Olszewska, Joanna Isabelle (2013) Semantic, Automatic Image Annotation Based On Multi-Layered Active Contours and Decision Trees. International Journal of Advanced Computer Science and Applications, 4 (8). pp. 201-208. ISSN 2156-5570
Abstract

In this paper, we propose a new approach for automatic image annotation (AIA) in order to automatically and efficiently assign linguistic concepts to visual data such as digital images, based on both numeric and semantic features. The presented method first computes multi-layered active contours. The first-layer active contour corresponds to the main object or foreground, while the next-layers active contours delineate the object’s subparts. Then, visual features are extracted within the regions segmented by these active contours and are mapped into semantic notions. Next, decision trees are trained based on these attributes, and the image is semantically annotated using the resulting decision rules. Experiments carried out on several standards datasets have demonstrated the reliability and the computational effectiveness of our AIA system.

Library
Documents
[thumbnail of Olszewska_IJACSA(2013)vol4no8.pdf]
Preview
Olszewska_IJACSA(2013)vol4no8.pdf - Accepted Version

Download (2MB) | Preview
Statistics

Downloads

Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email