The issue of admixture in human populations is normally addressed by genome-wide (GW) studies, and several approaches have been developed to date admixture events [1,2,3,4,5]. Admixed populations bear chromosomes with segments of DNA from all contributing source groups, the size of which decreases over successive generations until recombination renders them undetectably short. Several algorithms attempt to date admixture events by inferring the size of the nuclear ancestry segments, and these can work well when dating recent episodes in human history, such as the sub-Saharan African input into the New World [6], but they fail to detect several known episodes that took place at earlier times, such as the African input into Iberia [1] and genetic exchanges across the Red Sea [7]. Simulations with the suite of methods available at the ADMIXTOOLS package indicated that these methods could detect admixture events as early as 500 generation ago, but real data did not allow the tracing of such old events [8]. A recent improved algorithm, called GLOBETROTTER, has been used to tackle the detection of the co-occurrence of several mixture events by decomposing each chromosome into a series of haplotypic chunks and then analysing each chunk independently [3], but the problem of detecting ancient events remains. Its application to the systematic screening of worldwide admixture events was able to reveal around 100 events, but all occurring over only the past 4,000 years [3]
Available under License Creative Commons Attribution.
Download (2MB) | Preview
Downloads
Downloads per month over past year