Computing and Library Services - delivering an inspiring information environment

A study of the formation of nanometer-scale cavities in helium-implanted 4H-SiC

Zhang, C.H., Donnelly, S. E., Vishnyakov, Vladimir, Evans, J.H., Shibayama, T. and Sun, Y.M. (2004) A study of the formation of nanometer-scale cavities in helium-implanted 4H-SiC. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 218. pp. 53-60. ISSN 0168-583X

Metadata only available from this repository.


In this work, the annealing behavior of microstructures in 4H-SiC helium-implanted at about 500 K to moderate doses (2.5–5) × 1016 ions cm−2 is studied by combining transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS). It is found that a low concentration of planar clusters of helium bubbles in ring structures was formed in a narrow range of dose in a well-defined depth region of the specimens on annealing above 973 K. The formation of the bubble layer is associated with remarkable distortion and deformation in the matrix. A simple model based on the frozen matrix assumption was developed to study the production of defects in SiC below the temperature of vacancy mobility. We found that the main features of the depth distribution of the bubble layer can be understood using this model if assuming the planar clusters of bubbles evolve from vacancy clusters larger than a critical size through an intermediate stage of helium platelets.

Item Type: Article
Subjects: Q Science > QC Physics
Schools: School of Computing and Engineering > Electron Microscopy and Materials Analysis
Related URLs:
Depositing User: Graeme Greaves
Date Deposited: 01 Oct 2013 11:41
Last Modified: 28 Aug 2021 11:32


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©