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ABSTRACT 

The present work investigates the performance characteristics of a novel Vertical Axis Wind Turbine 

(VAWT) for use in the urban environment. Here the performance of the wind turbine has been analyzed 

experimentally using a full scale prototype measuring 2.0m diameter and 1.0m in height. The turbine was 

located at the exit of a 0.6m x 0.6m wind tunnel section and was subjected to a jet flow. The performance 

output from the turbine has been obtained using a torque transducer unit which provides instantaneous 

torque and speed data. This data has been used to validate a computational model generated from 

Computational Fluid Dynamics (CFD) software code Fluent where a Multi Reference Frame (MRF) 

approach has been used. It is shown that the MRF solving technique under predicts rotor torque at high 

rotor speed and does not predict rotor suction effects on an upstream stream wise velocity profile. It is 

concluded that such variations between experimental and computational velocity fields is the primary 

factor that effects rotor torque output.  

Keywords : Vertical axis, Turbine, Performance, Torque, CFD, MRF 

 

1. INTRODUCTION 

Renewable energy technologies play a key role in the contribution to sustainable energy as a whole. Such 

technologies reduce our dependency on fossil fuel reserves and pave the way for long term energy 

security. Wind power falls into this category and has been harnessed for hundreds of years to perform 

mechanical work and generate power. . From a UK perspective the mainland has limited coal and gas 

resources but is subjected to high wind speeds. It therefore seems that a strong case for the use of wind 

power could be argued. With this in mind, wind power is the first renewable power generation 

technology (excluding large hydro projects) to become a genuine mainstream alternative for increasing 

the generation capacity across the globe [1,2].  

Since the last major European wind energy review in 2004 this sector has seen a rise of 22,000 MW in 

installed generation capacity by the end of 2007 in Europe alone. This rise has contributed to an increase 

in global annual growth rates with 60% of installed capacity now present in Europe. This has placed 

Europe firmly as a global leader in wind energy conversion [3].  

In 2008, the world installed in excess of 20,000 MW of wind turbines bringing the world installed 

capacity over the 100,000 MW milestone. The Global Wind Energy Council (GWEC) has predicted that by 

2012 the global installed capacity from wind energy conversion could be as high as 240,000 MW [3,4]. 

Over the last 30 years significant developments have been made in the wind power sector in the form of 

design optimization for increased power output. Such developments have been limited in the sense that 

the basic design principles of the machines limits the scope of design changes that can be carried out. The 

majority of this design optimization was carried out in the late 70's and early 80's with Sandia 

Laboratories conducted a vast amount of research. The vertical axis machines namely Savonius and 

Darrieus have been investigated extensively in the past and the limitations of each design are well 

documented. The turbine presented in the current work shares many similarities to the Savonius rotor 

which is shown to generate an opposing torque from the flow interaction with the upwind convex blade. 

This interaction effect results in opposing torque acting against the direction of motion which is often 

found on the leeward side of cross flow machines. This effect significantly reduces the peak power output 

and although this is a fundamental problem little research has been conducted to remove this effect.   

Many of the recent developments in turbine design are in the form of novel types of machine particularly 

those that feature multi blade radial design similar to the turbine in the present work. Takao et al [5] 



presents a novel radial cross flow wind turbine featuring five equally spaced NACA 0015 profile blades. 

Surrounding the blade inlet zone is a set of outer guide vanes which are directed into the steam wise flow 

by a downstream tail vane. The turbine measures 0.6m in diameter and 0.7m in height with the machines 

performance output determined from wind tunnel tests. Here, the effect of Reynolds number on turbine 

performance with and without guide vane arrangement has been quantified. The authors report increases 

in power output of 1.5 times for the turbine with guide vane row. Further investigation have been carried 

out into the effects if varying rotor solidity in which the number of blades is varied from 2-5. The turbine 

generates a power coefficient of 0.085 at a tip speed ratio of 0.95 for a five bladed rotor whereas reducing 

the number of blades results in a power coefficient of 0.15 at a tip speed ratio of 1.6. This highlights both 

the effect of solidity on peak power but also the speed up effects by reducing the number of blades.    

Further novel designs have been documented in the form of utility scale vertical axis turbines. Park and 

Lee et al [6,7] have presented a radial cross flow multi blade VAWT which features a set of outer guide 

vanes again directed by a downstream tail vane. Here the outer guide vanes are placed upstream and are 

used to accelerate the flow into the rotor blade passages. A secondary side collector is used to funnel the 

flow into the passages on the leeward side of the machine which would be otherwise un used. Such 

modifications have allowed the authors to maximize power output and have reported power coefficients 

in the order of 0.45 for the baseline six bladed designs. The effects of blade number and turbine aspect 

ratio on power output have also been quantified with the aim of optimizing power coefficient. It is seen 

that increasing the blade number from 6 – 9 results in significant increases in power with increases in the 

order of 13%. Further increases are seen for a blade number of 12 where a 19.5% increase is seen 

compared to the baseline. It is also seen that the overall power output of the machine is extremely 

sensitive to aspect ratio and although some data is provided further studies should be carried out.  

Such examples of increasing power output are now common place although many of the works focus on 

the global performance parameters without consideration to the local flow. The present work will 

investigate the performance characteristics of a novel multi-blade machine using CFD which will be 

validated against full scale experimental data. The wind turbine presented has similarities to that 

presented by Park and Lee et al and features an outer set of guide vanes to increase energy capture.  

2. EXPERIMENTAL TEST SETUP 

The following section describes the experimental test setup used for the validation of CFD data. The 

validation strategy is in the form of a comparative analysis between experimental and computational data 

at identical operating conditions.   

2.1 Wind Turbine Test Rig 

The validation carried out in this study compares a set of experimental data with data obtained from 

computational analysis. Experimental data is obtained from wind tunnel tests using a full scale prototype 

turbine. This prototype turbine has been tested at the fluid dynamic laboratory within the University of 

Huddersfield and measures 2.0m in diameter and 1.0m in height.  

The experimental test setup used for this validation consists of a low speed wind tunnel which uses a 

varofoil single stage axial fan to provide mass flow of air through the test chamber. The wind tunnel is of 

open circuit type where air is discharged into the laboratory environment. The horizontal axis varofoil fan 

is controlled via a pneumatic control valve. The valve bleeds off system pressure and is used to control 

flow speed. Upstream of the test chamber are a set of four manually controlled guide vanes used to 

condition the flow in the vertical direction. These vanes are position so that their longitudinal axis is 

parallel to the stream wise flow direction. Due to the rotational characteristics of the flow exiting the fan 

section a flow straightening section is installed downstream of the guide vanes. This section is in the form 

of aluminum honeycomb sheet which a cell size of 9mm and sheet thickness of 60mm. The sheet 

measures 600mm x 600mm in size and is installed directly into the test section inlet. The test chamber 

consists of four Perspex sheets which have been bonded together to create an air tight 600mm x 600mm 

square section with a length of the 1.5m. The approximate flow speed range within the chamber is 7m/s 

to 24 m/s.  

The experimental performance tests have been carried out at a constant free-stream velocity of 14.8m/s 

which is measured within the test chamber. The velocity profile at the exit of the test section has been 

meaured using a 4 hole coba head pressure probe. It is seen to be non uniform in the ZY plane as per 

figure 1. The profile is shown below in terms of 49 point velocity values which correspond to the 



streamwise flow component only. This is taken to be a one-dimensional flow due to the dominance of the 

this flow component.  

 

FIGURE 1. Velocity field at exit of test chamber 

The wind turbine is positioned downstream of the test section such that it is not enclosed by any 

boundaries. The turbines location relative to the test section exit plane is shown in figure 2. Here, the 

turbines location is dimensionally constrained within the X, Y and Z axis as per the coordinate system 

described in the figure. The offset distance from the test chamber exit plane in the X axis is defined as 'd' 

and is 0.5m. The secondary location parameter is 'd1' and acts in the Z axis, this dimension is 0.193m.  

The final constraint is in the Y axis which is not provided on the figure. This constraint requires the outer 

diameter of the turbine to be tangential to the test chamber wall.  

 

 

FIGURE 2. Wind turbine location FIGURE 3. Wind turbine geometry positional 

constraints 

As the turbine is circular the location is still under-defined and hence a relation between the turbine 

blade geometry and test chamber walls has been provied in  figure 3. Here the turbine geometry is 

alligned to the test chamber wall using a parallel constraint between the outer chamber wall and a line 

that is fixed tangentially to the outer stator tip. This line is taken from the central axis of the turbine 

geometry and extended radially where it meets the stator tip face. 

2.2 Wind Turbine Setup 

The wind turbine test setup consists of a torque transducer, driving gear, pinion gear and permanent 

magnet generator.  The torque transducer is coupled to the wind turbine transmission shaft which is 

located by an upper and lower bearing arrangement. The transducer is fixed to the shaft using a steel 

coupling located by six grub screws. Each of these grub screws has been pre torqued to 20Nm and hence 

locates on the shaft with zero slip.. On the opposite end of the transducer a spur type driving gear is 

mounted to drive the generator. This is again located on the transducer shaft using two M10 bolts pre 

torqued to 20 Nm. The test setup of the turbine is shown below: 



 

FIGURE 4. Wind turbine transmission/generator configuration 

For this set of experiments the generator is used as a brake to control the speed of the rotor. It is this 

braking effect that loads up the transmission shaft resulting in a torsional moment. The generator has an 

in built rectifier and allows DC current output to be taken. This DC current is connected in series to a 

dummy load in the form of a variac resistor bank. A power analyzer is then taken in series between the 

generator and the load to give realtime data on current, voltage and power. Note for this set of 

experiments the electrical power output has not been studied.  

To characterize the performance of the turbine both torque and speed data is taken from the transducer 

unit mounted on the shaft. The tranducer gives a 0-5 V output for both torque and speed. The calibration 

of the transducer has been carried out by the manufacturer and states that 5V = 100Nm of torque. To 

chracterize the transducer speed output an in house calibration test has been carried out using a large DC 

servo motor which maintains constant speed.  

2.3 Experimental Performance Data 

The transducer has two outputs, one for torque and one for speed. Each channel is connected to a data 

acquisition card which is used to sample the data over a given time period. The data acquisition card is a 

Sinocera 24 Bit /96 KHz over 4 channelas.  

For the purpose of this validation, six different rotor speeds have been studied where the free-stream 

velocity along with the torque and speed output of the turbine have been sampled. Each data set has been 

sampled at 750Hz which is shown to give reliable data over a period of 15 seconds. The rotor speed is set 

using the variac dummy load resistor bank and once set maintains steady state. The following results 

show the torque output of the turbine as a function of rotor Tip Speed Ratio for a free-stream velocity of 

14.8 m/s.  

 

FIGURE 5. Wind turbine torque curve plotted with Tip Speed Ratio 

The data obtained here will be used for validating the CFD model for the same conditions. The following 

section describes the CFD model design. 

 



3. COMPUTATIONAL METHODOLOGY 

 

The CFD software Fluent numerically simulates a virtual flow domain for a given application. It iteratively 

solves the time-averaged Navier-Stokes equations along with the continuity and auxiliary equations using 

a control volume approach [8]. 

The following will describe the design and development of a three-dimensional CFD model that will be 

used for analysis. The model consists of a rectangular flow domain that is used to represent the physical 

surroundings of the laboratory area where the experimental testing was carried out. Within this domain 

is the wind turbine geometry which in this case is represented in full scale at 2.0m diameter x 1.0m in 

height. 

A Multi Reference Frame (MRF) solving technique has been used to perform steady state simulations for 

different free-stream velocities and rotational speeds. This approach is often known as 'Frozen Rotor' as 

the rotor geometry is kept stationary. In this case two separate fluid continuums have been created 

around the stator and rotor blades. The fluid continuum corresponding to the rotor zone is rotated 

relative to both the stationary rotor blades and the stationary stator fluid zone. It is this rotation of fluid 

against the stationary blades that is used to compute the forces acting on the rotor and hence the reaction 

given from the rotor to the fluid. 

This is accomplished in the CFD code by incorporating additional acceleration terms which occur due to 

the transformation from the stationary to the moving reference frame. The flow around the rotor could 

then be modeled by solving the transport equations in a steady-state manner. The boundary conditions 

for the rotor fluid are generated by averaging the interface condition between the rotor and the stator. 

The flow domain was discretised into a structured grid using hexagonal elements. The region within the 

turbine was meshed using an unstructured tetrahedral type grid. To ensure high accuracy within the area 

of interest a high mesh density was used within the turbine zones compared to the outer domain. The 

ratio of mesh nodal position between the outer domain and turbine zone is limited to 5.  

The location of the wind turbine geometry relative to the flow domain boundaries is depicted in figures 6 

and 7.  Here the turbine is viewed in both the XY and ZX plane as per the axis shown on figure 6. The flow 

domain used in this study is broken down into a number of discrete volumes which correspond to 

different zones within the domain. These zones are present to facilitate mesh control in and around the 

turbine geometry with the aim of improving overall mesh quality.  

 

 

 

FIGURE 6. Flow domain XY view    FIGURE 7. Flow domain ZX view 

            Where, X =  11m, Y = 7m, Y1 = 2.5m           Where, Z =  3.4m  Z1= 1.5m  X1= 0.5m    



3.1 Wind Turbine Geometry 

Placed at the origin of the flow domain at X,Y,Z = 0 is the central axis of the turbine located on its bottom 

face. The turbine used in this study is full scale and hence is 2.0m in diameter and 1.0m in height. The 

turbine region is made up of three distinct zones as shown in figure 8; 

1. The outer stator which consists of 12 equally spaced stationary guide blades. 

2. The inner rotor which consists of 12 equally spaced blades which rotate about the Z axis. 

3.  The volume in the central region of the turbine which is also referred to as the inner core.  

 

Where, r1 = 0.5m, r3 = 0.7m and r4 = 1.0m 

 

FIGURE 8. Turbine geometry      FIGURE 9. Flow domain zones 

Surrounding the turbine geometry are small volumes which are used to control the mesh. The distance 

between the outer radius of the turbine and the faces associated to the control volumes is 0.5m. These 

regions are split into smaller discrete volumes where their associated lower topoligical entities are used 

to govern mesh nodal spacing in and around the turbine blades. Due to the high concentration of mesh 

elements within this region such volumes also reduce computational demands by distributing the mesh 

evenly over a larger number of volumes. This process signigficantly reduces the memory demands during 

the meshing process by allowing the mesh to be stored before meshing the next zone.  

Beyond these zones exist two further control volumes which make up the remaining fluid domain in the Y 

direction. These regions are simple singular rectangular volumes which carry the outer flow domain 

mesh scheme. The size of these volumes is again governed by the dimensions of the laboratory area. The 

final volume that makes up the flow domain is the outer flow domain. This is again a simple one piece 

rectangular volume that spans the remaing void in the X direction. These regions and the entire flow 

domain correspond to the exact dimensions of the laboratory where the baseline set of experimental data 

was taken. This flow domain and its associated zones are depicted in figure 9. 

Within each of these regions exists a number of geometrical enitities ranging from edges, faces and the 

final volume. Each face within the flow domain has its own individual boundary condition to replicate the 

physical condition seen in the laboratory. The turbine geometry used here is identical to that used in 

experiments in terms of length and profile. To reduce computational demands the CFD turbine geometry 

is simplified to have zero thickness walls compared to the 1.2mm sheet aluminium used on the prototype 

machine. Such simplifications have been used by other authors in which zero thickness blades are 

employed in a Rushton turbine [9]. This simplification allows for a much higher quality mesh in the blade 

passage regions by eliminating such a short edge. To validate this effect a preliminary study has been 

carred out on a two-dimensional model. This model when scaled to three-dimensions showed 2% 

varaition in torque output between a model with blade thickness and a model without.  



3.2 Wind Turbine Boundary Conditions 

The stator and rotor fluid rings contain twelve blades each with an associated wall boundary coniditon as 

shown in figures 10 and 11. These blades are used to govern the fluid volume between them which are 

referred to as the blade passages. Each turbine blade has two associated geometrical faces which are 

meshed on both sides. The primary face is defined as blade whereas the secondary surface is defined as 

blade-shadow.  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10. Stator blade passage      FIGURE 11. Rotor Blade Passage 

Each of these faces has been modelled as a non-porous surface using the 'wall' boundary condition within 

Fluent. It is the forces due to pressure and viscosity on each of these blade walls that will be used to 

determie the torque output of the rotor. The upper and lower faces within each of the blade passages is 

defined as a wall boundary to replicate the annular rings that are used on the prototype. The remaining 

two faces denoted as inlet and outlet on the figure are used as the inlet and outlet to each blade passage 

cavity. These faces have an interior boundary condition associated with them to allow the fluid to enter 

and exit without any interaction.  

An overview of the turbine zone boundary conditions is provided in figure 12 which shows the velocity 

inlet boundary with respect to the turbine. Figure 13 depicts the wind turbine geometry in a three-

dimensional view where each fluid zone can be seen. Beyond the stator/rotor fluid rings is the central 

core volume within the domain. This cylindrical volume is the the region at the centre of the turbine and 

has a diamter of 1.0m and a height of 1.0m. The outer diamter of this volume corresponds to the rotor 

blade outlet tip radius and is again defined as a fluid continuum. 

 The boundary conditions used for the remaining flow domain consist of a velocity inlet, pressure outlet 

and various interior zones. The velocity inlet used in this model replicates that used in the experiment 

and hence has the same dimensions as the lab test chamber. The orientation of the velocity inlet with 

respect to the turbine geometry is also the same.  

 

 



 

FIGURE 12. Turbine zone boundary conditions      FIGURE 13. Turbine geometry 

 

4. RESULTS  

In the following the data obtained from CFD simulations will be presented. Here a series of tests have 

been carried out to determine the operational characteristics of the machine. The validity of this data is 

examined by carrying out a comparitive analysis between both experimental and CFD data sets. To ensure 

a fair comparison the operating conditions used in CFD reflect those present during experiment namely 

free-stream velocity and rotor speed.  The velocity field at the exit of test chamber has been imported into 

CFD solver Fluent and is taken as the velocity inlet profile. This profile is depcited by figure 14 and shows 

the velocity inlet boundary in the flow domain in the ZY plane. 

4.1 Flow Field Analysis 

The flow field around the wind turbine is shown in figure 15 where contours of velocity magnitude 

depict the non-uniformity in flow. From this figure the jet flow exiting the wind tunnel is captured at a 

mid plane position within the test chamber which is 0.3m from the cell floor. This flow field is generated 

under dynamic conditions and for the purpose of this analysis at a Tip Speed Ratio of 0.43.  

 

 

 

 

 

 

 

 

 

FIGURE 14. Velocity inlet boundary ZY plane    FIGURE 15. Contours of velocity magnitude 

 

The concentration of flow within the stator and rotor passage closest to the exit of the test chamber is 

shown in detail. This rotor/stator blade passage generates the majority of the turbines torque due to its 

position relative to the free-stream flow. Further contributions are made to overall turbine torque from 

the adjacent passage in the anti-clockwise direction which experiences some free-stream flow at similar 

magnitudes as the primary passage. The adjacent passage in the clockwise direction is shielded by the tip 

of the stator blade and hence torque generation is restricted.   



4.2 Computational Performance Data 

The performance characteristics of the wind turbine have been computed using this constant free-stream 

velocity. The pressure and shear forces acting on the rotor blade surfaces are used to compute the 

moment acting about the axis of rotation which is taken to be a dimensional torque. Here the performance 

output of the turbine is investigated under transient conditions by varying the rotational speed of the 

rotor. The rotor speeds used in this analysis are identicial to those obtained from experiments. Due to the 

MRF solving technique used it is only possible to compute torque at one rotor blade position. The blade 

position used in this study corresponds closely to overall mean turbine torque which has been computed 

during preliminary studies from a series of blade positions. The torque curve of the wind turbine is 

shown in figure 16. 

It can be seen from the figure that the torque output of the rotor is maximum when the rotor is static. 

Under dynamic conditions an increase in rotor speed results in a decrease in torque in a linear manner. 

Maximum and minimum torques generated are 23.5 Nm and 6.64 Nm respectively. A comparison is made 

between between experimental torque data and the data obtained from simulation. Both torque curves 

are plotted together and show a systematic variation in CFD torque at high rotational speeds.  

 

FIGURE 16. CFD wind turbine torque curve plotted with Tip Speed Ratio  

It is clear that the experimental torque curve does not follow a linear trend as compared to that obtained 

from CFD. Upon analysing the curves it is apparant that some additional force is acting on the rotor 

during experiments or the MRF solving technique used in CFD is not capturing the flow phenomena in 

sufficient detail. The operating condition at which maximum variation occurs is at a Tip Speed Ratio of 

0.43. Here, a percentage variation between experimental and CFD data is in the order of 85% where CFD 

underpredicts torque.  

To determine the reason for such large variation in rotor torque between experimental and CFD data a 

quanititve investigation has been carried out. It is predicted that both the jet flow and stator blade 

passage flow characteristics are not being accurately modelled by the CFD code. Using a 4-hole cobra type 

pressure probe a series of experimental velocity measurements have been taken. These measurements 

have been taken close to the test chamber wall on the negative Y side due to the nature of flow in this 

region. These tests are described in the following section. 

 

4.3 Computational Flow Field Validation 

To determine the validity of the flow fields predicted by the CFD code, a series of test are carried out 

experimentally. The region of interrogation is shown in figure 17. This figure shows the wind turbine 

relative to the exit of the test section in the XY plane. Also shown on this figure is the side wall which has 

the coordinate Y = 0. For the purpose of the description the view can be assumed to be at the mid-plane 

of the test section in the Z direction. 

The first set of readings are taken at Y = 0 inline with the side wall of the test section. Here a cobra 

pressure probe faces the flow and is alligned with the side wall using a 3-axis robotic traverse accurate to 

0.1mm. This experiment maps the stream-wise flow profile in the +ve X direction as per the figure. The 

probes starting position is taken to be at X = 280mm which corresponds to 280mm away from the test 

chamber exit face. Here, three profiles are taken at different heights in the Z direction. The heights are 

50mm, 300mm and 600mm all relative to the floor section in the test chamber (Z=0mm).  



 

 

 

 

 

 

 

 

 

 

 

   

FIGURE 17. Wind turbine interrogation area 

The velocity magntiude presented in these figures is dimensionless with respect to the free-stream flow 

for that set of readings. The stream-wise distance X is also dimensionless with respect to the diameter of 

the turbine (2.0m).  For each height both experimental and CFD data is plotted at a Tip Speed Ratio of 

0.43. as per the following figures; 

 FIGURE 18. Velocity at y=0/z=50mm     FIGURE 19. Velocity at y=0/z=300mm 

It is seen that the stream-wise flow velocity 

computed from CFD shows similar trends to that 

obtained from experiments for heights of Z=50mm 

and Z=600mm. Furthermore, the magnitudes of 

velocity across this range are of a similar order 

which gives confidence in the grid used for this 

simulation. 

The data presented for a height of Z=300mm shows a 

large variation between experimental data and CFD 

data over the same range. This could be due to the jet 

effect that brings in additional mass that CFD does 

not capture. 

FIGURE 20. Velocity at y=0/z=600mm 

Given the location of this velocity profile such deviation could be the cause of variations seen in torque 

output. Due to the systematic nature of turbine torque output variation the effect of rotor speed on a 

stream-wise flow profile has been computed. This flow profile corresponds to the centre line of the test 

chamber at Z=300mm and Y=300mm and again a probe is traversed in the X direction towards the 

turbine.  



The range of streamwise traverse varies when compared to the previous figures with 0 - 770mm being 

used. As per the previous plots both velocity magnitude and stream-wise distance are non-

dimensionalised in the same way. The following plots show the effect of rotor speed on streamwise 

velocity for both experimental and CFD data; 

   FIGURE 21. CFD velocity at y=300mm/z=300mm           FIGURE 22. Exp velocity at y=300mm/z=300mm  

Upon analysing the computational data it is apparant that the stream-wise velocity profile is not affected 

by rotor speed. This highlights one of the major limitations of the MRF solving technique in that the flow 

field outside of the rotor fluid region is not affected by the flow phenomena occuring within. Such weak 

interaction effects occuring in the radial direction are potentially one of the reasons for large variations 

between experimental and CFD torque output.  The experimental streamwise profile as shown in figure 

22 shows the effect of rotor speed on the upstream flow profile. The magnitudes of velocity are lowest at 

a λ = 0 which is when the rotor is held stationary. As rotor speed increases the upstream velocity 

increases which indicates some form of suction effect that CFD does not capture. At X/D=0.15 the effect of 

rotor speed is clear with maximum velocity generated at maximum rotor speed. This suction effect could 

be the primary factor behind torque variation and its systematic nature.  

5. CONCLUSIONS 

To summarise, a series of tests have been carried out to determine the performance charactersitics of a 

novel multi-blade vertical axis wind turbine. Such tests have been undertaken through experimental and 

computational analysis in which the wind turbine has been subjected to identical conditions. Upon 

analyizing the torque output of the machine there is a systematic underprediction of torque at high rotor 

speeds from CFD. The following conclusions have been drawn; 

- CFD and its associated MRF solving techniqe underpredict torque systematically at high rotor speeds 

with 84% percentage variation between CFD and experimental data at λ=0.43. 

- It is shown that upon analyzing the local flow field experimentally and compuationally there is further 

variation in the local velocity field in the stream-wise direction. 

- Maximum variation in stream-wise velocity profile occurs at Y=0 and Z=300mm in which a systematic 

decrease in velocity occurs with an increase in X/D. 

- The effect of rotor speed on the local velocity field at the centre line of the test section again in the 

stream-wise direction has been computed. It is seen that rotor speed has negligible effect on CFD 

upstream velocity field due to weak interaction effects taken from MRF solving code. 

- Experimental velocity field shows opposite trend in that an increase in rotor speed causes local 

modification to nearby velocity profile. It is shown that an increase in rotor speed results in an increase in 

velocity due to suction phenomena. 

- Based on the latter further work is required to understand interaction effects between rotor under 

dyanmic conditions and surrounding flow field.  

 

Given the variation in wind turbine performance over a diverse range of operating conditions, future 

work should be focussed on the development of a micro controller with a view to tracking peak power for 

a given operational condition.   



NOMENCLATURE 

V∞  = Free-stream velocity (m/s) 

V= Local velocity (m/s) ω = Angular Velocity (rad/s) λ = Tip Speed Ratio = ω.r/v 

r = Rotor radius (m) 

D = Turbine Diameter (m) 
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