Extensible Markup Language (XML) has become a dominant technology for transferring data through the worldwide web. The XML labelling schemes play a key role in handling XML data efficiently and robustly. Thus, many labelling schemes have been proposed. However, these labelling schemes have limitations and shortcomings. Thus, the aim of this research was to investigate the existing XML labelling schemes and their limitations in order to address the issue of efficiency of XML query performance. This thesis investigated the existing labelling schemes and classified them into three categories based on certain criteria, in order to identify the limitations and challenges of these labelling schemes. Based on the outcomes of this investigation, this thesis proposed a state-of-theart labelling scheme, called clustering-based labelling scheme, to resolve or improve the key limitations such as the efficiency of the XML query processing, labelling XML nodes, and XML updates cost. This thesis argued that using certain existing labelling schemes to label nodes, and using the clustering-based techniques can improve query and labelling nodes efficiency. Theoretically, the proposed scheme is based on dividing the nodes of an XML document into clusters. Two existing labelling schemes, which are the Dewey and LLS labelling schemes, were selected for labelling these clusters and their nodes. Subsequently, the proposed scheme was designed and implemented. In addition, the Dewey and LLS labelling scheme were implemented for the purpose of evaluating the proposed scheme. Subsequently, four experiments were designed in order to test the proposed scheme against the Dewey and LLS labelling schemes. The results of these experiments suggest that the proposed scheme achieved better results than the Dewey and LLS schemes. Consequently, the research hypothesis was accepted overall with few exceptions, and the proposed scheme showed an improvement in the performance and all the targeted features and aspects.
Available under License Creative Commons Attribution Non-commercial No Derivatives.
Download (5MB) | Preview
Downloads
Downloads per month over past year