Computing and Library Services - delivering an inspiring information environment

The practical Pomeron for high energy proton collimation

Appleby, R. B., Barlow, Roger, Molson, J. G., Serluca, M. and Toader, Adina (2016) The practical Pomeron for high energy proton collimation. The European Physical Journal C, 76 (10). ISSN 1434-6044

PDF - Published Version
Available under License Creative Commons Attribution.

Download (5MB) | Preview


We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.

Item Type: Article
Subjects: Q Science > QC Physics
Schools: School of Computing and Engineering
Related URLs:
Depositing User: Sally Hughes
Date Deposited: 06 Jun 2017 08:03
Last Modified: 28 Aug 2021 15:56


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©