Balyo, Tomas, Chrpa, Lukáš and Kilani, Asma (2014) On Different Strategies for Eliminating Redundant Actions from Plans. In: Proceedings of the Seventh Annual Symposium on Combinatorial Search. SoCS 2014 . AAAI Press, Prague, Czech Republic, pp. 10-18. ISBN 978-1-57735-676-9
![]() |
PDF
- Accepted Version
Download (221kB) |
Abstract
Satisficing planning engines are often able to generate plans in a reasonable time, however, plans are often far from optimal. Such plans often contain a high number of redundant actions, that are actions, which can be removed without affecting the validity of the plans. Existing approaches for determining and eliminating redundant actions work in polynomial time, however, do not guarantee eliminating the "best" set of redundant actions, since such a problem is NP-complete. We introduce an approach which encodes the problem of determining the "best" set of redundant actions (i.e. having the maximum total-cost) as a weighted MaxSAT problem. Moreover, we adapt the existing polynomial technique which greedily tries to eliminate an action and its dependants from the plan in order to eliminate more expensive redundant actions. The proposed approaches are empirically compared to existing approaches on plans generated by state-of-the-art planning engines on standard planning benchmarks
Item Type: | Book Chapter |
---|---|
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science Q Science > QA Mathematics > QA76 Computer software |
Schools: | School of Computing and Engineering School of Computing and Engineering > High-Performance Intelligent Computing > Planning, Autonomy and Representation of Knowledge School of Computing and Engineering > High-Performance Intelligent Computing > Planning, Autonomy and Representation of Knowledge |
Related URLs: | |
Depositing User: | Lukas Chrpa |
Date Deposited: | 16 Oct 2014 15:52 |
Last Modified: | 28 Aug 2021 18:50 |
URI: | http://eprints.hud.ac.uk/id/eprint/22091 |
Downloads
Downloads per month over past year
Repository Staff Only: item control page
![]() |
View Item |