1.8kg/h, 3kg/h) are depicted in Figure 8-1. At all operating conditions, NOx 

emissions have been found to decrease with an increase in engine speeds. This can be 

explained on the basis that at higher engine speeds, the volumetric efficiency and gas flow 

within the combustion cylinders were found to increase.  

 

Figure 8-1 NOx emission values of CI engine running with biodiesel(100B) and water at 

range of engine speeds and engine loads  

 
This in turn led to a faster mixing of air and fuel which resulted in the minimisation of the 

ignition delay [49]. This reduction of ignition delay minimised the reaction time of free 
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nitrogen and oxygen gas in the combustion cylinder, which is the main mechanism of NOx 

formation. Figure 8-1 clearly depict that as the water flow rate increases, the NOx emission 

reduces proportionally.  

 

As it can be seen in Figure 8-2 the water injection into the intake manifold reduces the NOx 

exhaust emission by around 20% and 40%, at 1.8kg/h and 3kg/h water injection rates, 

respectively. This phenomenon can be explained on the basis that when the water-air mixture 

is injected into the combustion chamber, some of the heat is absorbed by the water during the 

process of water vaporisation.  

Figure 8-2 Reduction of NOx emission from CI engine running with biodiesel(100B) due 

to the effects of water injection at range of engine speeds and engine loads 

 
This process reduces the peak flame temperature of the combustion chamber and negatively 

impacts on the formation of nitrogen oxides (NOx) [157-159]. In addition, the water 

injection into cylinder chamber changes the thermo-physical properties of water and 

consequently affects the heat transfer coefficient of the gas mixture, thereby facilitating heat 
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loss through the cylinder walls. Furthermore, Figure 8-2 depicts that the effects of water 

flow rates vary with the engine load conditions. It can be seen that when the water flow rate 

increases from 1.8kg/h to 3.0kg/h(66%), the NOx percentage reduction change by 58.37%, 

23.75%, 40.87% and 40.67% for engine loads of 105Nm, 210Nm, 315Nm and 420Nm 

respectively.  

 
Figure 8-3 shows the effect of water injection on CO emissions at various engine speeds and 

at engine loads of 105Nm, 210Nm, 315Nm and 420Nm. It can also be seen that when the 

engine speed and load increases, the CO emission decreases. A reason for this could be that at 

higher engine speeds, the air/fuel equivalence ratio increases and this increases the in-

cylinder gas temperature leading to an increase in the kinetic reaction rate from CO to CO2.  

Furthermore, Figure 8-3 depicts that at higher water flow rate (3kg/h), the CO emission 

increases during all operating conditions. However, the 1.8kg/h water injection results in 

insignificant CO emission over the range of engine speeds and loads. As it can be seen in 

Figure 8-4 the CO emission is higher at lower engine speeds by up to 57%. This value 

reduces to 25% for intermediate and higher engine speeds.   

 

Figure 8-3 CO emission values from CI engine running with biodiesel(100B) and water at 

range of engine speeds and engine loads. 
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There are two main reasons for the increase in CO emission during water injection to the CI 

engine. First, the reduction of the pre-combustion temperature due to water injection slows 

the chemical conversion of the CO to CO2. Second, the solid carbon reaction at high 

temperature with water vapour enhances the formation of CO and H2O in the cylinder.  

 

Even though the water injection increases the CO emission, considering the stringent NOx 

emission laws in EU VI, water injection can prove to be a viable technology for NOx 

reduction. For both Euro IV (2005) and Euro VI (2014) the CO emission standards are 

0.5g/Km for passenger cars. However, the NOx emission standards of Euro IV (2005) and 

Euro VI (2014) are 0.25g/km and 0.08g/km. 

 

Figure 8-4 Percentage increase in CO emission from CI engine running with 

biodiesel(100B) due to the effects of water injection at range of engine speeds and engine 

loads  

 

To manage the NOx emission of engine fuelled with biodiesel and the stringent NOx 

emissions in 2014, new technologies like water injection system development are required. 
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The CO emission increment during the water injection can be managed by finding the 

optimum emission values of CO and NOx. 

8.2 Water Injection Effects on Cylinder Pressure and Heat Release Rate  

The injection of water in diesel engines mainly affects the combustion characteristics such as 

the air-fuel-water mixing phenomenon, the ignition delay, the cylinder pressure and the 

heating release rate. Understanding of combustion characteristics specifically the in-cylinder 

pressure and heat release rate can benefit the design of the engine combustion chamber and 

its thermal analysis. In this section the effects of water injection on in-cylinder pressure, heat 

release rate and cumulative heat release rate have been covered. The variation of in-cylinder 

pressure with cylinder volume for an engine speed of 1300rpm, at loads of 105Nm, 210Nm, 

315Nm and 420Nm, corresponding to different water injection rates (0kg/h, 1.8kg/h and 

3kg/h) into the intake manifold is depicted in Figure 8-5.  

Figure 8-5 P-V diagram of CI engine running with biodiesel(100B) and water at an 

engine speed of 1300rpm at various engine loads  
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The results show that the P-V diagrams obtained are fairly similar and follow typical 

characteristics under different operating conditions. Effects of water shows only marginal 

effects on peak pressure values within the cylinder. This suggests that the work done by the 

engine, calculated from the P-V diagrams, is largely unaffected by the water injection. The 

work done which is calculated from the P-V diagram shows less than 2% change in work 

output due to the water injection. 

 

Figure 8-6 and Figure 8-7 show the variations of in-cylinder pressure with crank angle under 

different operating conditions for the engine running with biodiesel at different water 

injection rates (0kg/h,1.8kg/h, 3kg/h), for engine speeds of 900rpm, 1100rpm, 1300rpm and 

1500rpm, at different engine loads of 105Nm, 210Nm, 315NM and 420Nm. In both these 

figures, it can be seen that the peak cylinder pressures had only minor differences in 

magnitude for different water flow rates at a given operating conditions.  

 

Figure 8-6 In-Cylinder pressure versus crank angle of CI engine running with 

biodiesel(100B) and water at engine speed of 1300rpm and various engine loads 
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This result indicates that water injection into the intake manifold does not affect the peak 

flame temperature considerably during the combustion at a given operating condition (speed 

and load). Instead, water injection has reduced the premixed combustion flame temperature at 

which high concentrations of nitrogen and oxygen react to form oxides of nitrogen [190].  

 
The main cause for temperature reduction in premixed combustion is due to the 

absorption of heat by water to form vapour, water cooling effects due to evaporation of 

water from combustion chamber surfaces, increase in heat capacity and specific heat 

capacity due to higher trapped mass, combustion delay due to increase in ignition delay 

and decrease in the chemical reactions rates due to the inert ‘chemical’ water [115], 

[152]. As a result, the NOx emission during the premixed combustion is reduced. However, it 

can be seen that with the change of operating conditions, the pressure variation profile 

changed substantially. For example, when the engine load has increased from 105Nm to 

210Nm, the peak in-cylinder pressure has also increased from 8MPa to 9.5MPa. 

 

Figure 8-7 In-Cylinder pressure versus crank angle of CI engine running with 

biodiesel(100B) and water at loads 420Nm and various engine speeds 
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Figure 8-8 illustrates the rate of heat release (ROHR) for the CI engine used in the present 

investigation running with biodiesel with water injection at speeds of 900 rpm and 1300 rpm, 

and at two different loads of 210 Nm and 420 Nm. At lower engine speeds and lower engine 

loads, since the vaporised fuel accumulated during ignition delay [190], at the beginning, 

negative heat release rates were observed as shown in Figure 8-8(a) and Figure 8-8(b). 

However, at higher engine speed (1300rpm), the heat release rate started with a positive 

ROHR due to the higher fuel-air mixing phenomena (Figure 8-8(c) and Figure 8-8(d)). In 

Figure 8-8, it can also be seen that the maximum heat release rate of combustion with water 

injection is higher than without water. This is due to the ignition delay and accumulation of 

fuel in the combustion chamber at the time of combustion resulting in higher ROHR [115]. 

Furthermore, it can be seen from the figures that the main effect of water injection on 

combustion is to increase the ignition delay. This observation is in agreement with previous 

researchers’ works [115], [200].  

 

Figure 8-8 Heat releases rate of CI engine versus crank angle running with biodiesel 

(100B) and water at range of engine speeds and engine loads 
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author opinion the ignition delay is due to the cooling effect of water on the inlet air 

temperature. 

 

Figure 8-8 Heat releases rate of CI engine versus crank angle running with 

biodiesel(100B) and water at range of engine speeds and engine loads 
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duration was expected.   
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Figure 8-9 Cumulative heat release of CI engine versus crank angle running with 

biodiesel(100B) and water at range of engine speeds and engine loads 
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8.3 Effects of Water Injection on Engine Performance   

To monitor the effects of water injection on the engine performance, two parameters namely, 

brake specific fuel consumption and thermal efficiency have been investigated. The brake 

specific fuel consumption shows the effects of water injection on the efficiency of fuel use. 

The thermal efficiency is the reciprocal of brake specific fuel consumption and heating value. 

In this section the effects of the water injection on the brake specific fuel consumption and 

thermal efficiency have been investigated. The variation of the brake specific fuel 

consumption (BSFC) with speeds for different water injection conditions (without water, with 

1.8kg/h water, and 3kg/h water) at different loads is depicted in Figure 8-10.  

 

Figure 8-10 Brake specific fuel consumption (BSFC) of CI engine running with 

biodiesel(100B) and water at range of engine speeds and various engine loads  
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explained on the basis that at low speeds, the heat loss through the combustion chamber walls 

is proportionally greater and the combustion efficiency is poorer. These result in higher fuel 

consumption for the same amount of power produced. At higher speeds, the power required 

to overcome friction increased at a higher rate, resulting in a slower increase in output power 

with a consequent increase in BSFC [160], [205].  The percentage change in BSFC due to 

water injection is depicted in Figure 8-11.  It can be seen that at lower engine loads (105Nm 

and 210Nm), the BSFC was at a minimum for the engine operating without water injection 

and with water injection at 1.8 kg/h. At higher loads (315Nm and 420Nm), the injection of 

water did not show any significant changes in BSFC.    

 

  

Figure 8-11 Brake specific fuel consumption (BSFC) change of CI engine due to water 

injection at range of engine speeds and engine loads  
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 � � �E@@
!z���}�) <100     (8-1) 

Where � is the thermal efficiency (%), BSFC is brake specific fuel consumption (g/kWh) of 

the biodiesel and LHV is lower heating value (kJ/kg) of the biodiesel.  

 

It can be observed from Figure 8-12 that at all the operating conditions the thermal 

efficiency increases at lower engine speeds, reaches its higher point and then decreases.  

Figure 8-12 Thermal efficiency values of CI engine running with biodiesel(100B) and 

water at range of engine speeds and engine loads  
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higher as compared to the no-water injection condition. This shows that the effect of 

water injection on the thermal efficiency of the engine is insignificant. 

 

Figure 8-13 Thermal efficiency change of CI engine due to water injection at range of 

engine speeds and engine loads  
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2. Water injection has resulted in increasing of the ignition delay. The higher ignition 

delay leads to accumulation of fuel in the combustion chamber at the time of 

combustion resulting in higher ROHR. 

3. The BSFC of CI engine shows a slight increase under lower engine loads (105Nm 

and 210Nm), while at higher loads (315Nm and 420Nm), the injection of water did 

not show any significant changes in BSFC.   

4. The water injection into the intake manifold reduced the NOx exhaust emission by 

around 20% and 40%, at 1.8kg/h and 3kg/h water injection rates, respectively. The 

main reason for NOx reduction is the cooling effect of water in pre-combustion and 

the delay of ignition. 

5. The water injection into the intake manifold increases the CO emission by up to 

25% during 3kg/h water injection. However, the 1.8kg/h injection rate did not  show 

significant change in CO emission.  

 

The next chapter includes conclusion and future work of this thesis. The main contributions, 

conclusions and future works have been summarized for each section of work. 
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CHAPTER NINE 

9. CONCLUSIONS AND FUTURE WORKS 

 

This chapter summarizes the review of research objectives and achievements, the 

conclusions and the future of work in this research area. For each specific objective the 

achievements have been described. The conclusions on biodiesel characterisation, 

performance and emission characteristics of the engine during both steady and transient 

operations, the newly developed NOx emission prediction model and the effects of water 

injection on the engine performance and emission have been included. Furthermore an 

explicit summary of the novel contributions of the research conducted by the author has 

been included. Finally, the chapter ends by addressing the future work that would help in 

further understanding of engine operations with biodiesel as a fuel.  
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9.1 Review of Research Objective and Achievements   

The main achievements of this work have been presented below in the same order they 

appear in Section 2.5.  

 

Objective 1: To analyse the physical properties such as density, viscosity and lower heating 

value of biodiesel and its blends experimentally by considering biodiesel content and 

temperature variation.  

 

Achievement 1:  The effects of biodiesel blend content and temperature on the specific 

gravity, kinematic viscosity and lower heating value have been measured using hydrometer, 

Cannon-Fenske Viscometer tube (size B)  and Bomb Calorimeter respectively in Applied 

Science laboratory, University of Huddersfield. The experimental data analyses have shown a 

variation in the physical properties at different biodiesel blend fractions values and 

temperatures. The understanding of the physical behaviour of these two critical parameters 

has huge importance in the preparation of biodiesel blends for direct application in the 

engine. In addition, understanding of the temperature effects on biodiesel will have high 

importance in design of pre-heater for biodiesel application to manage physical properties.  

 

Objective 2: To develop prediction models for physical properties of biodiesel and its blends 

from the experimental data which can correlate the physical properties with biodiesel content 

and temperature.  

 

Achievement 2:  Prediction models have been developed for density, kinematic viscosity and 

lower heating values and compared with current models available in literature. In addition, 

new density and viscosity prediction models have been developed by considering the 

combined effect of biodiesel content and temperature. All the empirical models have shown 

a fair degree of accuracy in estimating the physical properties of biodiesel compared with 

the experimental results. These models can be used in engine design stage for 

combustion, performance and emission characterisation. It can also be used to develop 

thermo-physical models to be used in engine simulation software.   

 

Objective 3: To investigate numerically the effects of the biodiesel physical properties on the 

fuel supply system such as fuel filter, fuel pump and engine combustion chamber. 
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Achievement 3: Mathematical models have been developed to investigate the effect of 

density, viscosity and lower heating value on the fuel supply system such as fuel pump, fuel 

filter and in-cylinder air mix phenomena. These models can be used to understand the effects 

of changes in the physical properties on the fuel supply system. In addition, the integrated 

fuel supply system can be analysed for its performance during the design stage of fuel pump, 

fuel filter and injection systems to optimise its performance. 

 

Objective 4: To analyse experimentally, the combustion characteristics such as in-cylinder 

pressure, heat release rate and cumulative heat release of CI engine fuelled with biodiesel and 

its blends during both steady and transient conditions. 

 

Achievement 4: A comprehensive diesel engine test rig has been developed featuring key 

instrumentation along with emission analyser in the Automotive Laboratory, University of 

Huddersfield. The engine speed, in-cylinder pressure, air mass flow rate, inlet conditions and 

the exhaust conditions have been measured. Detailed analyses on the in-cylinder pressure, 

heat release rate, ignition delay have been carried out. As a result, the effects of biodiesel 

content on in-cylinder pressure, heat release rate and ignition delay have been quantified. 

 

Objective 5: To examine analytically the brake specific fuel consumption, thermal efficiency 

and in-cylinder peak pressure of CI engine systems from experimental data obtained from 

engine using biodiesel and its blends as a fuel during both steady and transient conditions. 

 

Achievement 5: The CI engine has been tested with three biodiesel sources and six biodiesel 

blends. The engine performance parmaters such as the fuel mass flow rate, brake specific fuel 

consumption, exhaust temperature and in-cylinder pressure have been measured 

experimentally. The thermal efficiency has been calculated from the brake specific fuel 

consumption and the lower heating value. The effects of biodiesel feed stock sources and 

biodiesel content on brake specific fuel consumption, thermal efficiency, in-cylinder pressure 

and exhaust temperate have been investigated and quantified.  

 

Objective 6: To examine numerically and experimentally the emissions of CI engine systems 

which is running with biodiesel and its blends during both steady and transient conditions. 

 

Achievement 6: The emissions of CI engine fuelled with various biodiesel feed stock and its 

blends have been measured by HORIBA EXSA–1500 during both steady and transient 
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operations. A detailed analysis has been carried out  on the emission behaviour of the CI 

engine emission for both steady and transient operations. During this analysis, the emission 

changing rate during the transient time span has been investigated. The effects of biodiesel 

feed stock sources and biodiesel content on CO2, NOx, CO and THC have been investigated 

and quantified.  Furthermore, a transient emission prediction model has been developed using 

associated steady and transient emission data.   

 

Objective 7: To develop a method to estimate NOx emission under steady and transient 

operation using in-cylinder pressure, specific heat and mass air flow rate. 

 

Achievement 7: A new on-line prediction model for NOx has been developed using the in-

cylinder pressure generated within a CI engine along with air mass flow rate experimentally. 

This model has been validated using experimental data obtained from a NOx emission 

analyzer and shows good agreement. This model can be used for prediction of NOx during 

both steady and transient conditions. 

 

Objective 8: To develop direct water injection system for use on CI engine running with 

biodiesel and investigate the combustion characteristics, performance and NOx emission of 

the engine during steady state mode of operation. 

 

Achievement 8:  A direct water injection system has been developed for use on the engine 

test rig where it is installed and can be used to inject water into the intake manifold. Water 

has been injected through the intake manifold over a range of volumetric flow rates. The 

effects of water injection on in-cylinder pressure, heat release rate, brake specific fuel 

consumption and thermal efficiency have been investigated. A detail analysis has been 

carried out on the effect of water injection and NOx emission when the engine is fuelled with 

biodiesel. 

9.2 Conclusions  

This research is directed towards the characterisation of physio-chemical properties of 

biodiesel, combustion, performance and emission characteristics of CI engine running 

with biodiesel during both steady and transient operations. Furthermore, to overcome 

problems experienced with high NOx emission from CI engine running with biodiesel, to 

monitor the NOx emission during steady and transient operation, a NOx prediction model 

has been developed. Furthermore a novel water injection technique has been developed to 
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manage the NOx emission. In this study, the following conclusions have been drawn for 

each research area: 

9.2.1 Conclusions on Biodiesel Characterisation 

 
In this section, the key conclusions associated with biodiesel characterisation are 

summarised which are based on the experimental results. 

 

Conclusion 1: The density, kinematic viscosity and lower heating value of biodiesel 

blends (0B, 5B, 10B, 20B, 50B, 75B, and 100B) from the three biodiesel feed stocks have 

been measured over a range of temperatures. It was noticed that when the biodiesel 

content increases, the density and the viscosity of the biodiesel increases. However, the 

lower heating value decreases with increasing the biodiesel content. It was also observed 

that the density and viscosity of each blend decreased with an increase in the temperature. 

The density, viscosity and heating value of neat biodiesel are 1.03, 1.56 and 0.90 times 

the diesel respectively. Based on the above results it can be concluded that biodiesel 

fraction and temperature highly affect the physical properties of the fuel.  

 

Conclusion 2: It was found that the empirical equations which have been developed from 

the experimental data for prediction of density, viscosity and lower heating value as a 

function of biodiesel fraction and temperature have matched closely with the 

experimental results. Furthermore, the Grun-Nissan viscosity equation has been further 

modified to predict the kinematic viscosity of biodiesel blends from the biodiesel fraction 

and operating temperature values. The modified models have shown a reasonable degree 

of accuracy. The developed model can be used in numerical investigation of engine 

design and performance evaluation. 

 

Conclusion 3: Using a newly developed fuel supply system model, it has been found that 

the density and viscosity of the biodiesel affect the performance of the fuel supply system 

which includes fuel pump, fuel filters and air-fuel mixing behaviour. It has been found 

that when the density and viscosity of biodiesel increase, the fuel pump head loss also 

increases. Furthermore with increase in density and viscosity, the fuel flow rate through 

the filter reduces and the sauter mean diameter increases. These finding show that 
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density, viscosity and lower heating value have considerable effect on the fuel supply 

system. 

 

9.2.2 Conclusions on Combustion, Performance and Emission 

Characteristics of the Test CI Engine during Steady and Transient 

Operations 

The effects of biodiesel blend fraction and its physical properties on the CI engine’s in-

cylinder pressure, brake specific fuel consumption, thermal efficiency and the exhaust 

emissions (CO2, NOx, CO, THC and O2) have been investigated during steady and transient 

state operations. The following conclusions have been drawn from the analysed data. 

 

Conclusion 4: After investigating the combustion, performance and emission 

characteristics of the CI engine running with three biodiesel from different feed stocks; it 

has been found that the values of brake specific fuel consumption, thermal efficiency, in-

cylinder pressure and emissions have not shown any significant differences. It can be 

concluded that the feed stock of biodiesel and its associated effects on the combustion, 

performance and emission are in-significant. 

 

Conclusion 5:  It has been found that peak in-cylinder pressure of the engine running 

with biodiesel blends is slightly higher than the engine running with diesel. The main 

reason for a higher in-cylinder pressure in the CI engine running with biodiesel is due to 

the advanced combustion process being initiated by the easy flow-ability of biodiesel and 

its other relevant physical properties such as viscosity, density and bulk modulus. 

 

Conclusion 6: It has been seen that the engine running with diesel and biodiesel blends 

show the same combustion stages at all load conditions except for the slight variation in 

peak heat release rate and ignition delay. When using biodiesel, the ignition is seen to be 

advanced when compared to diesel fuel. These finding suggest that the application of 

biodiesel does not have negative impact on the combustion behaviour of the engine. 

 

Conclusion 7:  The effects of the physical properties of biodiesel have been investigated 

and it was noticed that when the density and viscosity of biodiesel is increased an increase in 

brake specific fuel consumption of CI engine has been observed at all load conditions 

investigated. However, when the heating value increases, brake specific fuel consumption 
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decreases. It was also noticed that when the biodiesel content increases the brake specific fuel 

consumption of the CI engine increases while the thermal efficiency decreases.  These results 

indicate that the physical properties of biodiesel result in significant impact on the 

performance of the engine. 

 

Conclusion 8: It was found that during the speed transient operations for both 

acceleration and deceleration operations the difference between the exhaust temperature 

of engine running with diesel and biodiesel blend is insignificant. However during torque 

transition operations, the exhaust temperature of the engine running with biodiesel is 

higher than that running with diesel by 7%.  Based on this result it can conclude that 

exhaust temperature is more sensitive for change torque than speed. 

 

Conclusion 9: The emission behaviours have been investigated for various transient 

operation conditions and biodiesel blends. It has been found that the biodiesel and its 

blends have trends of reducing the CO2, CO and THC emission during all the transient 

operations. However, the use of biodiesel as a fuel in CI engine increases the NOx 

emission during the speed transient and torque transition operations. This results leads to 

conclude that the biodiesel have potential to reduce the major emission when it is used in 

CI engine.  

 

Conclusion 10:  It has been found that the post transient emission time for NOx and CO 

is relatively higher than other emissions. Based on the experimental results, it can be 

concluded that the transient operation resulted in a long ‘term’ effects on the post- 

transient emission characteristics. 

9.2.3 Conclusions on NOx Prediction Model 

 
The following section describes the key conclusions drawn from the NOx prediction model 

study. In this study, the measured in-cylinder pressure has been used to predict the NOx 

emission for a compression ignition (CI) engine running with different fuels including 

biodiesel. These conclusions from this study are summarised below: 

 

Conclusion 11: The NOx prediction model has been developed using the in-cylinder 

pressure along with air mass flow rate. The predicted data obtained from NOx prediction 

model has been compared with measured data and it has been observed that the deviation is 
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less than to 4.06% for diesel and 4.39% for biodiesel respectively. Based on the acceptable 

error between measured and predicted NOx values, it can conclude that the in-cylinder 

pressure data can be used to predict the real-time NOx emission estimation for engine 

transient operation condition. 

9.2.4 Conclusions on Effects of Water Injection on NOx Reduction  

 
The following section describes the conclusions drawn from the experimental investigation 

into combustion, performance and emission characteristics of a CI engine running with 

biodiesel with an integrated water injection system. Based on the experimental results the 

main effects of the water injection are summarized as follows: 

 

Conclusion 12: The water injection at the intake manifold does not result in any significant 

difference in the peak cylinder pressure and heat release rate of CI engine running with 

biodiesel. From these results it can be concluded that the water injection into the intake-

manifold does not affect the peak temperature; instead it affects the pre-mixed combustion 

temperature which is mainly the cause of NOx emission.  

 

Conclusion 13: It has been found that water injection at intake manifold does not show any 

significant change in the brake specific fuel consumption and thermal efficiency of the engine 

at intermediate and higher engine loads. However, it was seen that the brake specific fuel 

consumption increased by a maximum of 4% and the thermal efficiency decreased by a 

maximum of 3% at low loads due to the water injection.  

 

Conclusion 14: Intake manifold water injection reduces NOx emission by up to 50% over 

the entire operating range. Based on the above it can concluded that water injection into the 

intake manifold can be employed to reduce NOx emission without loss of power and any 

negative effect on fuel consumption. 

 

9.3 Thesis contribution to the Knowledge 

This thesis has many new aspects that have not been considered in previous research and 

has made significant contributions to the knowledge in the area of biodiesel physical 

characterisation, combustion, performance and emission characteristics of CI engines and 

management of the NOx emission. A summary of these contributions is given below. 
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Contribution 1: New density and viscosity prediction models have been developed by 

considering the combined effect of biodiesel content and temperature to estimate the physical 

properties of biodiesel mixture at various temperatures. In addition, new lower heating value 

models have been developed by which LHV can be computed from the known density and 

viscosity of biodiesel blends. No work has been found in the literature to predict the 

density, kinematic viscosity and lower heating value as a function of temperature and 

biodiesel blend fraction. 

 

 Contribution 2: The application of mathematical models for investigating the effects of 

density and viscosity have not previously been used on the fuel pump, fuel filter and air-

fuel mixing behaviour. Even though some experimental resulted have been reported, 

there are no mathematical models considering the fuel supply system as one unit.  

 

Contribution 3: The emission characteristics of CI engine fuelled with biodiesel blends 

during transient operations have been investigated. The effect of transient operation on 

the post-transient condition has also been quantified.  Finally, a universal transient 

emission prediction model has been developed using steady state data for range of engine 

operation conditions. This model can be used to predict the emissions of CO2, NOx, CO 

and THC for any transient operation. Both the investigation of the transient emission 

behaviour and transient emission predicting models are novel. Understanding this 

transient emission phenomenon is very important for the biodiesel producers, engine 

manufacturers and environment policy makers. 

 

Contribution 4: An on-line prediction model for NOx using in-cylinder pressure generated 

within a CI engine along with air mass flow during both steady and transient phenomena is a 

novel work. This model will be very important to monitor the NOx emission by integrating 

the engine dynamic characteristics with in-cylinder pressure.  

 

Contribution 5: Investigations on reduction of NOx emission for CI engines fuelled with 

biodiesel by direct water injection at intake manifold is novel. No work has been found in 

literature that fully describes the effects of water injection on the combustion, performance 

and emission characteristics of CI engines.   
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9.4 Recommended Future Work 

The theoretical aspects, numerical models and experimental results presented in this study 

highlight the potential for biodiesel application to CI engine. From this extensive study, a 

number of key recommendations are made for future works in this area with a view to 

improving the application of biodiesel to the CI engine. 

 

Recommendation 1: In this research the physical properties of the biodiesel effects on the 

engine performance and emission characteristics were investigated.  It is crucial that further 

experimental investigation is conducted into the effects of the biodiesel properties on the fuel 

penetration, full cone spray and sauter mean diameter (SMD).  

 

Recommendation 2: One of the problems associated to biodiesel application to CI engine is 

its higher viscosity during winter time. To overcome such problems some authors have 

proposed using a pre-heater in the fuel supply system. The present work revealed viscosity is 

directly related with temperature and hence if the biodiesel is heated up to 70oC the viscosity 

values would become comparable with the petrol diesel. Therefore further investigation is 

required to integrate the pre-heater with the engine system and to use the heat energy 

contained in engine coolant to pre-heat the biodiesel. 

 

Recommendation 3: The numerical investigations on the fuel’s physical properties effects 

on fuel supply system revealed that the pump performance, injector behaviour, air-fuel 

mixture characteristics are dependent on the density and viscosity of biodiesel. Further, 

experimental investigation is required to quantify the effects of these properties of the fuel 

supply system. 

 

Recommendation 4: It is documented that biodiesel fuel contains 11% oxygen and hence the 

heating value of biodiesel is lower than fossil fuels by approximately 10%. Given the 

importance of fuel heating value, further work should be focussed on reducing this oxygen 

content in the biodiesel molecule to increase the carbon and hydrogen molecules using 

additives without affecting the fuel consumption rate. 

 

Recommendation 5: The CI engine emissions during transient operations show unique 

behaviour. This characteristic requires further investigation to develop numerical models for 
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each emission during the transient operation.  These models can be used in further 

modification of the European transient cycle. 

 

Recommendation 6: The NOx emission model has been developed using in-cylinder 

pressure along with air mass flow rate to predict NOx emission of the CI engine when 

running with biodiesel. Further work is required to integrate this model with easily obtainable 

engine dynamic characteristics such as vibration.  

 

Recommendation 7: In the current study, water injection in the engine cylinder significantly 

reduced the NOx emission. This study was carried out with constant water flow rate while the 

engine speed and loads were varied.  Two basic studies are important in these areas: firstly, a 

detailed study is required on the integration of water injection systems with the fuel control 

system. This can be done by using one of the operating parameters such engine speed or 

performance parameters such as boost pressure, exhaust temperature and turbine speed. 

Secondly, in this study the main heat transfer phenomena in the combustion cylinder have 

been investigated. However, further investigation is required in the reaction chemistry of the 

fuel with water addition. This gives an opportunity to understand the effects of water in the 

performance and emission characteristics and the durability of the engine.  
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APPENDIX 

 

 Appendix A: Heating Value Measurement 

 
The higher heating values of the biodiesel and its blends and diesel were measured by a Parr 

Adiabiatic Model 230/5 Oxygen Bomb Calorimeter using the procedures outlined in the Parr 

manual. The bucket-filling system, water heater, three decimal weigh, and water cooler 

included as auxiliaries of the Bomb Calorimeter were used. The general scheme of the bomb 

calorimeter is shown in Figure 3-2. To measure the heating value, the following summarised 

procedures were used: 

I. All Bomb calorimeter facilities were prepared and a pellet of benzoic acid weighed to 

approximately 0.8-1.0 g. 

II. A 10 cm length of fuse wire was cut and weighed.  The fuse wire was cut and 

threaded through the electrodes and configured in a V shape directly above the 

sample.  

III. Using a pipette, exactly 1.0 ml of pure water was introduced into the clean dry bomb. 

The wires were tied to the electrodes, the bomb was assembled and pressurised with 

oxygen to approximately 30 atmospheres. 

IV. A can was placed inside the insulating jacket, the bomb was set inside the can, and 

electric leads were attached.  Exactly 2L of water was poured in at a temperature of 

about 1-2 degrees below room temperature and the cover closed. 

V. The water in the calorimeter was stirred, and after approximately 2 minutes, the 

temperature readings at 1 minute intervals for at least 5 minutes were taken. 

VI. The capacitor (ignition unit) was discharged to initiate combustion exactly 30 seconds 

after the previous reading and the ignition switch released when the red pilot light 

went out. 

VII. The temperature was recorded 30 seconds after ignition and then every 30 seconds 

while the temperature was on the rise. After a maximum temperature was observed, 

temperature readings for a further 5 minutes, reverting to one minute intervals, 

continued to be taken. 
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VIII. Graphs of temperature versus time were plotted using an expanded interrupted 

temperature scale and extrapolated to determine the temperature change in the given 

time. 

IX. The heat capacity of the calorimeter was calculated using the data from the benzoic 

acid run in equation 6.1. The specific energies of combustion of benzoic acid and iron 

wire  are   -26.421 kJ g-1 and -6.694 kJ g-1 respectively: 

   

| � b��}�)�S_M
∆A�      

 
Where W is the energy equivalent of the calorimeter (J/k) being used ,mb is the mass 

of the benzoic acid and  e1 is the correction for  heat produced by burning the fuse 

wire in the bomb. 

X. Steps I-IX was repeated for biodiesel and its blends. The lower heating value of the 

biodiesel and its blends were calculated using equation 6.2:  

          y�� � ∆A��'_M
b�,

         

 
Where LHV is the lower heating value (kJ/kg), ∆T is the temperature raise (K), W is the 

energy equivalent of the calorimeter being used which is calculated by equation 6-1, 

e3 is the correction for  heat produced by burning the fuse wire in the bomb. 
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Appendix B: Power and Torque Curves of CI engine 
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