Baqqar, Mabrouka, Tran, Van Tung, Gu, Fengshou and Ball, Andrew (2013) Comparison between adaptive neuro-fuzzy inference system and general regression neural networks for gearbox fault detection using motor operating parameters. In: Proceedings of Computing and Engineering Annual Researchers' Conference 2013 : CEARC'13. University of Huddersfield, Huddersfield, pp. 118-126. ISBN 9781862181212
Abstract

Condition monitoring of a gearbox is a crucial activity due to its importance in power transmission for many industrial applications. Thus, there has always been a constant pressure to improve measuring techniques and analytical tools for early detection of faults in gearboxes. This study focuses on developing gearbox monitoring methods using the operating parameters obtained from machine control processes rather than the traditional measures such as vibration and acoustics. To monitor the gearbox conditions, an adaptive neuro-fuzzy inference system (ANFIS) is used to capture the nonlinear connections between the electrical motor current and control parameters such as load settings and temperatures. The predicted values generated by the ANFIS model are then compared with the measured values to indicate the abnormal condition in gearbox. Furthermore, a comparative
study of the results this technique and the general regression neural networks (GRNN) is also carried out. The comparison results show that the ANFIS model performs more accurately than the other model in gearbox condition monitoring and fault detection.

Information
Library
Documents
[img]
Preview
CEARC13_proceedings.pdf - Cover Image

Download (866kB) | Preview
[img]
Preview
baqqar.pdf - Published Version

Download (734kB) | Preview
Statistics

Downloads

Downloads per month over past year

Downloads per month over past year for
"CEARC13_proceedings.pdf"

Downloads per month over past year for
"baqqar.pdf"

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email