Somaraki, V. and McCluskey, T.L. (2012) A robust validation framework for trend mining : a study in diabetic retinopathy. In: Proceedings of The Queen’s Diamond Jubilee Computing and Engineering Annual Researchers’ Conference 2012: CEARC’12. University of Huddersfield, Huddersfield, pp. 63-68. ISBN 978-1-86218-106-9

Data mining is concerned with the identification of hidden patterns in data. Trand mining is a branch of data mining that focusses on the process to identify and analyze hidden trends in temporal data. A novel trend mining framework is described in this paper. The framework considers trends in terms of sequences of support values associate with frequent items sets and uses a trend mining algorithm that produces prototypes trends. To validate the framework in the analysis of the generated trends a mechanism is also proposed. The framework is evaluated using longitudinal Diabetic Retinopathy screening data.

Cover page
Cover_pages.pdf - Published Version

Download (1MB) | Preview
V_Somaraki_Paper.pdf - Published Version

Download (162kB) | Preview


Downloads per month over past year

Downloads per month over past year for

Downloads per month over past year for

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email