Search:
Computing and Library Services - delivering an inspiring information environment

Efficient offline thermal error modelling strategy for accurate thermal behaviour assessment of the machine tool.

Mian, Naeem S., Fletcher, Simon, Longstaff, Andrew P., Myers, Alan and Pislaru, Crinela (2009) Efficient offline thermal error modelling strategy for accurate thermal behaviour assessment of the machine tool. In: Proceedings of Computing and Engineering Annual Researchers' Conference 2009: CEARC’09. University of Huddersfield, Huddersfield, pp. 26-32. ISBN 9781862180857

[img] PDF - Published Version
Download (560kB)

    Abstract

    Positional accuracy of the machine tool is affected by the instabilities caused by the thermal gradients produced from the internal and external heat sources. Thermal gradients cause linear and non linear thermal expansions of the complex machine parts which result in the generation of the positional error between the tool and the work piece affecting the machining accuracy. Thermal gradients due to internally generated heat and varying environmental conditions pass through structural linkages and mechanical joints where the roughness and form of the contacting surfaces act as resistance to thermal flow and affect the heat transfer coefficients. Measurement of long term thermal behaviour and associated thermal deformations in the machine structure is a time consuming procedure and most often requires machine downtime and is therefore considered a dominant issue for this type of activity, whether for characterisation or correction. This paper presents the continuation of the efficient offline technique using Finite Element Analysis (FEA) to simulate the combined effects of the internal and external heat sources on a small vertical milling machine (VMC). The complete simplified CAD models of the machine were created and used to simulate the thermal behaviour of the machine structure by using the evaluated experimental data. The FEA simulated results obtained are in close correlation with the obtained experimental results which enables the offline thermal assessments for short and long term thermal behaviour and the extraction of the nodal thermal information for the development and enhancements of robust thermal compensation models.

    Item Type: Book Chapter
    Subjects: T Technology > T Technology (General)
    T Technology > TL Motor vehicles. Aeronautics. Astronautics
    Schools: School of Computing and Engineering
    School of Computing and Engineering > Centre for Precision Technologies
    School of Computing and Engineering > Centre for Precision Technologies > Engineering Control and Machine Performance Research Group
    School of Computing and Engineering > Computing and Engineering Annual Researchers' Conference (CEARC)
    School of Computing and Engineering > Diagnostic Engineering Research Centre
    School of Computing and Engineering > Diagnostic Engineering Research Centre > Energy, Emissions and the Environment Research Group
    School of Computing and Engineering > Diagnostic Engineering Research Centre > Measurement System and Signal Processing Research Group
    School of Computing and Engineering > Pedagogical Research Group
    Related URLs:
    Depositing User: Sharon Beastall
    Date Deposited: 27 Jan 2010 10:33
    Last Modified: 21 Aug 2012 13:40
    URI: http://eprints.hud.ac.uk/id/eprint/6857

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©