Abstract
SOMA uses longitudinal data collected from the Ophthalmology Clinic of the Royal Liverpool University Hospital. Using trend mining (an extension of association rule mining) SOMA links attributes from the data. However the large volume of information at the output makes them difficult to be explored by experts. This paper presents the extension of the SOMA framework which aims to improve the post-processing of the results from experts using a visualisation tool which parse and visualizes the results, which are stored into XML structured files.
Information
Library
Documents
Statistics
Downloads
Downloads per month over past year