Wang, Lizhen, Lu, Joan, Yip, Yau Jim and Lu, Joan (2007) AOG-ags algorithms and applications. In: Advanced Data Mining and Applications. Lecture Notes in Computer Science, 4632/2 . Springer Berlin / Heidelberg, pp. 323-334. ISBN 9783-540738701

The attribute-oriented generalization (AOG for short) method is one of the most important data mining methods. In this paper, a reasonable approach of AOG (AOG-ags, attribute-oriented generalization based on attributes’ generalization sequence), which expands the traditional AOG method efficiently, is proposed. By introducing equivalence partition trees, an optimization algorithm of the AOG-ags is devised. Defining interestingness of attributes’ generalization sequences, the selection problem of attributes’ generalization sequences is solved. Extensive experimental results show that the AOG-ags are useful and efficient. Particularly, by using the AOG-ags algorithm in a plant distributing dataset, some distributing rules for the species of plants in an area are found interesting.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email