Abstract Environmental conditions experienced by organisms during development can have profound impacts on adult fitness and behaviour. Internally feeding larvae unable to leave the seed selected by their mother face limitations of resource suitability and competition. The host seed may guide the larval behaviour within the seed leading to differential intensity of competition and determining its process and outcome, which varies in strains of the legume seed beetle Callosobruchus maculatus (Coleoptera: Bruchidae). However, the intensity, process and outcome of larval competition in different hosts have yet to be simultaneously considered, the objective of the present study. Here we assessed the intensity, process and outcome of intrastrain larval competition as related to host type, and how they are interrelated. Larval competition was faced with two distinct strategies – scramble and contest competition depending on the insect strain and host seed species. The intensity of competition did not show any straight link with the process and outcome of competition. Only a single strain showed a contest competition process with likely interference between larvae, while the four other strains studied showed the process of scramble competition. The process of scramble competition, however, led to variable outcomes in mung beans based on larval competition curves. Such differences were not apparent on cowpea seeds and either the plateau or the peak expected on the larval fitness curves were not reached preventing the distinction of the competition outcome, a likely consequence of the egg laying behaviour of these strains limiting the maximum number of eggs laid per seed. Seed host species rather than seed size are the likely cause of the differences observed from the initial expectation. The strain showing the process of contest competition increased larval fitness with density of larvae emerged per seed regardless of the host species, an unexpected outcome based on theoretical models. In this case the egg laying behaviour of the adult female is probably the main fitness determinant of its progeny