Capon, Brian and Page, Michael I. (1971) The kinetics and mechanism of the hydrolysis of esters of cis- and trans-2-hydroxycyclopentanecarboxylic acid and 3-hydroxybutyric acid. Journal of the Chemical Society B, physical organic. pp. 741-744. ISSN 1472-779X
Abstract

The hydrolysis of ethyl cis-2-hydroxycyclopentanecarboxylate is 1·8 to 11 times faster than that of ethyl cyclopentanecarboxylate in 0·1 M-sodium hydroxide in aqueous dioxan (mole fraction of dioxan 0 to 0·329). This is probably not the result of intramolecular hydrogen bonding since ethyl trans-2-hydroxycyclopentanecarboxylate for which such bonding is not possible reacts as fast or faster than the cis-ester. It is tentatively suggested that the smaller dependence of the rates of hydrolysis of the hydroxy-esters on dioxan concentration compared to the unsubstituted ester is the result of solvent sorting. Similar behaviour is found for the hydrolysis of the 2-naphthyl esters and for the ethyl and 2-naphthyl esters of 3-hydroxybutyric acid.The rates of hydrolysis of the hydroxy-esters are enhanced in borate buffers possibly as a result of borate-ester formation followed by intramolecular nucleophilic catalysis.I.r. spectroscopic studies show that the esters of cis-2-hydroxycyclopentanecarboxylic acid are strongly intramolecularly bonded in carbon tetrachloride solution and that those of 3-hydroxybutyric acid are weakly intramolecularly hydrogen bonded. The esters of trans-2-hydroxycyclopentanecarboxylic acid are not intramolecularly hydrogen bonded.

Information
Library
Statistics

View Item (login required)
View Item (login required)
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email