Li, Duo (2018) DEVELOPMENT AND APPLICATION OF ON-MACHINE SURFACE MEASUREMENT FOR ULTRA-PRECISION TURNING PROCESS. Doctoral thesis, University of Huddersfield.
Abstract

Optical freeform components, featured with high functional performance, are of enormous demand in advanced imaging and illumination applications. However, the geometrical complexity and high accuracy demand impose considerable challenges on the existing ultra-precision freeform machining technologies. Surface measurement and characterisation become the key to further improving machining performance. In order to further increase the metrology availability and efficiency, a shift in the approach of surface metrology from offline lab-based solutions towards the use of metrology upon manufacturing platforms is needed. On-machine surface measurement (OMSM) will not only allow the assessment of manufactured surfaces just-in-time without transportation and repositioning, but also provide feedback for process optimization and post-process correction with consistent coordinate frame.

In the thesis, a single point robust interferometer is integrated onto a diamond turning lathe to establish the metrology-embedded ultra-precision manufacturing platform. To extract a priori information for the subsequent OMSM, a theoretical and experimental study of surface generation was carried out for ultra-precision turning of optical freeform surfaces. With the proposed machining methodology and surface generation simulation, two freeform surfaces (sinusoidal grid and micro-lens arrays) were successfully fabricated using the slow tool servo technique. The machined topography of freeform surfaces was uniformly distributed and in agreement with simulated results. Since it operates in the manufacturing environment, the machine tool effects on the OMSM were comprehensively evaluated, including on-machine vibration test, machine kinematic error mapping and linearity error calibration. A systematic calibration methodology for single point OMSM was proposed. Both theoretical and experimental investigation have been conducted to prove the validity of the proposed calibration methodology and the effectiveness of OMSM.

With the aid of OMSM, potential applications were explored to exploit the integration benefits to further enhance the ultra-precision machining performance. OMSM integration will increase the automation level of the manufacturing. As OMSM preserves the coordinate system between the machining and measurement, the process investigation can be carried out in a more deterministic manner. The effect of process parameters on the surface form errors was investigated for ultra-precision cylindrical turning process. An empirical model based on response surface methodology has been established and validated with the experimental results. Moreover, a corrective machining methodology was proposed to further improve the accuracy of diamond turned surfaces with OMSM. According to different correction tasks, corresponding OMSM data processing methods were presented. Profile and surface correction experiments were performed to validate the proposed corrective machining methodology and 40% improvement of surface accuracy was achieved.

Information
Library
Documents
[thumbnail of Li THESIS.pdf]
Preview
Li THESIS.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (10MB) | Preview
Statistics

Downloads

Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email