Ren, Hongyu, Gao, Feng and Jiang, Xiangqian (2016) Least-squares method for data reconstruction from gradient data in deflectometry. Applied Optics, 55 (22). pp. 6052-6059. ISSN 0003-6935
|
PDF
- Accepted Version
Download (802kB) | Preview |
Abstract
Least-squares integration (LSI) and radial basis function integration (RBFI) methods are widely used to reconstruct specular surface shapes from gradient data in a deflectometry measurement. The traditional LSI method requires gradient data having a rectangular grid, and the RBFI method is effective at handling small size measurement data sets. Practically, the amount of gradient data is rather large, and data grids are in quadrilateral shapes. With this in mind, a new LSI method is proposed to integrate gradient data, which is based on an approximation that the normal vector of one point is perpendicular to the vectors connecting points at either side. A small measurement data set integrated by the RBFI method is employed as a supplementary constraint of the proposed method. Simulation and experimental results show that this proposed method is effective and accurate at handling deflectometry measurement.
Item Type: | Article |
---|---|
Subjects: | Q Science > QA Mathematics Q Science > QA Mathematics > QA75 Electronic computers. Computer science Q Science > QC Physics |
Schools: | School of Computing and Engineering School of Computing and Engineering > Centre for Precision Technologies > EPSRC Centre for Innovative Manufacturing in Advanced Metrology |
Related URLs: | |
Depositing User: | Feng Gao |
Date Deposited: | 05 Aug 2016 14:40 |
Last Modified: | 28 Aug 2021 16:51 |
URI: | http://eprints.hud.ac.uk/id/eprint/29138 |
Downloads
Downloads per month over past year
Repository Staff Only: item control page
![]() |
View Item |