Search:
Computing and Library Services - delivering an inspiring information environment

Diagnostic method for photovoltaic systems based on six layer detection algorithm

Dhimish, Mahmoud, Holmes, Violeta, Mehrdadi, Bruce and Dales, Mark (2017) Diagnostic method for photovoltaic systems based on six layer detection algorithm. Electric Power Systems Research, 151. pp. 26-39. ISSN 0378-7796

[img] PDF (Diagnostic Method for Photovoltaic Systems Based on Six Layer Detection Algorithm) - Published Version
Restricted to Repository staff only

Download (5MB)

Abstract

This work proposes a fault detection algorithm based on the analysis of the theoretical curves which describe the behaviour of an existing grid-connected photovoltaic (GCPV) plant. For a given set of work-ing conditions, solar irradiance and PV modules’ temperature, a number of attributes such as voltage ratio (VR) and power ratio (PR) are simulated using virtual instrumentation (VI) LabVIEW software. Furthermore, a third order polynomial function is used to generate two detection limits (high and low limit)for the VR and PR ratios obtained using LabVIEW simulation tool.
The high and low detection limits are compared with real-time long-term data measurements from a 1.1 kWp and 0.52 kWp GCPV systems installed at the University of Huddersfield, United Kingdom. Furthermore, samples that lies out of the detecting limits are processed by a fuzzy logic classification system which consists of two inputs (VR and PR) and one output membership function.
The obtained results show that the fault detection algorithm can accurately detect different faults occurring in the PV system. The maximum detection accuracy of the algorithm before considering the fuzzy logic system is equal to 95.27%, however, the fault detection accuracy is increased up to a minimum value of 98.8% after considering the fuzzy logic system.

Item Type: Article
Subjects: Q Science > QA Mathematics
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Schools: School of Computing and Engineering
Related URLs:
Depositing User: Mahmoud Dhimish
Date Deposited: 16 Jun 2017 09:28
Last Modified: 16 Jun 2017 18:31
URI: http://eprints.hud.ac.uk/id/eprint/32012

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©