
University of Huddersfield Repository

Zhang, Xiangchao, Jiang, Xiang and Scott, Paul J.

Minimum Zone Evaluation of the Form Errors of Quadric Surfaces

Original Citation

Zhang, Xiangchao, Jiang, Xiang and Scott, Paul J. (2011) Minimum Zone Evaluation of the Form
Errors of Quadric Surfaces. Precision Engineering, 35 (2). pp. 383-389. ISSN 0141-6359

This version is available at http://eprints.hud.ac.uk/id/eprint/9183/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Minimum Zone Evaluation of the Form Errors of

Quadric Surfaces

Xiangchao Zhang∗, Xiangqian Jiang and Paul J. Scott

Centre for Precision Technologies, University of Huddersfield, Huddersfield,
HD1 3DH, UK

Abstract

Quadric surfaces commonly exist in natural objects and artificial compo-
nents. It is widely needed to evaluate the form quality of a measured data
set, but the mostly used least squares method will lead to over-estimation
and its results are not consistent with the definitions in ISO standards. In
this paper a shape recognition approach is presented to determine the sur-
face type and shape parameters from the general implicit quadratic function.
Then a self-adaptive differential evolution algorithm is utilized to perform
minimum zone evaluation for generic quadrics. The maximal orthogonal dis-
tance from the data points to the associated surface is taken as the target
to be optimized. Finally experimental examples are presented to verify the
developed algorithm.

Keywords: coordinate metrology, quadric surfaces, minimum zone, form
error, self-adaptive differential evolution
2000 MSC: 90C47, 90C31, 65K10

1. Introduction

Quadric surfaces are used very extensively in engineering. It has been re-
ported that approximately 85% of manufactured objects can be well-modelled
with quadric surfaces, such as sphere, cylinder, cone and paraboloid [1].

The evaluation of the form errors of quadric surfaces is among the most
important problems in computational metrology. Most current commercial

∗Corresponding author. Tel.: +44-1484-473949
Email address: x.zhang@hud.ac.uk (Xiangchao Zhang)

Preprint submitted to Precision Engineering January 26, 2011

software applies the least squares method for this purpose due to its ease of
implementation and the unbiasedness of its solution for uncorrelated Gaus-
sian distributed noise [2]. However it is likely to overestimate the form tol-
erance and lead to unnecessary rejections, therefore its solution is only an
approximate one, not the optimum. According to ISO 1101 [3], a geomet-
rical tolerance applied to a feature defines the tolerance zone within which
that feature shall be contained. This means, taking the cylinder as an ex-
ample, the cylindricity tolerance is a permissible deviation zone bounded by
two coaxial cylinders within which the measured data must lie in between.
Here we only consider the symmetric tolerances, i.e. the allowable deviations
on both sides of the nominal surface (datum) are equal. Defining a sphere
whose centre travels on the nominal surface, the space covered by this mov-
ing sphere is regarded as the tolerance zone. Consequently the width of the
zone is defined as the diameter of the sphere, as shown in Fig. 1,

d

Figure 1: Minimum zone form error

Obviously, the evaluation of minimum zone form error is equivalent to
minimize the maximum orthogonal distance from the data points to the
nominal surface, as suggested by ISO 5459-3 [4],

minmax
i

∥pi − qi∥ (1)

where qi is the projection point of an arbitrary measured point pi onto the
nominal surface.

If the nominal function is moved to a non-standard position, the rep-
resentation will become rather complicated. It is proved that moving the
measurement data is equivalent to moving the datum, and their evaluation
results are the same [5]. As a consequence transformations are always per-
formed on the measurement data.

This minimax problem is not continuously differentiable, thus very dif-
ficult to be solved. This paper presents a heuristic optimization algorithm,

2

called self-adaptive differential evolution (SADE), to conduct minimum zone
evaluation of general quadric surfaces. This method shows great superiori-
ties on stability and accuracy, and makes a good balance between exploration
and exploitation. Some previous work is surveyed in section 2. To supply an
approximate solution for the optimization program, Section 3 describes the
shape recognition to initialize the shape parameters and move the data to a
standard position. Section 4 discusses to calculate the orthogonal distance
from a point to quadric surfaces. Then optimization using SADE follows, as
illustrated in Section 5. Experimental verification and validation are given
in Section 6 and this paper is summarized in Section 7.

2. Review of related work

Minimum zone evaluations of straightness, flatness, roundness and spheric-
ity are linear or quadratic programming problems, and various algorithms
have been well developed in literature, e.g. exchange algorithm [6, 7], sup-
port vector machine [8], simplex method [9] and computational geometry
methods [10, 11, 12]. But the minimum zone evaluation of generic quadric
surfaces is a highly nonlinear programming problem and these algorithms
cannot be applied directly. Some researchers attempted to approximate the
cylinder/cone iteratively and then solve a sequence of linear programs [13, 14],
but these methods prone to sub-optimal solutions. Lai and Chen [15] con-
verted a cylinder into a plane and obtained appropriate control points. The
cylindricity is calculated by implementing a series of inverse transformations.

In recent years heuristic optimizers have been employed to solve the mini-
mum zone problems. Lai et al. [16] and Liu et al. [17] used genetic algorithms
to evaluate the cylindricity and conicity errors, respectively, while Wen and
Song adopted an immune evolutionary algorithm for the sphericity error
[18]. The particle swarm optimization technique was used by [19, 20]. The
particle swarm optimization method is prone to stagnating at sub-optimal
solutions. On the contrary, evolutionary algorithms are able to search the
variable space more amply, but normally have a slower convergence rate. Re-
cently, Huang and Lee evaluated the conicity error using minimum potential
energy algorithms[21], which are very elaborate.

As for the least squares fitting of quadric surfaces, a lot of research has
been carried out, e.g. [22, 23, 24]. So far, little work has been done to
systematically study the minimum zone evaluation of generic quadrics.

3

3. Shape recognition

The general function of a quadric surface is given as,

Q(x, y, z)

=ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + iz + j (2)

=0

with {a, b, c, d, e, f, g, h, i, j} denoting the coefficients.
The most straightforward way to fit data P = {pi} by quadric functions

is to minimize
∑N

i=1 Q
2(pi) in the sense of linear least squares. In order to

avoid trivial solutions, an eigen-decomposition method can be applied [25].
Then the specific surface type and rough position are restored as follows.

The general function of quadrics in Eq. (2) can be rewritten as,

Q(x) = xT

 a d/2 e/2
d/2 b f/2
e/2 f/2 c

x+
(
g h i

)
x+ j (3)

with x = [x, y, z]T .
Transform Eq. (3) into a standard form so that the cross terms can

be eliminated. According to the spectral theorem, the eigenvectors of a real
symmetric matrix compose an orthogonal space and all its eigenvalues are
real [26]. So that we implement eigen-decomposition onto the quadric form, a d/2 e/2

d/2 b f/2
e/2 f/2 c

 = USUT

In the equation, S is a diagonal matrix S = diag{σ1, σ2, σ3} with its
diagonal entries σ1 ≥ σ2 ≥ σ3 being the eigenvalues. U is a 3× 3 orthogonal
matrix. We enforce its determinant be positive, so that U can be regarded
as a rotation matrix in the 3-D Euclidean space and the coordinate system
will not be reflected from right-handed to left-handed. Assuming x̂ = UTx ,
then

Q(x) = x̂TSx̂+
(
g h i

)
Ux̂+ j

It is rewritten as,

Q(x) = σ1x̂
2 + σ2ŷ

2 + σ3ẑ
2 +Gx̂+Hŷ + Iẑ + j

4

(1) The following standard form emerges when σ1σ2σ3 ̸= 0,

Q(x) = σ1(x̂− a1)
2 + σ2(ŷ − a2)

2 + σ3(ẑ − a3)
2 + a4 (4)

The parameters σ1, σ2 and σ3 are used to recognize the surface shape. If
σ2 < 0, we can change the signs of all the coefficients in Eq. (2) to make
σ2 > 0 and the surface shape will not be affected.

(2) If any one of the three shape parameters vanishes, say σ3 = 0, Eq.
(4) will be in the form of,

Q(x) = σ1(x̂− a1)
2 + σ2(ŷ − a2)

2 + Iẑ + a4 (5)

If σ2 = 0 , the function can be processed in the same manner.
(3) If only one of the three semi-axis lengths is nonzero, it could only be

σ1 ̸= 0,
Q(x) = σ1(x̂− a1)

2 +Hŷ + Iẑ + a4

The data will be rotated further about the x axis with a matrix

V =

 1 0 0
0 H√

H2+I2
I√

H2+I2

0 − I√
H2+I2

H√
H2+I2



So that the new data is

 x̃
ỹ
z̃

 = V

 x̂
ŷ
ẑ

 and the standard function

becomes,
Q(x) = σ1(x̃− a1)

2 +
√
H2 + I2ỹ + a4 (6)

To make the representations unique, the coefficients in Eqs. (4,5,6) are
scaled by appropriate positive factors to convert them into standard functions
of the corresponding quadric shapes.

The relationships between surface types and shape parameters in different
cases are summarized in Table 1 [27].

Due to the existence of measurement noise in the data, tolerances should
be allowed in the determination of the surface types and shape parameters.
If the surface type is known before, this procedure can also be used to obtain
the approximate shape parameters and move the data to a standard position.

Table 1 has another two columns for the degrees of freedom in rotation
and translation, respectively. If a surface is rotationally symmetric about an

5

Table 1: Determining the shapes of quadratic functions

σ2 σ3 & other shape R T
σ2 = σ3 sphere 3 0

σ2 > σ3 > 0 oblate spheroid 1 0
I = 0 cylinder 1 1

σ2 = σ1
σ3 = 0

I ̸= 0 circular paraboloid 1 0
a4 > 0 two-sheet circular hyperboloid 1 0

σ3 < 0 a4 = 0 cone 1 0
a4 < 0 one-sheet circular hyperboloid 1 0

σ2 = σ3 prolate spheroid 1 0
σ2 > σ3 > 0 ellipsoid 0 0

I = 0 elliptic cylinder 0 1

σ1 > σ2 > 0
σ3 = 0

I ̸= 0 elliptic paraboloid 0 0
a4 > 0 two-sheet hyperboloid 0 0

σ3 < 0 a4 = 0 elliptic cone 0 0
a4 < 0 one-sheet hyperboloid 0 0
H ̸= 0 parabolic cylinder 0 1

σ3 = 0
H = 0

a4 > 0 two parallel planes 1 2

a4 = 0 plane 1 2
σ2 = 0 H ̸= 0 hyperbolic paraboloid 0 0

σ3 < 0 a4 = 0 two intersecting planes 0 1
H = 0

a4 ̸= 0 hyperbolic cylinder 0 1

axis or translationally symmetric along a direction, this motion variable will
be discarded during optimization.

In the standard handbook [28] real quadric surfaces are classified into 12
categories. Here we undertake classification more meticulously. Not only the
signs, but also the relationship between the values of the shape parameters
σ1, σ2 and σ3 are considered, because this is directly related with the number
of variables (degrees of freedom) in the optimization program.

4. Calculating the orthogonal distance from a point to quadric sur-
faces

The orthogonal distance from a point p to the quadric surface Q(x) = 0
is defined as e = ∥p− q∥, with q denoting the projection point of p on the

6

surface. In practice, the distance is regarded to be signed, and its sign is the
same with Q(p). For standard geometries like planes, spheres, cylinders and
cones, e and q are quite straightforward to obtain. But for a generic quadric
surface, this is not so easy. Obviously, the vector pq is parallel with the
gradient ∇Q(q) and both of them are perpendicular to the quadric surface.
Hence q is solved from {

Q(q) = 0
∇Q(q)× (p− q) = 0

(7)

using the Gauss-Newton or Levenberg-Marquardt algorithm.
But this method is time consuming, especially when there are many data

points. Consequently at the first tens of iterations of the optimization pro-
gram, the distance is approximated with [25]

ei ≈
Q(p)

∥∇Q(p)∥
(8)

As the motion and shape parameters have been approximately identi-
fied using linear least squares, the distance ei will not be very large, i.e. p
is reasonably near to the associated surface. Thus this approximation is ac-
ceptable. At the final iterations, the orthogonal distance is in turn calculated
from Eq. (7).

As a consequence the minimum zone error is,

E = 2max
i

|ei| ≥ max
i

ei −min
i

ei (9)

5. A self-adaptive differential evolution algorithm

Inspired by the natural evolution of biological species, Holland proposed
a popular algorithm called the genetic algorithm (GA) [29]. In 1995, Price
and Storn replaced the classical crossover and mutation operators in genetic
algorithms by a differential operator, which leads to an algorithm called
differential evolution (DE) [30]. Compared to GA, DE is more simple but
performs better on many numerical optimization problems [31].

At each generation, a Donor vector vi is generated for each individual of
the population (called genome or chromosome) {yi|i = 1, · · · , N}. It is the
method of creating this Donor vector that demarcates between various DE
schemes. Price et al. suggested 10 mutation schemes [31]. Two mutation

7

schemes ‘DE/rand/1/bin’ and ‘DE/current to best/2/bin’ are applied in this
paper [32],

vi =

{
yr + F (ys − yt), rand[0, 1] < p

yi + F (pg − yi) + F (yr − ys), otherwise
(10)

where r, s and t are integers randomly selected from the range [1, N] (exclud-
ing i). F ∈ [0, 2] is used to scale the differential vector.

These two strategies are used very commonly in literature and perform
well on problems with distinct characteristics. ‘DE/rand/1/bin’ demon-
strates good diversity while ‘DE/current to best/2/bin’ shows good conver-
gence property. Here p ∈ [0, 1) is a user-set parameter.

After the mutation phase, a ‘binomial’ crossover operation is applied,

uij =

{
vij if randj[0, 1] ≤ CR or j = jrand
yij otherwise

(11)

where CR ∈ [0, 1) is a user specified crossover constant and jrand is a randomly
chosen integer in [1, N] to ensure that the trial vector ui will differ from yi

by at least one parameter. The subscript j refers to the jth dimension.
rand[0, 1] is a random number uniformly generated in [0, 1].

Then a selection operation follows,

yk+1
i =

{
uk
i if g(uk

i) < g(yk
i)

yk
i otherwise

(12)

with k and k+1 denoting the individuals in the kth and (k+1)th generations,
respectively and g representing the objective function to be minimized.

The optimal configuration, i.e. the values of F , CR and p, is very problem-
dependant. To obtain relatively good performance in different situations, a
self-adaptive differential evolution (SADE) is employed here [33].

This technique assigns different crossover constants {CRi, i = 1, 2, · · · , N}
and scale factors {Fi, i = 1, 2, · · · , N} for the individuals and updates them
according to the fitness information (objective functions),

Fi ⇐

 0.1 + (Fi − 0.1)f(yi)−fm
fa−fm

, rand[0, 1] < τ1 and f(yi) < fa
rand[0.1, 1], rand[0, 1] < τ1 and f(yi) ≥ fa

Fi, otherwise

(13)

CRi ⇐

 CRi
f(yi)−fm
fa−fm

, rand[0, 1] < τ2 and f(yi) < fa
rand[1, 1], rand[0, 1] < τ2 and f(yi) ≥ fa

CRi, otherwise

(14)

8

Traditionally the individuals are initialized using uniform pseudo-random
numbers within the variable space. The random number sequences have a
discrepancy of order [log(logN]1/2 and do not achieve the lowest possible
discrepancy, thus the random points cannot evenly cover the whole space, as
illustrated in Fig. 2(a). The discrepancy is used to measure the sample point
equidistribution, i.e. how uniformly distributed the point set is [34]. Various
low discrepancy sequences have been proposed. Among them, the Hammer-
sley sequence shows remarkable superiority on ease of implementation [35].
Thus it is adopted to generate initial population.

Each nonnegative integer i can be expanded by a prime base p,

i = a0 + a1p+ a2p
2 + · · ·+ arp

r

with 0 ≤ aj < p, j = 1, 2, · · · , r. A function Φp is defined for i as,

Φp(i) =
r∑

j=0

aj
pj+1

It can be proved that for any i ≥ 0 and p ≥ 2, 0 ≤ Φp(i) < 1 always
holds true.

A series of prime numbers p1 < p2 < · · · < pD−1 determine a sequence of
functions {Φp1 ,Φp2 , · · · ,ΦpD−1

}. Then a D−dimensional Hammersley point
is defined as, (

i

N
,Φp1(i), · · · ,ΦpD−1

(i)

)
, i = 1, 2, · · · , N

With p increasing, the point distribution becomes more and more regular
[34]. To make the prime numbers as small as possible, we set pj = j +1, j =
1, · · · , D − 1.

The pseudocode for the SADE program is shown in Algorithm 1.

6. Experimental validation

The validity of the developed algorithm is verified with the cone data
given by [36], as listed in Table A.3. The signed distances {ei} from the data
points to the associated cone surface are also presented. In the program,
the control parameters τ1 and τ2 in Eqs. (13,14) are set to be 0.1 [33].
Actually, the performance of the program is not sensitive to them. The

9

Input: X, y0

// X:data points, y0:rough guess of solution

Initialize population Y and parameters p, {Fi} and {CRi};
Evaluate fitness {f(yi)};
t = 0; // generation number for SADE

while t < tmax do
t++;
Determine fm and fa;
for i = 1 to N do

Mutation of yi using Eq (10);
Crossover and selection of yi using Eqs (11) and (12);
Update global optimum pg;
Adapt Fi and CR using Eqs (13) and (14);

end
if termination condition satisfied then

Break;
end

end
Output: pg

Algorithm 1: A SADE algorithm

10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Random numbers

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Hammersley sequence

Figure 2: Random points generated by random numbers and Hammersley sequence

parameter p in Eq. (10) is updated as p = 0.382 + 0.618k/Kmax. Here k
and Kmax are the current generation and the maximal allowable generation
number, respectively. We set Kmax = 400. At the beginning the individuals
have more opportunities to use ‘DE/current to best/2/bin’, and in the later
generations tend to ‘DE/rand/1/bin’. The maximum projection distance at
each generation is stored. When the change of the form error during 20
generations is smaller than a user-set threshold, i.e. the program converges,
the optimization process is terminated. Here we set the threshold to be 1e-
7. Fig. 3 shows the variation of the objective function. It can be found
that the program stabilizes after 170 generations and has a relatively fast
convergence rate compared to other heuristic optimization methods. In fact,
no heuristic optimization methods can guarantee global convergence. To
examine the reliability of the associated results, the program was run 500
times and the standard deviation of the minimum zone form error is 5.44e-6,
which is much lower than the uncertainties of CMMs and sufficient for most
practical applications. If we alter the termination condition, the uncertainty
of the optimization result can be reduced further.

The calculated form error is E = 2maxi |ei| = 2× 0.0016 = 0.0032. It is
consistent with the results of [36] and [21].

To demonstrate the usability of this algorithm for generic quadrics, three
shapes are employed: ellipsoid ax2 + by2 + cz2 = 1, hyperbolic paraboloid
ax2 − bz2 − y = 0 and parabolic cylinder x2 + ay = 0. The corresponding
data sets are listed in Tables A.4, A.5 and A.6.

11

0 100 200 300 400
10

−3

10
−2

10
−1

generation

m
ax

(e
)

Figure 3: Variation of the objective function

After optimization, the obtained form errors and shape parameters are
given in Table 2. For the purpose of comparison, the evaluation results of
the orthogonal distance least squares fitting algorithm [24] are also presented
(denoted with ELS).

Table 2: Optimization results of generic quadrics

data sets ELS ESADE a b c
Ellipsoid 0.086813 0.061639 9.758967e-4 3.572573e-4 2.430297e-4

Hyperbolic paraboloid 0.022467 0.017796 0.024528 0.018628 -
Parabolic cylinder 0.042439 0.035572 100.384759 - -

This table clearly shows that the form errors of SADE are much smaller
than the least squares method.

7. Conclusions

This paper presents a powerful method to evaluate the minimum zone
form errors of quadrics, whose optimization target is consistent with the
definitions in ISO 1101. Firstly the surface type and shape parameters are
identified, so that a good initial guess can be supplied. In this way the
number of variables and the range of the variable space can be effectively
decreased, which in turn improves the stability and efficiency of the subse-
quent optimization program. A self-adaptive differential evolution algorithm
is employed and its control parameters are updated according to the objec-
tive function of each individual during optimization. In this way the program

12

can be made very flexible and behave very well in different situations. Exper-
imental examples show that this algorithm can achieve very high accuracy
and stability for different generic quadrics. In fact its utilization can be
extended to more complex surfaces. Therefore this method could be used
for online inspection in high precision manufacturing or characterization on
coordinate measuring machines.

Acknowledgements

The authors gratefully acknowledge the European Research Council for
its programme ERC-2008-AdG 228117-Surfund.

Appendix A. Data sets

References

[1] Chivate PN, Jablokow AG. Solid-model generation form measured point
data. Computer Aided Design 1993;25(9):587–600.

[2] Björck Å. Numerical Methods for Least Squares Problems. Philadelphia,
PA: SIAM; 1996.

[3] ISO 1101 Geometrical Product Specifications-Geometrical Tolerancing-
Tolerances of Form, Orientation, Location and Run-out; 2004.

[4] ISO 5459-3 Geometrical Product Specifications- Datums and Datum
System for Geometrical Tolerancing-Part 3: Association Methods; 2000.

[5] Atieg A, Watson GA. A class of methods for fitting a curve or surface
to data by minimizing the sum of squares of orthogonal distances. J
Computat Appl Math 2003;158(2):277–96.

[6] Chetwynd DG. Applications of linear programming to engineering
metrology. Proc Instn Mech Engrs 2010;199(B2):93–100.

[7] Anthony GT, Anthony HM, Bittner B, Butler BP, Cox MG, Drieschner
R, et al. Chebyshev best-fit geometric elements. Tech. Rep. NM-R9317;
NPL; Teddington, UK; 1993.

13

Table A.3: Cone data
x y z e x y z e

9.3702 -12.2214 2.5824 -1.4e-3 9.9508 -11.3232 3.3759 -1.5e-3
8.4808 -12.2215 2.5125 4e-4 9.0621 -11.3232 2.7185 2e-4
7.6404 -12.2215 3.0342 1.6e-3 8.0209 -11.3233 2.9657 1.0e-3
7.4024 -12.2215 4.5240 1.5e-3 7.7587 -11.3233 4.7314 1e-4
8.2881 -12.2215 5.4016 1e-4 9.1982 -11.3232 5.2191 -7e-4
9.1902 -12.2215 5.4477 -1.6e-3 9.7140 -11.3232 4.9157 1.6e-3
9.4425 -12.0327 2.6639 -1.2e-3 9.9019 -11.0681 3.4158 -8e-4
8.2705 -12.0327 2.6256 9e-4 9.2775 -11.0681 2.8480 -1e-4
7.5454 -12.0327 3.2533 1.5e-3 7.5976 -11.0682 4.1781 1.5e-3
7.6772 -12.0328 4.9090 6e-4 8.7349 -11.0681 5.2127 -1.0e-3
8.6765 -12.0327 5.4435 -6e-4 9.6199 -11.0681 4.9130 -1.6e-3
9.5224 -12.0327 2.7053 -1.6e-3 9.7062 -11.0681 4.8302 -1.6e-3
9.5976 -11.8500 2.8031 -1.6e-3 9.8261 -10.8747 3.3763 -1e-4
8.9539 -11.8500 2.5731 -2e-4 9.3116 -10.8746 2.9138 5e-4
7.8444 -11.8500 2.9473 1.6e-3 8.4050 -10.8747 2.8762 8e-4
7.4206 -11.8501 4.2612 1.2e-3 7.6307 -10.8747 3.9913 3e-4
8.2758 -11.8501 5.2998 -1e-4 9.0108 -10.8747 5.1517 1.0e-3
9.5187 -11.8500 2.7540 -1.2e-3 9.6785 -10.8747 4.7913 -1.2e-3
9.5517 -11.6938 2.8186 -1.3e-3 9.7693 -10.7562 3.3406 3e-4
8.9852 -11.6938 2.6151 -3e-4 9.3945 -10.7561 2.9894 8e-4
8.2879 -11.6938 2.7076 9e-4 8.7182 -10.7562 2.8363 9e-4
7.4332 -11.6938 3.9255 9e-4 7.7690 -10.7562 3.4949 8e-4
7.8702 -11.6938 4.9951 -3e-5 7.7813 -10.7562 4.5021 -1e-4
9.0904 -11.6938 5.3394 -1.1e-3 9.1342 -10.7562 5.0941 -8e-4
9.7813 -11.5212 3.0609 -1.6e-3 9.6969 -10.6925 3.2686 7e-4
9.2427 -11.5212 2.7173 -6e-4 9.1131 -10.6925 2.8878 1.2e-3
8.4733 -11.5213 2.6899 6e-4 8.2903 -10.6926 2.9747 1.2e-3
7.6114 -11.5213 3.3940 1.0e-3 7.7149 -10.6926 4.2855 1e-4
7.5303 -11.5213 4.3710 5e-4 8.6423 -10.6926 5.1115 -6e-4
8.6271 -11.5213 5.3149 1.6e-3 9.2927 -10.6926 5.0182 -8e-4

14

Table A.4: Ellipsoid data

x y z e
-23.648533 -24.790447 -41.620889 -3.0311e-2
-26.413254 -22.372674 -36.539642 -9.925e-3
-28.555111 -19.474662 -30.620247 -2.2093e-2
-30.086129 -16.086731 -24.027960 -1.4342e-2
-30.945717 -12.307547 -16.852787 -8.380e-3
-31.095689 -8.318525 -9.310700 -1.2613e-2
-30.552193 -4.103098 -1.566913 -3.0637e-2
-23.119474 -28.120481 -39.894006 -9.628e-3
-25.757061 -26.469707 -34.381904 -7.681e-3
-27.835619 -24.255718 -28.069052 2.0007e-2
-29.243912 -21.502108 -21.149385 1.3803e-2
-30.016145 -18.268189 -13.744467 2.6994e-2
-30.089499 -14.592153 -6.009070 7.352e-3
-29.492614 -10.614737 1.838134 -1.6649e-2
-22.302453 -31.296941 -38.274510 3.161e-3
-24.730736 -30.460174 -32.362555 1.0042e-2
-26.582538 -28.922445 -25.702240 -1.0102e-2
-27.851292 -26.791446 -18.463853 9.816e-3
-28.498920 -24.039229 -10.817148 3.082e-2
-28.453578 -20.691495 -2.929675 -1.6011e-2
-27.814795 -16.933629 5.016116 -1.7546e-2
-21.125267 -34.360565 -36.785092 -2.7819e-2
-23.317449 -34.274818 -30.513895 1.2221e-2
-24.935899 -33.457291 -23.575743 3.0717e-2
-25.941877 -31.848131 -16.028041 -1.6441e-2
-26.430091 -29.533953 -8.132825 1.3400e-2
-26.319365 -26.548492 -0.108042 3.0816e-2
-25.572494 -23.017772 7.943992 1.3791e-2
-19.763923 -37.176891 -35.509929 4.543e-3
-21.514780 -37.838490 -28.896430 -1.5053e-2
-22.835961 -37.645952 -21.625817 8.340e-3
-23.630836 -36.576291 -13.889779 1.4181e-2
-23.844664 -34.652530 -5.814731 -3.0819e-2
-23.610766 -32.002665 2.387010 2.8995e-2
-22.793811 -28.605127 10.477573 5.139e-3
-18.101870 -39.737572 -34.393094 -1.572e-2

15

-19.437957 -41.055660 -27.537360 -1.3943e-2
-20.417773 -41.424342 -19.994365 2.1954e-2
-20.897788 -40.793462 -12.107662 -2.435e-3
-20.915387 -39.316127 -3.829656 3.0806e-2
-20.400109 -36.927822 4.482945 -7.252e-3
-19.485123 -33.708671 12.663577 -1.7547e-2
-16.208397 -42.023970 -33.554509 -5.969e-3
-17.184607 -43.831729 -26.469240 2.961e-2
-17.687212 -44.674288 -18.769628 6.816e-3
-17.809832 -44.516035 -10.649327 5.375e-3
-17.537674 -43.334128 -22.70169 1.265e-3
-16.869671 -41.177835 6.112108 -1.4046e-2
-15.842285 -38.115659 14.415989 7.96e-4
-14.234488 -43.858484 -32.919065 1.4096e-2
-14.619931 -46.106687 -25.698337 -2.3536e-2
-14.668137 -47.384015 -17.849113 -2.878e-2
-14.461581 -47.531341 -9.615832 -3.0805e-2
-13.890572 -46.673500 -1.160881 -4.44e-3
-12.983858 -44.738583 7.290986 -2.8483e-2
-11.843975 -41.782971 15.624923 -3.0688e-2

16

Table A.5: Hyperbolic paraboloid data

x y z e
-17.180514 -8.941395 -15.934777 5.209e-3
-17.888038 -9.250145 -12.424115 8.897e-3
-18.567234 -9.156198 -9.125688 -7.565e-3
-19.181538 -8.681030 -6.027885 -4.571e-3
-19.780469 -7.826162 -3.138222 -8.898e-3
-14.041601 -7.100608 -16.315518 -8.898e-3
-14.750149 -7.415890 -12.811013 -2.04e-4
-15.417520 -7.324092 -9.505146 -8.029e-3
-16.047698 -6.863480 -6.414453 -3.121e-3
-16.621625 -6.008672 -3.513023 8.898e-3
-10.920090 -5.576396 -16.527081 1.44e-4
-11.638712 -5.892685 -13.030751 6.750e-3
-12.312275 -5.807779 -9.736958 5.10e-4
-12.946284 -5.331997 -6.627745 -4.976e-3
-13.530002 -4.479890 -3.748005 -2.552e-3
-7.866135 -4.343016 -16.608771 -7.852e-3
-8.571244 -4.651149 -13.108714 -4.635e-3
-9.241885 -4.573633 -9.787423 2.17e-4
-9.855084 -4.099786 -6.686523 3.01e-3
-10.447764 -3.242443 -3.792832 4.188e-3
-4.814334 -3.409300 -16.506702 -2.585e-3
-5.528704 -3.727481 -13.008645 8.898e-3
-6.196199 -3.631721 -9.695432 -3.2221e-3
-6.819656 -3.165223 -6.594226 2.830e-3
-7.395878 -2.295751 -3.716504 -8.898e-3
-1.802739 -2.763101 -16.262164 -6.508e-3
-2.511148 -3.068671 -12.746089 -6.107e-3
-3.182373 -2.986035 -9.454554 -7.407e-3
-3.811217 -2.531782 -6.354236 8.067e-3
-4.394263 -1.656030 -3.451739 -3.712e-3
1.181182 -2.427385 -15.852554 4.320e-3
0.461094 -2.725873 -12.336681 -3.010e-3
-0.211293 -2.641995 -9.025874 -2.923e-3
-0.835700 -2.176388 -5.933672 2.935e-3
-1.416592 -1.306802 -3.051176 -8.764e-3
4.126449 -2370581 -15.277921 -2.489e-3
3.402740 -2677078 -11.771713 0.485e-3
2.742441 -2584500 -8.470833 -8.898e-3
2.107198 -2.108780 -5.353348 -8.395e-3
1.520080 -1.268693 -2.475818 8.898e-3
7.035365 -2.619172 -14.561025 4.103e-3
6.325983 -2.928963 -11.038203 8.898e-3

17

Table A.6: Parabolic cylinder data

x y z e
-26.771888 -17.477312 -18.943336 6.941e-3
-27.475917 -15.590256 -15.490258 -1.7786e-2
-28.161683 -13.657796 -12.064897 -2.083e-3
-28.858903 -11.740690 -8.615446 -5.246e-3
-29.563864 -9.826127 -5.181030 5.39e-4
-30.279765 -7.900064 -1.743005 1.7786e-2
-21.608659 -15.058192 -19.242051 9.843e-3
-22.291450 -13.156084 -15.795498 -8.643e-3
-22.994590 -11.225723 -12.349388 2.466e-3
-23.717973 -9.327257 -8.911928 8.6e-5
-24.400351 -7.402518 -5.459769 -3.632e-3
-25.103776 -5.49272 -2.032506 1.020e-3
-16.505591 -13.092972 -19.310873 8.262e-3
-17.205084 -11.183651 -15.855243 -3.592e-3
-17.887247 -9.258635 -12.414269 3.8e-4
-18.591823 -7.339053 -8.971460 4.481e-3
-19.284367 -5.428816 -5.529270 -1.694e-3
-19.985999 -3.501439 -2.081130 5.575e-3
-11.432980 -11.539979 -19.130100 1.6609e-2
-12.122015 -9.640123 -15.681656 -1.799e-3
-12.815837 -7.727785 -12.244039 -3.314e-3
-13.499393 -5.800834 -8.809352 6.993e-3
-14.231483 -3.891704 -5.341829 -5.093e-3
-14.925531 -1.985631 -1.925411 -1.094e-3
-6.398560 -10.461238 -18.732706 4.581e-3
-7.110231 -8.548441 -15.260553 -1.1727e-2
-7.817541 -6.633451 -11.834641 -3.492e-3
-8.497968 -4.700222 -8.408729 1.7786e-2
-9.182986 -2.776651 -4.950978 1.5315e-2
-9.888834 -0.882808 -1.504127 -5.256e-3
-1.417596 -9.806872 -18.086627 1.2e-5
-2.129519 -7.898281 -14.635957 -1.0477e-2
-2.813315 -5.965698 -11.198342 6.271e-3
-3.532753 -4.078446 -7.768228 -1.2831e-2
-4.238148 -2.127197 -4.3044 7.521e-3
-4.926256 -0.217207 -0.876034 9.045e-3
3.498877 -9.585894 -17.196425 -5.055e-3

18

2.778418 -7.658674 -13.768594 9.494e-3
2.098538 -5.755853 -10.327628 3.04e-4
1.388776 -3.836736 -6.877571 -1.679e-3
0.702907 -1.930407 -3.439289 -7.096e-3
-0.010998 -0.016636 0.018482 -1.7786e-2
8.364356 -9.814942 -16.093724 -1.3343e-2
7.646055 -7.887395 -12.628490 -1.7348e-2
7.646055 -7.887395 -12.628490 -1.7348e-2
6.963775 -5.977914 -9.195173 -1.5962e-2
6.275932 -4.068135 -5.789352 -3.078e-3
5.570706 -2.126371 -2.346349 1.7786e-2
4.888887 -0.226516 1.105079 2.750e-3
13.186081 -10.466206 -14.747083 -1.4769e-2
12.471746 -8.548399 -11.304778 -1.7786e-2
11.785287 -6.633183 -7.856140 -1.7786e-2
11.110765 -4.709021 -4.431375 3.379e-3
10.401681 -2.797925 -0.991010 -3.110e-3
9.709211 -0.894223 2.454550 -1.3431e-2

[8] Malyscheff AM, Trafalis TB, Raman S. From support vector machine
learning to the determination of the minimum enclosing zone. Comput
Indus Eng 2002;42:59–74.

[9] Kanada T. Evaluation of spherical form errors: computation of spheric-
ity by means of minimum zone method and some examinations with
using simulated data. Precision Eng 1995;17:281–9.

[10] Roy UR, Zhang X. Establishment of a pair of concentric circles with
the minimum radial separation for assessing roundness error. Computer
Aided Des 1992;24:161–8.

[11] Huang J. An exact minimum zone solution for sphericity evaluation.
Computer Aided Design 1999;31:845–53.

[12] Samuel CL, Shunmugam MS. Evaluation of sphericity error from form
data using computational geometric techniques. Int J Mach Tools Manuf
2002;42:405–16.

19

[13] Carr K, Ferreira P. Verification of form tolerances part ii: Cylindricity
and straightness of a median line. Precision Eng 1995;17:144–56.

[14] Devillers O, Preparata FP. Evaluating the cylindricity of a nominally
cylindrical point set. In: Proc. 11th ACM-SIAM Sympos. Discrete Al-
gorithms. San Francisco, CA, USA; 2000, p. 518–27.

[15] Lai J, Chen J. Minimum zone evaluation of circles and cylinders. Int J
Machine Tools Manuf 1996;36:435–51.

[16] Lai HY, Jywe WY, Chen CK, Liu CH. Precision modeling of form
errors for cylindricity evaluation using genetic algorithms. Precision
Eng 2000;24:310–9.

[17] Liu CH, Jywe WY, Chend CK. Quality assessment on a conical taper
part based on the minimum zone definition using genetic algorithms. Int
J Mach Tools Manuf 2004;44:183–90.

[18] Wen X, Song A. An immune evolutionary algorithm for sphericity error
evaluation. Int J Mach Tools Manuf 2004;44:1077–84.

[19] Kovvur Y, Ramaswami H, Annad RB, Anand S. Minimum-zone form
tolerance evaluation using particle swarm optimisation. Int J Intellig
Sys Tech Appl 2008;4:79–96.

[20] Wen XL, Huang JC, Sheng DH, Wang FL. Conicity and cylindric-
ity error evaluation using particle swarm optimization. Precision Eng
2010;34:338–44.

[21] Huang PH, Lee JC. Minimum zone evaluation of conicity error using
minimum potential energy algorithms. Precision Eng 2010;34:709–17.

[22] Forbes AB. Least squares best fit geometric elements. In: Mason JC,
Cox MG, editors. Algorithms for Approximation II. London: Chapman
and Hall; 1990, p. 311–9.

[23] Petitjean S. A survey of methods for recovering quadrics in triangle
meshes. ACM Comput Surv 2002;34(2):211–62.

[24] Zhang X, Jiang X, Scott PJ. Shape recognition and form error evaluation
of quadric surfaces. In: Measurement Systems and Process Improvement
2010. NPL, Teddington, UK; 2010,.

20

[25] Taubin G. Estimation of planar curves, surfaces and nonplanar
spaces curves defined by implicit equations with applications to edge
and range image segmentation. IEEE Trans Patt Anal Mach Intell
1991;13(11):1115–38.

[26] Halmos P. What does the spectral theorem say? Am Math Monthly
1963;70(3):241–7.

[27] Zhang X. Freeform surface fitting for precision coordinate metrology.
Ph.D. thesis; University of Huddersfield, Huddersfield, UK; 2009.

[28] Zwillinger D. CRC Standard Mathematical Tables and Formulae. Chap-
man and Hall/CRC; 31 ed.; 2003.

[29] Holland JH. Adaptation in Natural and Articicial Systems. Ann Arbor:
University of Michigan Press; 1975.

[30] Price K, Storn R. Differential evolution− a simple and efficient adap-
tive scheme for global optimization over continuous spaces. Tech. Rep.;
International Computer Science Institute; Berkley; 1995.

[31] Price KV, Storn RM, Lampinen JA. Differential Evolution−A Practical
Approach to Global Optimization. Natural Computing Series; Berlin:
Springer; 2005.

[32] Qin AK, Suganthan PN. Self-adaptive differential evolution algorithm
for numerical optimization. In: The 2005 IEEE Congress on Evolution-
ary Computation; vol. 2. 2005, p. 1785–91.

[33] Jia L, Gong W, Wu H. Computational intelligence and intelligent sys-
tems. Springer; 2009, p. 215–24.

[34] Wong TT, Luk WS, Heng PA. Sampling with hammersley and halton
points. J Graphics Tools 1997;2(2):9–24.

[35] Niederreiter H. Random Number Generation and Quasi-Monte Carlo
Methods. Philadelphia: SIAM; 1992.

[36] Chatterjee G, Roth B. Chebyshev approximation methods for evaluating
conicity. Measurement 1998;23:63–76.

21

