Abstract
Three-dimensional fluid flow and heat transfer phenomena inside heated microchannels is investigated. The steady, laminar flow and heat transfer equations are solved using a finite-volume method. The numerical procedure is validated by comparing the predicted local thermal resistances with available experimental data. The friction factor is also predicted in this study. It was found that the heat input lowers the frictional losses, particularly at lower Reynolds numbers. At lower Reynolds numbers the temperature of the water increases, leading to a decrease in the viscosity and hence smaller frictional losses.
Information
Library
Statistics