Objectives: The slow development of major advances in drug discovery for the treatment of
Mycobacterium tuberculosis (Mtb) infection have led to a compelling need for evaluation of
more effective drug therapies against tuberculosis. New classes of drugs are constantly being evaluated for anti-mycobacterial activity with currently a very limited number of new drugs approved for TB treatment. Minor Groove Binders (MGBs) have previously revealed promising anti-microbial activity against various infectious agents; however have not yet been screened against Mtb.
Methods: Mycobactericidal activity of MGB compounds against Mtb was determined using H37Rv-GFP microplate assay. MGB hits were screened for their intracellular mycobactericidal efficacy against clinical Beijing Mtb strain HN878 in bone marrow-derived
macrophages using standard colony-forming unit counting. Cell viability was assessed by
CellTiter-Blue assays. Selected MGB were encapsulated into non-ionic surfactant vesicles
(NIVs) for drug delivery system evaluation.
Results: H37Rv-GFP screening yielded a hitlist of 7 compounds at an MIC99 between 0.39
and 1.56 μM. MGB-362 and MGB-364 displayed intracellular mycobactericidal activity
against Mtb HN878 at MIC50 of 4.09 μM and 4.19 μM respectively, whilst being non-toxic.
Subsequent encapsulation into NIVs demonstrated a 1.6 and 2.1-fold increased intracellular
mycobacterial activity, similar to that of rifampicin when compared to MGB alone formulation
Conclusions: MGBs anti-mycobacterial activities together with non-toxic properties indicate
that MGB compounds constitute an important new class of drug/chemical entity, which holds
promise in future anti-TB therapy. Furthermore, NIVs ability to better deliver entrapped MGB
compounds to an intracellular Mtb infection has provided merit for further preclinical
evaluation.
Restricted to Repository staff only
Download (4MB)
Downloads
Downloads per month over past year