Search:
Computing and Library Services - delivering an inspiring information environment

Identifying and Exploiting Features for Effective Plan Retrieval in Case-Based Planning

Vallati, Mauro, Serina, Ivan, Saetti, Alessandro and Gerevini, Alfonso (2016) Identifying and Exploiting Features for Effective Plan Retrieval in Case-Based Planning. Fundamenta Informaticae. ISSN 0169-2968 (In Press)

[img] PDF - Accepted Version
Restricted to Repository staff only

Download (1MB)

Abstract

Case-based planning can fruitfully exploit knowledge gained by solving a large number of problems, storing the corresponding solutions in a plan library and reusing them for solving similar planning problems in the future. Case-based planning is very effective when similar reuse candidates can be efficiently and effectively chosen.
In this paper, we study an innovative technique based on planning problem features for efficiently retrieving solved planning problems (and relative plans) from large plan libraries. A problem feature is a characteristic
–usually provided under the form of a number– of the instance that can be automatically derived from the problem specification, domain and search space analyses, or different problem encodings. Given a planning problem to solve, its features are extracted and compared to those of problems stored in the case base, in order to identify most similar problems. Since the use of existing planning features is not always able to effectively distinguish between problems within the same planning domain, we introduce a large number of new features. An experimental analysis in this paper investigates the best set of
features to be exploited for retrieving plans in case-based planning, and shows that our feature-based retrieval approach can significantly improve the performance of a state-of-the-art case-based planning system.

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QA Mathematics > QA76 Computer software
Schools: School of Computing and Engineering
School of Computing and Engineering > High-Performance Intelligent Computing > Planning, Autonomy and Representation of Knowledge
School of Computing and Engineering > High-Performance Intelligent Computing > Planning, Autonomy and Representation of Knowledge
Related URLs:
Depositing User: Mauro Vallati
Date Deposited: 08 Nov 2016 12:09
Last Modified: 09 Dec 2016 06:17
URI: http://eprints.hud.ac.uk/id/eprint/29955

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©