Kasprzyk-Hordern, Barbara, Dinsdale, Richard M. and Guwy, Alan J. (2008) The effect of signal suppression and mobile phase composition on the simultaneous analysis of multiple classes of acidic/neutral pharmaceuticals and personal care products in surface water by solid-phase extraction and ultra performance liquid chromatography–negative electrospray tandem mass spectrometry. Talanta, 74 (5). pp. 1299-1312. ISSN 00399140

A new multi-residue method for the determination of 25 acidic/neutral pharmaceuticals (antibiotics, anti-inflammatory/analgesics, lipid regulating agents, diuretics, triazides, H2-receptor antagonists, cardiac glicozides and angiotensin II antagonists) and personal care products (sunscreen agents and preservatives) in surface water with the usage of a new technique: ultra performance liquid chromatography–negative electrospray tandem mass spectrometry (UPLC–MS/MS) was developed and validated. The novel UPLC system with 1.7 μm particle-packed column allowed for good resolution of analytes with the application of low mobile phase flow rates (0.05 mL min−1) and short retention times (from 4.7 min to 13.3 min) delivering a fast and cost-effective multi-residue method. SPE with the usage of Oasis MCX strong cation-exchange mixed-mode polymeric sorbent was chosen for sample clean-up and concentration. The influence of mobile-phase composition, matrix assisted ion suppression and SPE recovery on the sensitivity of the method was identified and quantified. The instrumental limits of quantification varied from 0.2 μg L−1 to 30 μg L−1. The method limits of quantification were at low nanogram per litre levels and ranged from 0.3 ng L−1 to 30 ng L−1. The instrumental and method intra-day and inter-day repeatabilities were on average less than 5%. The method was successfully applied for the determination of PPCPs in River Taff. Thirteen compounds were determined in river water at levels ranging from a single to a few hundred nanograms per litre. Among them were ten pharmaceuticals (aspirin, salicylic acid, ketoprofen, naproxen, diclofenac, ibuprofen, mefenamic acid, furosemide, sulfasalazine and valsartan) and three personal care products (methyl- and ethylparaben and 4-benzophenone