Search:
Computing and Library Services - delivering an inspiring information environment

Planetary Gear Fault Diagnosis Based on Instantaneous Angular Speed Analysis

Zeng, Qiang, Zainab, Mones, Shao, Yimin, Gu, Fengshou and Ball, Andrew (2017) Planetary Gear Fault Diagnosis Based on Instantaneous Angular Speed Analysis. Proceedings of the 23rd International Conference on Automation & Computing, (University of Huddersfield, 7-8 September 2017). (In Press)

[img]
Preview
PDF - Accepted Version
Download (2MB) | Preview

Abstract

Planetary Gears (PG) are widely used in many important transmission systems such as helicopters and wind turbines due to its advantages of high power-weight ratio, self-centering and high transmission ratio. Vibration based condition monitoring of PG has received extensive researches for ensuring safe operations of these critical systems. However, due to the moving mesh gears and noise influences, the diagnostics of planet gear faults by conventional vibration measurements needs intensive signal processing but provides less satisfactory performance. This study investigates Instantaneous Angular Speed (IAS) based diagnostics which associates more directly with gear dynamics and is not influenced by the moving mesh gears. A pure torsional dynamic model of a PG is developed to gain the characteristics of IAS under different fault cases. Then experiments are performed to evaluate this IAS based diagnostics. Particularly, IAS signatures obtained by demodulating the frequency modulated pulse trains produced by two in-house made encoder wheels mounted at both the input and output of the PG. In addition, order spectrum analysis is applied to IAS signals to highlight fault components. IAS order spectra exhibit clear changes in the spectral amplitudes associating with different fault frequencies, showing consistent and efficient diagnostics. Besides, both the measurement system and signal processing computation for IAS based monitoring are more costeffective and easier to be implemented online, compared with conventional vibration based methods.

Item Type: Article
Additional Information: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Uncontrolled Keywords: Planetary gear; Torsional model; Instantaneous angular speed; Condition monitoring
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Schools: School of Computing and Engineering
Related URLs:
Depositing User: Jonathan Cook
Date Deposited: 09 Oct 2017 10:53
Last Modified: 12 Oct 2017 05:21
URI: http://eprints.hud.ac.uk/id/eprint/33648

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©