The IEEE 802.15.4 network is gaining popularity due to its wide range of application in Industries and day to day life. Energy Conservation in IEEE 802.15.4 nodes is always a concern for the designers as the life time of a network depends mainly on minimizing the energy consumption in the nodes. In ZigBee cluster-tree network, the existing literature does not provide combined solution for co-channel interference and power efficient scheduling. In addition, the technique that prevents network collision has not been provided. Delay and reliability issues are not addressed in the QoS-aware routing. Congestion is one of the major challenges in IEEE 802.15.4 Network. This network also has issues in admitting real time flows.
The aim of the present research is to overcome the issues mentioned above by designing Energy Efficient Cluster Scheduling and Interference Mitigation, QoS Aware Inter-Cluster Routing Protocol and Adaptive Data Rate Control for Clustered Architecture for IEEE 802.15.4 Networks. To overcome the issue of Energy efficiency and network collision energy efficient cluster scheduling and interference mitigation for IEEE 802.15.4 Network is proposed. It uses a time division cluster scheduling technique that offers energy efficiency in the cluster-tree network. In addition, an interference mitigation technique is demonstrated which detects and mitigates the channel interference based on packet-error detection and repeated channel-handoff command transmission.
For the issues of delay and reliability in cluster network, QoS aware intercluster routing protocol for IEEE 802.15.4 Networks is proposed. It consists of some modules like reliability module, packet classifier, hello protocol module, routing service module. Using the Packet classifier, the packets are classified into the data and hello packets. The data packets are classified based on the priority. Neighbour table is constructed to maintain the information of neighbour nodes reliabilities by Hello protocol module. Moreover, routing table is built using the routing service module. The delay in the route is controlled by delay metrics, which is a sum of queuing delay and transmission delay.
For the issues of congestion and admit real-time flows an Adaptive data rate control for clustered architecture in IEEE 802.15.4 Networks is proposed. A network device is designed to regulate its data rate adaptively using the feedback message i.e. Congestion Notification Field (CNF) in beacon frame received from the receiver side. The network device controls or changes its data rate based on CNF value. Along with this scalability is considered by modifying encoding parameters using Particle Swarm Optimization (PSO) to balance the target output rate for supporting high data rate. Simulation results show that the proposed techniques significantly reduce the energy consumption by 17% and the network collision, enhance the performance, mitigate the effect of congestion, and admit real-time flows.
Available under License Creative Commons Attribution Non-commercial No Derivatives.
Download (1MB) | Preview
Downloads
Downloads per month over past year