Townsend, Andrew and Mishra, Rakesh (2016) Design and development of a helium injection system to improve external leakage detection during liquid nitrogen immersion tests. Cryogenics, 79. pp. 17-25. ISSN 00112275

The testing of assemblies for use in cryogenic systems commonly includes evaluation at or near operating (therefore cryogenic) temperature. Typical assemblies include valves and pumps for use in liquid oxygen-liquid hydrogen rocket engines. One frequently specified method of cryogenic external leakage testing requires the assembly, pressurized with gaseous helium (GHe), be immersed in a bath of liquid nitrogen (LN2) and allowed to thermally stabilize. Component interfaces are then visually inspected for leakage (bubbles). Unfortunately the liquid nitrogen will be boiling under normal, bench-top, test conditions. This boiling tends to mask even significant leakage.

One little known and perhaps under-utilized property of helium is the seemingly counter-intuitive thermodynamic property that when ambient temperature helium is bubbled through boiling LN2 at a temperature of -195.8 °C, the temperature of the liquid nitrogen will reduce.

This paper reports on the design and testing of a novel proof-of-concept helium injection control system confirming that it is possible to reduce the temperature of an LN2 bath below boiling point through the controlled injection of ambient temperature gaseous helium and then to efficiently maintain a reduced helium flow rate to maintain a stabilized liquid temperature, enabling clear visual observation of components immersed within the LN2. Helium saturation testing is performed and injection system sizing is discussed

TownsendDesignPUblished.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview


Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email