Wet snow shedding from overhead power transmission cables due to periodically repeated impacts was simulated using the finite element software ADINA. It was simulated by point loads whose mass depended on the snow load on the cable. The adhesion between snow and cable was modeled by vertical springs whose stiffness was determined so that the spring force simulates tensile adhesion. Failure criterion for snow detachment from the cable was defined based on the acceleration of the snow-covered cable. This model was applied on a real scale cable with span length of 470 m. Time history of displacement at the excitation point was the input to the model, where varying impacts lead to different accelerations of the cable. The results showed the effects of increasing impact loads on cable jump and, consequently, on the rate of shedding.