Shagluf, Abubaker, Longstaff, Andrew P. and Fletcher, Simon (2015) A Preliminary Study of Applying Lean Six Sigma Methods to Machine Tool Measurement. In: Second International Conference on Sustainable Design and Manufacturing, 12th-14th April 2015, Seville, Spain.

Many manufacturers aim to increase their levels of high-quality production in order to improve their market competitiveness. Continuous improvement of maintenance strategies is a key factor to be capable of delivering high quality products and services on-time with minimal operating costs. However, the cost of maintaining quality is often perceived as a non-added-value task. Improving the efficiency and effectiveness of the measurement procedures necessary to guarantee accuracy of production is a more complex task than many other maintenance functions and so deserves particular analysis.
This paper investigates the feasibility of producing a concise yet effective framework that will provide a preliminary approach for integrating Lean and Six Sigma philosophies to the specific goal of reducing unnecessary downtime on manufacturing machines while maintaining its ability to machine to the required tolerance.
The purpose of this study is to show how a Six Sigma infrastructure is used to investigate the root causes of complication occurring during the machine tool measurement. This work recognises issues of the uncertainty of data, and the measurement procedures in parallel with the main tools of Six Sigma’s Define-Measure-Analyse-Improve-Control (DMAIC).
The significance of this work is that machine tool accuracy is critical for high value manufacturing. Over-measuring the machine to ensure accuracy potentially reduces production volume. However, not measuring them or ignoring accuracy aspects possibly lead to production waste. This piece of work aims to present a lean guidance to lessen measurement uncertainties and optimise the machine tool benchmarking procedures, while adopting the DMAIC strategy to reduce unnecessary downtime.

sdm15-031.pdf - Published Version

Download (336kB) | Preview


Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email