Computing and Library Services - delivering an inspiring information environment

How to select the most relevant 3D roughness parameters of a surface

Deltombe, R., Kubiak, Krzysztof and Bigerelle, M. (2014) How to select the most relevant 3D roughness parameters of a surface. Scanning, 36 (1). pp. 150-160. ISSN 0161-0457

[img] PDF - Accepted Version
Download (2MB)


In order to conduct a comprehensive roughness analysis, around sixty 3D roughness parameters are created to describe most of the surface morphology with regard to specific functions, properties or applications. In this paper, a multiscale surface topography decomposition method is proposed with application to stainless steel (AISI 304), which is processed by rolling at different fabrication stages and by electrical discharge tool machining. Fifty-six 3Droughness parameters defined in ISO, EUR, and ASME standards are calculated for the measured surfaces. Then, expert software 'MesRug' is employed to perform statistical analysis on acquired data in order to find the most relevant parameters characterizing the effect of both processes (rolling and machining), and to determine the most appropriate scale of analysis. For the rolling process: The parameter Vmc (the Core Material Volume-defined as volume of material comprising the texture between heights corresponding to the material ratio values of p=10% and q=80%) computed at the scale of 3 mm is the most relevant parameter to characterize the cold rolling process. For the EDM Process, the best roughness parameter is SPD that represents the number of peaks per unit area after segmentation of a surface into motifs computed at the scale of 8 mm. SCANNING 9999:1-11, 2013. (c) Wiley Periodicals, Inc.

Item Type: Article
Uncontrolled Keywords: Sendzimir cold rolling, electrical discharge machining, surface roughness, 3D-roughness parameters, statistical analysis, bootstrap method, ANOVA
Subjects: T Technology > TJ Mechanical engineering and machinery
Schools: School of Computing and Engineering
Depositing User: Krzysztof Kubiak
Date Deposited: 18 Sep 2014 15:37
Last Modified: 28 Aug 2021 18:56


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©