Rowe, W. Brian, Xu, S.X., Chong, F.S. and Weston, William (1982) Hybrid journal bearings with particular reference to hole-entry configurations. Tribology International, 15 (6). pp. 339-348. ISSN 0301-679X
Abstract

There is a spectrum of pressure-fed journal bearings ranging from the purely hydrostatic bearing characteristics, ie zero speed operation, to the purely hydrodynamic bearing characteristics which depend completely on speed. Between these two extremes, hybrid bearing characteristics rely on mixed modes of external pressurisation and speed-dependent pressurisation. Large high speed hydrodynamic bearings require the lubricant to be pumped under pressure for temperature control. It is therefore attractive to use this external source of pressure to enhance the start-up performance by reducing wear and improving stability. Hybrid bearings offer the possibility of improving on both the zero-speed characteristics of hydrostatic bearings and on the whole range of speed characteristics of hydrodynamic bearings. It is concluded that hole-entry bearings may be particularly effective when compared with other bearing configurations for good load support and low energy consumption, when used in any of the four modes of operation including: zero-speed hydrostatic mode; high-speed hydrodynamic mode; zero and high-speed hybrid mode; and jacking mode where areas are pressurised for start-up. A modification to the procedure for solving the Reynolds equation is introduced to cope with cavitated regions. The technique presented for solving the bearing pressures and cavitation boundaries is efficient and has relevance to any type of liquid film bearing.

Library
Statistics