Parkinson, Simon and Longstaff, Andrew P. (2015) Multi-objective optimisation of machine tool error mapping using automated planning. Expert Systems With Applications, 42 (6). pp. 3005-3015. ISSN 0957-4174

Error mapping of machine tools is a multi-measurement task that is planned based on expert knowledge. There are no intelligent tools aiding the production of optimal measurement plans. In previous work, a method of intelligently constructing measurement plans demonstrated that it is feasible to optimise the plans either to reduce machine tool downtime or the estimated uncertainty of measurement due to the plan schedule. However, production scheduling and a continuously changing environment can impose conflicting constraints on downtime and the uncertainty of measurement. In this paper, the use of the produced measurement model to minimise machine tool downtime, the uncertainty of measurement and the arithmetic mean of both is investigated and discussed through the use of twelve different error mapping instances. The multi-objective search plans on average have a 3% reduction in the time metric when compared to the downtime of the uncertainty optimised plan and a 23% improvement in estimated uncertainty of measurement metric when compared to the uncertainty of the temporally optimised plan. Further experiments on a High Performance Computing (HPC) architecture demonstrated that there is on average a 3% improvement in optimality when compared with the experiments performed on the PC architecture. This demonstrates that even though a 4% improvement is beneficial, in most applications a standard PC architecture will result in valid error mapping plan.

1-s2.0-S0957417414007659-main.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview


Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email