Jiang, Xiang (2012) Precision surface measurement. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370 (1973). pp. 4089-4114. ISSN 1364-503X

Surface size, geometry and texture are some of the most influential subjects in the fields of precision and ultra-precision engineering, defining the functional interface through which emerging products operate. Next-generation products demand super-smooth surfaces, freeform geometries or even deterministically introduced microstructures to provide functional performance. Technological progress using these surfaces types is possible only if the associated manufacturing processes are rigorously controlled and the surfaces are measurable. Metrology for advanced surfaces is not established. The current state of the art is challenged in respect to (i) surface characteristics, extremity of size, ultra precision, quality, geometric complexity, or combinations of these aspects, and (ii) measurement technology for the manufacturing environment, in particular, online, non-contact, high speed, ease of use, small footprint and robustness. This study addresses the challenges in this subject area and discusses some fundaments and principles derived from interdisciplinary research. The combination of these aspects is enabling the creation of manufacturing-environment-based measurement technology. This is expected to facilitate advanced surface manufacture over a wide range of sectors, including large science programmes and high-technology engineering.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email