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To adapt a maxim from a previous career: "If you can't measure it, you can't understand it" 

"There is an extensive vocabulary of special terms to describe karst landforms which can be confusing to 
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"It is a new ground you are walking on, you do not know the way" (John Steinbeck, The Pearl) 
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Abstract 
This is the first comprehensive study of cave inception and development in metacarbonate rocks. The 
main study area is a 40000km2 region in central Scandinavia that contains over 1000 individual 
metacarbonate outcrops, and has nearly 1000 recorded karst caves (with passage lengths up to 5.6km). 
The area, which was repeatedly glaciated in the late Cenozoic, comprises a suite of nappes in the 
Cambro-Silurian Caledonides, a paleic range of mountains with terranes presently occurring on both 
sides of the northern Atlantic. Information about the stripe karst and non-stripe karst outcrops and their 
contained caves was assembled into computer-based databases, enabling relationships between the 
internal attributes of the caves and their external geological and geomorphological environments to be 
analysed. A rather consistent pattern emerged. For example, karst hydrological system distances are 
invariably shorter than 3.5km, and cave passages are positioned randomly in a vertical dimension, whilst 
commonly remaining within 50m of the overlying surface. This consistency is suggestive that the 
relevant cave inception, development and removal processes operated at a regional scale, and over long 
timescales. A consequence of the epigean association of caves with the landscape is that cave 
development can only be understood in the context of the geomorphological evolution of the host region. 
A review of the latest knowledge of the inception and development of caves in sedimentary limestones 
concluded that the speleogenesis of the central Scandinavian caves cannot be explained by these ideas. 
Five new inter-related conceptual models are constructed to explain cave development in metacarbonate 
rocks in the various Caledonide terranes. These are: 

1. The tectonic inception model - this shows that it is only open fracture routes, primarily created by the 
seismic shocks that accompany deglaciation, which can provide the opportunity for dissolution of 
metalimestone rocks that have negligible primary porosity. 

2. The external model of cave development - this black-box approach reveals how the formation, 
development and destruction of the karst caves are related to the evolution of their local landscape. 
During the Pleistocene, these processes were dominated by the cycle of glaciation, leading to cyclic 
speleogenesis, and the development of ever-longer and deeper systems, where the maximum distance to 
the surface commonly remains within one-eighth of the extent of change in local relief. 

3. The hydrogeological model - this demonstrates that the caves developed to their mapped dimensions in 
timescales compatible with the first two models, within the constraints imposed by the physics and 
chemistry of calcite dissolution and erosion, primarily in almost pure water. Relict caves were 
predominantly formed in phreatic conditions beneath active deglacial ice-dammed lakes, with 
asymmetric distributions on east- and west-facing slopes. Mainly vadose caves developed during the 
present interglacial, primarily vadose, conditions, with maximum dimensions determined by catchment 
area. Combination caves developed during both deglacial and interglacial stages. The cross-sections of 
phreatic passages obey a non-fractal distribution, because they enlarged at maximum rates in similar 
timescales. Phreatic cave entrances could be enlarged at high altitudes by freeze / thaw processes at the 
surface of ice-dammed lakes, and at low altitudes by marine activity during isostatic uplift. 

4. The internal static and dynamic model of cave development - this white-box approach demonstrates 
that many caves have `upside-down' morphology, with relict phreatic passages overlying a single, 
primarily vadose, streamway. Both types of passage are guided along inception surfaces that follow the 
structural geology and fractures of the carbonate outcrops. Dynamically, the caves developed in a 'Top- 
Down, Middle-Outwards' (TDMO) sequence that may have extended over several glacial cycles, and 
passages in the older multi-cycle caves were removed downwards and inwards by glacial erosion. 

5. The Caledonide model - this shows that the same processes (with some refinements) applied to cave 
development in most of the other (non-central Scandinavian) Caledonide areas. The prime influences on 
cave dimensions were the thicknesses of the successive northern Atlantic glacial icesheets and the 
positions of the caves relative to deglacial ice-dammed lakes and to local topography. Other influences 
included contact metamorphism, proximity to major thrusts, and marine incursions. With knowledge of 
these influences for each area, mean cave dimensions can be predicted. 

The thesis provides the opportunity for the five models to be extended, so that cave development in other 
glaciated metamorphic and sedimentary limestones can be better understood, and to be inverted, so that 
landscape evolution can be derived from cave data. 
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Preface 
The idea of studying cave development in Caledonide metacarbonate rocks was proposed by the author 

in an application to register for a part-time research degree at the Limestone Research Group, University 

of Huddersfield (Faulkner, 1997). The proposal identified two phases of work. Part A would examine the 

geology, geomorphology and hydrology of the caves in south Nordland, Norway. Part B would develop a 

conceptual model for cave development in that area and test the applicability of the model in other parts 

of the world with similar geological environments. 

The knowledge gained during Part A (Faulkner, 1999a and 2001) and the work required to complete Part 

B were summarised and discussed by Faulkner (1999b). That report expanded the area of study to 

embrace more completely the full range of the Caledonide nappes in the whole of central Scandinavia, 

and proposed that the cave development model required both internal and external frameworks. The 

internal framework would show how cave morphologies are guided by the geological attributes of the 

carbonate outcrops. The external framework would show how the formation, development and 

destruction of karrt caves are related to the geomorphological development of the host region. 

The origin of the marble caves of Scandinavia has remained enigmatic for over a century, with many 

conflicting views being presented, sometimes by the same author. The reason became apparent as the 

proposed models grew in number and complexity. Because of the intimate association of the caves with 

their local landscape, it became necessary to study the geomorphological evolution of the whole study 

area itself, so as to understand the processes involved in the development of the karst caves. This 

required a multidisciplinary development of concepts in many subjects that are beyond the normal 

province of karst geomorphology. Consequently, the research journey was longer than anticipated and 

the text of this thesis is longer than originally planned. 

In undertaking this unfunded, curiosity-driven research, the author drew on his experience of exploring 

caves in Scandinavia, having led or participated in 13 expeditions there since 1972, and having visited 

over 500 caves, most of which were previously unrecorded. Field trips in 1997,1998 and 2000, each of 

7-9 weeks duration, provided more targeted information about the caves and karsts. Additionally, in 

order to make comparisons with caves in metacarbonate outcrops in other Caledonide terranes, the author 

made one-week field trips to northern America (1996,2002), Scotland (1997,1999), Shetland (1999) and 

Ireland (1996,1997,1998). 

The thesis resembles a detective story, in which the basic problem is simply stated (How did the caves 

form? ), but the answer is rather complicated, and yet is capable of explanation by a simple concept that 

has not been proposed previously. This basic concept (realised after the 2000 field trip to Elgfjell) led to 

further questions, which were also capable of resolution as levels of understanding grew deeper. A most 

satisfactory outcome (for the author) is that the answers to these more detailed questions were nearly 

always found from within the scope of the basic concept itself, creating a robust thesis. 
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Utdrag 
Dette er den ferste omfattende studie av grotters begynnelse og utvikling i metakalksoner. Hovedstudiet 
omfatter en 40000km2 stor region i midtre Skandinavia som inneholder over 1000 forskjellige 
kalksteinsomrader, og har nermere 1000 dokumenterte karst huler (med lengder opp til 5,6km) Omradet, 
som ble gjentatte ganger nediset i sen Cenozoisk tid, omfatter en rekke skyvedekker i Cambro-Silurisk 
Kaledonider, en paleisk fjellrekke med terreng som ni finnes pA begge sider av Nord-Atlanteren. 
Informasjonen om stripe karst og andre kalksteinshoyder og deres innhold av grotter ble samlet i en 
computerbasert database, som gjorde det mulig A analysere slektskapet mellom indre egenskaper i 
grottene og deres ytre geologiske og geomorfologiske omgivelser. Et heller overensstemmende monster 
viste seg. For eksempel, lengdene ph karsthydrologiske systemer er ufravikelig kortere enn 3,5 km, og 
hulegangene er sjelden i en vertikal posisjon, mens vanlig finnes de innen 50 m av den overliggende 
overflaten. Denne entydigheten peker pi at den relevante begynnelsen av hulene, utvikling og fjernings 
prosesser virket i en regional skala, og over lange tidsrom. En konsekvens av den naere assosiasjoen av 
grotter med landskapet er at grotteutvikling kan bare bli forst$tt i sammenheng med den, geomorfologiske 
utviklingen av vertsregionen. En gjennomgang av den nyeste kjennskap til begynnelsen og utviklingen av 
grotter i sedimentaere kalkberg konkluderte med at huleutviklingen i midtre Skandinavia ikke kan 
forklares med disse ideene. Fern ny innbyrdes beslektede modeller er konstruert for A forklare 
grotteutvikling i metakalkfjell i de forskjellige Kaledonske omrader. Disse er: 

1. Den tektoniske begynnelses modell - denne viser at det bare er äpnede sprekkeruter, opprinnelig skapt 
av de seismiske rystelser son folger med avisingen, som kan gi anledning for opplesning av 
metakalkstein son har ubetydelig poresitet. 

2. Den ytre modell av huleutvikling - denne "svart-box" tilnaermingen avslorer at dannelsen, utviklingen 
og nedbrytingen av karstgrotter er beslektet med utviklingen av det landskap de befinner seg i. Under 
Pleistocene, var disse prosessene dominert av perioder med nedising, som forte til periodisk 
grottetilblivelse, og utvikling av stadig lengre og dypere systemer, hvor maksimal distanse til overflaten 
vanligvis gjenst$r innenfor en 6ttendedel av forandringen i det lokale relieff. 

3. Den hydrogeologiske modell - denne beviser at grottene utviklet seg til deres kartlagte dimensjoner ph 
tidsrom overensstemmende med de to forste modellene, innenfor den tvang pAlagt av fysikken og kalsitt- 
opplesningskjemi og erosjon, hovedsakelig i rent vatn. Relikte grotter ble overveiende utviklet under hel 
vannfylling nede i aktive bredemte sjoer i avisingstiden, med asymmetrisk avrenning pi rest og vestvendte 
skräninger. For det meste vadose grotter ble utviklet hovedsakelig under n$vaerende interglasial, som 
bekkelop, mod maksimum dimensjoner besternt av nedberfeltet. Kombinasjonsgrotter utviklet seg under 
bide avisings og mellomistidsforhold. Tverrsnittet av freatiske passasjer adlyder en non-fraktal fordeling, 
fordi de utviklet seg med maksimal hastighet i samme tidsrom. Freatiske huleApninger hogt til fjells 
kunne bli forsterret av frost / tine prosesser ved overflaten av bredemte sjeer, og ved havnivAet ev marin 
aktivitet under isostatisk landhevning. 

4. Den indre statiske og dynamiske modell - denne "kvit box" tilnaermingen viser at mange grotter har 
` ovenfra-ned" morfologi, med relikte freatiske ganger over en enkel, ferst og fremst vados bekkeprofil. 
Begge typer av ganger er ledet langs begynnelser son fi lger geologiens struktur og sprekker i kalkfjellet. 
Dynamiske, grottene utviklet i en "Top-Down, Middle-Outwards" sekvens (TDMO) son kan ha strukket 
seg over flere glasiale perioder, og passasjer i de eldre "mange-sykilers" grotter ble fjernet innover og 
nedover av glasial erosjon. 

5-Den Kaledonske modell - denne viser at de samme prosesser (med noen raffinementer) kan anvendes 
pA grotteutvikling i de fleste andre Kaledonske omräder. Den sterste innflytelsen pA grottedimensjoner 
var tykkelsene ph de nordatlantiske nedisingene og hulenes posisjoner i forhold til avisingenes bredemte 
sjoer og til lokal topografi. Andre innflytelser inkluderte kontakt metamorfose, naerhet til stone 
trykksoner, og marine framstet. Med kjennskap til disse pAvirkningene for hvert omrAde, kan middels 
grotte-dimensjoner forutsies. 

Avhandlingen gir anledning til a utvide de fen modellene, slik at grotteutvikling i andre nedisede 
metamorfe og sedimentwre kalkfjell kan bli bedre forstätt, og omvendt, slik at landskapsutvikling kan 
utledes fra grottedata. 
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joints in vertical stripe karst provide a focus for tectonic inception 
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Frontispiece I The Jordbruely Waterfall (Z4) 
Gorge created where the Jordbruelv meets the limestone. Neotectonic horizontal 

t'rontispiece 2 Entrance to Eiteradal Resurgence Cave (Z4) 
The epigean nature of this cave is typical of many caves in the study area. 
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CHAPTER 1 INTRODUCTION 

The main aim of this thesis is to develop a conceptual model for cave development in metacarbonate 

rocks in central Scandinavia, and to test the applicability of the model in similar geological 

environments in other parts of the world. The background to the research project is described in the 
Preface. 

1.1 Research objectives 

It was a project aim to derive the speleogenetic processes for the caves and karsts of metacarbonate rocks 

from first principles, and to provide system information, to meet challenges set by Ford and Williams 

(1989,248-249) and Quinif (1998, p1). However, the author's approach is, of necessity, conditioned by a 

previous level of understanding of speleogenesis in sedimentary, rather than in metamorphic, limestones. 

Rather than study a small number of caves in detail, the available evidence from published sources and 

from the author's field work was reviewed for all the known caves and carbonate outcrops across the 

whole of central Scandinavia. 

This thesis does not seek to replace the existing theories of cave development, which primarily apply to 

sedimentary karsts. However, it does introduce a new paradigm to explain the development of caves in 

Caledonide metamorphic limestones, and elements of this paradigm may also be applicable in other karst 

situations. It became appropriate to expand the originally-conceived internal model into static and 

dynamic models of internal cave morphologies, and to add the tectonic inception, hydrogeological and 

Caledonide models to the originally-conceived external model. Together, these five models comprise the 

paradigm that is necessary to gain a deeper insight into the evolution of the caves in Caledonide 

metalimestones. 

The objectives of this thesis are therefore to use the derived data and the five models collectively to 

address the key questions concerning Caledonide speleogenesis: 

Is there any systematic variation of karstification across the main study area, and how does this 

compare with the karstification of the other Caledonide terranes? 
2. What are the processes involved in the evolution of the caves? 
3. Is there is a prima facie case that similar processes and timescales operate across the whole study 

area, and in the other parts of the Caledonides? 

4. What are the timescales over which the caves evolved, and how do these relate to local 

geomorphological events? 

5. What are the key parameters that have dominant roles in karst evolution across all the 

Caledonides? 
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1.2 Methodology 
The following activities were performed within this project, many being discussed in later Chapters. 

They are listed in order of initiation, but were commonly pursued iteratively and in parallel. With 

hindsight, this methodology follows the global analysis conceptual approach used by Tognini (2001). 

1.2.1 Literature search 

The references list over 600 papers that contributed to the project. Several are very recent, showing that 

many conclusions in this thesis could not have been reached if the project had been tackled earlier. 

Literature was studied in five main areas: 

- General geology, metamorphic geology, geomorphology and karst geomorphology 

- Geological research into the development of the Scandinavian (and other) Caledonides, with particular 

emphasis on the study area and its metacarbonate outcrops 

- Cave exploration in the study area, and other related areas 

- Cave science in Norway and Sweden 

- Related subjects: Quaternary glaciations, glaciology, the Holocene, seismology and tectonics, isostasy 

and sea level, the physics and chemistry of limestone dissolution, and the hydrogeology of crystalline 

rocks. 

1.2.2 Course and conference attendance 

Knowledge of many of the above topics was also gained from attending courses held at the Universities 

of Huddersfield and Cardiff, together with attending other conferences and seminars. 

1.2.3 Use of topographical and geological maps 

Karst outcrops and features were recorded on published maps. 

1.2.4 Field work 
Information about the location of caves and the characteristics of their local karst outcrops were recorded 
in the field together with underground studies and surveys. 

1.3.5 Computer databases 

Databases were generated for all the karst outcrops and caves in central Scandinavia and cave databases 

were generated for many of the other Caledonide terranes. Factual deductions about cave attributes were 

then derived from computer analyses of these databases. 

1.2.6 Synthesis 
The knowledge gained from the above activities was synthesised to prepare the five conceptual models of 

cave development, using the thesis as a working document. A comprehensive four-cycle revision process 

then maximised internal feedback, whilst maintaining consistency. 
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1.3 Thesis structure 

Following this Introduction, the thesis comprises three main parts. The contemporary knowledge of both 

the geological history of central Scandinavia and the speleogenesis of sedimentary and glaciated 

carbonates is reviewed in Chapters 2 and 3, supported by data in Appendix A. In the second part, 
Chapters 4 and 5 with Appendices B and C discuss the author's studies of the karsts and caves of central 
Scandinavia. Conclusions are presented at the end of Chapter 5. In the third part of the thesis, Chapters 

6-10 with Appendices C and D present the conceptual models that propose the way the caves have 

developed, from five different, but complementary, frameworks. These models were derived from the 
knowledge and evidence presented in the first two parts, and they extend from a consideration of the 

caves in the study area itself, to some of the metacarbonate karsts of the other Caledonide terranes. 
Information about the caves of central Scandinavia was assembled and analysed by considering the 

external and internal attributes of each of the caves and its environment. This external-internal theme is 

also used to structure the order in which sections and sub-sections are presented. Ages discussed in this 

thesis later than 50ka BP refer commonly to radiocarbon years (14Ca BP, i. e. before AD1950). Karst 

terminology follows the definitions of Lowe and Waltham (1995), except where specified in the text and 
in the Appendices. New terms are summarised under Abbreviations and Notations. 

1.4 The study area (Figures 1.1 and 1.2) 

The study area extends from the Atlantic Ocean, with many coastal islands off the western coast of 
Norway, across the international border into Sweden to the east. The western third of the area comprises 
the totality of the Helgeland Nappe Complex (HNC; section 2.1 discusses the geological terms used). 
This is bordered to the north at Ranafjord in the county of Nordland at 66°20', where the I-INC overlies 
the Rodingsfjell Nappe Complex (RNC). The border to the south is the Grong-Olden Culmination at 
64°30', where stratigraphically lower rocks come to the surface. Grong is in the county of Nord 

Trr ndelag, some 60km south of the border with Nordland, and some 160km north of Trondheim. In 

defining the eastern limit, the north-south extent of the HNC is continued eastward, across the 
Norwegian / Swedish border, and generally across the lower nappes as far as the Caledonide thrust front. 

However, the incomplete publication to date of modern geological maps in the Swedish part of the area 
led to the northern section of the eastern border being defined along the edges of some of the available 

geological maps, and along internal structures. This rather arbitrary eastern edge to the study area is of no 

great significance. No known carbonate caves exist there, and from the evidence farther south, there are 
likely to be only a few small carbonate outcrops. 

The Norwegian part of the study area lies in the counties of Nordland and Nord Trondelag. It is within 
the region of Helgeland, which also extends north of Ranafjord. This part is called `north central 
Norway' in this thesis, a term used in some geological papers. The Swedish part of the study area lies 

within the counties of Vitsterbottensland and Jämtland, called the `central Swedish Caledonides' in this 
thesis. The whole area measures about 200km by 200km, i. e. 40000km2, which is roughly the size of 
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Switzerland. Figure 1.1 locates important towns, fjords, rivers and catchment areas. Figure 1.2 is a 
diagrammatic map that delimits the study area and identifies the topographical and geological maps used. 
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Figure 1.1 Central Scandinavia study area (Paleic surface after Rudberg, 1997) 
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Figure 1.2 Topographical and geological maps applicable to the study area (Figure 1.1) 

In the centre of the study area are three large drainage basins that are referred to here as the Northern, the 

Vefsn, and the Namsen catchment areas. The Northern catchment area includes the lakes Store Akersvatn, 

Grasvatnet and Ressvatnet, which are near the Swedish border, and which eventually discharge into the 

sea at Ranafjord. The Vefsn basin drains northward from Store Majavatn, initially along Svenningdal, to 

Vefsnfjord at Mosjoen. It collects drainage at Trofors from the Susna and from the Skarmodalselv. The 
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Namsen drainage starts just south of Store Majavatn and runs south, to reach the sea at Namsfjord. The 

low pass height (315m) and gentle slopes between the Vefsn and Namsen basins are indicative of a major 

glacial through-valley (Rudberg, 1992). A Western catchment area drains the line of mountains that lie 

west of the Vefsn and the Namsen via many separate fjords to the Atlantic ocean. To the east, the 

Northern, Namsen and part of the Vefsn basins are bounded by the Main Scandinavian Watershed 

(MSW). An Eastern catchment area drains from the MSW along many long, southeast-trending, valleys 

in Sweden towards the Baltic Sea. For the whole study area, the MSW is approximately coincident with 

the international border between Norway and Sweden, but with significant diversions along glacial 

through-valleys in both directions. In particular, the Skarmodalselv river has a catchment that extends 

54km into Sweden. In the NE corner of the study area, both the MSW and the international border make 

steps of 40km inland, to the east. 

1500m altitude 
Diagrammatic west to east profile along UTM 33W 7267000: C. 65'30' 

1250 
Jordhulefjell Bergetjell 

1000 1 Kvitfjell ( MSW 
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750 (_ rI-- Velf ofd SVenningdal " 

500 
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Norway Sweden 
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Distance east from 100m YD Isobase 
Figure 1.3 Topography of the study area 

The topography at the centre of the study area is illustrated in Figure 1.3, which gives the surface profile 

along a west to east section at 65°30'N. Heights are taken from the Norwegian topographical map series 
M711 and from the Swedish Fjällkartan maps. The profile shows that from a low-lying strandflat along 

the Atlantic coast, the coastal mountains are dissected by deep fjords. Jordhulefjell lies along the ridge 
between the Western and Vefsn catchment areas. The base land surface then rises across Norway into 

Sweden, which generally has more gentle slopes and broader vistas. It reaches an altitude of some 400- 

700m. This is a broad asymmetric antiformal structure, described as the Scandian Marginal Bulge by 

Peulvast (1985). Summits along this section only reach to about 1000m, but rise to a maximum height of 

1916m at Oksskolten in the Okstind mountain range in the northern part of the study area. The tree line 

gently ascends towards the east, starting at a height of about 400m on the coast and reaching a fairly 

constant elevation of 800m some 80km inland. Hence, in Sweden, most of the land surface is below the 

tree line along this section, making progress on foot quite difficult if not following a good path. Some 

50km north, the mountains are much higher and the tree line is also some 50m lower, so that the higher 

slopes are grassy or consist of bare rock, even in Sweden. Some 50km south, the tree line is about 50m 

higher. The forest consists generally of mixed silver birch, pine and spruce at lower altitudes, giving way 
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to 100% birch about 100m below the tree line. The highest birch is usually of the scrub variety, being 

low in height but densely thicketed, making walking through it extremely difficult. The tree line can vary 

by over 100m between the southern and northern slopes of a mountain. Most of the permanent snow in 

the study area is contained within the large glaciers in the Okstind range in the RNC. Other glaciers 

occur on the higher mountains in the HNC, commonly on northeastern slopes. Elsewhere, including the 

whole of the study area that lies in Sweden, all snow usually melts by late summer, except in scattered, 

protected, patches (such as dolines). 

It is a characteristic of this area that the metacarbonates commonly occur as long, linear, north-south 

aligned, narrow stripe karst outcrops, which are homoclinal when viewed at the scale of their contained 

caves. Many are very steeply inclined, up to vertical. This is in contrast to the more complex structural 

geology associated with some karst caves in northern Norway (e. g. Lauritzen, 1996b). Over 884 karst 

caves are now known in the area, which contains over 1000 metacarbonate outcrops. Sea caves, tectonic 

caves and talus caves in non-carbonate rocks, and ephemeral caves under snow fields also exist in the 

area, but these are mainly outside the scope of this work, as are the caves in metalimestones of the Baltic 

Shield, which are sporadically described in the Sveriges Speleolog-Forbund magazine "Grottan". 

1.5 Subdivision of the study area 

For the convenience of this thesis, the study area is subdivided into 20 zones on a geological and a 

geomorphological basis. Each zone is identified by a two-character code. The HNC is divided into zones 

Z1 Z9. These are generally long, north-south, strips of land that follow the mapped bedrock geological 

structures and watersheds, and are numbered from west to east. Z9, however, is the Nesna Shear Zone, a 

unit that forms the lower boundary of the northern part of the HNC. The RNC is divided into zones ZA, 

ZB and ZC. These are located in the northeast part of the study area. Sufficient detail about the Koli and 

Seve Nappes is shown on published geological maps and research papers for these nappes to be grouped 

together. (For the chosen groupings, see Abbreviations and Notations, pxx. This also lists and names the 

HNC and RNC zones and gives all the codes). Other Keli nappes exist, but as these do not contain 

carbonate outcrops, they have been ignored. The twentieth zone comprises the whole of the Middle and 

Lower Allochthons in the study area (ML). The zones are listed in a descending sequence down through 

the Caledonian nappe pile. The Norwegian part of the area includes only a small area of Seve Nappes 

(SU and SB), and these do not contain carbonate outcrops. Figure 1.2 identifies the zones and shows how 

they relate to the topographical maps of the study area. The Western catchment area comprises the whole 

of Z1, Z2, Z3 and Z9, and the northern part of Z6. The Northern catchment has parts of Z6, Z7, Z8, ZA, 

ZB, ZC and the Kali nappes. The Vefsn catchment area comprises the whole of Z4 and Z5, and parts of 

Z6, Z7, Z8, ZA, the Kali nappes and ML. The Namsen catchment area contains parts of Z6, Z7, Z8, Keli 

and Seve nappes, and ML. The Eastern catchment area comprises parts of ZB, ZC, Kali and Seve nappes, 

and ML. 
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1.6 Cave exploration in central Scandinavia 

Knowledge of the karst caves is dependent on the work of many people. The resulting total picture of 

known cave locations and characteristics is necessarily biased by the methods and motivations of each of 

them. Thus, in order to gain a better understanding of the true speleogenetic nature of the region, the 

revelation and recording of cave sites, firstly of littoral caves by seafaring travellers, then by geologists, 

and finally by sporting cavers, requires some analysis. This last group has developed working techniques 

such that, at present, `new' caves can be found and explored almost at will. 

The places investigated for caves are inevitably conditioned by the methods of access. Before the 1960s, 

road access to northern Norway was along the narrow E6, via Grong and Mosjoen. Its gravel surface 

made journey times very long. There were few side roads. Since then, every year saw an improvement to 

the road network, and gravel roads were extended into many side valleys. However, even now, some 

potential karst areas are still too remote to encourage access during short visits. 

1.6.1 Cave exploration in Norway 

Large coastal caves were reported in Norway by at least the 12`x' Century (St. Pierre D, 1988). The formal 

reporting and exploration of caves in inland limestones from about 1870 led to a continuous increase in 

the number of recorded caves. Most of these limestone caves are in the county of Nordland, and many 

caves up to several kilometres in length have now been explored north of the study area. Up till July 

2000, the longest was the Okshola-Kristihola system at about 11km, with a depth of 185m. The deepest 

is Rigge Javre-Raige at about 580m. From 1870 to the Second World War, the discoveries were mainly 

made by Norwegian geologists during field mapping. An important work (Helland, 1907) gave many 

locations of holes and streams that go underground. Large caves were reported by Oxaal (1914). One of 

these, Grenligrotta, was opened to the public as a showcave. Horn (1937) described some of the caves 

in the Rana-Svartisen district, and Horn (1947) gave lengths for 19 caves in the county. Prior to the 

advent of the systematic reporting of caves, many were known and used by local people. There are 

accounts of small-scale human habitation, and, more rarely, signs of use of dry entrance areas for storage 

and shelter by the Sami people, whilst tending reindeer in remote locations. 

For a period after 1945, new Norwegian caves were almost entirely discovered by expeditions that 

visited the country from abroad. The bottom of Larshullet in Rana was reached in 1951, at a depth of 

326m, by a combined French, British and Norwegian team. From the mid-1950s, most expeditions came 

from Britain. From 1964 to 1979, typically four or five groups from English caving clubs visited Norway 

each year. This activity reached a peak in 1977, when nine such groups went to Norway. 

The 1980s saw a reversal in the roles of English and Norwegian groups. Between one and four English 

clubs still visited each year. However, it is clear from reading the Norwegian caving journal Norsk 

Grotteblad, that local clubs and members of the Norsk Grotteforbund (NGF, founded in 1977) were 

making up to eight discovery caving trips per year. These were sometimes in joint Anglo / Norwegian 
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expeditions. Whereas significant new caves were still being found, exploration was also becoming more 

technical. Some of the longer caves were `pushed' farther into more difficult parts, by climbing or by 

diving. For example, another 300m-deep system, Greftkjelen, was extended and attempts were made to 

connect it to Greftsprekka, which has an entrance nearby. Cave divers completed a 500m-long dive 

through the Glomvatn Underground Outlet and started the exploration of a submerged system deep 

below Plurdal. 

Local cave exploration was maintained at the same level into the 1990s, whereas the number of English 

expeditions reduced to only about one per year. Undoubtedly, cave explorers have now visited the 

majority of the easier, open, `stream cave possible' sites that appear on both the old 1: 100000 and the 

new 1: 50000 series maps. Nevertheless, a recent reward is Tjoarvekrajgge, in northern Nordland. This 

system, which is now c. 17km long (the longest in Scandinavia) and 502m deep, is still being extended 

by a joint Swedish-Norwegian team. An important karrt area lies in the kommune of Rana, just to the 

north of the main study area (St. Pierre and St. Pierre, 1969 and 1971). 

Karst caves are also known south of the study area, although not in great numbers. Significant caves have 

been explored east of Steinkjer, at Molde near the coast, in the Jotunheimen mountains of southern 
Norway, and near Oslo. The most recent account of the contemporary state of cave exploration in 

Norway was by St. Pierre, D (1988). St. Pierre (2003) listed Norway's longest and deepest caves. 

1.6.2 Cave exploration in north central Norway 

Cave exploration in north central Norway also started during geological mapping early in the 20`x' 

century. Hoel (1906) reported caves in Z2, and Oxaal (1910) discussed two of the few caves in the area 

to become minor tourist attractions: Jordbrua and Marmorgrotta in Rennselelvdal (KL). Helland (1907 

and 1909) referred to many caves and underground streams. The report of one of the visits of Professor 

Jean Corbel from Lyons to Scandinavia covered the Rennselelvdal karst (Corbel, 1952a). Corbel (1957) 

discussed many other karst sites in north central Norway. Corbel's observations caused British caving 

expeditions to visit Norway, but during the 1960s and 1970s these concentrated most of their effort north 

of Mo i Rana. Despite having many (narrow) limestone outcrops, the southern part of Nordland seemed 

to be less promising for cave discovery. There were very few caves recorded south of Mo. The 

underground streams that were marked on maps did not extend across a large vertical range. The steeply- 

banded limestones were also of an uncertain vertical extent. Accordingly, the first purely caving visits to 

the area were not until those of David Heap's team in 1967 and 1968. Since then, several British caving 

teams made repeat visits. These include `South Nordland Expeditions', most of which were led or 

participated in by the author, and which usually occurred every two years in the 1980s and 1990s. 

Although no very long or very deep caves were found, most of these three-week expeditions reported 

about 40 `new' caves, with 3-Skin of total new passage length. Some more distant karst areas were 

accessed by backpacking all the equipment needed up to a mountain camp, which was then occupied for 
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up to two weeks. No areas have yet been visited that would require more than one day's walk from the 

nearest road. 

A Swedish team has also recorded previously unknown caves in the area in recent years, especially in Z5, 

Z6, Z7, ZA and ZC. The field trips by the author in 1997,1998 and 2000 revealed the existence of over 

65 more caves, with total passage length of over 5km. Some of these remain incompletely explored and 

no details have been published to date. From about 1997, cave explorers living at Brenneysund and 

Mosjeen started to find and explore caves in their vicinity. Local enterprise has also attempted a small 

trade in adventure caving for tourists at several sites. 

At present, over 700 adequately-reported caves are known in south Nordland, with a total passage length 

of 58km. Additionally, 100 unexplored or incompletely-reported caves exist. The longest known caves 

are two stream caves, Toerfjellhola (Z3) and Stor Grubblandsgrotta (KU), which are both nearly 2km 

long. The deepest cave is Ytterlihullet (ZA), which is 180m deep. Cave cross-sections vary from under 

1 m2 (commonly) up to I00m2 (rarely). The caves occur at altitudes from over 900m down to sea level, 

and the longer ones typically contain active stream passages with several sumps in spring and summer, 

below higher-level abandoned passages. Speleothems are rare in general, but some individual caves and 

passages are well decorated. A more complete summary of cave exploration in Helgeland was described 

by Faulkner (2000c). 

Throughout the area, the larger and more easily-accessible caves are regularly visited by local people, 

leading to some graffiti and the removal of speleothems. However, most caves known to the author in 

south Nordland have not been revisited after their first exploration. It was standard practice to make cave 

surveys without marking survey stations permanently, and it was never necessary to insert bolts to 

facilitate the descent of shafts. The overwhelming majority of these caves therefore remain in a near- 

pristine condition, and are ideal objects for scientific study. 

1.6.3 Cave exploration in Sweden 

Sweden has many tectonic and talus caves formed in the Proterozoic rocks of the Baltic Shield, east of 

the study area. Many of these have been known for a long period of time, but they remain out of scope 

for this study because of their location and the non-carbonate nature of the rock. These old rocks also 

contain some metacarbonate outcrops, with perhaps some 20 karst caves up to 20m in length, but they 

have been little investigated and are also out of scope. 

The karst caves of Sweden, commonly referred to as "mountain caves" (fjällgrottorna), occur within 

60km of the Norwegian border, in the Swedish part of the Caledonides. As in Norway, the early reporting 

of caves in metacarbonates fell to geologists in the course of mapping. The first such cave, 

Svenoniusgrottan, in the Bjuräly valley (KL) was recorded in 1879 (Svenonius, 1880 and 1910). The 

Svenonius account discussed the karst landscape in this valley, which has many deep conical dolines 
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formed in alluvium. It has since become one of the most visited educational karst sites in Sweden. The 

next recorded karst location appears to be at Tjärrogrottorna (KU), which was located in 1927 

(Beskow, 1929), and this is also within the study area. It is mentioned in local tourist literature 

(Wilhelmsson, 1997) and was also described by Faulkner (2000a). 

The impetus for a more systematic search for karst caves in Sweden undoubtedly came from the work of 
Corbel. His visits to Scandinavia during the early 1950s included the Bjuräly area and the Björkliden 

area at Tornetrask, which is east of Narvik in northern Norway (Corbel, 1952a and 1957). 

Lullihatjärrogrottan at Björkliden has become one of the longer caves of Sweden at 1300m. Early visits 
to this cave were by Swedish academics from Lund University, and then from Chalmers Technical High 

School in 1964. 

A large increase in cave discovery and exploration all over Sweden resulted from the formation of the 
Sveriges Speleolog-Förbund (SSF) on 28 May 1966. Subsequent discoveries were reported meticulously 
in its organ Groltan, which has been published four times per year in an almost unbroken sequence since 
1966. The first issues were edited by the pioneer speleologist Leander Tell. Hence, in complete contrast 
to Norway, the record of cave discovery in Sweden can be ascertained by reading just one source. 
Furthermore, all karst caves were explored by Swedish-led expeditions, with only occasional assistance 
from visiting foreign cavers. The momentum is maintained by an SSF mountain camp of one to two 

weeks each summer, which rotates around all the major karst areas. In another contrast with Norway, 

several review publications brought the contemporary state of knowledge of Swedish caves to the 

attention of all Swedish cavers and, indeed, to a wider public. These included works by Tell (1955 and 
1974), Engh and Sjöberg (1981, from which much of the above information has been derived) and 
Aström (1986). Useful overview articles published in Grottan include Westerdahl (1974) and Sjöberg 

(1986,1996e and 1997). A computer-based database of all known caves in Sweden, including tectonic 

caves, is maintained by the SSF (R. Magnusson, Sveriges Speleolog-Förbund, pers. comm., 1998). 

Westerdahl and Linden (Westerdahl, 1974) divided the Swedish Caledonide carbonate outcrops in the 

counties of Norbotten and Västerbotten among eight areas, to which Engh and Sjöberg (1981) added a 

ninth in the northern part of the county of Jämtland. Areas I to VI lie to the north of the study area, and 

areas VII, VIII and IX lie within the study area. Not included in this scheme are the scattered karsts in the 

various nappes south of area IX and the study area, which might loosely be called the Ostersund area. 
Area II (Tornetrask) and area IV (Padjelanta-Virihaure) are each subdivided into three major karst 

regions. These six regions have been visited many times since the 1960s, yielding six caves over 500m 

long, the longest being Üvre Käppasjokkgrottan in area II at over 2.1 km. The second deepest cave in 

Sweden is Vuoitaskatlogrottan in area II, at 140m depth. 

Apart from the many major caves found in the study area (section 1.6.4), a long cave formed in 

sedimentary Silurian limestones has been repeatedly extended since the 1960s. This is 
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Lummelundagrottan, on the island of Gotland in the Baltic Sea. Now about 5km in length, it vies with 

Korallgrottan (KL) in area IX to be the longest cave in Sweden, as each cave leapfrogs ahead of the 

other when new passages are added to the surveys. 

1.6.4 Cave exploration in the central Swedish Caledonides 

There are 156 adequately-reported caves in the central Swedish Caledonides, with a total passage length 

of 16km, plus some 50 smaller, incompletely-reported, caves. Swedish cave exploration in the study area 

started at its NE corner in the mid-1960s in area VII, near the lake Over-Uman and east of the Okstind 

mountains. Engh and Sjöberg (1981) divided area VII into four regions: Övre Ältsvattnet (A); 

KAtaviken-Mjölkbäcken (B); Mieseken (which contains Labyrintgrottan) -Arttjarro (C); and 

Sotsbäcken-SW Artfjäll (D). Regions B and C lie in RNC ZC. Regions A and D lie in the Köli (Upper) 

KU zone. Two major Swedish caves, Sotsbäcksgrottan (KU) and Labyrintgrottan (ZC), were explored 

in 1966. They were since extended during fairly regular visits to reach c. 1850m and c. 2500m in length. 

Over 100 shorter caves (up to 320m length) were explored by the Övre Altsvatten Expedition in 1970 

(Oldham and Oldham, 1971; Sjöberg et al., 1971; Sjöberg, 1980). The Kataviken area has been visited 

sporadically by cavers since 1966 and was also publicised locally as a "Grottstig" (cave path) by 

Wilhelmsson (1997). The path provides a 4km-long walk to caves and karst features that people are 

invited to explore as far as they wish. The longest cave here is Ostra Jordbäcksgrottan (ZC). This is 

460m long, with a relatively large descending stream passage, and is 45m deep. The SW Artfäll area 

includes Rödingsfjäll, where a stream descends along a narrow limestone outcrop. Glimäkragrottorna 

(ZC) and other short caves were explored there in 1978, although the area was visited briefly in 1970 and 

1972 (Lindh, 1978a). Further finds were made in 1986 (Norberg, 1987) and the area was visited by the 

annual SSF mountain meeting in 1987 (Sjäberg, 1987c; Lundberg, 1987). Area VIII (S6dra Storfjället) is 

encircled by KU carbonate outcrops, but has hardly been investigated by cavers since the discovery of 

Tjärrogrottorna on its north side (Beskow, 1929). The south side of the mountain has also been visited, 

when the clean-washed cave Rajagrottan was explored (Sjöberg, 1972). 

Despite the lack of long caves along its 2km-long underground stream course, the "spectacular" Bjuräly 

karst valley in area IX (KL) has continued to attract sporadic caving visits. In the very dry conditions of 

summer 1978 it was possible to enter a cave at the main sink, and Övre Bjurälvsgrottan was found to 

be 200m long and 15m deep (Lindh, 1978b). The cave could not be re-entered until August, 2002. 

However, this area has compensated in another way, through the discovery of the extensive and complex 

Korallgrottan (KL; Doj, 1985). Its subsequent exploration over the next decade revealed a magnificent 

cave, with many interesting features, which is now nearly 6km long and is 144m deep. The cave exists at 

several levels above an active series, and has several entrances. The longest traverse through the cave 

provides one of the best non-vertical sporting caving trips in Scandinavia. 
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1.7 Cave and karat science in Scandinavia 

The sections below present a brief historical review of the development of cave science in Scandinavia. 

Section 3.3 provides a fuller treatment of ideas relevant to this thesis. 

1.7.1 Cave and karst science in Norway 

In parallel with reporting caves found during mapping, the early Norwegian geologists also made studies 

inside the caves and developed ideas about how the caves formed. A review of their opinions on 

speleogenesis is presented in sections 3.3.1-3.3.3. Vogt (1897) presented information about the 

occurrence of metacarbonates across the whole country, including north central Norway (ibid., pp 240- 

265). Hoel (1906) reported marine shells inside caves at altitudes above 100m in Z2. Rekstad (1914) 

gave chemical analyses of various limestones, including some from the study area. Rekstad (1917) 

mentioned caves and potholes, also in Z2. Horn (1937) introduced the term "strip (or stripe) karst" to 

describe the predominantly narrow bands of metalimestones in which many of the karst caves of Norway 

are located, and the term "green karst" to illustrate the forested nature of many karst environments. His 

later work (Horn, 1947, published posthumously) discussed the botany of cave entrances and the faunal 

remains found in some caves, including bones of brown bear, Ursos arctos. 

Corbel (1952a) discussed the Rennselelvdal karst in KL in Norway with its continuation over the 

watershed into Bjurälvdal in Sweden. Corbel (1957) examined the role of climate in limestone erosion 

with material taken from all over Scandinavia (north central Norway: ibid., pp 211-218), Spitsbergen, 

Greenland, Britain, Ireland and Canada. Railton (1954) discussed a visit to the caves of northern 

Nordland made with Corbel in 1951, and gave his own observations about the paucity of speleothems. 

Jenkins (1959) discussed geological guidance in the shape and direction of caves passages, cave 

sediments, faunal remains, speleothems and cave development for three caves in the Svartisen area. A 

review of the then state of scientific knowledge of Norwegian caves was published by St. Pierre, S 

(1967). There are no known scientific references dating from the 1970s. St. Pierre, S (1980 and 1988) 

discussed her studies in Gronligrotta. 

The more technical approach to cave exploration of the 1980s was accompanied by a more rigorously- 

scientific treatment of the Norwegian caves. Caves were visited not just for exploration or survey, but 

also to study their morphology, and their internal deposits of stalagmite, clastic sediments, and possible 

archaeological artefacts. A field trip to the karst areas was organised as part of a symposium on Arctic 

and Alpine karst held at Oslo, and the importance of protecting caves as vulnerable sources of scientific 

information about earlier climate and geological history was recognised. The papers or abstracts from 

this symposium were published in a theme issue of Norsk Geografisk Tidsskrift (Lauritzen, 1984a). The 

number of scientific papers about Norwegian caves expanded considerably in recent years, with 

particular attention being paid to the dating of stalagmites. A theme issue of Cave Science brought 

together 11 scientific and review papers (Faulkner and St. Pierre, 1988). A second karst conference, on 

the theme of the karst record and climatic change, was held at the University of Bergen in August 1996. 
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Eight papers drew on evidence from Norwegian caves (Lauritzen, 1996a; Yonge, 1997). Field trips were 

also made to karst areas in southern and northern Norway. 

Most of the Norwegian scientific studies since the early 1980s derive from work in caves in northern 

Norway. Very little scientific work has been undertaken within the north central Norway study area. The 

one cave to receive in-depth study is Sirijordgrotta (Z4) in Eiteradal. A hydrological and hydrochemical 

description of the karst aquifer was presented in a 204-page thesis (Ovstedal, 1991). Lauritzen and 

St. Pierre (1982) dated a stalagmite from the cave, and an account of its sedimentation was provided in a 

261-page thesis (Valen, 1991; summarised in Valen et al., 1997). Publication of the results of the study 

of around 10000 bone fragments from the pitfall Elk Shaft is awaited. 

At the periphery of karst science, papers have also been published on caves in non-carbonate rocks (e. g. 

Schroder, 1989), coastal caves (e. g. Sjöberg, 1988) and glacial processes (e. g. Smart, 1984; Theakstone, 

1988). Ostbye et al. (1987) described invertebrates from several Norwegian caves, including 

Sirijordgrotta (Z4). Dolmen and Arnekleiv (1990) and Arnekleiv and Dolmen (1992) provided 
information about freshwater insects and aquatic invertebrates in caves in Rana and at eight cave 

locations along the river Jordbruelv (Z4). 

1.7.2 Cave and karst science in Sweden 

As in Norway, the first assessments of Swedish karst were also made by the geologists who were 

working in those areas. A report on the limestone and dolostone outcrops in northern Sweden, including 

all the study area, was presented by Shaikh et al. (1989). Corbel (1952a) studied the Bjuräly karst (KL). 

Becker (1980), Nordell (1952), Sjöberg and Engh (1979) and Wellander (1981) wrote papers with similar 

titles about the Bjurälvdal karst landscape. Deposition during glacials and interglacials at Korallgrottan 

(KL) was discussed by Isacsson (1989,1994 and 1999). 

The Kataviken (ZC) karst was discussed by Berg (1979) and Nisell (1986). Norberg et al. (1988) studied 

the Kätaviken and Rödingsfjäll (KU) karst areas, both within this study area. The most comprehensive 

study of one large cave and its karst area in the central Swedish Caledonides was at Sotsbäcksgrottan 

(KU; Hellden 1973,1974a, 1974b and 1975). Jasinski (1978) compared corrosion rates at Mieseken (ZC) 

with those at Lummelundagrottan on Gotland. 

Engh (1977) briefly discussed the surface morphology of karst areas above the timber line in the Swedish 

Caledonides, and Engh (1980) considered Scandinavian speleochronology with information from area 

IlA at Tornetrask. Swedish workers also studied non-carbonate caves. For example, Bergsten (1976) 

wrote about the genesis of caves in Swedish Precambrian rock. Sjöberg (1987a and 1987b) studied caves 

as indicators of neotectonics, and completed a PhD thesis on this subject (Sjöberg, 1994, with an English 

abstract in Sjoberg, 1996a). 
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CHAPTER 2 GEOLOGY AND GEOMORPHOLOGY OF CENTRAL SCANDINAVIA 

The purpose of this Chapter is to provide the geological and geomorphological context in which the karst 

caves developed, starting with a description of the structure of the Caledonides. This primarily derives 
from the Caledonian Orogeny, which is discussed in more detail in Appendix Al. The complex history of 
the Scandinavian carbonates and their properties are assessed in Appendix A2. The Chapter continues 

with a review of the geomorphological evolution of the study area during the Cenozoic, and concludes by 

considering the influences of the major glaciations of the Late Tertiary and the Pleistocene. 

2.1 Structure 

Much of the information in this section and Appendix Al was derived from a comprehensive analysis of 
the Caledonian orogeny in Scandinavia and related areas by Gee and Sturt (1985). Contemporary 

geological research indicates that the rocks along the western coastal belt of Scandinavia derive their 

composition and structure from a highly-complex system of mountain building associated with the plate 
tectonic opening and closing of the Iapetus Ocean, from Late Precambrian to Mid Palaeozoic times: the 
Caledonian Orogeny (Gee and Sturt, 1985; Gayer, 1985; Soper et al., 1992; Van Staal et al., 1998). Thus, 

the region is part of the Caledonian-Appalachian fold and thrust mountain belt that once formed a 
continuous linear chain extending some 10000km from what is now Spitsbergen to the modern Gulf of 
Mexico, with an average width of about 1000km (Gayer, 1985: Editorial). 

During its formation, the mountain belt was subjected to the effects of strike-slip movements, as it 

gradually moved northward from its original southern latitudes. Subsequent orogenies, and the opening 

and spreading of the Atlantic Ocean, caused it to be broken up into many geographically-dispersed and 
geological-varying terranes, of which 20 have been identified, and which now reside on both sides of the 

Atlantic (Barker and Gayer, 1985). 

Of interest in this thesis is the fact that the former Caledonian-Appalachian mountain chain dispersed 

into terranes that at the present day are known to contain metamorphic carbonate rocks that either 

contain, or may contain, karrt caves. These occur in Spitsbergen, Shetland, Scotland, Ireland, eastern 
Greenland, and in some of the New England states of the USA, as well as in Scandinavia, as compared in 

Chapter 10. 

2.1.1 Scandinavia and the Caledonides 

In Scandinavia, the remnant rocks of the Caledonian Orogeny occur along an 1800km-long belt with a 

width that varies between 200 and 400km. This belt forms the Scandian mountain chain. Most of the 

rocks were originally formed at the western edge of the Baltic craton, on the eastern side of the Iapetus 
Ocean, although the westernmost probably derive from the Laurentian craton. The closure of Iapetus 

produced a complex series of thrust sheets and nappes as the rocks of the Caledonides were transported 

southeastwards on to the older rocks of the Baltic craton. The Baltic shield foreland remained generally 
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pt undeformed during this process, although some of it, and its crystalline cover rock, also got caught U: 

into the over-riding nappe pile, especially to the west. The rocks of the thrust sheets are composed of 

both metasedimentary and igneous assemblages of Late Proterozoic to Silurian, or even, Devonian ages; 

that previously extended beyond the present thrust front (Hossack and Cooper, 1986). 

The tectono-stratigraphic structure of Scandinavia comprises four major allochthons: the Uppermost, tl 

Upper, the Middle and the Lower (Figure 2.1). These are separated everywhere from the Precambrian 

basement by a thin sedimentary rock layer. The unmoved combination of basement and cover is 

commonly termed the Autochthon, although Hossack and Cooper (1986, p289) suggested that even most 

of this unit is allochthonous. The basement and cover rocks that did get pushed a short distance are 

described as the "Lowermost" Allochthon or as the Parautochthon (e. g. Roberts and Gee, 1985). In 

northern Norway, the Uppermost Allochthon, which probably originated to the east of rocks that now 

form eastern Greenland (Roberts et al., 2002), comprises the Tromso Nappe, the Beiarn Nappe and the 

Redingsfjell Nappe Complex (RNC). In the north central Norwegian part of the study area it comprises, 

the Helgeland Nappe Complex (HNC) and the RNC. The Uppermost Allochthon does not occur south of 

the HNC, and in Sweden its only occurrence is in a part of the RNC that overlaps the border. This is in. 

ZC, within the study area. Various individual nappes make up the Upper Allochthon. In central 

Scandinavia, it comprises two groups of Nappes referred to as the ICeli Nappes and the Seve Nappes. 

South of here, the Koli Nappes are replaced by a group of nappes that comprise the Trondheim Nappe 

Complex, and the two major nappe groupings continue south to Sognefjord in southern Norway. The 

Middle, Lower and Lowermost allochthons contain nappes that occur along the whole length of the 

Scandes, from the northernmost coast of Norway to the south at Stavanger, with a spur also continuing to 

Oslofjord. In general, lower nappes are encountered when travelling west to east from the Atlantic coast- 

A characteristic of the Scandinavian Caledonides is the presence of two lines of `windows' within the 

upper nappes, in which rocks from the Middle and Lower Allochthons, or the basement, crop out. These 

lines of windows occur along the coast and some 80km inland. The nappes beneath the Uppermost 

Allochthon wedge out backwards and into `branch lines' towards the west. The Caledonide nappes are 

separated from each other tectonically, and do not prograde upwards, although lithostratigraphical 

affinities can be traced upwards from the Autochthon, perhaps as far as the Seve Nappes (Stephens et al., 

1985, p155). The contact at the base of the Uppermost Allochthon is characterised by a zone of brittle 

fracture, as it contains imbricate tectonic wedges and lenses (Stephens et al., 1985). Figure 2.2 is a 

schematic profile through the study area to show the tectonic structure. 

Some authors (e. g. Hossack and Cooper, 1986) use an alternative terminology for the tectono- 

stratigraphical structure of the Scandinavian Caledonides. Thus, the Uppermost, Upper, Middle and 

Lower Allochthons are replaced non-equivalently by the "Exotic Nappe Complex", the "Oceanic 

Sheets", the "Crystalline Sheets" and the "Baltic Cover Sheets". Whereas these terms may be more 

descriptive of the origins of the nappes, the previous terminology is retained throughout this thesis, 

because nearly all the available geological maps use the earlier terms. 
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Figure 2.1 Tectono-stratigraphic map of central Scandinavia. From Gee and Sturt (1985) 
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Figure 2.2 Schematic profile through study area at 65"30' to 64" 30'. 
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Key to Figures 2.1 and 2.2: 
1 Autochthon: Precambrian basement and sedimentary rock cover 
2 Parautochthon: Precambrian crystalline rocks and sedimentary rock cover 
3 Lower Allochthon: Precambrian crystalline rocks and sedimentaryrock cover 
4 Middle Allochthon 
5 Upper Allochthon: Seve Nappes 
6 Upper Allochthon: Koli Nappes 
7 Uppermost Allochthon: Helgeland Nappe Complex and Rödingsfjäll Nappe Complex 
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2.1.2 Central Scandinavia 

The western third of the study area comprises the totality of the HNC, with part of the structurally lower 

RNC in the northeast. These make up the Uppermost Allochthon in this area. Most of the border with 
Sweden lies within the upper (Koji Nappes) part of the Upper Allochthon. The Seve Nappes of the lower 

part and the lower allochthons lie farther east. To the south, two windows of Middle and Lower 

Allochthons coalesce to form the "Grong-Olden Culmination". Figure 2.3 is a simplified map of the 

solid geology for the area that shows that the facies lineaments commonly align with the nappe structure. 
From the map, the predominant country rocks in the Uppermost Allochthon and in the Koji Nappes are 

schists and phyllites (coloured light blue). The HNC and RNC contain extensive granites (red), which 

also crop out sporadically in the Koji Nappes. All these nappes also contain smaller but significant 

quantities of gabbros and amphibolites (green), quartzites (yellow) and metacarbonates (dark blue). The 

nappes below the Koji Nappes mainly comprise schists, phyllites, gneiss and quartzites (yellow colours) 

and amphibolites (green), with some granite (pink). The small number and sizes of metacarbonate 

outcrops in these nappes are not shown at this scale. 
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Figure 2.3 Bedrock geology of central Scandinavia 
From Geological Maps: Northern and Central Fennoscandia. I : 1000000.1985 and 1996. Refer to text for simplified 
explanation and guide to colours. 
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2.2 Cenozoic geomorphology 

The Caledonides started to drift northwards in the Precambrian, almost reaching present latitudes by the 

start of the Cenozoic (Appendix Al. 3.2). In common with Britain and Greenland, Norway's migration 

continued throughout the Tertiary, but now may be more stable. The approximate north central Norway 

latitudes were: Palaeocene (60Ma): 60°N; Eocene (40Ma): 62°N; Late Oligocene (25Ma): 64°N; Middle 

Miocene (15Ma): 66°N; Late Miocene (6Ma): c. 66°N; Pliocene (3Ma): 65°N; Present: 65°N (Torsvik et 

al., 2002). 

2.2.1 The paleic surface 

Gjessing (1967) described the development of Norway's Paleic Surface, which he attributed to a 

probable combination of uplift and climate change dating from the Tertiary or the Mesozoic. He 

distinguished between two types of present landforms. Paleic forms are recognised by their `old' 

appearance and even, rounded, character. Young forms developed subsequently by fluvial and glacial 

processes, including the present actively-eroding rivers, where frost weathering is dominant. The two 

types are most easily distinguished where geological (structural) control is less important. In many parts 

of Norway, the paleic forms are locally grouped at similar altitudes. In general, they consist of convex 

summits above relatively steep (>10°) hill-slopes to a sharp knick at the level of a basin floor. Basins, 

depressions and broad paleic valleys seemed to have formed all over Norway, independently of the 

surrounding country and the distance from, and the height above, local base level, and did not necessarily 

drain to the sea. Gjessing surmised that this paleic land surface resulted from intense deep chemical 

weathering in warm, and or semi-arid, conditions with removal of material by subaerial slope processes, 

such as are found in the southwestern USA today. The Mesozoic (Mid Jurassic) and Tertiary deeply- 

weathered parts of the bedrock were mainly removed by subsequent glaciations, although some are still 

preserved below Mesozoic deposits in southern Sweden. 

Riis (1996) observed that the paleic surface is composed of at least three distinct preglacial erosion 

surfaces: a sub-Cambrian peneplain that envelopes the summits of Precambrian rocks; a Mesozoic 

peneplain at a smooth-domed envelope of the highest summits of resistant quartzites and gabbros; and a 

Tertiary plain with isolated hills. Studies in the Devre-Rondana area of southern Norway showed that 

three main paleic surfaces occur in steps, and that these are equivalent to summit profiles (Bonow et al., 

2000). The broad surfaces align with the present main glacial and fluvial valleys and cut across different 

bedrocks. The oldest (highest) paleic surface represents a sub-Cretaceous envelope that can be extended 

from the present basement rocks of Sweden into the sky over Norway. The glacial impact on the paleic 

surfaces is pronounced only in the major valleys. 

Stuevold and Eldholm (1996) stated that the pre-uplift paleic surface had an altitudinal range from 0- 

500m. In the Swedish part of the study area, which better maintains the paleic SE fluvial drainage, it 

forms the whole surface, except along major valley floors. The paleic landscape on the Norwegian side 

of the border has been largely replaced by a steep relief and a SE migration of the water divide caused by 
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greater westward erosion. This has resulted from increased precipitation and the formation of U-shaped 

glacial valleys. Rudberg (1997) produced interpretative, and somewhat subjective, maps of the paleic 

surface (which he defined as a "surface not too much changed by glacial erosion "). According to an 

interpolation by this author on to Figure 1.1, the paleic surface does not extend farther west in the study 

area than HNC Z4. The karst significance of the paleic surface is addressed in section 5.3.4. 

2.2.2 Cenozoic uplifts 

Following a limited, local, Late Jurassic, uplift (Riis, 1996, p346) and the Cretaceous peneplanation, 

Scandinavia was uplifted in two phases, in the Palaeogene and in the Neogene (Solheim et al., 1996; 

Riis, 1996). An important epeirogenic uplift of the Scandes probably began in the Palaeocene, when the 

Norwegian Sea started to form along a flexural hinge line parallel to the coast. These movements were 

reinforced by warm, humid-climate erosion to the west, allowing more continental uplift, clastic 
deposition, subsidence offshore as sea level fell again, and local peneplanation of softer cover rocks 

down to the basement. By Oligocene times, the shape of the present topography was well established: a 

narrow low-lying fringe between the mountains and the sea, broad shallow valleys within the Caledonide 

nappes, and large plains across the Baltic Shield. The effects were most marked in the Miocene and 

Pliocene, when, despite cooler semi-arid climates, offshore subsidence at rifted basins increased sharply, 

coupled with the landscape rising to a much higher level, but now with lower basins and deeper valleys 

(particularly those along the less resistant metasediments). It has been suggested that the rapid and 

sustained elevation of the Scandinavian land surface contributed to the onset of the subsequent 

glaciations (Cloetingh et al., 1992; Dor6,1992). 

Dore (1992) modelled the Tertiary uplift of the "Base Tertiary Surface" (i. e. the paleic surface) that 

remained after the Cretaceous in south Norway as a gently rising sinusoid, which continues as a 

depression into the North Sea. The total vertical amplitude is over 4km, and the half wave length is about 

300km. He postulated that this bulge continued into northern Norway, perhaps assisted by tectonic 

movements that may not need to be invoked for southern Norway. 

Riis (1996) discussed the uplifts from the Mesozoic to the Pleistocene, by correlation with offshore data. 

In the study area, Riis mapped the Late Cretaceous / Palaeogene uplift as 600m at the coast, rising to a 

maximum of 1200m near Tärnaby. His map for Plio-Pleistocene net uplift shows further coastal and 

maximum uplifts of c. 600m and 800m. At the same time, Plio-Pleistocene erosion removed some 500- 

700m of bedrock. Apparently, Pleistocene uplift continues today in southern Norway, but from the 

evidence of its wide strandflat, and dated karst materials, there has been no significant (non-isostatic) 

uplift in mid-Norway in the last 0.5Ma, in contrast to the observations of Mörner (1979 and 1980). Riis 

(1992 and 1996) considered the various components of uplift during the Tertiary and Quaternary and 

concluded that the uplifts cannot be fully explained by calculations based on glacial and erosional 

unloading, so that they require tectonic mechanisms. He also noted that deposits dated to 300ka in caves 

that are themselves situated more than 1000m below local mountain summits show that there was a 
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considerable relief in north central Norway way back into the Quaternary. Rudberg (1997, p200) 

observed that glacial erosional uplift was greater west of the residual paleic surface, because the 

thickness of lost rock is some 10 times higher there. 

In contrast to Riis (1996), Stuevold and Eldholm (1996) suggested that a flexural uplift mechanism 
involving both the mainland and part of the shelf in the Late Oligocene to Miocene is sufficient to 

explain the local uplift. This uplift event is well separated in time from the regional syn-rift uplift 

associated with the opening of the northern Atlantic at the Palaeocene-Eocene transition. In their 

explanation, the Palaeogene uplift was confined to a narrow region offshore from north central Norway, 

but with a visible expression in the Lofoten Islands in northern Norway. They cited authors who noted 
that uplifted peneplains never survive 40Ma, and that complete Scandinavian peneplanation was not 

achieved until the Late Oligocene. A major Late Oligocene uplift is related to a major lowstand in 

eustatic and local relative sea level. This caused an observed unconformity in offshore sedimentation that 

may be equivalent to the onshore paleic surface. Sea levels recovered in the Early Miocene. With global 

cooling, long-term eustatic and local sea levels fell again until an even greater fall near the Miocene- 

Pliocene transition at 5.5Ma. This created a regional Early Pliocene depositional unconformity above 
Early Miocene offshore sedimentary wedges, which was interpreted as the start of a predominant tectonic 

uplift. This uplift caused greater fluvial, and increasingly glacial, erosion and sediment supply (rather 

than the previous mainly chemical weathering) to `old' Pliocene wedges on the main continental shelf. 
The process itself further accentuated offshore subsidence and onshore uplift. The dramatic increase in 

ice-rafted debris at -2.6Ma is marked by a seismic reflector (PL3) at the base of `younger' Pliocene 

wedges that are restricted to the slope and outermost shelf. This flexural uplift model implies a hinge line 

some 150km offshore, and a westward advancing coastline as uplift proceeded. In the study area, the 

palaeo coastline varied from about 20-30km east of its present position at the start of the Miocene. 

Stuevold and Eldholm (1996) calculated that the average Neogene erosion west of the water divide was 

-1.1km, with the deepest and maximum erosion of 1.0-1.8km along a narrow zone near the present 

coastline. From an estimate that 10m of erosion produces 7m of uplift, the area of maximum tectonic 

uplift, 0.9-1.0km, corresponds to the coastal region of maximum erosion. These authors also suggested 

that uplift started earlier, and became greater, going from south to north across the study area, as 

evidenced by a change from old, only slightly rejuvenated, landforms in Trendelag to more alpine 

mountains farther north. 

Henriksen and Vorren (1996) studied the late Cenozoic sedimentation and uplift history at the Vering 

Plateau on the mid-Norwegian continental shelf (Figure 2.5). The shelf contains six main seismic units 

above a Cretaceous base. These are Palaeocene and Eocene sediments overlain by younger mega 

sequences described as Units A-D. The thin Unit A was deposited throughout most of the Miocene in a 
deep, open, shelf environment. Unit B is a thick sedimentary wedge of deltaic appearance of either 
Oligocene or Early Pliocene age. Twelve sequences of clay, sand, silt and diamicton are recognised in 

Unit C. It is tentatively dated to between 3.0 and 0.8Ma. Unit D blankets the shelf area with an inferred 
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age younger than 0.8Ma. Whereas Unit B exhibits a sedimentation rate of 8x10"3cma' (if of Pliocene 

age), Units C and D together show a rate of 42x10-3cma' and indicate a dramatic increase in sedimentary 

input. A major fall in sea level, and corresponding mainland uplift, is inferred from Unit A in the Late 

Miocene, at a time of local cooling. An Early Pliocene age for the deltaic Unit B would imply a major 

Neogene transgression at 5. OMa, caused by a tectonic subsidence of the northern Atlantic, and uplift and 

erosion of the basin flank. The lithology of Unit C points to a glacigenic origin from the front of a 

grounded icesheet at the palaeo shelf edge. Its sequence boundaries represent low sedimentation during 

interstadials. The shelf edge has prograded 100km westward since 3. OMa. Thus, these authors' study 

supports a view of major uplift in the Late Miocene / Early Pliocene, followed by major glaciations and 

erosion after about 3. OMa, with a changed style of glaciation after about 0.8Ma. 

In summary, the uplift of the Baltic Shield in the Mesozoic, Scandian uplift during the Cenozoic and then 

differential erosion combined to recreate the Scandes to the form that exists today, in an 1800km-long 

alignment. This is, in general, roughly coincident with the original Caledonides, and makes a good fit in 

the study area, which is practically devoid of post Caledonian sediments, apart from Quaternary glacial 

deposits. The locations of mountains and the highest summits are controlled by the distribution of the 

most resistant rock types (usually igneous or meta-igneous), and by the original Caledonide structures. 

2.3 Tertiary / Quaternary glaciations 
The Quaternary history of Scandinavia was discussed comprehensively by Donner (1995), and compared 

with the similar history in northern America by Andersen and Borns (1997). The impacts of late 

Cenozoic glaciations on basin evolution off the west and north coasts of Norway were described at a 

workshop held in 1994, as summarised by Solheim et al. (1996). 

2.3.1 Glacial evolution 
The mean annual temperature of central Europe remained above 20°C during the Palaeocene and the 

Eocene. It then started to decline until it reached about 14°C at the end of the Miocene, no doubt in 

response to the drift northwards of the European landmass (section 2.2). Subsequently (post 3.8Ma: 

Mangerud et al., 1996, p 19), temperatures fell further and fluctuated wildly as the earth was subjected to 

large-scale glaciations, especially after about 2.8Ma in the Pliocene. During the Pleistocene, the 

maximum mean annual central Europe temperature reached 10°C during interglacials, but fell below 0°C 

at the height of each glaciation. In southern Scandinavia, the mean annual temperature fell below -10°C 

and the mean July temperature fell below 0°C during glaciations. The glaciations in the study area were 

thus probably somewhat more severe than present conditions at Spitsbergen, which has a mean annual 

temperature of -8°C (Horn, 1947). 

The number of glaciations and the geographical extent of each one are not known precisely, but there 

may have been more than 30 full glacial-interglacial cycles, including nine major glacials after 0.9Ma 
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(Mangerud et al., 1996, p21). For the last 2.5Ma, oxygen isotope 180/160 (5180) records from deep sea 

cores that measure the global ice volume can be used to infer the magnitude of each Scandinavian 

glaciation, and the ice-rafted detritus (IRD) content in deep sea sediments correlates closely with the 

extent of the icesheets (Mangerud et al., 1996, pp22-23). These records indicate periodicities that can be 

explained by the glacial events being triggered by earth-orbit cycles of solar insolation, with strong 

covariation of CO2 and temperature (Cuffey and Vimeux, 2001). The existence of Miocene terrestrial 

glacial deposits in Germany (Ehlers, 1996, p249) and IRD in the Norwegian Sea dated from 5.5Ma 

onwards by Jansen and Sjeholm (1991) suggest that small-scale glaciations started in the Late Miocene. 

Mangerud et al. (1996, p22) noted that small, but significant, IRD pulses dated to 11 Ma (I 0.2Ma: 

Stuevold and Eldholm, 1996), indicating that Nordic Sea icesheets existed early in the Late Miocene. 

The volume of this detritus increased by one or two orders of magnitude after 2.75Ma and there were 

extensive glaciations in northern Europe after 2.57Ma. From 5.5-2.57Ma, the smaller IRD fluxes may 
have arisen from just valley and fjord glaciers in Scandinavia, or alternatively from drifting icebergs 

calving from Greenland and Spitsbergen. 

Maslin et al. (1995) reviewed recent evidence for the sequence of Tertiary / Quaternary glaciations, and 
discussed theories that they were initiated by the long term cooling of the northern hemisphere by the 

elevation of the Himalayas, supplemented by the submergence of the Bering Strait at 3.2Ma and the 

closure of the Pacific-Caribbean gateway by the emergence of the Panama Isthmus at 2Ma. They 

concluded that icesheets first reached continental margins in Eurasia at 2.74Ma, in Alaska at 2.7OMa, and 
in northern America at 2.54Ma. The amplitude of high-latitude summer insolation cycles varies with a 

period of c. 400ka, so that orbital forcing triggered the intensification of northern hemisphere glaciation 
between 2.74 and 2.54Ma. Interglacials comprise less than 10% of the climate record during the past 
2.5Ma (Adkins et al., 1997). 

Two main phases of Pliocene-Pleistocene continental-scale glaciations are recognised. From 2.8-0.9Ma, 

large ice volumes accumulated during each glaciation in 41ka obliquity cycles. They represent 
intermediate-sized Scandinavian mountain-centred icesheets, during a period with cool interglacials. 

Thus, there was a 1.5 / 2. OMa period of rather moderately-varying glacial conditions, with large erosion 

of the Scandinavian mainland (Mangerud et al., 1996, p22). The glaciations since 0.9Ma (the Mid 

Pleistocene Revolution) were more extensive, with icesheet centres moving eastwards from the coastal 

mountains as far as the Baltic coast, as each glaciation proceeded. These glaciations were triggered 

predominantly in 100ka orbital eccentricity cycles (Solheim et al., 1996). Petit et al. (1999) suggested 
that, during terminations, the climatic forcings are related to the Milankovich orbital frequencies, 

especially the 100ka eccentricity cycle, and that these effects are amplified by CO2 and CH4 greenhouse 

gas increases and by the ice albedo feedback as icesheets melt. The interglacials also became warmer and 
longer after 0.9Ma (Jansen and Sjöberg, 1991; Mangerud et al., 1996, p22). From the re-deposition of 

continental shelf material it is clear that these icesheets grew large enough to cover and erode sizeable 

proportions of the Norwegian shelf (Jansen and Sjöberg, 1991). Mangerud et al. (1996, p23) also 
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concluded that the stadia]-interstadial fluctuations of the Scandinavian icesheet followed the precession 

cycles of the earth's orbit of around 23ka. Farther north, at Svalbard and the Barents Sea, the fewer 

glacial advances apparently follow the 41ka cycles of the tilt of the earth's rotational axis: at higher 

latitudes the earth's tilt is more important for summer insolation than the precession that dominates in 

Scandinavia. Thus, the icesheets were probably centred farther north from 2.8-0.9Ma, when compared to 

the icesheets that followed the Mid Pleistocene Revolution. The Barents Sea area was consequently 

probably eroded below sea level during the earlier period. 

Rutherford and D'Hondt (2000) concluded that the transition from 41 ka to 100ka glacial cycles actually 

occurred over a period from 1.5-0.6Ma, the 100ka cycles being sustained by increased heat flows 

northward across the Equator that strengthened a semi precession cycle of 11.5ka period in the northern 

hemisphere. Riis (1996, p355) noted that the shelf Pleistocene sediments of c. 0.8Ma age rest 

unconformably on tilted Tertiary sediments. As this is also near the age of the change in glaciation 

cyclicity, he also (c. f. Henriksen and Vorren, 1996; section 2.2.2) postulated a change in sedimentation 

pattern as the longer, larger, glaciations transported material right out beyond the shelf margin. This 

change in load distribution could also have initiated increased crustal uplift on land. Raymo (1998) 

suggested that rapid deglaciation only occurred after the switch to 100ka cycles, which permitted the 

build-up of large and unstable icesheets. Denton (2000) considered that each 100ka glacial cycle begins 

when salinity in the Nordic areas is diluted by deep water from a collapsing west Antarctic icesheet, and 

ends after gravitational collapse of maximal northern icesheets reduces the supply of icebergs, increasing 

the salinity. 

Pointing out that icesheets grow at the slow rate of snowfall, but shrink at the faster rate of surface 

melting or the even faster rate of icesheet surging, Clark et al. (1999) also noted that there is a strong 

connection between ice flow and the underlying geology. If the icesheet base is at the pressure melting 

point, as well as movement by internal ice deformation, basal water facilitates both basal sliding of the 

ice and deformation of any unconsolidated sediments. They argued that, at the inception of northern 

hemisphere glaciation, northern America and Fennoscandia were covered by a thick, deeply weathered, 

regolith that had accumulated during the Tertiary (c. f. Gjessing, 1967; section 2.2.1). This widespread 

soft bed allowed fast ice flows that maintained relatively thin (-2km), low-volume icesheets, which 

responded linearly to the 23 and 41ka obliquity and precessional orbital forcings. However, after 

sufficient glacial erosion of the regolith [creating the Tertiary shelf deposits noted by Riis, 1996, and 

called Unit C by Henriksen and Vorren, 1996], exposure of crystalline bedrocks in core areas caused 

icesheets formed after the Mid Pleistocene Revolution (set at 1.2Ma therein) to thicken (-3km) and 

enlarge enough to achieve a non-linear response to the 100ka eccentricity cycle, so that these later 

icesheets actually drove the global climate cycle rather than being driven by it. This change in the 

thickness and style of glaciations is of direct relevance to the evolution of endokarst within the 

Caledonides, as discussed in Chapters 6-10. The Clark et al. (1999) theory also explained the rapid 

deglaciation of the later, more widespread, icesheets. Late in the 100ka cycle, these icesheets advanced 
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onto marginal low-relief and low-friction soft-bed zones on continental shelves. Subsequent thawing of 

permafrost by geothermal heating then allowed fast ice discharge into the Atlantic, supplemented by fast 

soft-bed ice flows across the inner areas of Hudson Bay and the Baltic Sea, which triggered rapid 
deglaciation. 

It appears likely that the first extensive glaciation was the Eburonian, dated from 1.8-1.4Ma, from the 

evidence of Fennoscandian rocks in the Netherlands and of till on the Norwegian shelf. This probably 

reached the Norwegian shelf edge, as did the Menapian, dated at 1.1Ma (Mangerud et al, 1996, Fig. 3). 

These authors concluded that the Scandinavian icesheet extended to or beyond the west coast of Norway 

during I Ma of the last 2.6Ma, including for about 400ka during the Eburonian. For 90% of this time, 

Scandinavia was partly covered by intermediate-sized icesheets. The ice front probably reached the shelf 

edge five to seven times during the last 780ka (Ibid., p23). Sejrup et al. (2000) concluded from a study of 

sediments in the Norwegian Channel (a route for glacial ice streams flowing from the Baltic area), that 

after Oxygen Isotope Stage 13 (OIS13) at 0.5Ma, most likely all glacial stages experienced such maxima. 

The most recent review of Fennoscandian glaciations was by Fredin (2002). He suggested that small 

glaciations may have started as early as Mid Miocene (14Ma), medium-sized icesheets from about 7Ma, 

major glaciations from 2.8-2.5Ma, and full-scale continental glaciations from 0.9Ma. He showed that 

"mountain glaciations" (i. e. cirque glaciers, valley glaciers, and local to regional icesheets) occurred in 

Scandinavia throughout much of the Late Pliocene and Pleistocene. From Fredin (2002, Fig. 7b), 

glaciations probably reached across the continental shelf on some eight occasions since the Mid 

Pleistocene Revolution (at OIS22,18?, 16,12,10,8,6 and 2), but there were perhaps only five major 
interglacials in the same interval (at OIS11,9,7,5e and 1). Before this, there were many mountain 

glaciations and deglaciations, but without a major interglacial, except that a full-scale continental 

glaciation probably occurred at c. 1.85Ma (OIS62), and a major interglacial at c. 1.75Ma (OIS59). This 

scheme omits a Menapian glaciation at around 1.1 Ma. According to Mangerud et al. (1996, p23), there 

were about 15 interglacials in the last 2.6Ma that were as warm as, or nearly as warm as, the Holocene 

and that lasted 10-15ka. This approximately agrees with the number of interglacials that were too warm 
for mountain glaciation to survive (Fredin, 2002, Fig. 7b). 

2.3.2 Later Quaternary glaciations 
Traditionally, four major glaciations with three interglacials were recognised in northern Europe during a 
Pleistocene age thought to have lasted about 1 Ma, as shown with other correlations in Table 2.1. Later 

research showed that there were many stadials and interstadials that confuse this simple pattern, and the 

ages of these events are still being clarified by correlation to deep-sea Oxygen Isotope Stages. As the 

Cromerian I deposits are older than the magnetostratigraphic Matuyama to Brunhes boundary at 780ka, it 

is clear that the originally-described Menapian glaciation is much more ancient than the other three 

glaciations. All glaciations in northern Europe were centred on Fennoscandian icesheets, and the moraine 
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limits of the last three `traditional' glacials on the mainland are well-studied. Thus, glacially transported 

erratic boulders from Norway and Sweden are found in Denmark and Germany. 

Of the last three glaciations, the oldest two, the Elsterian and the Saalian, were the most extensive, with 

moraines some 500km south of the Baltic Sea coast. The final glaciation, the Weichselian, reached only 

about 200km south of the coast. Rudberg (1992) provided some evidence of multiple glaciations in 

Scandinavia by studying topographical morphology. Because global sea level started to fall prior to the 

growth of Scandinavian icesheets, the onset of at least the Weichselian glaciation started elsewhere, i. e. 

in northern America and / or Antarctica (Mangerud et al., 1979). Indeed, the Scandinavian glacial cycles 

tend to lag those of northern America, and the rapid cooling and warming at the beginning and end of 

each Scandinavian glaciation is attributable to the `switching' off and on of the Atlantic Current into the 

Norwegian Sea by the amount of ice in the northern Atlantic. 

Table 2.1 Traditional glaciations (From Andersen and Borns, 1997, and other sources) 
Northern 
Euro 

British Isles The Alps Northern 
America 

OIS 

Glacial Glacial Glacial Glacial Glacial 
Interglacial Interglacial Interglacial Interglacial Inter facia 

Holocene Flandrian Holocene Holocene OISI 
Weichsel Devensian Worm Wisconsin OIS2-OIS5d 

Eemian lpswichian R-W Sangamon OIS5 
Saale Wolstonian Riss Illinolan OIS6 

Holstein Hoxnian M-R Yarmouth OIS 
Elster Anglian Mindel Kansan OIS8 

Cromer Cromerian G-M Aftonian OIS 
ena Beestonan Gunz Nebraskan 

Petit et al. (1999) described in detail the climate and atmospheric history of the past 420ka based on 

evidence from the Vostok ice core, east Antarctica (Figure 2.4). The Vostok station is at an elevation of 

3488m and has a mean temperature of -55°C. (See Appendix A3.3 for a discussion about subglacial lakes 

below the Antarctic icesheet). The ice core record extends through four major climate cycles, with ice 

slightly older than 400ka at a depth of 331 Om. Figure 2.4 shows that the successions of changes through 

each climate cycle and glacial termination were similar, and that the atmospheric and climatic properties 

oscillated between stable bounds. Each cycle experienced an irregular saw-tooth decline in global 

atmospheric temperature down to c. -8°C as stadials and interstadials succeeded each other, and a very 

rapid rise to c. 2°C at each termination. The Younger Dryas stadial at the end of the Weichselian 

(Termination I) had no counterpart in Terminations 11, III and IV. ThelOka stable warm period of the 

Holocene is longer than the 4ka periods above 1 °C at the ends of Terminations II and IV, and longer also 

than the very peaky warm period at the end of Termination III. The east Antarctic climate record was 

recently extended to 740ka (covering eight glacial cycles) with an ice core from Dome C whose upper 

part matches the Vostok data (EPICA community members, 2004). The record showed that Termination 

V preceded a 28ka-long interglacial at OISII (the Mid Brunhes Event) that delimited two different 

patterns of climate. Between the Mid Pleistocene Revolution at c. 900ka and this event at c. 430ka, 

Antarctic glacial maxima were commonly somewhat less cold than prior to later terminations, but the 
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interglacials were significantly less warm than subsequently, and did not reach the Holocene 

temperature. 

Winograd et al. (1997) deduced that the Vostok record is effectively synchronised to a 5180 record from 

565-60ka in vein calcite from Devil's Hole, Nevada. They assigned the last four interglacials to OIS5e, 

7e, 9c and l lc, arguing that they each had a duration in the range 20-26ka. By studying planktonic 
foraminifera deposited in the Red Sea over the last 500ka, Rohling et al. (1998) estimated a sea level 

lowstand of 120±5m at the Weichselian maximum at 20ka. Lowstands in other glacial cycles have been 

up to 20m below this level. Interglacial highstands have been up to 20m above the Holocene level, 

equivalent to the volume of present Greenland and west Antarctic icesheets. 
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Figure 2.4 Climatic signals for the last four glacial cycles From Petit et al. (1999). 

The last two interglacials, the Holsteinian and the Eemian, probably experienced mid-latitude mean 

summer temperatures which were 2°C warmer than today. Fennoscandia was a large island during the 

Eemian at 125ka (OISSe), because of a globally-raised sea level and an incomplete isostatic rebound 

(Mangerud el al., 1979; Dansgaard and Duplessey, 1981). There was little, if any, remnant ice, the 

mountain summits supported alpine vegetation, the lower slopes were covered by birch, pine and spruce, 

and there were broadleaf forests in southern Sweden. According to Kukla el al. (1997), the Eemian in 

Europe lasted from 130-107ka, although high-latitude ice started to grow again after 1 17ka. Sea level 

rise in the Early Eemian was so rapid that it overtook isostatic rebound along the whole northern Russian 

lowland coast, possibly peaking between 132 and 130ka (Funder, 2000). This also supports the earlier 

evidence that the Saalian Glaciation was much more extensive than the Weichselian. Andersen and 

Mangerud (1989) showed that the glacial fluctuations for the Eemian-Weichselian in Fennoscandia 
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corresponded roughly with climate fluctuations in France, Germany and Holland. Lototskaya :4 
Ganssen (1999) described the structure of Termination II and that of the Eemian, which they suggested 

reached its highest sea-surface temperature at 122ka, when the eustatic sea level reached a maximum that 

was 6m higher than at present, probably caused by the melting of much of the Greenland iceshee't 

(Huybrechts, 2002, p220). According to Adkins et al. (1997), Eemian climate instability in the northern 

Atlantic lasted from 129-118ka, when a transition to glacial oceanic conditions occurred within 400a. 

2.3.3 Weichselian glaciation in Scandinavia 

Traditionally, the Weichselian period was divided into three stadials or glacial peaks (Early, Middle and 

Late), and into two interstadials, when temperatures could rise to the level seen during interglacials 

Mangerud (1991) presented a `state of the art' review of knowledge of the last Ice Age at a symposium in 

Uppsala in 1990. He produced schematic glaciation curves for the west and east sides of the 

Scandinavian mountains that show the rather short-lived, mountain-based, Herning and Rederstall 

stadials, which correlate to OIS5d and 5b (117-105 and 93-85ka). The only Weichselian interstadials 

that were really forested in northern Germany were the Brorup and the Odderade, during which the 

Scandinavian icesheet almost entirely melted. These correlate to stages 5c and 5a (105-93 and 85-74ka). 

The Scandinavian mountains then remained glaciated throughout the major stadial OIS4, until after the 

Last Glacial Maximum (LGM) at OIS2, with only the coast becoming free of ice during the Bo and 
Alesund interstadials at the beginning and end of OIS3. Donner (1996) also discussed the Early and 

Middle Weichselian interstadials in central Scandinavia. However, previous reconstructions were 

severely challenged by Forsström and Punkari (1997). They argued that all absolute dating methods are 

unreliable, and that sediments previously regarded as in situ Brerup and Odderade interstadial deposits 

were mixed and redeposited from Eemian interglacial sediments during glaciation. In their 

reconstruction, the minimum size of the Weichselian icesheet, since its formation at OISSd, equalled its 

Younger Dryas extent, with larger extensions occurring at each stadial. 

The Weichselian glaciation was modelled by Holmlund and Fastook (1995) and by Kiemen et al. (1997; 

Figure 2.5) with good similarities. According to Holmlund and Fastook it lasted from about 112ka until 

IOka, the start of the Holocene. Their model shows that the early stadials (OIS5d and 5b) reached a 

maximum at 90ka, but the icesheet only covered the mountains and the Kola Peninsular. Thereafter, a 

considerable recession reduced the icesheet to the mountain area by 82ka. The middle stadial (OIS4) 

began at 78ka and came to a maximum stillstand at 61 ka (74-60ka: Arnold et al., 2002), when the 

icesheet reached parts of southern Sweden. A slow recession initiated the second interstadial (OIS3) until 

53ka, when the icesheet generally grew by further advances and smaller recessions. The Late stadial 

began with a major advance at 37ka, and reached the German coast at 30ka. 

The Holmlund and Fastook (1995) model indicates that the mountains of the study area were probably 

glaciated to varying thicknesses continuously from 112-l Oka. Close to the Atlantic coast, however, the 

sizes of valley glaciers waxed and waned during the stadials and interstadials. Neither the Early nor the 
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Middle stadial icesheets extended very far from the Atlantic coast line, which was probably ice-free 

during the interstadials. According to Mangerud et al. (1996, p13), the Weichselian glacial front passed 
the coastline at least four times: once each during the Early and Late Weichselian and twice during the 

Middle Weichselian, suggesting that the middle period actually experienced two stadials and two 
interstadials. Evidence from France, Germany and Fennoscandia suggests that the last stadial, which was 
the most extensive and long lasting, can be subdivided into several smaller glacial oscillations, with the 

oscillations becoming more subdued to the north. 
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North central Norway rises to lower elevations than the domes to north and south and thus provided a 
lower barrier to the late Cenozoic east to west ice movements. This is seen in the Kiemen ei al. (1997) 
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glacial model that commonly shows a major bend in the ice divides, caused by outflow to the NW 

(Figure 2.5). Hence, the saddle-like feature of central Scandinavia was a focus for ice flow, and thus 

experienced sufficient glacial erosion to remove much of its paleic surface, despite its icesheet being less 

thick. Stuevold and Eldholm (1996) noted that the sedimented Norwegian continental shelf is widest at 

the Voring Plateau, adjacent to this lower central region (Figure 2.5). The many long and deep fjords that 

penetrate far inland are indicators of the large volumes of ice that flowed westwards. The erosive power 

of these westerly icesheet movements is demonstrated by the maximum depths of the fjords in the study 

area. These are, from north to south (Figure 1.1): Nordrana 540m, Elsljjord 208m, Ranafjord 440m, 

Leirljjord 340m, Vefsnfjord 450m, Halsfjord 245m, Visten 220m, Velfjord 400m, Ursljjord 535m, 

Tosen1jjord 552m, Bindalsfjord 720m (one of the deepest fjords in Norway) and Fold1jjord 200m. 

The general instability of the past climate (apart from during the Holocene) is also recorded in the 250ka 

GRIP ice core record from Greenland (Dansgaard et al., 1993). During the Weichselian glaciation, the 

northern Atlantic region experienced two related oscillations of abrupt climate change (Alley, 1998). In 

the Dansgaard-Oeschger (DO) cycle (e. g. Broecker, 1994; Bond and Lotti, 1995; Stauffer et al., 1998), 

significant and very rapid jumps of temperature ('-7°C) and other climatic variables occurred at roughly 

1500a intervals, perhaps linked to variations in solar radiation (Bond et al., 2001). A slow and 

progressive saw-tooth cooling ('-14°C) through several DO cycles comprise the lower-frequency, but 

irregular, "Bond" cycles (e. g. Bond et al., 1992), which are marked by thick "Heinrich" IRD layers in 

sea-floor sediments at their coldest parts, matching Heinrich events to cold stadials (Bond et al., 1993; 

Broecker, 1994). This enhanced ice-rafting occurred roughly twice during each precessional cycle 

throughout the Weichselian, with a mean period of 11000±1000a (Heinrich, 1988). The thicker parts of 

the layers lie near Hudson Bay, so that the events are assumed to be associated with large discharges of 

meltwater and armadas of icebergs, perhaps triggered by jökulhlaups (Johnson and Lauritzen, 1995). 

There were some six major Heinrich events (H6 to HI) of commonly increasing severity in the last 

glacial cycle, plus possibly the Younger Dryas event (HO), and the end of the Saalian (H7, Broecker, 

1994). Each was followed by a rapid warming at the start of the next Bond cycle (or interstadial, Johnsen 

et al., 1992). 

Bond et al. (1997) showed, from small-scale IRD events, that mini-DO cycles continued into the 

Holocene at the same interval of 1470±500a. The coolings did not exceed 20% of the glacial-interglacial 

temperature change, but caused well-known cool events at 8200 cal. a BP and at the Little Ice Age. The 

authors concluded that DO cycles operate independently of the glacial-interglacial climate, but are 

amplified during glaciation. According to Oppo et al. (1998) and McManus et al. (1999), DO cycles and 

Heinrich events persisted throughout the glacial cycles of the past 0.5Ma. Dowdeswell et al. (1999) 

reported little correlation between Heinrich events and Nordic seas IRD, suggesting different behaviours 

for the Laurentide and Fennoscandian icesheets. Lambeck et al. (2002) and Rahmstorf (2002) presented 

reviews of links between climate, sea levels, and rapid switches in ocean circulation patterns during the 

Plio--Pleistocene. According to Rial (2004), the saw-tooth decline in temperature and the DO cycles are 
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explained by the global climate system, which transforms the amplitude modulation of global 

temperature by astronomical effects into frequency modulation of global ice extent. 

2.3.4 Late Weichselian glaciation and the study area 

Controversial insights to the Middle and Late Weichselian were provided briefly by Olsen (1997) and 

more comprehensively by Olsen et al. (2001a; 2001b). These authors used new information from 

terrestrial moraines, deep-sea sediments and ice cores to proxy the climate. They suggested that the 

Middle stadial lasted from 42-39ka, with the maximum extent of the ice about half way across the 

continental shelf. A "Hattfelldal interstadial I" then lasted until 30ka, and for some of this time a very 

high-level, ice-free, temperate Atlantic sea water inundated adjacent inland areas and reached to 67°N, so 

that much of coastal Norway was occasionally free of ice. Dwarf birch and fern grew in Hattfjelldal 

(KU). The icesheet shrank to the Norway / Sweden border region and to the Jotunheimen range of 

southern Norway. Thereafter, Olsen et al. (2001 b) showed stadials and interstadials at approximately 

3000a intervals: an advance from 30-28ka, similar to the Middle stadial; a "Hattfjelldal interstadial II" 

from 28-24ka; and the largest Weichselian stadial (the Last Glacial Maximum, LGM l) from 24-21 ka, 

when the icesheet reached the edge of the continental shelf, some 250km west of the north central 

Norway coastline. [For the first 2000a it may have connected across the North Sea to the icesheet that 

covered the northern parts of Britain and Ireland]. A "Trofors interstadial" followed from 21-17ka, with 

the sea completely clear of ice at l9ka. This was succeeded by a second large stadial, LGM2, from 17- 

13.5ka. The icesheet extended some 150km offshore at l5ka, a time when Fjeldskaar (1994) modelled 

the sea level at 125m below the present level. LGM2 was terminated by abrupt warming at the start of the 

Belling interstadial. According to Lambeck et al. (2002), eustatic sea level lowering was c. 50m at 60ka. 

Global ice volumes approached maximum values at 30ka, and then remained nearly constant until l9ka. 

Arnold et al. (2002, Fig. 4) modelled a possible minimum icesheet that only lay above the 500m contour 

in the study area, together with valley glaciers, for the period 60-36 / 30ka. 

The ice retreats and high sea levels were also very significant for the Hattfjelldal 11 and Trofors 

interstadials (although not quite as great as in Hattfjelldal interstadial 1), when the climate was cold and 
dry. These results partly depend on radiocarbon-dated sediments from 5m- and lOm-thick inland 

stratigraphies. Hattfjelldal and Trofors are in KU and Z6, in the heart of the study area. Recent finds of 

pre-Late Weichselian marine influence at coastal and inland sites in Norway, elevated above early 

Holocene levels, were reviewed by Olsen and Grosfjeld (1999) and by Olsen et al. (2001 a; 2001 b). The 

last paper inferred that several study area sites well above Holocene marine limits were reached by the 

sea during the interval 35-18ka. (See further discussion in sections 8.1.3 and 8.8.3). Olsen and Gresfjeld 

(1999) concluded that the c. 6000a cyclicity of glacier variation is matched by a 6300a ice-growth and 

glacio-isostatic rebound period during the interval 45-15ka, assuming an average depression of at least 

50m [presumably below the early Holocene sea level]. 
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According to this new "yo-yo" glaciation model of Olsen et al. (2001b), the Weichselian icesheet was 

essentially unstable, with rapid ice advance quickly followed by rapid retreat, or moderate advance 

followed by moderate decay. Their model better fits a "thin ice" model of the LGM icesheet (section 

2.3.5), and they also postulated that rapid changes in relative sea level in response to changes in glacial 

isostatic loading contributed to the instability. They explained a lack of calcareous marine mollusc shells 

with ages in the interval 27-13.4ka along the Norwegian coast by a combination of perennial sea ice 

cover and dissolution in cold acidic water from high meltwater discharges and / or C02-rich water 
formed under sea ice. Their paper also proposed a simple cave sediment stratigraphy model with 

diamicton (sporadically with bones and speleothems) overlying fine-grained sediments to indicate an ice- 

free to ice cover (interstadial-stadial) cycle. The criticisms of Forsström and Punkari (1997, section 

2.3.3) are assumed by this author not to apply to their work. 

The Olsen (1997) scheme challenged the concept of a continuously retreating icesheet from c. 20ka, as 

shown on a glacial chronology map by Andersen and Karlsen (1986). Their map is not disputed after 

14.5ka, being similar in the study area to a map by Lundqvist (1986, Fig. 3) in his review of the Late 

Weichselian glaciation in Scandinavia. Thus, the marine shoreline was estimated to have reached Vega at 

13, Brenneysund at 12, Velfjord at 11, and Tosenfjord at I Oka. The maps show that, at the uncertain age 

of 9ka, the ice margin reached the lakes Ressvatn and Store Namsvattnet, along a line only 25km west of 

the MSW. 

The ice retreats accelerated from 13-11 ka during the Bolling / Allerod interstadial (interrupted by a short 

Older Dryas cold period at 12ka), but then a much cooler period of about 1000a, the Younger Dryas 

(YD) stadial, caused a small re-advance of the peripheral valley glaciers and the icesheet in the west, 

whilst, at the same time, the icesheet continued to reduce in thickness in the east. Andersen et al. (1981; 

1982; 1995a; 1995b) identified marginal moraines that represent five glacial events in the study area: A 

(12300±200), B (11000-10300), C (10100±200), D (9550±200) and E (9300±200). The A (Vega) 

moraines coincide with the Older Dryas. The B (Tjetta) glacial event in north central Norway suggests a 

cooling incursion of arctic water (with appropriate fauna) with the YD glacial advance at 11000. The 

glaciers retreated again after 10500, but re-advanced slightly at 10100, as recorded in moraines at the C 

(Nordli) event, which is also in the study area. Fastook and Holmlund (1994) and Holmlund and Fastook 

(1995) agreed, by modelling, that the YD cold climate signal barely exceeded 500 years, but was 

followed by a lagging 500 year stillstand in eastern Scandinavia. Other authors, including Svendsen and 

Mangerud (1987), regarded the "Main Line" of the extensive belt of YD Ra-moraines along the 

Norwegian coast as being dated at 10300, after which the Holocene melting of the icesheet was very 

rapid. A glacial geological map (Sollid and Torp, 1984) shows the main moraines and ice flow directions 

for the whole of Norway. 1: 50000 Quaternary maps are being published by Norges Geologiske 

Undersekelse, which show dated moraines for several parts of the study area. 

Trevor Faulkner Page 32 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 2- Geology and geomorphology 

Lehman and Keigwin (1992) showed that sudden changes in the flow of warm Atlantic surface waters 

into the Norwegian Sea occurred frequently during the last deglaciation, as the extent of sea ice changed. 

Broecker et al. (1998) and Clark et al. (2001) suggested that the various pre-YD oscillations occurred 

when the southern margin of the Laurentide Icesheet was located at the Great Lakes. Melting of the lakes 

allowed glacial water to flow to the northern Atlantic via the Hudson and St. Lawrence rivers, initiating a 

return to a cool period. When the lakes froze again, water was diverted to the Mississippi, to start a warm 

period, and to repeat the cycle. The later (YD) cooling was also supplemented by icebergs released from 

Hudson Bay, and by the rapid drainage of the Baltic Ice Lake. 

2.3.5 Extent of glaciation 

The direction of ice movement at the height of each stadial was generally radial from the thickest part of 

the icesheet. For the rather narrow Early Weichselian stadial, the ice divide was west of the highest 

mountains, so that the major ice flows were to the southeast, across northern Sweden. At the LGM, the 

thickest ice, and therefore the divide, was over the northern end of the Gulf of Bothnia, so that ice flowed 

to the west or to the northwest across all the Scandian mountains. The main movement at the surface and 

in the body of the icesheet was roughly westward across the study area. At its base, and particularly as 

the icesheets waned, movement was more oriented along valleys. This explains two distinct U-shaped 

valley profiles observed by the author in the NW-facing Bryggfjelldal (ZA): a valley glacier profile 

incised below a broader profile that extends up to the surrounding plateau level. Grenlie (1975, p448) 

noted that in the Durm$lstind area (Z3 / Z4, on the watershed between the Western and Vefsn catchment 

areas), glacial scouring was very intense, with a plastic character. The general absence of heavily 

weathered summits, rock pinnacles and autochthonous blockfields (Sollid and Serbel, 1979) 

demonstrates that most of the study area was covered by the icesheet, as these features are diagnostic of 

the intense frost-weathering of nunatak areas. Gronlie (1975) also pointed out that ice in side valleys is 

impeded by ice in main valleys, so that side valleys are over-deepened in their upper part, but near the 

junction they are eroded less and are left hanging (ibid., p451), as at the V-shaped lower part of Eiterädal 

(Z4, ibid., p453). The greatest glacial sculpting formed the most `peaky' mountains along the coast, with 

alpine `horn' summits occurring, for example, on the islands of Donna and Lekta (Z1 / Z9). 

Nesje et al. (1987) discussed the formula H=3.4L1/2, where H (m) is the height of the LGM ice at a 

distance L (m) inland from the edge of the icesheet at the continental shelf, for the coast some 400km 

south of the study area. Ignoring the reduced thickness of the icesheet in central Scandinavia (section 

2.3.3), application of the same formula would indicate that the LGM icesheet was some 1700m thick at 
the coast (c. 250km east of the continental shelf) and nearly 2000m thick at the Okstind mountains 

(ignoring isostatic effects). Thus, the whole of the study area was potentially covered by the icesheet at 

the Weichselian LGM. 

Nesje and Dahl (1992) modelled a "thin ice" 3D reconstruction of the Late Weichselian icesheet at its 

maximum. Their diagrams indicate that the ice thickness varied considerably, creating a multi-domed and 
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asymmetrical surface rising to altitude maxima of 2000m and thickness maxima of some 1600m, so that 

nunataks would have projected through the ice, including, perhaps, the highest Okstind peaks in the study 

area. This contrasts with the "thick ice" models of other authors, which suggest an entirely ice-covered 

landmass. (M6rner, 1980, gave a maximum thickness of 3050m at the Swedish Baltic coast; Donner, 

1995, p96 showed a more uniform icesheet with a maximum thickness of >2500m; Fjeldskaar, 1994, 

showed a maximum thickness of 3200m). Fjeldskaar (2000) argued that the "thin ice" model would give 

significant deviations from the observed tilting of palaeo shorelines. Unconvinced by the Märner (1980) 

tectonic component of postglacial uplift, he preferred his own 1994 model, for which all uplift was 

essentially glacio-isostatic (in agreement with Olsen and Gresfjeld, 1999). The physical observations of 

Kiemen and Hättestrand (1999), suggestive of a frozen-bed core, and a high-domed and stable icesheet, 

also argue against the "thin ice" model, as do the glacial erratics up to 1700m altitude seen by Granlie 

(1975, p446) on the summits of mountains near Hattfjelldal in the study area. However, one 1559m peak 

projected 50m above the ice level, and the higher erratics could date from an earlier, thicker, icesheet 

such as the Saalfan or Elsterian. Moreover, Boulton et al. (2001) reconstructed the flows within the 

Weichselian icesheet from satellite images of large-scale lineations of eskers, moraines and drumlins. 

Their evidence for relatively narrow, faster-flowing, ice streams within the retreating icesheet again 

argued for the "thin ice" model. 

Two optional reconstructions of global ice margins and sea levels at the LGM were presented by the 

CLIMAP project in 1981, summarised by Clark and Mix (2002). The "minimum" model restricted ice 

margins to near-continental margins and accounted for 127m of ice-equivalent sea level lowering. The 

"maximum" model included marine-based icesheets and accounted for 163m of sea level lowering. The 

EPILOG program is revisiting the CLIMAP study. It has found that although LGM icesheet margins 

were close to the CLIMAP maximum model, their ice thicknesses differed, suggesting that the range of 

eustatic sea level lowering was from 120 to only 135m (Clark and Mix, 2002). This discussion therefore 

leans towards an assumption that some peaks stood out as nunataks at the LGM in the study area. 

This concludes an initial review of glacial events relevant to the study area, prior to the arguments 

presented in Chapters 6-10. The various processes that applied during glaciations are described in 

Appendix A3. 

2.4 Holocene 

The Holocene interglacial period in Scandinavia was described by Andersen (1980), Donner (1995), and 

Andersen and Borns (1997). Lauritzen (1996c) presented a Holocene mean annual temperature curve for 

Mo i Rana (just north of the study area), based on speleothem stable isotopes. The Holocene is usually 

subdivided into five chronozones on the basis of radiocarbon dating of organic deposits. However, 

radiocarbon dating suffers from many problems, including the `radiocarbon plateaux', when atmospheric 
'4C decreased, perhaps due to lower solar radiation. Since about 1993, dendrochronology has enabled 
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Holocene radiocarbon dates to be calibrated to calendar years. The Younger Dryas / Holocene transition 

at I000014Ca BP, identified in a lake sediment in western Norway, was thus matched to give a calendar 

date of 11530+40/-60 cal. a BP (Gulliksen et al., 1998). In this section, dates refer to radiocarbon years 

before AD 1950 or to historical dates. 

2.4.1 Preboreal 10000-9000 

The period following the Younger Dryas (YD) cold signal after 10500 was one of gradual, then rapid, 

warming, but still with glacial fluctuations, perhaps caused by high precipitation (Lundqvist, 1986). A 

temperature rise of c. 7°C in 50 years at Greenland was cited by Gulliksen et al. (1998). Alley et al. 

(1993) reported, from studies of the GISP2 ice core, that snow accumulation doubled in Greenland at the 

end of the YD, with most of the change occurring in just one year (as had also happened at the start of 

the Belling interstadial). The northern Atlantic became ice-free soon after 10000, and the Scandinavian 

icesheet retreated eastwards, up the fjords. End moraines clustered at 9900,9600 and 9300 in the study 

area and elsewhere indicate small advances and retreats. Dead-ice areas and lakes dammed by ice and 

moraines formed on each side of the cols as they were exposed, because the ice melted first on the 

summits and the higher ridges (Lundqvist, 1972). The water initially flowed westwards, commonly via 

high `up-valley' outlets (section 8.4.8). 

The western, ice-free, parts of the land supported park tundra, with birch in the south. Much of Norway 

was deglaciated by 9000, the sea level rose (opposing a considerable isostatic uplift), but a remnant, 

stagnant, icecap remained over Sweden. This re-emphasises that the ice divides lay to the east of the 

underlying water divides. The climate became much warmer, with birch, pine and spruce repopulating 

central Norway. 

2.4.2 Boreal 9000-8000 

The icesheet had gone by 8500, finally disappearing from an area approximately coincident with the 

eastern edge of the Caledonide nappes (Lundqvist, 1986, Fig. 3). From the evidence of elm growing at 

altitudes of 700m in southern Norway, the snow line there was 400m higher than now. Thus, it is likely 

that, from 8500-8000, most of Scandinavia was also free of mountain glaciers (Ehlers, 1996, p311). 

Kame terraces and dead-ice topography are dominant in much of central Scandinavia. The lower valleys 

of the Nordland mountain ridge display thick glaciofluvial accumulations that were later cut by rivers to 

form terraces. This is in some contrast to Sweden and Finland, where the deglaciation commonly formed 

sinuous eskers, and almost-annually-varying stream channels. The easternmost part of the study area in 

Sweden exhibits very long SE-directed river valleys and lakes in plateau areas of rather low relief, which 

are remarkable for the extent of the till deposits and the size and number of erratic boulders on the 

surface. The deglaciation of the whole study area and its effect on karst and caves is deduced in more 

detail in Chapter 8. 
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2.4.3 Atlantic 8000-5000 
Except for a glacial advance from 7600-7100 and a short advance at c. 6600 (Karlen and Kuylenstierna, 

1996), the Atlantic chronozone was relatively moist and warm in northern Europe, with the Holocene 

Climatic Optimum at 5000 supporting broad-leaf and oak forests in southern Scandinavia. The mean 

annual temperature there rose to 10°C, with the mean July temperature being 20°C. Paradoxically, the 

moist weather also assisted a regeneration of the glaciers in the mountains at 6300 and 5600 (Karl6n, 

1988), and a corresponding drop in the tree line. 

2.4.4 Subboreal 5000-2500 

Pollen records indicate that 5300-4900 and 3500-2800 were drier than the Atlantic chronozone. These 

warm and dry periods favoured the expansion of trees in both north and south Norway. The period 4800- 

3800 was characterised by high-frequency glacial fluctuations in southern Norway (Dahl and Nesje, 

1994). Climatic deterioration started again at 2800 and the valley glaciers advanced in consequence, 

some remaining continuously until the present. 

2.4.5 Subatlantic 2500-present 

By 2500, a cool, moist, climate had replaced the warm, moist, climate of the Atlantic chronozone, with 

temperatures and glacial extents rather like those of today throughout the period, but with small 

fluctuations. Modern mean annual and mean July southern Scandinavia temperatures are 7° and 16°C. 

The broad-leaf forests have generally retreated back to spruce, pine and birch, whereas the glaciers have 

generally advanced. Griffey and Worsley (1978) studied Neoglacial glacier variations in the Okstind 

mountains, and concluded that there were three major Neoglacial advances at 3000-2500, at 1250-1000, 

and at the "Little Ice Age", which reached its maximum in the eighteenth century (except for a few small 

glaciers that attained maxima early in the twentieth century). Each of these expansion episodes reached 

nearly-identical terminal positions, when the glaciers occupied an area that was some 30% greater than 

the 53.5km2 covered at present, and the valley glaciers were up to 1km longer. However, the highest 

peaks still protruded as nunataks. The evidence showed that there had been no other glacial advances of 

this extent since the Boreal. (A basal peat from just outside this area of Neoglacial advance was dated to 

8083± 160). Historical records in Norway commonly show strong glacier advances down valleys from 

AD1700 to AD1750, and from AD1925-1930. Glacial retreats are recorded in the `Roman Period' 

around AD200, and at the present time from AD1930-1960 (e. g. Theakstone, 1964), and perhaps until 

AD2004, but with local exceptions. 

The pine tree limit followed a general trend down to its present modern level from altitudes up to 300m 

higher at 9000-8500. Fluctuations may correlate with variations of solar irradiation with a lag of 150 

years (Karlen and Kuylenstierna, 1996). Since 5000, almost half of this lowering resulted from glacio- 

isostatic recovery, and just over half was caused by "orbital forcing" climatic factors. The various 

environmental conditions that apply at present are summarised in Appendix A4. 
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2.4.6 Isostatic rebound 
The Holocene cooling may have resulted from the Fennoscandian uplift relative to sea level that, since 
the start of the Holocene, has reached 125m (north central Norway coast), 225m (central Swedish 

Caledonide thrust front), and 295m at the central point of the previous icesheet at the Swedish coast on 
the northern Baltic (various sources). The last elevation was proved by the discovery of marine features 

at this altitude. The contemporary (1992) rates of uplift at these three places are 3,6 and 9mma'. Grenlie 

(1975, p453) remarked that isostatic depression reaches nearly one third of the ice thickness. Although 

difficult to determine accurately, the maximum absolute Fennoscandian uplift since 13000, following the 
LGM, was shown by Mörser (1979, Fig. 26 and 1980) to be 830m at the icesheet centre, and 300m at the 

north central Norway coast. The maximum subsidence in the North Sea Basin was 170m. The absolute 

uplift at the icesheet centre was 570m since the Younger Dryas. The NW Europe "regional eustatic" sea 
level rise was some 90m since the LGM, and some 40m from the start of the Holocene until 6ka, after 

which it has been almost static (Mörner, 1979, Fig. 16; Pirazzoli, 1996, p90). These compare to a global 

eustatic sea level rise in the range 120-135m since the LGM (section 2.3.5). However, Mörser (1980, 

p263) suggested that the local sea level reached as low as -245m at the LGM, i. e. far below the eustatic 
depth. Mörser (1979 and 1980) presented evidence that the Holocene uplift had exponential and linear 
factors that were caused by two different mechanisms, supported by Nesje and Dahl (1992), who argued 
that postglacial uplift is not just dependent on icesheet loading. 

Dehls et al. (2000) published a neotectonic map for Norway and adjacent areas based on the latest 

levelling information and techniques. Their plotting of present uplift curves revealed a structure far more 

complex than the long straight lines of earlier authors, including Sorensen et al. (1987). In the Velfjord 

area, their isolines are quite curved, although remaining fairly parallel, and follow more easterly trends 

than previous representations. It seems likely that this structure differs from the previous YD isobase 

representation because the original strong vertical isostatic uplift has decayed into a more complex 
tectonic movement with both vertical and horizontal components. The influence that isostasy and varying 

sea levels have on cave development is addressed in Chapter 8. 

This Chapter and Appendices Al-A4 have now provided the geological and geomorphological context 

within which the Caledonide metacarbonates were formed, and with a working assumption that many of 
these processes were complete prior to the onset of the karstification that is presently visible. After a 
review of the current knowledge of speleogenesis and glaciated karst in Chapter 3, Chapter 4 presents a 
detailed study of the carbonate outcrops of the study area, building on some of the concepts discussed in 

Appendix A2. 
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CHAPTER 3 CURRENT KNOWLEDGE OF SPELEOGENESIS AND GLACIATED KARST 

The aims of this Chapter are a) to introduce the development of ideas about the ways caves form in 

sedimentary carbonates, b) to review current knowledge of the geomorphological and karstic impacts of 

glaciation, and then c) to discuss the current knowledge about the formation of caves in the Scandinavian 

Caledonide metalimestones against these backgrounds. From this set of views and information, and the 
data presented in Chapters 4 and 5, models for cave development in the study area itself can then be 

proposed. 

Historically, the speleogenesis and development of caves in metacarbonate rocks has received very little 

attention, despite metalimestones and metadolostones accounting for a large proportion of global 

carbonate outcrops. For example, the word marble was only mentioned on six pages by Ford and 

Williams (1989). Klimchouk et al. (2000) gave examples of caves formed in metalimestones, but drew 

no conclusions about their genesis. Thus, there has been no attempt to provide a general model for cave 

development in metalimestones, nor even a discussion about whether such a general model exists. Nearly 

all the work on generic cave development to date has assumed a setting of a sedimentary limestone 

outcrop. Furthermore, this setting has commonly been regarded as rather extensive, and not very 

confined, so that many early models of cave genesis were described on the basis of horizontal or sub- 

horizontal limestones, perhaps lying between strata of other sedimentary, but insoluble, rocks. The 

modem approach has extended to encompass dipping limestones, but, interestingly in the context of this 

study, it was not until Osborne (1999) that there was an analytical consideration of caves occurring in 

vertical, or near vertical, sedimentary limestone beds. 

3.1 Caves and karsts in sedimentary carbonate rocks 

The scientific study of caves and karst has now been in progress for over 100 years, initially from a 

qualitative rather than a quantitative analysis. The historical development of this knowledge, up to about 

1990, was reviewed by Lowe (1992b; 2000a), Ford (1998), and White (2000a). The most comprehensive 

reviews of speleogenesis were those by Ford and Williams (1989) and by Klimchouk et al. (2000). It 

would be inappropriate to repeat here the work undertaken by these authors in their analyses of the early 

literature. Instead, various speleological topics are introduced briefly, without necessarily citing the 

original references, where it is anticipated that these topics may be important in understanding the 

speleogenesis of endokarst in glaciated metacarbonates. Information from more contemporary papers is 

discussed in more detail, as appropriate. 

3.1.1 Zones and watertables v. open independent passages 

The most important early speleological observation was the distinction between vadose and phreatic 

passage profiles, with the deduction that such profiles were developed by streams with an air-surface that 
flowed under the direct influence of gravity and by streams that completely flooded the passage and 
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flowed under the prime influence of hydrostatic pressure. Because vadose flow is commonly at a higher 

elevation than phreatic flow, three "hydrographical zones" of vadose, shallow (or epi-) phreatic and deep 

phreatic water came to be recognised. Thus, the basic (but now resolved) conflicts in Speleology, which 

were present from the beginning of the scientific investigation, were to determine which of these three 

zones provides the major focus for cave formation, and to decide whether the concept of a watertable, as 

applied to other sedimentary strata, had any relevance in karst. 

The American geomorphologist WM Davis developed a two-cycle theory of landform development, in 

which fluvial erosion eventually reduces a mountainous landscape to a flat peneplain. Rapid uplift then 

creates a high plateau, so that the process can be repeated. The theory was extended to cover the karst 

situation, so that conditions external to the underground limestone could be used to explain speleogenesis 

within the limestone. In the first cycle, Davis postulated a deep, phreatic, slow dissolution, which lasts 

for millions of years as meteoric water replaces formational water in the limestone. Uplift and 

downcutting of valleys lowers the watertable and causes subsequent shallow phreatic dissolution in 

shorter timescales, which begins to form cave passages. In the second cycle, further uplift causes 

downcutting of valleys, to promote vadose enlargement above the watertable. The cycles are repeated, 

with possible links between mineralization and cave formation. 

A commonly-ignored stream piracy theory of cave formation (Woodward, 1961) associated the cave- 

forming process with the history of the adjacent surface drainage system. Woodward postulated that 

relatively sudden events, such as a fall in sea level, deglaciation, major climatic change, relocation of a 

surface steam, or the breakthrough of an impervious barrier, can trigger the initiation of cave 

development via the piracy of an existing surface or underground stream by a new drainage route. Some 

of his ideas seem to anticipate the Palmer / Dreybrodt model (section 3.1.13) and concepts developed in 

Chapters 8 and 9 of this thesis. 

Methods to model the length distributions of caves in a region were proposed by Curl (1958; 1960; 1966; 

1986), the last paper using a fractal approach. Laverty (1987) also suggested that individual cave lengths 

behave as fractals. Ford and Williams (1989, p245) used log rank / log size correlation (Zipf) plots to 

demonstrate linear relationships for cave length and depth at a world scale. Badino (2001a) plotted the 

logarithm of the number of caves longer than a particular length against the logarithm of length, and 

found a linear law. He concluded that the processes that influence the existence and the explored length 

of karst caves in sedimentary limestones appear to be scale invariant and related by hidden fractal 

behaviour. However, Badino found that cave depths are not scale invariant: on a global view, cave depth 

has a `scale' of 270m, and is probably connected with a mountain or limestone-thickness scale. (Section 

6.5.2 proposes instead that the subsurface cave distance is a more useful parameter in metalimestones). 

Howard (1971) proposed measures of topological complexity of cave networks, and considered their 

utility as indices of their mode of origin. 
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3.1.2 Chemical and hydrological models 
After the 1930s, the study of karst became more analytical. For example, WE Davies (1960) postulated a 

four-stage sequence of shallow phreatic development in folded limestone, starting with random 

dissolution at depth along bedding planes linked via joints with the most prominent zone of dissolution 

being at the junction of two limestone lithologies. However, some observations about cave passages in 

the folded sedimentary limestones of the Appalachians conflict with passage morphologies in the dipping 

metamorphic limestones of the study area, especially his remark that "many caves in folded limestone 

show very little relationship between the bedding of the rock and the development of passages " (Ibid., 

p8). Nevertheless, he did state that "where the dip of the beds is greater than 80°, the major development 

of passages almost always follows the bedding planes" (Ibid., p8) and he did discuss fracturing caused by 

stress conditions in the rock, both being observations with resonance in the study area. 

The "exceptionally complicated" (White, 1977, p505) dissolutional chemistry of limestone is still being 

studied. Much groundwork was undertaken by the `Bristol School' of academic speleologists on the basis 

of practical experiments in the 1960s and 1970s in the Mendip Hills in the UK, and in County Clare in 

Ireland. Their outputs included Atkinson (1968), Picknett (1976), Picknett and Stenner (1978), and 

Trudgill (1985). Atkinson (1977) showed that groundwater flow in Mendip occurs as both turbulent flow 

in conduits and as diffuse Darcian flow in fine fractures. 

The discovery of mixing corrosion (e. g. Bögli, 1964) showed that the mixing of two saturated solutions 

with varying CO2 concentrations always produces an unsaturated, aggressive, solution. The large-scale 

dissolutional enlargement of water-filled passages seemed to be explained: even if calculations showed 

that the main flow became saturated beyond a particular point, a subsidiary input could always make the 

water aggressive again. However, dissolution along micro-conduits could still not be explained at this 

stage, as Weyl (1958) showed that slow-moving water in joints of 0.2mm width (for example) would 

become saturated and non-aggressive within the first 10mm: the penetration distance. Faced with this 

apparent impossibility of speleogenesis by carbonic acid, Howard (1964) proposed the in situ generation 

of strong acid to initiate and enlarge long micro-conduits and offered various mathematical treatments. 

SN Davis (1966) suggested that there would be no movement through the very low primary porosity of 

limestone, not even in joints with widths up to 1Omicrons. By using a wire probe, he found that fresh 

limestone outcrops had fractures up to 20microns wide, and invoked groundwater pumping through earth 

tides, earthquakes and other processes to achieve a dissolutional flow. Diurnal tidal pumping would tend 

to prevent re-cementation within the fracture. 

Sippel and Glover (1964) found experimentally that a slight increase in solubility with depth is negligible 

compared with the effects of temperature and PCO2, up to a rise in hydrostatic pressure of 200 

atmospheres. Palmer (1991, p6) also stated that pressures up to 25 atmospheres (-. 260m of water depth) 
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have little effect on (carbonate) equilibria. No results have been published of any pressure effect on 

activity coefficients (e. g. by Dreybrodt, 1988). It is therefore assumed herein that this is also negligible.;;: 

The transition from laminar to turbulent flow was shown to occur commonly at a conduit diameter of 5- 

10mm (White and Longyear, 1962; Atkinson, 1968; Wigley, 1975; but see section 8.5.2). Thrailkill 

(1968) reported the laboratory analysis of flows through pipe networks. He concluded that, under 

common limestone aquifer conditions, the flow pattern is the same under Darcy, laminar, turbulent or 

mixed flow, and that flow in shallow conduits should not be significantly greater than flow in deep 

conduits. Curl (1971) stated that short karst conduits with laminar or turbulent flows that remain 

unsaturated enlarge to diameters and volumetric flow rates proportional to the inverse of their length 

raised to a power between one-third and two-thirds. Thrailkill (1968) also considered the problems of 

vadose seepage and the enhanced dissolution possible when waters lose temperature (e. g. on meeting a 

watertable), mix, or change flow rate (as in a flood). Smart and Whitaker (1988) discussed the transition 

of primary, porosity, flow to secondary, permeability, flow. By the time of White (1988, p148) "The 

modelling of equilibrium processes in carbonate waters has reached a mature stage of development, but 

kinetic modelling is in its beginnings ". Understanding carbonate dissolution kinetics is important for 

studies of cavern enlargement, because waters flowing through well-developed karst systems rarely have 

the time needed (c. 10 days) to reach equilibrium (White, 1984, p227; White, 1988, p213). Recent 

summaries of calcite equilibrium chemistry include those by Dreybrodt (2000) and Gabrovsek (2000, 

pp 18-22). Aspects of the dissolutional chemistry of dolostones and other carbonates are considered in 

section 3.1.15 and Appendix A2. 

3.1.3 Kinetic trigger 

The micro-conduit saturation problem was resolved by White (1977) in his discussion of laboratory tests 

of the dissolution of pure synthetic calcite in sea water conducted by Berner and Morse (1974). They had 

found that the rate of calcite dissolution varies by nearly five orders of magnitude, depending on the 

degree of under-saturation, and proposed that the graph of calcite dissolution rate passes through three 

regions as the solution becomes more saturated. Similar conclusions were reached by Plummer and 

Wigley (1976) and by Plummer, Wigley and Parkhurst (1978). These authors studied the dissolution of 

pure calcite in CO2 / pure water systems over ranges of temperature and CO2 pressures. The former paper 

concluded that the rate of dissolution of calcite in natural environments may be influenced by both 

transport processes (especially in low pH solutions) and surface-reaction processes (especially in higher 

pH solutions near to equilibrium). The latter paper showed that three different physico-chemico kinetic 

mechanisms participate in calcite dissolution: chemical reactions at the calcite surface; transport of 

various species in the aqueous solution; and the slow conversion of H2O and CO2 into H+ and HC03 ions. 

Each of the three mechanisms can become overall rate-limiting in suitable conditions, as the ratio of 

solutional volume to calcite surface area, and other variables, are changed (section 3.1.13). Nevertheless, 

equilibrium should be reached within a few years at most. Aquifers that take much longer times to reach 
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calcite saturation point to the significance of the inhibition of dissolution rate by other metal and oxidate 

ions in natural waters, including micromolar concentrations of P043 
, which cause "higher-order 

kinetics ", as equilibrium is approached (section 3.1.14). The latter paper also derived what is now called 

the PWP equation, to give the pure calcite dissolution rate at fixed PCO2 and temperature. In practice, the 

rates calculated are commonly too high by about an order of magnitude for natural limestones. Sjöberg 

(1978) confirmed the inhibiting effects of Mgt+, Po43-, SO42 and sea water on the dissolution of synthetic 

calcite powder, and found that dissolved organics had no measurable effect. Sjöberg and Rickard (1984) 

studied calcite dissolution rates in aqueous KCI solutions, far from equilibrium. Their summary diagram 

showed a 3x3 matrix of mechanisms and regimes for varying temperature and pH 

White (1977) introduced the idea of a "kinetic trigger", by postulating that saturation by calcium 

carbonate is never fully achieved. This means that there is still some aggressiveness left to cause gradual 

carbonate dissolution along the full length of the flow. The first path to allow water to leave the aquifer 

under-saturated and below a critical level becomes the victor route, with a subsequent more rapid 

enlargement. He also noted that if mixing of two waters led to an under-saturation great enough to shift 

the system into a different kinetics regime, then dissolution could accelerate beyond that expected purely 

by the mixing corrosion effect, a conclusion quantified by Romanov et al. (2003). White thought that the 

transition from a fracture aquifer to a conduit aquifer occurs at diameters from 1- l0mm, to coincide 

with the size range for the transition from laminar to turbulent flow. Another coincidence reported by 

White (1979) is that the critical velocity above which clastic sediments are prevented from clogging 

fracture permeability occurs at a similar fracture width. 

Despite the many papers that explore the dissolution chemistry of calcium carbonate, and to a lesser 

extent that of dolomite (Appendix A2.8), no references are known that fully differentiate the varying 

equilibrium and kinetic chemical behaviours between the Aragonite, Low Magnesian Calcite, High 

Magnesian Calcite (and other) forms of calcium carbonate (Appendix A2.4). Some of this information 

may be deduced from Rauch and White (1977, Fig. 6), who studied dissolution rates under closed, 

turbulent, flow conditions. Svensson and Dreybrodt (1992) provided more details, whilst admitting that a 

large programme of work was required to gain more insight into the inhibition of calcite dissolution. The 

way in which the kinetic trigger idea and the resolution of many aspects of the kinetic behaviour of 

natural calcite in carbonic acid led to a comprehensive physico-chemico model for the development of 

conduits and caves is discussed in sections 3.1.13-3.1.15. 

3.1.4 Geological rationalisations 
Although discussions about individual cave and karst sites involved an appreciation of the local 

geological setting, the generic models of cave development produced from the scientific treatments prior 

to about the 1980s still tended to regard the limestone bedrock and aquifer as a homogeneous fabric, 

within which caves developed from an, as yet unknown, inception process. The importance of geological 

Trevor Faulkner Page 43 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 3- Current Knowledge 

guidance became increasingly recognised after the observation of preferential `carrier beds' 

downward limits at shale aquicludes. For example, in the caves of the Yorkshire Dales, UK, Waltham 

(1970) demonstrated: a) the guidance by "shale" layers along major bedding partings; b) the Innis 

phreatic phase above vadose passage sections; and c) the lack of a regional watertable. Waltham (1971; 

1974) revealed a basic geological and stratigraphical guidance on cave development, whilst suggestit 

the evolution and chronology of the Lost John's System in Yorkshire. 

Rauch (1972) undertook a laboratory analysis of carbonic acid flows through limestone lithologico of? 

varying purity and crystal size, and found that sulphuric acid from pyrite could increase carbonate 

dissolution, and produce vugs in dolostones and limestones. Palmer (1991) also showed that sulphurüa 

acid could be produced from the oxidation of pyrite in limestone sequences, and showed that, in 

horizontal maze caves, two dimensions are controlled by joints and the third dimension by stratigraphy. 

The major achievement of this period was a rationalisation of the watertable / no watertable debate in. the 

papers of firstly DC Ford (1965a, 1968,1971 b), which studied cavern development in the Mendip Hills, 

UK, and secondly of Ford and Ewers (1978), as presented again in Ford and Williams (1989, p26). Tos 

work showed convincingly that caves can develop in all three hydrographical zones (section 3.1.1), and' 

proposed that the actual cave networks produced are guided by fissure frequency and geologic-81 

structure. The Ford and Ewers Four-state Model of cave development in both flat-lying and homoclinal 

sedimentary limestones postulated that deep, phreatic-loop, caves form in State 1, with a low fissure 

density. At an increased fissure density, State 2 caves form where the tops of the phreatic loops intersect 

the piezometric surface. Gradational passages with a free air-space can bypass the loop tops. State 3 

caves have a mixture of smaller-amplitude phreatic loops and watertable-levelled components. At a high 

level of fissure frequency, State 4 caves form long horizontal river passages along the watertable. In all 

cases, new passage elements commonly propagate headwards from the outlet spring. Ford and Ewers 

(1978) suggested that fissure frequency in a limestone aquifer decreases with depth, but increases with, 

time, and (Ibid., pi 794) noted that the fissure frequency is generally high in tight folding. Palmer (1990,. 

p199) stated that the frequency and width of available fractures increase with relief. These observations 

commonly apply in the study area (Chapter 6). Ford (1998; 2000) introduced States 0 and 5, to cover the 

extremes of zero fractures (without caves) and dense fractures, where now is too diffuse to form passable 

conduits, to specify the amplified four-state model. 

Although the universality of the Four-state Model has been questioned, its common applicability has also 

been confirmed from physical and chemical principles (Gabrovsek, 2000, ppl13-133; Gabrovsek and 

Dreybrodt, 2001; Kaufmann, 2002). Difficulties may arise in defining the scale of the fracture openings 

and their frequency, and in considering the primary porosity of the limestone, which in some lithologies 

(e. g. Pleistocene limestones) may be a major factor. (Porosity is highly variable between lithologies, 

whilst probably remaining almost constant with depth, if not with geological time). Bitterli and Jeannin 
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(1997) considered that the Four-state Model may not apply generally to Alpine karst, where the "high" 

fracture density should lead to shallow phreatic caves, rather than caves with phreatic loops many 

hundreds of metres in amplitude, as in the Sieben Hengste cave. Their analysis of vadose-phreatic 

transition points and related palaeo spring levels showed that this system evolved downwards via eight 

successive discrete phreatic levels, perhaps starting in the Pliocene. In the context of this study, the 

genesis of each flow system appears to be fast compared to the evolution of the landscape (otherwise the 

discrete phases would not be recognisable), suggesting that there is a relationship between the lowering 

of spring levels and valley entrenchment by major glaciations (Chapters 7-9). Bitterli and Jeannin (1997) 

concluded that the recent numerical models of karst dissolution (i. e. the Palmer / Dreybrodt model: 

section 3.1.13) explain many features of the Sieben Hengste system, and that spring positions and 

hydraulic gradients appear to play an even more important role in explaining the geometry of conduit 

networks than the fracture setting. In a discussion at the end of Jeannin et al. (2000), DC Ford confirmed 

that the illustrations for the Four-state model are for the simple case where the drainage and stratal dip 

share the same direction, and the debate was continued by Worthington (2001; section 3.1.12), Ford 

(2002) and Worthington (2002). 

In contrast to the evidence of geological guidance of passage development, Palmer (1984a; 1984b; 1987) 

showed that, in stable areas with shallow dip, as at Mammoth Cave, Kentucky, cave levels can be 

correlated with geomorphological base-levels, and thus be used to interpret the evolution of landscape. 

The third paper explained how, in favourable situations, long-lasting external base-levels can be 

determined by finding elevations of former vadose-phreatic transition points, whilst carefully 

interpreting perched phreatic loops in the vadose zone. However, the method is difficult to apply in 

mountainous areas with steep hydraulic gradients (section 3.2.2). Palmer (1990, p195) remarked that, 

whereas phreatic conduits exhibit a long-term stability, vadose channels are continuously susceptible to 

route diversion. Brahana et al. (1988, p342) mentioned three possible major base-level controls: sea 

level, perennial streams, and impervious rock formations. In the study area, lakes and tarns that occupy 

glacially-scoured basins can also act as base-levels. 

3.1.5 Strong acids and thermal waters 
The potential role of locally-generated strong acids in promoting early conduit initiation was also 

considered by, inter alia, TD Ford (1963), Morehouse (1968), Egemeier (1987) and, in passing, by 

Palmer (1991, p18). Hill (1981; 1995) suggested that the formation of the extensive Carlsbad Caverns 

and Lechugilla Cave in New Mexico relied on the in situ generation of sulphuric acid by oxidation of 

H2S from solutions rising from deep hydrocarbon-rich deposits. This sulphuric acid karst gave a practical 

example of the strong acid ideas of previous authors. Jakucs (1977) discussed the non-karstic corrosion 

of limestone by humic acid from soils, and by sulphuric and nitric acids from oxidation reactions. The 

presence of sulphate reducing bacteria within the sub-permafrost aquifer at south Spitsbergen was 

reported by Lauritzen and Bottrell (1994). Osborne (2001 b) observed that palaeokarst deposits and less 
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soluble units in caves in eastern Australia are commonly altered by emplacement of pyrite and doloiniti, 

thought to be derived from ascending thermal waters. 

Worthington and Ford (1995) examined a possible relationship between an epigene / hypogene cave 

distinction (Palmer, 1991; section 3.1.16) and non-thermal / thermal spring waters, by studying the 

chemistry and temperature of risings in the Sierra Madre Oriental (Mexico), the Rocky Mountains Front 

Range (Canada) and the Peak District (England). In these three areas, the lower altitude, regionally- 

derived, thermal water flows always have higher sulphate concentrations than the higher altitude, locally- 

derived, non-thermal water flows, especially at times of low flow. Reduced temperature and sulphate 

concentration in thermal springs at high stage could be explained by mixing with locally derived 

groundwaters. The emergence of sulphate ions from springs as a waste product is indicative of 

dissolution chemistry involving sulphuric acid in conduit enlargement. They concluded that the; 

morphological distinction between epigene and hypogene caves cannot be extended to classify carbonate 

aquifers into two types, as the initial enlargement of epigene conduits may also have been influenced by 

deep waters with sulphur chemistries. Thus, it appeared that many, or possibly most [! ], epigene caves 

were initiated by hypogene, sulphate producing, processes. 

Sustersic (1997) hinted and Pezdic et al. (1998) proposed that speleo-inception is promoted at dolostoneI 

limestone contacts, because silica-rich solutions can decompose dolomite at low temperatures (2-16°C) 

to produce clay minerals and abundant CO2. Lauritzen (1981, p14) noted that sulphide minerals are 

common in contact metamorphic limestones in Norway and Lauritzen and Lundberg (1999, p665) 

mentioned in passing the possibility of oxidation of sulphide grains (from mica schist and iron oxide ores 

adjacent to the marble) to sulphuric acid at Soylegrotta near Mo i Rana, in northern Norway. Thesb 

mechanisms could apply potentially in the study area. 

Bottrell et al. (2000a; 2000b) reviewed the literature on strong acids. Whereas other workers regarded 

examples of strong acid dissolution as special cases, these authors regarded them as extreme cases of ; 

speleogenesis, perhaps by ubiquitous processes not based exclusively on carbonic acid. A variety of 

chemical deposits within carbonate successions can produce sulphuric acid in many situations. These 

include sulphides, especially iron pyrites, which oxidise in the presence of dissolved oxygen, perhaps 

with suitable bacteria, and sulphates, which can be reduced by microbial activity to H2S, which, in turn, 

can then be oxidised to H2SO4. It appears that almost any iron salts, and many sulphates, can lead to 

sulphuric acid production. Whenever H2SO4 is released, reaction with carbonate increases porosity and 

generates C02, which, in its turn, makes the solution more aggressive, causing double solvency. Because 

the strong acid is generated locally, perhaps along the whole length of a fracture or aquifer, large 

quantities of carbonate may be consumed quickly, without relying on "kinetic triggers " and high-order 

kinetics for conduit breakthrough (section 3.1.14). 
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3.1.6 Palaeokarst 

The importance of palaeokarst is increasingly recognised as proving that processes of karstification have 

existed on earth over long periods of geological time. TD Ford (1984 and 1989) reviewed the widespread 

evidence of palaeokarst in, particularly, the Carboniferous limestone areas of Britain. Most of these 

originated as a covered karst, i. e. developed under soil or other superficial deposits, and became buried 

karsts after being buried beneath deposits of younger strata. In the Peak District, the Dinantian limestone 

sedimentation was cyclic, with marine transgressions and regressions and intermittent vulcanicity. 

Exokarst features were developed during maximum regressions, when the lime sediment was exposed at 

the surface, as can be seen today where volcanic tuff horizons are removed from limestone exposures. 

Post Dinantian uplift was followed by Namurian sediments filling deep grykes and caves. The mineral 

deposits of Derbyshire are thought to have originated from hydrothermal solutions penetrating into 

fissures that resulted from Late Carboniferous tectonic movements, and into pre-existing cavities, to 

create hydrothermal palaeokarst. 

Osborne (1986) provided evidence for "multiple karstification", starting at the latest in the Tertiary in 

some places in New South Wales, Australia, and starting in the Cretaceous in Timor Caves, NSW. 

Lithified Tertiary sediments of sandstone and conglomerate turbidites in the Wellington Caves indicate 

that sub-aqueous mass flows can totally infill pre-existing passages. Smart et al. (1988) reviewed the 

existence of Neptunian dykes and related features. The books edited by James and Choquette (1988) and 

Bosak et al. (1989) reported the evidence for palaeokarst from many sites around the world, the oldest 

being in early Proterozoic carbonate rocks in Canada. Palaeokarsts that accumulate petroleum were 

found by drilling wells in NW China. They occur in late Precambrian and Ordovician sedimentary 

limestones and dolomites (undefined) at depths up to 5400m (Cao et al., 1999). Osborne (2000) 

discussed the need to redefine the term "palaeokarst", and the need to distinguish between "palaeo" and 

modern sediments in caves that can be entered today and which display multiple karstification phases. 

Bassett (1985, p287) remarked that Silurian quartz sands "finally covered Caradoc (Mid Ordovician) 

karstic surfaces in the north" (of Norway). "At least one period of karstification" is identifiable in a 

shallow carbonate - dolomite - evaporite sequence in Silurian beds (Ibid., p289). These statements take 

the time of possible early cave formation and burial in the Scandinavian Caledonides back to the 
Ordovician / Silurian, pre-dating the completion of the Caledonian Orogeny. Similar evidence is also 

available from Scotland, as Palmer et al. (1980) reported palaeokarstic fissures up to 150m deep in Early 

Cambrian Durness Group carbonates. The fissures are filled with breccias derived from overlying 

Ordovician dolostones, suggesting a Mid to Late Cambrian orogenic phase, during which karstification, 

or possibly the tectonic opening of rifts, occurred. Clearly, all the above examples avoided subsequent 
high-grade metamorphism. 

Trevor Faulkner Page 47 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 3- Current Knowledge 

Lauritzen (1988a; 1989c) discussed the Scandinavian evidence in more detail. No more-recent 

palaeokarsts are known, but Lauritzen surmised that fragments of Tertiary palaeokarst, formed during up 

to 60Ma of deep weathering, should exist, even if not yet recognised, and some of the few very large 

relict caves at high altitudes that are known in northern Norway may be examples of Tertiary karst. There 

are no reported examples of palaeokarst from Sweden and none from the study area. Sections 10.4 and 

10.6.7 conclude that they do not exist in the non-Arctic metamorphic carbonates of the Caledonides. 

3.1.7 Palaeohydraulics 

Scallop and sediment grain sizes are used in Chapter 8 to estimate flow rates in study area caves. The 

properties of scallops and flutes were described in mathematical treatments by Curl (1966a and 1974). 

From Curl (1966a, Fig. 1), the product of scallop length in centimetres and flow velocity in cros' is 

roughly 400cm2s"1, at 0°C. The steeper face of the scallop points downstream. Stable flute patterns only 

occur in fully turbulent flow, with a channel Reynolds number in the range 200000-2000000 (Ibid., 

p132). The uniform dissolution of a patterned surface increases the sharpness of cusps (Ibid., p145), but 

eventually removes the pattern (Ibid., p154), and scallops do not form when their size would equal the 

passage diameter (Ibid., pl53), as occurs with low-velocity ponded flow (e. g. below an icecap). Lauritzen 

(1981d) presented a methodology for determining flow direction from a statistical analysis of scallop 

asymmetry, although this method may not always be practical in metalimestone with schistosity 

(Kirkland, 1958). Lauritzen et al. (1983; 1985) deduced that scallops represent the highest stages of flow, 

not the mean rates. Urushibara-Yoshino et al. (1996; 1997) studied the formation, by abrasion, of floor 

scallops in Irimizu Cave in Japan, which has formed in well-crystallized marble with a grain size of 3- 

4mm. However, Murphy et al. (2000) reported examples of contrasting scallop size populations between 

the floor and roof of the same, wholly-phreatically-formed, passages, indicating potential difficulties in 

determining appropriate flow rates. Floor-level channel karren-like abrasion features in flood conduits 

were described by Murphy and Cordingley (1999). 

Gale (1981) discussed the inferences about the palaeohydraulics of cave streams from studies of cave 

sediments. Gale (1984) considered the very complex hydraulics of conduit flow in carbonate aquifers 

from the evidence of scallops, transported sediments, friction and roughness. Phreatic and vadose flows 

are commonly turbulent (Reynolds Number > 2000) and subcritical (tranquil), with Froude Number <0.5. 

He deduced that flows at 1.45ms"', at the upper end of the known velocity range, are competent to entrain 

"particles" of -0.59-2.9m (metres) diameter. However, with the number of unknown variables involved, 

it is clear that no simple relationship can be stated between cave sediment particle size and flow rate. An 

abstract by Bosch (1998) made the important point that, in cave systems, there is a self-regulation of 

clastic deposition to maintain most efficient water flow. (If a passage becomes choked by sediment, 

water will flow to higher levels until the pressure rises sufficiently to flush the sediment downstream). 

He also defined young karst as having ephemeral underground streams in low flow, but surface flow in 
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flood, and mature korst as exhibiting an absence of surface streams. (See also comparable work by 

Smart, 1988 in section 3.1.10). A quantitative theory for sediment transport was also mentioned. 

Lauritzen (1986c) calculated the present mean conduit radial increase in the Glomdal Underground 

Outlet (formed in marble) in northern Norway (section 3.3.3) to be 0.8mma', from the increase in 

hardness between the inlet and the outlet. A study of scallops in the same system showed that the 

dominant discharge that guides scallop morphometry is the highest discharge of 2-15% duration, when 

corrosion rates are also highest. This scallop dominant discharge also appeared to be proportional to the 

contemporary catchment area (Lauritzen et al., 1983 and 1985; Lauritzen, 1989d). 

3.1.8 Epikarst and subcutaneous zones 
The significance of the epikarst began to be appreciated from the mid 1970s (Ford and Williams, 1989, 

p206). It is sometimes defined as both the soil layer and the subcutaneous zone, which is a zone of 
highly weathered rock lying above the relatively unweathered rockmass of a karst aquifer (Lowe and 
Waltham, 1995). Other definitions equate the epikarst zone just with the subcutaneous zone. Palmer 

(1991, p12) noted that surface openings result from epigenic dissolution at its most aggressive. Gunn 

(1981a; 1983) discussed the hydrological processes in karst depressions at Waitomo, New Zealand, 

showing that there are six main flow components. It is now known that the great majority (although the 

98% reported by Worthington, 1991 is atypical) of autogenic corrosion occurs in the subcutaneous zone, 

which may only penetrate some 10-20m below the surface, and which is sub-parallel to the topographical 

slope (Ford and Williams, 1989, pp404,532). Kosa (1989) considered a vertical cave as a deep karren 

feature, and an important paper by Sweet (1989) considered subcutaneous drainage and cave 
development in short caves in a glaciated karst in Canada, which are all within 25m of the surface. In 

various papers, Brahana et al. (1988, p342), Klimchouk (1995; 1997b) and Klimchouk et al. (1996) 

discussed the fissuring of the epikarst due to the mechanical processes of stress relief, temperature 

cycling, earth tides, hydraulic loading, frost wedging, tectonic activity, chemical weathering, uplift, 
denudation, and inherited karst porosity. The properties of the epikarst as an aquifer were described by 

Klimchouk (1995; 1997b) in terms of vertical percolation, water storage, and flow concentration at the 

base of the epikarst zone. Hidden shaft tops at the base of the epikarst were revealed via epikarst 

passages, or by later glacial scouring, when a shaft descends from within a karren field without a 

surrounding doline (for which there are examples in the study area). He proposed that epikarst processes 

start again at an early stage after deglaciation, and that much of the corrosion in the epikarst arises from 

condensation processes (section 3.1.9). Tyc (1997) discussed epikarstic features in zones affected by 

periglacial processes, and Puech and Jeannin (1997) considered the hydraulic behaviour of epikarst. In a 
field trip after the twelfth International Speleological Congress in Switzerland, 1997, they demonstrated, 

from rapidly-draining boreholes, that conduits in the epikarst may be apparently unconnected, even if 

situated within 5m of each other. Klimchouk (2000a) pointed out that the increased frequency and widths 

of fissures in the epikarst means that the low-order dissolution kinetics and breakthrough concepts need 
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not apply, i. e. vertical (tectonic) leakage paths above open passages do not need speleogenic initiation. 

These ideas are explored in Chapters 6-9, and study area caves are regarded as occurring in a special 

type of epikarst (section 10.6.2). 

3.1.9 Condensation corrosion 
Ford and Williams (1989, p309) discussed condensation corrosion in the context of hydrothermal caves. 

Palmer (1990, p187; 1991, p18) remarked that trickles of water from fissures absorb CO2 to become 

aggressive and condensation water formed in the C02-rich air of a cave is very aggressive. Exposed 

surfaces exhibit high porosity and a friable (or stable) weathering rind, with etching, small pits, "box 

work" or bellholes. The condensation water commonly seeps back to floor level to deposit speleothems, 

disintegrated carbonate rock, and other deposits. Lauritzen (1990b) suggested that condensation 

corrosion caused wall retreat in a relict cave passage in Hammernesgrotta in northern Norway (section 

3.3.3). Simms (1999) used the condensation corrosion concept to explain the development of "weird 

karst" in the west of Ireland (or "tube karren": Simms, 2002) and Tarhule-Lips and Ford (1998) used it to 

explain the formation of bellholes. They estimated a mean corrosion rate of 0.024mma 1. The role of 

condensation underground received a fuller treatment by Dublyansky and Dublyansky (2000). They 

suggested that condensation may explain the residual flow of springs during prolonged dry periods. 

Clearly, the weathering of cave walls (e. g. Zupan Hajna, 2001) is a complex process, with potential 

relevance to the study area. It depends on external climate and internal microclimate, as flowstone may 

also be deposited, or the walls may remain dry and unweathered. 

3.1.10 Exokarst 

Smart (1988) proposed a method to relate the evolution of a karst landscape to the size of underlying 

karst conduits and the frequency of overflow across the surface. He suggested that karrt evolves from 

fluvial landscapes (initially without exokarst, and with most flow being surficial above conduits less than 

c. 0.5m in diameter) tofluviokarst (with karst landforms, such as dry valleys, above conduits up to lm in 

diameter) to holokarst (with dolines and poljes, above larger conduits that carry most of the flow). He 

deduced that the evolution rate is primarily dependent on the lack of saturation of the recharge, although 

his model was generated before the knowledge of higher-order kinetics (section 3.1.14). 

Sustersic (1996) considered the theoretical model of a landscape that developed solely upon carbonate 

rock that extends well below surface level and that is not influenced by other rocks types. He proposed 

that eight conditions need to be met to enable the development of Pure Karst and his model demonstrated 

that the exokarst surface is then a uniform system of centrically-organised depressions and elevations, as 

realised in tropical tower karst, where natural circumstances are closest to ideal conditions. The model of 

Ahnert and Williams (1997) produced similar results. According to the Sustersic model, merokarsts are 

imperfect karst landscapes in which at least one of the eight conditions is not met. Stripe korst appears to 

be an extreme example of merokarst in which three conditions are not met, partly explaining why 
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polygonal tower or cone karsts are completely absent from the metacarbonates of the Caledonides. Gams 

(1994) discussed various types of contact karst (apparently in horizontally-bedded limestones). These 

included narrow bands of limestone between impermeable sediments that may receive concentrated flows 

of allogenic water. He stated that "corrosion is particularly intensive when allogenic water comes from 

an area of silicate rocks " (Ibid., p39), which is the case in the study area. 

3.1.11 Cave destruction 

Perhaps the latest topic to receive academic attention is the way in which caves become removed from an 

eroding landscape. Whereas this topic was discussed briefly in theoretical terms by Lowe (1992a) and by 

Lowe and Gunn (1997), Sustersic (1998) gave examples of Unroofed (or Roofless or Surface) Caves in 

Slovenia. Internal deposits from caves that no longer have roofs are now exposed there to direct meteoric 

erosion. Further examples were described by Mihevc (1999) and by Knez and Slabe (2001; 2002). 

Natural arches are diagnostic of unroofed caves, and cliffs above sinks and resurgences indicate 

truncation of previously longer passages. In Australia, Osborne (2001 a) commented that roofless caves 

are more common in areas of low relief. Sustersic (1999) defined a speleothanatic zone at the epikarstic 

top of a vertical speleogenetic space through which caves seem to move upward, where the corrosional 

attack of all rock surfaces leads to complete annihilation. The relevance of the general concept in the 

study area is discussed in Chapter 7. 

3.1.12 Inception and timescales of speleogenesis 

The problem of the actual initiation of the very first proto-conduits was at first commonly ignored, 

regarded as inexplicable (section 3.1.4), or dismissed as in some way `tectonic'. However, in the 1980s, 

that is after Ford and Ewers (1978) gave an explanation for cave genesis at the macro scale, and with the 

benefit of the discovery of ancient palaeokarsts in many parts of the world, it became possible to re- 

examine the initiation problem from a geological and hydrological perspective, as well as from a growing 

chemical understanding. 

Kastning (1984) proposed that a structural framework determines initial groundwater circulation routes. 
By studying three separate sub-horizontally-bedded karst areas in the USA, Kastning showed that fault 

zones and joint sets can commonly be related and dated to distinct episodes of regional and local 

tectonism. These fractures can guide the development of karst landforms (e. g. lines of dolines and cave 

passage configurations), although, in some situations, dip and strike guidance can be more important. He 

noted that joints associated with folds and faults are locally abundant. Small joints also probably formed 

during expansion of bedrock in response to removal of overburden by fluvial or glacial erosion, or to 

subsidence and spalling along escarpments. These ideas are considered in Chapter 6. Kastning explained 

the preference of cave passages in one locality to follow one fracture set rather than another, more 
dominant, fracture set by attributing an initial openness to fractures formed by extension rather then the 

more closed character of fractures formed by compression. Palmer (1972; 1975) noted that geological 
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structure partly controls collapse of passage ceilings, a process that may block active conduits and lead to 

back-flooding, diversion routes, and maze passages. Mylroie and Carew (1986; 1987) suggested that 

inception could date back towards the formation of the host rock, but noted that passages in both the 

Bahamas and in glaciated areas could form lm diameter tubes in l Oka (but see section 8.5.2 for even 

faster estimates), so that caves related to the modern landscape probably develop in a modern episode, 

e. g. a postglacial timeframe. 

The role of cave inception in and adjacent to karst aquifers was addressed in two PhD theses, published 

almost contemporaneously (Worthington, 1991; Lowe, 1992a). Worthington studied karst hydrogeology 

in the Canadian Rocky Mountains, and found from observations at the karrt springs at the Crowsnest 

Pass that there is a vertical hierarchy in the aquifer. He described these as: thermal springs, with long 

deep paths; underflow springs; full flow springs; and overflow springs, with local shallow paths. He also 

found that there is a high sulphate concentration in the deep (inception) waters. 

Worthington (1994) discussed Triple Porosity limestone aquifers (White, 1977): primary porosity within 

the crystal structure; secondary porosity along fractures; and tertiary porosity along dissolutional 

conduits. Thus, groundwater may take years to traverse the first tens of metres of fractures to reach a 

conduit, and then travel several kilometres to reach the spring in just a few hours. Worthington and Ford 

(1997) proposed seven test methods for aquifer channels and suggested that permeability and porosity are 

explained by compaction i. e. burial depth. Worthington et al. (2000a and b) studied porosity and 

permeability in four contrasting, unconfined, sedimentary carbonate aquifers and found that dissolutional 

channels add little to porosity, but enhance the permeability of fractured rock by up to three orders of 

magnitude. Worthington (1999) reported the similarity between the proportions of matrix, fracture and 

channel flow and storage in these contrasting aquifers. Worthington (2001) noted a relationship between 

flow depth and flow path / stratal dip, doubting the Ford and Ewers (1978) Four-state Model (section 

3.1.4). However, his explanation was based on viscosity reduction, and therefore increased flow rate, 

caused by geothermal heating at depth. This seems to be an uncertain argument, because it ignores the 

reduction in geothermal gradient caused by downward-flowing water, as discussed by Sippel and Glover 

(1964) and especially by Luetscher and Jeannin (2004). 

Lowe (1992a) proposed an Inception Horizon Hypothesis (IHH) for the origin of limestone caverns in 

which the first initiation of proto-conduits occurs as a syngenetic cave formational process during 

diagenesis, which may be accompanied by strong acid dissolution. This long, slow, non-karstic, inception 

phase is driven by capillarity, earth tides (Davis and Moore, 1965; Davis, 1966), or ionic diffusion at 

great depth and over great distances, all within stratigraphical partings or within adjacent porous or 

fractured clastic rocks. These Inception Horizons can function as aquifuges, aquicludes, aquitards or 

aquifers at different stages, relative to the adjacent limestone. Susceptible beds may be removed totally 

by dissolution at several levels, as the dissolutional flow moves into the more soluble limestone via an 
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anastomising network of micro-tubes. Within this network, victor tubes grow, whilst still taking laminar 

flow during the "gestation" phase. When diameters of 5-10mm are reached, turbulent flow increases the 

growth rate. Lowe suggested that inception and other enlarged features can survive folding and tectonism 

and influence subsequent speleogenesis, as drainage routes are intercepted by surface lowering. 

Resurgences form at progressively lower inception horizons, until vadose incision occurs with headward 

erosion back towards the various inputs. The hypothesis includes the possible re-invasion of abandoned 
levels, if outlets become blocked, and also new sink inlets can modify existing higher tiers. The whole 

cycle can be repeated through several geomorphological events, because persistent open voids in some 

palaeokarsts can act as the focus for renewed cave formation. Similarly, buried palaeo (exo) karstic 

horizons can act as new Inception Horizons, after subsequent uplift and the onset of erosion. Thus, 

palaeokarst, whilst demonstrating the long timescale over which karst processes have acted on the earth, 

can also promote a new generation of cave development. 

Whereas Lowe's Hypothesis relied on (near) vertical, tectonically-derived, joints and faults to provide 
linking pathways for inception flows between Horizons, he did not discuss the actual size of these 

fractured pathways. Although terms such as "open" and "relatively open" were used, the whole concept 

considered them to be rather closed tectonic discontinuities, which only allow fluid movement by the 

same processes of capillarity, earth tides, and ionic diffusion. Thus, he did not consider the possibility 

that, in some situations, tectonic movement might produce 3D networks of interconnected joint, fault and 
bedding-orientated fractures of sufficient size that his inception, and, indeed, gestation phases could be 

bypassed by relatively fast-flowing aggressive meteoric water, especially on hillsides with high hydraulic 

gradients, as implied by Kastning (1984, p374). See also Faulkner (1998) and Chapters 6-9. Ford (1965a, 

pp] 13,117,120,121,125) suggested or implied that open fractures contributed to the early development 

of the major caves in the Mendip Hills, UK. 

A short paper by Lowe (1998) showed that inception can represent the transition between diagenesis and 

speleogenesis in sedimentary limestones. He suggested that inception must follow a) tectonic 

discontinuities; b) stratigraphical discontinuities; c) pre-existing weaknesses (e. g. palaeokarst); or a 

combination of all three. Lowe (1999) re-appraised the work of Waltham (1970; 1971 a; 1974) and gave 

an explanation of cave development in the Yorkshire Dales, UK, based on pre-tectonic inception along 
Inception Horizons and on the intersection of flow routes by glacial down-cutting. Lowe (2000) further 

developed the IHH and discussed the idea of continuous voids resulting from movement across bedding 

planes (see also Faulkner, 1998). However, Palmer (1999a, p194) threw some doubt on the importance of 
deep-seated dissolution along inception horizons, from structural evidence. 

After the publication of the two theses about karst hydrogeology and inception, further evidence of 
ancient, and deep-seated, inception became available. Thus, Ford (1995) and others discussed the 
development of hydrothermal caves and Klimchouk (1997a, and especially 2000b) reviewed deep-seated 
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hypogenic and artesian speleogenesis. Klimchouk's second paper stressed the importance of cross- 
formational hydraulic communication in the development of artesian (confined) speleogenesis, 
demonstrating that this commonly forms maze caves, supplementing the conditions described by Palmer 

(1991; section 3.1.16). 

Sustersic (1997) described Inception Horizons in Slovenia, including some at dolomite boundaries. 

Osborne (1999; 2001 b; 2001 c) reported the existence of inception "horizons" in vertical to steeply- 

dipping sedimentary limestones in NSW, Australia. He noted that such inception horizons are likely to be 

discontinuous and lensoid in shape. Some of his examples seem relevant to the morphology of caves and 

karst in vertical and angled stripe karst in the study area, including the presence of sheer limestone cliffs, 

gorges, dry valleys, natural bridges, tiered cave passages, the effect of dip and surface slope 

relationships, and clastic sediment blockages causing paragenesis. However, his other observations 

probably have no counterpart in Caledonide metalimestones, such as marginal valley development, blind 

passage terminations (which Osborne, 2001b considered were formed by rising hydrothermal waters; 

Klimchouk, 2000b, p252), and the production and later exposure of palaeokarst. TD Ford (2000) 

discussed vertically-orientated inception routes along vein cavities subjected to tectonic movement, at 

depths that only reach down to 200m below the top of the (sedimentary) limestone. 

3.1.13 The Palmer / Dreybrodt model 
The basic principles that govern the physico-chemico processes of the inception, gestation and 

enlargement phases of phreatic cave development were resolved in what this thesis refers to as the 

Palmer / Dreybrodt model. This built on the Weyl (1958) concept of penetration length, quantified the 

White (1977) kinetic trigger and incorporated mixing corrosion where appropriate. 

Palmer (1981; 1984a; 1984b; 1991; 1999a; 2000b) discussed the hydrochemical factors in the origin of 

limestone caves. Closed conduit laminar flow is governed by the Darcy and Hagen-Poiseuille equations, 

and closed conduit or open channel (vadose) turbulent flow by the Darcy-Weisbach equation. These may 

be compared to Ohm's Law for phreatic flow, so that the flow rate is equal to the head loss divided by a 

resistance. The resistance is related to aperture size, and is commonly proportional to the length of the 

fracture. Hence, the flow along an inclined straight tube is proportional to the sine of the slope angle. 

This value equates to the hydraulic gradient (HG), which in these calculations is always measured as the 

head loss divided by the full path length along a conduit (not the projected plan length of the path, as 

used for soils and porous rocks), and so reaches a value of unity for a waterfall. It can exceed unity if the 

water input to the conduit is already under pressure, as at the base of an overlying lake or reservoir. 

Palmer (1991) showed that in phreatic passages: 1) The wall retreat rate levels off at a maximum of c. 

I mma'; 2) Passages grow large if active for a long period of time, roughly independent of discharge rate; 

3) A constant wall retreat rate depends on an increasing discharge rate (to maintain phreatic conditions, 
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as commonly occurs due to progressive captures); 4) Beyond about 90% saturation, the reaction rate 
drops sharply by one to two orders of magnitude (citing White, 1977, in his review of Berner and Morse, 

1974); 5) The maximum dissolution rate is quickly reached if the hydraulic gradient is steep, as can occur 
during floods. These effects were represented graphically in plots of Passage Radius v. Wall Retreat Rate 

v. Degree of Saturation. 

In various publications, Dreybrodt and co-workers also reported the mathematical and chemical 

modelling of the early and later stages of karst evolution. Dreybrodt (1981a) calculated calcite 
dissolution rates in systems both open and closed to C02, and with mixing corrosion. At large volume: 

surface area ratios, the surface reactions limit dissolution rate; at low ratios, the hydration of CO2 is rate 
limiting. Dreybrodt (1981b) concluded that mixing corrosion at fracture intersections is alone sufficient 
to explain phreatic passage formation within tens of thousands of years, although White (1984, p23 1) 

argued that his own observed experimental reduction in calcite dissolution rate compared to that 

predicted by the PWP model (section 3.1.3) may explain the initial enlargement of fractures to proto- 

conduits without the need for mixing corrosion. Buhmann and Dreybrodt (1985a; 1985b) and Dreybrodt 

(1987; 1988, pp140-176) gave theoretical models and experimental results to predict pure calcite 
dissolution rates in the extreme open and closed conditions of CO2 availability for both laminar and 
turbulent flow along films and fractures of various widths and volume / area ratios. Turbulent flow was 
thought to give dissolution rates higher than those for laminar flow in both conditions by a factor of ten: 

Dreybrodt (1987, Fig. 12) showed a wall-retreat rate of 3.8mma' in a turbulent closed system at 10°C 

(with the high initial Pco2 of 5x10-2 atm. ). 

The high dissolution rates in turbulent motion may, however, be illusory, because they must be reduced 
by the presence of a laminar flow diffusion boundary layer adjacent to the dissolving surface whose 
thickness is partly determined by the roughness of the wall (Dreybrodt and Buhmann, 1991). In practice, 
the maximum dissolution rate in large phreatic conduits appears to be c. l x10"'mmolcm 2s-1' equating to 

the maximum wall retreat rate of c. 1 mma 1 found by Palmer (1981). Dreybrodt et al. (1996) further 

studied the rate-limiting effect caused by the slow conversion of CO2 in closed, narrow, apertures with 
laminar flow, which they found applied to solutions that were more than 20% saturated. Liu and 
Dreybrodt (1997) studied this effect in turbulent flow with a diffusion boundary layer. They found 

significant effects when PC02 < 0.01 atm. for boundary layer thickness < 0.1mm and when PCO2> 0.01 

atm. for boundary layer thickness > 0.01mm, which were confirmed because there were no changes in 

dissolution rate between pure and natural calcite under the same conditions. The Palmer / Dreybrodt 

model is utilised in Chapter 8 to explain cave development in the metalimestones of the glaciated 
Caledonides. 
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3.1.14 Higher-order kinetics and breakthrough times 
Dreybrodt (1988) presented the knowledge of physical and chemical karst processes up to that time. He 

considered that mixing corrosion is widespread (Ibid., p5), and that surface karst development can be 

closely related to the state of underground karstification (see also Palmer, 1984a, pp203-206; Palmer, 

1991, pl 1). However, Dreybrodt (1989) remarked that the theory of higher-order kinetics shows that 

mixing corrosion only plays a supporting role in the initiation of karst systems. 

Dreybrodt (1989b and 1990) gave both a review of the historical development of ideas about calcite 

dissolution and a model for the dissolutional widening of primary fractures across a wide range of 

geological and chemical parameters. Despite his laboratory finding (section 3.1.15) that the dissolution 

rate for pure synthetic calcite varies in direct proportion to the difference between the actual 

concentration and the equilibrium (saturation) concentration and follows the PWP Model predictions 

(section 3.1.3), Dreybrodt modelled the results of other workers who showed that natural calcite 

(presumably LMC) exhibits second- and fourth-order kinetics above saturation values of 70-90% (i. e. the 

rate is proportional to the square or the fourth power of the difference). Dreybrodt (1988, pp229-248) 

calculated the first-, second- and fourth-kinetic order penetration lengths and aperture sizes of initial 

karst channels under various hydrogeological conditions, close to saturation. 

Initially, fast first-order kinetics apply along the penetration length of a small-aperture fracture, and slow 

fourth-order kinetics apply from there to the outlet, but with the positive feedback effect of a widening 

path that raises the flow rate, reduces the concentration, and increases the dissolution rate. The first-order 

regime slowly advances until breakthrough occurs at the outlet, approximately coincident with the onset 

of turbulent flow. Thereafter, faster first-order dissolution applies at an even rate along the whole length 

of the fracture. Prior to breakthrough, almost all enlargement takes place in the upstream 10% of the 

fissure, so that the entrance area develops as a funnel shape from the karst surface (Palmer, 1991, plO). 

At its maximum, the pre-breakthrough enlargement rate is proportional to the cube of the fissure width 

(Palmer, 1991, p16), because the laminar flow rate varies as width cubed. Because first-order kinetics 

and penetration lengths are an order of magnitude higher for turbulent flow, the new widening rate is 

about I mma' along the whole channel, so that large phreatic passages develop relatively quickly after 

breakthrough, from exit apertures that commonly vary from 1-10cm in width (dependent on conduit 

length and hydraulic gradient). Graphs presented by Dreybrodt (1990) include: the variation in fracture 

width along its length with time; increasing flow-rate with time; and breakthrough times for various 

apertures, hydraulic gradients and fracture lengths. 

Dreybrodt (1990) regarded the breakthrough time as the karstification time. In shallow systems, this may 

be several I Oka for fractures 1 km in length, and several Ma for fractures several 10km in length. 

Timescales are reduced if the hydraulic gradient is increased to several percent, or if the initial aperture 

is wider than c. 0.15mm. Applying the model to practical settings showed that once breakthrough is 
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achieved, the hydraulic head can be reduced, leading to the development of the next headward fracture, 

so that a system of channels can integrate backward into the rock, and so that bypassing across the top of 
a phreatic loop of length 20m is feasible in several 1 Oka. 

Because breakthrough time is not very sensitive to the first- and fourth-order reaction constants, caves 

can form in a wide variety of limestone lithologies (Dreybrodt, 1992). However, even small-scale 
karstification (below 100m fracture length, as applies to many karst systems in the study area) is 

critically dependent on the equilibrium concentration at a low HG, and therefore on high initial CO2 

partial pressures from vegetation. Conduits as short as 20m, with HG=10%, still require 30000 years for 

breakthrough if situated below bare rocks, in which case only an atmospheric level of PCO2 is available 
(0.034%), when calcite saturates at 0.7mmolL"1 (or 70mgL''). [Sauter et al. (1997), Liedl and Sauter 

(1998) and Sauter and Liedl (2000) discussed catchment-scale modelling approaches for karst aquifer 

genesis. The first paper stated that a rise in temperature from 5 to 15°C can reduce karstification time 
from 50ka to l0ka, mainly due to increased production of C02]. At the other extreme, dissolutional 

dolines are systems with short fracture lengths, but steep hydraulic gradients, which can develop in very 

short periods of time, from 200 years down to as low as 4 years. Indeed, short fractures that are less than 
four times the penetration length achieve breakthrough to turbulent flow within a short time without 

utilising higher-order kinetics. The evidence from Gunn and Gagen (1987) of newly-formed dolines in 

abandoned limestone quarries supports this theory of rapid channel enlargement for vertical fractures, as 
does the problem of leakage below reservoirs (Palmer, 1988; Dreybrodt, 1989,1990,1992,1996). 

Groves and Howard (1994) modelled a cylindrical conduit in closed conditions of laminar flow, to 
determine the dissolution of initial apertures by carbonic acid, with user-selectable options for the 
dissolution rate expressions used by earlier researchers. Their models claimed to show that there are 

minimum hydrochemical conditions in which caves can develop. Thus, their Fig. 7 indicated that even if 

the hydraulic gradient is increased to 1.0 (vertical), then a minimum initial aperture size of 0.025mm 

applies, for all values of PC02i below which conduits cannot enlarge, even in millions of years. However, 

Dreybrodt (1996) showed that no such threshold widths actually exist in the karstification of narrow, 
broad, fractures, and they are also invalid for circular conduits. This clarification is important, as without 
it, there may be no physico-chemico justification for the concept of the long-timescale evolution of karst 

conduits along deeply-buried inception horizons (Lowe, 1992a; section 3.1.12). 

For a broad fracture under higher-order kinetics, breakthrough time varies as ao -2 and equals the ratio of 
ao to the initial widening rate at the exit, where ao is the initial aperture (Dreybrodt, 1996). Also, 

breakthrough takes ten times longer for a square or circular conduit than for a broad fracture with the 

same aperture. Thus, initial karstification proceeds mainly along bedding planes and joints, rather than 

along intersections between such fractures, and does not need to rely on the mixing corrosion possibility 
discussed by Dreybrodt (1981b). However, citing Tsang and Tsang (1989), who studied flow-channelling 
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in fractures with varying apertures, Dreybrodt also suggested that channelling within an uneven broad 

fracture may also increase breakthrough time (although Hanna and Rajaram, 1998, reported that aperture 

variability accelerates conduit growth). Also, because the viscosity of water is temperature dependent, 

reducing the temperature from 20 to 0°C tends to double breakthrough times (ignoring the increase in 

calcite equilibrium solubility). Dreybrodt (1998) stated that breakthrough is achieved quickly after the 

initial width of the exit is doubled, and in systems with a high hydraulic ratio. 

Dreybrodt (1996 and 1998) noted that breakthrough time is almost independent of the degree of 

saturation of the input water, being governed instead by the initial width of the fracture, by the slow 

dissolution rate at the exit, and by the hydraulic ratio (HR), which he defined as the ratio of the hydraulic 

gradient to the path-length (i. e. Head/Path length2). After breakthrough, passage enlargement is greater 

for low concentration, low hardness, allogenic, water than for higher concentration, higher hardness, 

autogenic, water. These arguments are developed in section 8.5 to derive breakthrough times and 

subsequent enlargement rates in karst inundated by glacial meltwaters. 

Gabrovsek (2000, pp72-84) and Gabrovsek and Dreybrodt (2000) discussed the role of mixing corrosion 

in calcite-aggressive H2O / CO2 / CaCO3 solutions in early limestone aquifer evolution. By combining the 

effects of mixing corrosion and higher order kinetics, they came to the surprising conclusion "that 

mixing corrosion is only active (if present) in the early stage of karstification before breakthrough. At 

breakthrough, the concentration at the confluence drops drastically, such that the undersaturation 

resulting from the dissolution kinetics becomes far larger than that caused by mixing. Therefore mixing 

corrosion is practically absent in mature karst conduits" (Ibid., p1187). The apparently-conflicting 

conclusions about the importance of mixing corrosion were resolved by Romanov et al. (2003), who 

modelled 2D networks with two inputs of varying degrees of saturation. For (assumed allogenic) inputs 

well away from saturation, "breakthrough behaviour" dominates, where differing input chemistries are 

unimportant. For (assumed autogenic) inputs of differing but more than 99% saturation, "mixing 

corrosion behaviour" and higher-order kinetics cause very slow channel enlargements that can 

eventually reach metre-scale diameters without passing through a breakthrough stage. Chapter 8 shows 

that "breakthrough behaviour" is more important in the study area than "mixing corrosion behaviour", 

which applies to long and deep-seated inception horizons (section 3.1.12). 

Dreybrodt and Gabrovsek (2000a) concluded that if the inflow to an aperture is already greater than 99% 

saturated, then "breakthrough" does not occur, and the conduit widens uniformly along its entire length, 

at a rate of only 10-9cma 1. Thus, sub-micron-wide fracture systems several kilometres in length take up to 

l OMa to achieve widths of 0.1 mm. This provided for the first time a physical / chemical / mathematical 

underpinning to the Inception Horizon Hypothesis (section 3.1.12). Dreybrodt and Gabrovsek (2000a) 

and Gabrovsek (2000, pp38-42) also analysed the case of first-order kinetics when the inflow is 

completely unsaturated and the hydraulic ratio is high. For initial apertures in the range 1-4x10"2cm, 
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breakthrough times are almost instantaneous in geological timescales for either linear or non-linear 
kinetics (around 20 years, using the Dreybrodt measured parameters) for hydraulic ratios greater than the 

range 10-0.1. This showed that some dams constructed in karst landscapes may fail quickly under first- 

order kinetics alone or under higher-order kinetics at lower hydraulic ratios. See also Dreybrodt (1996; 
1998). However, for each aperture size, reducing the appropriate hydraulic ratio causes a rapid increase 

in breakthrough times, eventually to beyond a reasonable geological timescale (1 O9 years) for the 

continued existence of the host bedrock. 

Bauer et al. (1999) modelled the reservoir leakage problem to show that 0.4mm diameter conduits 
beneath a dam could achieve breakthrough to turbulent flows, with dissolution along parallel paths, 15 

years after the construction of a 40m deep reservoir, ff water transfer occurred between the conduits and 
the original fractures. In the general case, such exchange flow could accelerate breakthrough time by a 
factor of 100 (Bauer et al. 2003). Dreybrodt et al. (2001) modelled rapid leakage below a dam on karst 

rock containing fractures with a log-normal distribution of initial aperture widths. If a cave passage 
already existed below the dam, a vertical pathway of dissolutional widening could achieve breakthrough 

at the cave in 11 years. This explains the formation of sinkholes on the floors of reservoirs in karst areas. 
The literature on the reservoir problem is important because of possible analogies with breakthrough and 
enlargement in various glacial settings (sections 8.5 and 8.6). 

3.1.15 Limestone lithology and foreign ions 

Buhmann and Dreybrodt (1987), Dreybrodt (1988, pp30-34 and 176-179) and Dreybrodt (2000, pp 133- 
135) explored LMC dissolution in dilute aqueous solutions in the presence of other ions found in karst 

waters, such as Mg2, Na+, Cl" and SO42 
, noting that experimental results reported previously were often 

contradictory, especially for Mg2+ (Appendix A2.8). Their theoretical and experimental treatment dealt 

primarily with open systems and turbulent flow in unsaturated layers of water 1cm thick. Three 

mechanisms were considered: ionic strength effect (by addition of ions other than Ca2+ and C032 ), 

common-ion effect (by addition of Ca2+ and C032" ions), and the ion-pair effect (by the addition of S042" 

ions to form CaSO4). They found that, for geological applications (not under inception conditions), there 
is commonly no significant change in rate constants in the presence of foreign ions. However, MgCO3 

did reduce calcite solubility, by the common ion effect, and tests on samples of (presumably) HMC gave 
dissolution rates half those of LMC. 

Svensson and Dreybrodt (1992) measured dissolution rates close to equilibrium for 16 natural marble 
LMC samples, 19 natural limestone LMC samples, pure calcite, and calcareous mud. They found that 
dissolution kinetics in the system H2O / CO2 / CaCO3 are linear up to saturation for pure synthetic 
calcite. However, all natural LMC samples showed a drastic reduction of rate close to equilibrium in 

comparison. Tests with synthetic HMC samples gave similar results, with slightly different values. All 
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natural limestones (including A and HMC) exhibit higher-order dissolution kinetics near saturation, and 

have breakthrough times similar to those of natural calcite (W. Dreybrodt, pers. comm., 2002). 

Section 3.1.3 noted the possibility that low concentrations of foreign ions may cause the inhibition of 

calcite dissolution and the trigger to higher-order kinetics close to equilibrium. This was further 

discussed by Dreybrodt (1988, pp136-139) and tested by Svensson and Dreybrodt (1992), who 

investigated the dissolution of synthetic calcite in an HZO / CO2 solution containing added P043- ions. 

The result was that the calcite showed a drastic reduction in dissolution rate close to equilibrium that was 

of the same form as that of the natural LMC samples. Furthermore, when the natural samples were tested 

with added P043- ions, there was only a small extra reduction in rates. The authors speculated that the 

inhibition of synthetic calcite originated from the adsorption of Ca 2+ ions to the crystal surface close to 

sites already "poisoned" by P043" ions. In the case of natural calcite samples, such sites are already 

"poisoned" by other inhibitors, so that the scope for further inhibition by PO43- ions is reduced. 

Eisenlohr et al. (1997; 1999), also reported by Dreybrodt (1997) and Dreybrodt and Eisenlohr (2000), 

studied further the changes in dissolution kinetics of limestone by intrinsic impurities. They noted that 

earlier research had reported a general increase in the reaction rate order (and hence a reduction in 

reaction rate) when the ratio of solution volume to surface area increases above 0.1cm, in contrast to the 

slow CO2 conversion effect which reduces reaction rates below a ratio of 0.1 cm. They found by 

experiment that the various kinetic parameters depend on the thickness of calcite removed by dissolution 

(which is proportional to the volume/area ratio) up to a typical thickness of 5x 104cm, after which the 

parameters remain constant. The most pure sample showed the smallest variation, and they concluded 

that the effect was caused by an irreversible adsorption of inhibitors (which must have originated from 

the limestone sample) on to the reaction surface. Surface analysis of an LMC sample revealed a 

significant quantity of aluminosilicates, presumably acting as inhibitors, which the authors suspected 

derive from the dissolutional disintegration of small clay particles incorporated within the limestone 

matrix. Hence, it was proposed that this inhibition effect explains the wealth of conflicting experimental 

data, because dissolution rates obtained from freshly-broken samples are not realistic of natural 

processes. Instead, it is necessary to dissolve samples first in carbonic acid to remove 0.01mm of 

thickness and allow the adsorption of the inhibitors before measuring dissolution rates. The geological 

consequence of this finding is that alum inosi I icates (which occur in the study area) and possibly other 

metal and phosphate ions accumulate as inhibitors on the surface of a limestone fracture, so that the 

kinetic regime progresses up to an eleventh order as thickness is removed during early conduit evolution. 

The effect is that water remains more aggressive farther along the fracture and breakthrough times 

previously modelled on fourth-order kinetics are reduced by an order of magnitude for initial apertures 

of 0.05mm (and hardly reduced at all for initial apertures of 0.3mm at a hydraulic gradient above 0.5). 

Thus, the gestation process is speeded up and the evolution of karst aquifers over several kilometres in 

fractures of 0.05mm now becomes feasible in less than I Ma. 
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Dreybrodt and Eisenlohr (2000) summarised the present knowledge of the dissolution of natural 
limestones. The PWP equation is only fully applicable in turbulent flow, far from equilibrium, when the 

volume to surface area ratio is >03cm, as only then are surface reactions rate controlling. Even in 

turbulent flow, a laminar diffusion boundary layer may reduce the reaction rate. Otherwise, when CO2 

conversion or diffusion is rate limiting, reaction rates are reduced. Close to equilibrium, rates are 

predominantly controlled by surface reactions, and linear kinetics only applies for pure calcite without 
intrinsic impurities. With the presence of foreign ions, calcite reaction rates may be reduced by the 

common-ion effect and by non-linear kinetics caused by the adsorption of inhibitors to the calcite 

surface. The paradox is that the slower is the reaction rate, then the shorter is the breakthrough time, 
because the solution remains less saturated farther along the conduit. 

3.1.16 Cave morphology 
Independently of Dreybrodt, Palmer (1984a; 1991) made a similar analysis of calcite dissolution with 

similar results, and showed how various hydrogeological conditions enable the development of particular 

cave morphologies and patterns. Passages influenced by bedding plane partings are sinuous and 

curvilinear. Those along dissolutionally enlarged joints and high-angle faults are straight and fissure-like, 

with angular intersections. Palmer distinguished between epigenic caves with recharge at sink points, 

along sinking streams or into porous soluble rock, which develop synchronously with their landscape and 

so rarely survive more than a few million years, and hypogenic caves, which are formed by acids of deep- 

seated origin or by cooling of thermal water, with no relation to recharge through the overlying surface. 
Another major distinction was between phreatic branchwork caves (dendritic), formed by waters with 
higher hydraulic heads converging towards large flow, low head, phreatic passages (as also described by 

Dreybrodt, 1990), and phreatic maze caves. These can form in situations with steep hydraulic gradients 

and short flow paths, where dissolution quickly reaches a maximum uniform rate along many alternate 

paths of varying size. Alternatively, mazes can form if several fissures receive similar recharge, as may 

occur from bank storage along entrenched rivers, or from diffuse recharge through a permeable cap rock, 

or beneath isolated hills of limestone (Palmer, 1975). Branchwork caves are well-adjusted to the 

geomorphic history of the valleys to which they drain. Vadose passages commonly follow down-dip, 

gravitational, independent, perhaps parallel, steepest possible, routes from allogenic inputs with no 
inherent (non-geological) tendency for convergence. Their hydraulic gradients equate to passage slope. 
Canyon passage widths are proportional to their slope, but enlarge further if water forms a spray, as 

occurs down shafts. Vertical shaft walls dissolve at up to 1.2mma', according to White (1990, p170). 
Floods can cause hydraulic gradients to steepen and phreatic conditions to return, but with high flow 

rates and very aggressive water. Thus, all available fissures can enlarge at maximum rates to produce a 

maze of interconnecting passages and diversion conduits above the level of the existing branchwork, or 

even above vadose passages, especially over constrictions and blockages (a form of paragenesis, first 

proposed by Palmer, 1972). This flood-water injection can also enlarge dead-end fissures and cause 
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bedding plane anastomoses, a study area example of which is described in Appendix B 1.4. Both types of 

feature diminish in size away from the source passage. Thus, anastomosis may not be diagnostic of early 

speleogenesis (Palmer, 1972; 1984, pp174,195,196). 

Palmer (1990, p198) discussed various cave types and features. Palmer (1991) included a summary chart 

of cave patterns and their relationship to both dominant "porosity" (fractures / bedding partings / primary- 

porosity) and type of recharge (dolines / stream sinks / diffuse recharge / hypogenic recharge). Section 

5.7.1 considers the applicability of this chart (Figure 5.7) to the study area caves. His main conclusions, 

were also summarised by Palmer (1997; 2000a; 2001). The middle reference introduced the idea that 

convex topography is less favourable to cave development, as runoff is less concentrated. 

A major deduction by Dreybrodt (1998) was that breakthrough time depends critically on the fracture 

length (for fourth-order kinetics, doubling the length increases the time by a factor of six). Thus, areas of 

comparable hydraulic head where the geological setting allows short percolating pathways permit 

intensive karstification with many small caves and a more intensive conduit network with multiple and 

branched pathways to form quickly in several I Oka. In contrast, where the fracture lengths are long, a few 

long caves form with simple, mainly linear, passages that take many Ma for breakthrough. This suggests 

that deep inception horizons provide long, but simple, flow paths and short, shallow, systems can be 

more complex, as for many systems in the study area (Chapter 9). He also noted that in highly fractured 

geological settings (i. e. in State 5, DC Ford, 2000), karstification may be intense, but major caves 

systems are missing. A surprising result from Dreybrodt and Siemers (2000) is that if any parameter is 

varied so as to decrease the breakthrough time, then the cave pattern always becomes more complex. ' 

Hence, the pattern of cave evolution is not only determined by the original geology, but may also depend 

on the equilibrium concentration of the recharge, which could be influenced by the climate and 

vegetation. 

Kaufmann and Braun (1999) modelled karst aquifer evolution in fractured, non-porous, rocks (in phreatic 

conditions only), by using the three concepts of calcite dissolution (with nth order kinetics prior to 

breakthrough), flow in a pipe with an enlarging radius (where they noted that the onset of turbulence 

limits the flow rate, as the turbulent flow rate is smaller than the laminar flow rate in the same conduit), 

and flow in an inclined 2D network of fractures. They chose to discretize this aquifer into an 

unstructured mesh, which they claimed was more realistic than the rectangular geometry used by 

previous authors. By defining a maze index, M, such that if all conduits are similarly enlarged, M=1 

(maze caves) and if only a few conduits are enlarged, M«I (dendritic caves), they were able to show 

how the resulting cave patterns were determined by varying hydraulic gradient and initial diameter. The 

larger the head and the larger the initial diameter, then the greater is the maze index, agreeing with 

Dreybrodt and Siemers (2000) because the breakthrough time would reduce. 
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3.1.17 Tectonics and Karst 

The importance of both slow moving and seismic tectonic action on the inception of caves and the roles 

that caves can play in recording the tectonic history of an area were discussed at the International 

Symposium of Karst and Tectonics that was held at Han-sur-Lesse in Belgium in March 1998, as 

reviewed by Faulkner (1998). Any large scale compression or extension force can locally cause smaller 

scale compressional and extensional movements, creating open fractures, because the movement 

boundary is usually irregular rather than planar. If the fractures connect, water circulation is possible and 

karstification is promoted. Secondary permeability is zero in unfractured rocks and increases to provide 

braided channels as fracturing increases. Evidence accumulated by the 1990s also suggests that the 

recording of tectonic events in caves is a common phenomenon. Some studies of fallen speleothems and 

cracked flowstones conclude that they must have broken by seismic activity. Rock movements were 

deduced in cave walls from observations of dislocated calcite veins and stylolites. 

Many presentations during the Symposium showed photographs of displaced karst shapes on opposite 

sides of passages and bedding plane slips revealed in passage cross sections. Very large underground 

chambers may have a mainly tectonic origin, formed by slow moving extension, and fallen slabs from 

walls and ceiling may provide supporting evidence. Postglacial, slow, gravitational slope movements and 

tensional release may be the mechanisms for the apparent and continuing tectonic extension of joints into 

straight walled shafts that cut down to pre-existing cave systems located under crests and ridges close to 

the steep slopes of deeply embedded valleys. The evidence leading to tectonic speleogenesis is both 

spatial and temporal. Many speakers showed examples of correspondences between karst locations and 

tectonic regions. These arise from the frequent association of carbonate rocks with active plate 

boundaries and associated deformation zones. It also appears that karstification does not just follow pre- 

arranged passive geological structures: there is an increasing body of evidence from palaeokarst that 

karstification and major tectonic activity occur together. To summarise, the evidence from the 

Symposium was that tectonic activity is all around us, with tiny but continuous bedding and fault 

movements interrupted by large seismic events at infrequent intervals. These movements create voids 

from which cave inception can start and be repeated. Cave development is an integral part of the 

geological history of the host region. After endokarstic enlargement, the caves created can themselves 

record the later tectonic history of the area. 

Whereas Choppy (1997) regarded tectonics as playing a limited part in karst development, Bitterli (1997) 

described the gravitational downslope sliding of large carbonate masses in Switzerland to create 

"tectonic" limestone caves. Marrett et al. (1999) found that natural fractures in a Texas limestone show 

strong linear trends for log-log plots of cumulative frequency versus kinematic aperture of more than 

three orders of magnitude: >0.01 mm apertures occurred at 100m"'; >1 mm apertures occurred at Im-'; 

>10mm apertures occurred at 0.1m"'. 
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Salomon (1999) discussed the time factor in karstification, and noted (without referring to the Palmer]: 

Dreybrodt model) that in high mountains, with high hydraulic gradients, karstification is rapid. He 

suggested that periods of tectonic stability commonly favour the development of horizontal karst levels, 

but that karst has an exceptional capacity to adapt to external tectonic modification. Without referring to 

the IHH, he gave examples where the lowering of base levels by faulting causes the development of, 

passages leading to lower springs, and conversely, the elevation of base levels, or their obstruction by 

clastic sediments, produces new passages leading to elevated outlets. Urbani (2001) discussed the. 

palaeoseismic record in Venezuela, where fallen marble fragments were dated by co-located bat bones at 

9300a, i. e. early in the Holocene, when the earth experienced rapid climatic change. An area of Caracas= 

has 81 tectonic caves showing rotated blocks and ruptured speleothems. The relevance of tectonism to 

the caves in Caledonide metacarbonates is addressed in Chapter 6. 

3.1.18 The hydrogeology of fractured rocks 
Section 3.1 has so far reviewed speleogenesis in sedimentary limestones from both a geomorphological 

and a physico-chemico perspective. However, the aim of this thesis is to understand speleogenesis in 

crystalline metacarbonate rocks. In order to gain such an understanding, the hydrogeology of such rocks 

is henceforth considered as a `halfway house' between that of sedimentary limestones and that of 

crystalline (igneous and metamorphic) non-carbonate rocks. Hence, a study of the hydrogeology of 

these, so called, "hard rocks" should be a beneficial exercise, although this subject is only briefly 

discussed in standard hydrology and groundwater text books (e. g. Freeze and Cherry, 1979; Ward and 

Robinson, 1990; Price, 1996). 

Crystalline rocks have negligible matrix porosity and permeability, commonly giving a low storage. 

However, appreciable fracture permeability generally occurs within tens of metres of the ground surface 

for these lithologies. Fracture apertures up to lmm are common, with a general trend of permeability 

decrease with depth, although active water-flows into mines at depths of lkm indicate the great depth to 

which fracture permeability can exist. Skjeseth (1957) noted that in Norwegian Cambro-Silurian 

(crystalline) formations, the locations of springs are clearly determined by the stratigraphy and tectonics: 

springs commonly occur along abandoned stream channels, following fractures and joints. 

Discharges from fractures in wells and boreholes in igneous and metamorphic rocks provide drinking 

water all over the world: Paillet et al. (1987, Mirror Lake, New Hampshire and near Oracle, Arizona); 

Randall et al. (1988, NE Appalachians, USA); Howard et al. (1992, Uganda); Sekhar et al. (1994) and 

Mardchal et al. (2004): India; Boulton et al. (1996, crystalline basement rocks of the Scandinavian 

shield); Mabee (1999, glaciated metamorphic rocks on Georgetown Island, Maine); Shapiro (2001, 

Mirror Lake, New Hampshire); Drew et al. (2001, Pinardville Quadrangle, New Hampshire). Well-yields 

are comparatively small, but are locally important as water sources for farms and homes. Banks et al. 

(1996) reported c. 100000 bedrock boreholes in Norway, with a further 4000 being drilled annually. 
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Henriksen (1995) studied 760 domestic wells drilled to depths from 14-I55m in "hard rocks" in the 

mountains of southern Norway, which had flow rates up to a maximum of c. 330Lmin"'. She found a 

general decrease in well-yield with depth (measured as specific discharge in Lh"' per metre of borehole 

length), and well-performance seemed to be independent of lithology (which consisted mainly of 

gneisses, granites, gabbros and phyllites, but did not include carbonates or amphibolites). Histograms of 

well-yields showed a log-normal distribution. 

Gustafson and Krasny (1994) reviewed crystalline "hard rock" aquifers from around the world, but 

principally exposed in the Precambrian shield areas and in the cores of major mountain ranges that 

altogether comprise some 20% of the land surface. They noted that hydraulic conductivity normally 

varies by several orders of magnitude within the same rock unit, and commonly within short distances. In 

these rocks, groundwater is transmitted via fractures, fissures and zones of crushed rock. Large 

conductive zones, formed during a brittle stage of the rock's history after formation, may extend for 

several tens of kilometres and across different units. As classical definitions of aquifers are ill-suited to 

describe flow and storage of groundwater in fractured crystalline rock, they proposed that the term 

aquifer should be here replaced by the term hydraulic conductor. 

Tests of the hydrogeological properties of hard rocks commonly show that no average hydraulic 

conductivity exists that is independent of scale. Rather, plots of cumulative percent are usually log- 

normally distributed, leading to the "conclusion that the fracture set is a continuous sample of conductive 

features of different magnitudes" (Gustafson and Krasny, 1994, p66), and that the fracture system has a 

fractal dimension. Hydraulic conductivities show a decreasing trend with depth, both for the rock in 

general and for penetrated conductive fracture zones, but with a large scatter around the regression 

curves. The hydraulic conductivity may vary from 10'1lms 1 at --700m depth to 10"'ms"' at -50m depth 

(and to 10"5ms' at -10m depth: Banks et al., 1996), although Boulton et al. (1996) noted from pumping 

tests that the crystalline basement rocks of the Scandinavian shield show hydraulic conductivities in the 

range I0.12_iO ms' (at 100m depth). 

Gustafson and Krasny (1994) also noted that a composite aquifer, conformable to the land surface, 

usually consists of a weathered regolith underlain by the fissured zone of bedrock. This "near surface 

aquifer" (Ibid., p69) reaches up to a few tens of metres in thickness and, despite local heterogeneity, can 

commonly be regarded as regionally approximately uniform, usually characterised by a regionally-valid 

mean transmissivity. Such hard rock aquifers have low groundwater storage, with limited retention, 

especially in sloping areas. Thus, groundwater resources of hard rock aquifers strongly depend on present 

recharge, and this commonly increases with altitude, because of increased snowmelt and reduced 

evapotranspiration. Additionally, despite low transmissivity, a higher hydraulic gradient enables the 

transmission of larger fluxes of groundwater. 
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Krasny (2002) found that a regionally-prevailing transmissivity of 0.1-100m2 day-' (or well-yield yr 

specific capacity of c. 1x10"3-1x10°Ls'm"') applies to hard rock environments throughout the world. '1ie 

divided such rocks into three zones: upper weathered, middle fractured and lower massive. Because the, 

permeability of non-carbonate rocks typically decreases through geological time, young fractures are the: 

most important. Using a log scale, Krasny defined six classes of transmissivity magnitude (with fluvi4d 

deposits ranging up to c. 104M2 day-) and six classes of transmissivity variation (using standard 

deviations: hard rocks vary from "fairly" to "considerably" heterogeneous). He noted that crystalline 
limestones (marbles) commonly have transmissivities 5-10 times higher than other crystalline rocks. The 

groundwater runoff from hard rock mountains can approach 50% of the infiltration (i. e. precipitation 

remaining after evapotranspiration: up to 15Ls''km. 2). 

Moving away from strictly crystalline rocks, probably the best example of a non-karstic groundwater 
flow path in carbonates is Devils Hole, Nevada (Riggs et al., 1994). This flooded planar fissure is some 

130m deep, with an opening width of some 2m. It has apparently formed by continuous extension in arid 

conditions without karst dissolution (but with calcite deposition) in Palaeozoic sedimentary limestones 

and dolostones over a period of more than 500ka in response to regional tectonism, whilst being supplied 

from a karstic recharge area. Meigs and Beauheim (2001), Haggerty et al. (2001) and McKenna et al. 

(2001) described tracer tests in fractured, sedimentary, microcrystalline and silty "Culebra" dolomites 

located about 230m below the surface in New Mexico. The effects of dolomite dissolution were not 

considered to be important. Palmer (1990, p205) noted that the fracture pattern followed by a floodwater 

maze in Blue Spring Cave, Indiana, USA differs from that in the rest of the cave. The pattern was 

apparently formed by stresses related to the local breakdown that causes the floods. 

The literature on the non-endokarstic hydrogeology of metamorphic carbonates is sparse. Ford (1967) 

discussed a blue dolomitized limestone marble of unstated metamorphic grade in a stripe karst setting at 

Mt. Tupper, British Columbia, Canada. A 0.7m3s"' stream flowed underground for 53 minutes to a rising 

that is 480m below, and 2km from, the main sink, but this is obviously via an unexplored karst conduit. 

There is an extensive literature on the endokarst cave systems in the high to low grade metamorphic 

limestones of Scandinavia (e. g. Lauritzen, 1996; Sjöberg, 1997; Faulkner, 2000; this thesis), but little on 

the hydraulic properties of wells drilled into marbles. Andreo et al. (1997) discussed metacarbonate 

aquifers and karstification in the Sierra Blanca and Sierra Mijas of southern Spain 

In summary, since about the late-1980s, the study of the hydrogeology of crystalline rocks has shown that 

such rocks can also act as aquifers for storage and flow. Crystalline rock fractures have a fractal 

dimension and decrease in size with depth, providing an effective `near surface aquifer' of commonly 

tens of metres thickness. Their discharges may supply natural springs and household wells and boreholes, 

flood mines, and put at risk the underground containment of hazardous wastes. Fractures are utilised 

within the crystalline rocks (which have negligible primary porosity, and which do not develop 
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dissolutional conduits). However, flow rates are extremely variable and difficult to predict in the field, 

and there is good evidence offlow channelling at many scales. The language of this parallel literature is 

already familiar to karst hydrologists, because, in this respect, the behaviour of hard rock aquifers is 

similar to that of karst aquifers in sedimentary limestones, but with much smaller maximal hydraulic 

conductivities. 

From the evidence provided by the cited authors, flow rates in fractured crystalline rocks can exceed the 

breakthrough point that, in limestones, would mark the transition from laminar to turbulent conditions, 

and fast dissolution. Similar processes should also apply to metamorphic limestones, and, indeed, to 

sedimentary limestones, as shown by Palmer (1975), who discussed the possible effects of mechanical 
fracture enlargement, and by Ford and Worley (1977b), who illustrated how fault movement can generate 

voids available for phreatic dissolution in Derbyshire, England. In these cases, the slow inception and 

gestation phases of chemical inception may be bypassed, because some karst passages may develop 

under phreatic conditions, at high wall-retreat rates, immediately after the inundation of fractures formed 

tectonically. Further, the considerable knowledge of fracture geometries and modelling techniques, as 
developed for these "hard rock" lithologies, becomes available for use by karst hydrologists, when 

studying speleological inception and early conduit enlargement. The concept that our knowledge of 

permeability development in karst aquifers can generally be strengthened by the lessons from crystalline 

rocks was reported briefly by Faulkner (2003). The idea that tectonic inception provides the mechanism 
for the initiation of caves in the metalimestones of the Caledonides is developed further in Chapter 6 et 

seq. of this thesis. 

3.2 Caves and karsts in glacial environments 
The development of the Scandinavian metalimestone caves must be considered alongside an appreciation 

of all the possible effects of the multiple Mio-Plio-Pleistocene glaciations. These effects may act both 

directly on the caves themselves, and indirectly by substantially modifying the local landscape. Thus, the 

intimate nature of the glacial environment provides a second differentiation from some of the classical 

studies of karst geomorphology in sedimentary limestones. Many questions arise about glacial conditions 

and some of the views expressed appear to be contradictory. This section considers the extent to which 

glacial karstic environments have been addressed in published geomorphological and speleological texts. 

3.2.1 Early glaciation ideas by karst researchers 
Glennie (1952) reported evidence of frozen bodies of water in chalk that can open rifts and cause the 
folding of bedding planes. He suggested that open joints, fractures, and collapses in Ogof Fynnon Ddu in 

south Wales could have been caused by deep freezing. The relationships between karst and glaciers, 

periglacial conditions and temporarily frozen ground were discussed by Corbel (1957, pp439-458). He 

stated that arctic snow takes several years to be transformed into ice, because there are few freeze-thaw 
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alterations, the interior of the ice being consistently well below freezing. The snow coats the ice with a 

thick heavy layer that remains at 0°C, whatever the latitude, and imparts a pressure that causes some 

Greenland ice streams to advance more than 40m per day. He contrasted arctic glaciers with less cold 

alpine glaciers. Streams flow under alpine glaciers, which can erode the underlying rock, something which 

he said is practically unknown in the Arctic. [His use of the term "Arctic" presumably applied to 

permafrosted Greenland and Svalbard and not to northern Norway]. Warwick (1971) cited Corbel (1957) 

as suggesting that the youthful nature of the karstification in NW Scotland (as known at that time! ) was 

caused by older traces being removed by glacial erosion, as considered in Chapter 7. On the other hand, 

Davis and Krinsley (1960; Appendix D6.4.2) described a cave in the periglacial conditions of NE 

Greenland that has clearly survived glaciation, as orange and red silt deposits (indicative of a palaeo mild 

climatic regime) are still preserved under a flowstone cap. 

Warwick (1971, p126) made the interesting assertion that ice confined within a valley must exert 

considerable pressure on the floor and sides: "Many glacial troughs in Norway have a system of joints 

roughly parallel to the valley sides, which are considered to be due to pressure release.... they could 

guide water downwards and develop into caves ". Ford and Ewers (1978, p 1793) also noted a common 

increase in fissure frequency within 20-100m of valley walls (Photo 3.1). Warwick (1971) additionally 

suggested that glacial pressures exerted through the rock might result in spalling from the sides of caves in 

the valley walls, especially if they were parallel to the valley axis. By studying passages and the Big 

Chamber in Ogof Fynnon Ddu 2, he also noted that, if close to the surface, steady pressure from an 

overlying icesheet could cause massive block falls, especially along the walls, where the fallen blocks 

retain their original stratigraphic relationships. These ideas are considered further in Chapters 6 and 7. 

Regarding the infill of shafts with glacial till and fluvio-glacial deposits, Warwick (1971) suggested that 

the base of the icesheet could stretch across the mouth of a shaft, perhaps starting as a snow bridge (for 

which there are many contemporary examples). The till was deposited when stagnant ice melted above. 

Also, glacial till could penetrate shallow caves in a slurry-like solifluction stream, and if the passage 
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became choked, water could back up and act as a settling pond for much finer material. His opinion was 

that, in general, the deposits associated with icesheets tended to block up old cave systems. He also 

thought that little surface water could reach caves beneath the ice, and any that did would not be 

aggressive, due to lack of bacterially-derived CO2. Thus, he suggested that an ice covering would 

severely reduce the development of caves. At the ice front, there would be a seasonal regime of winter 

quiescence, and small-scale summer activity. Where the ice front coincided with a hillside, the 

circulation of water in (any) vadose zone might be maintained. Warwick considered that periglacial 

conditions and postglacial annual freeze-thaw regimes mainly affect cave entrances. Spalling, jagged 

rock faces, scree and frost breccia result, whereas some distance inside, in a more even temperature 

regime, the walls are much smoother. 

Horizontal proglacial caves in Poland were described by Glazek et al. (1977). Mietusia, the longest cave 
in Poland, was thought to have developed during the late Würm, in a manner similar to Castleguard 

Cave, Canada, and in conditions similar to those at Castleguard today. Nearby is Sniezna Cave, the 

deepest shaft system in Poland, which is formed along steeply-dipping bedding planes with little 

observable corrosion. The bedding planes were thus interpreted to be tectonic fissures that were widened 
by stress relaxation and slope creep, as the local glacier melted. 

Glover (1977) proposed a conceptual model of cave development in a glaciated region, dividing the 

glacial cycle into four main stages. Ford (1977a) stated that one of three conditions prevails in the 

presence of glacier ice: (i) the ice base is "polar" [i. e. frozen] and karst water circulation ceases; (ii) the 

ice base has water present and the ice thickness is much greater than the karst terrain relief. The caves 
flood and there is slow C02-depleted circulation, speleothem dissolution and deposition of varved silts 

and calcitic clays; (iii) the ice base has water present, but the karst terrain relief is similar to, or exceeds, 

the ice thickness. In the third case, increased hydraulic gradients lead to accelerated karst erosion. This 

condition can apply during glacial advance, and especially during glacial decay, for brief periods up to 

centuries. 

Ideas developed by Ford (1965b) may be extended to diagnose the glacial history of stream passages. He 

proposed that streambed potholes and hanging potholes in St. Cuthbert's Swallet and in Swildon's Hole, 

Mendip Hills, England developed during long periods of high discharge, as a result of "climatic 
fluctuations of the (Pleistocene) glaciation" (Ibid., p32). Thus, counting the number of levels of hanging 

potholes in the walls of the more complex caves in the study area could reveal the number of glacial 
discharge events that the passage has experienced. (However, none are known: Appendix B2.7). Ford and 
Williams (1989, p301) stated that stream potholes are most common and display the most regular form in 

hard limestones, in dolomites and (pre-eminently) in marbles, because dissolution in the swirling water 

reinforces the grinding, and may replace it entirely. 
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3.2.2 More recent glacial karst research 
Smart (I 984a) discussed glacier hydrology and the potential for subglacial karstification. He noted that 

proglacial streams can carry heavy sediment loads that may limit karst circulation. Subglacial streams 

can form a dendritic network leading to the glacier snout, which can create stable Nye (N) channels in 

the underlying bedrock. Such Nye channels are more likely to develop karst because of their fixed 

position and association with bedrock discontinuities. A subglacial karst drainage system could then 

provide the ultimate Nye channel (as at Kvithola, northern Norway: Lauritzen, 1986a). Unstable 

R6thlisberger (R) channels develop within the ice, and migrate with the glacier, but close up in winter. 

Fountain et al. (2005) showed that much of the hydrological system in `temperate' glaciers can be 

dominated by connected fractures that convey water at slow speeds, and Hodgkins (1997) demonstrated 

the existence of hydrological storage and drainage even within some `polar' glaciers. 

Subglacial activity is very high in summer below the extremity of the Columbia ice field, as shown by 

active speleothem deposition and high water levels in parts of Castleguard Cave, Canada. It was inferred 

that surface meltwater passes directly through the ice into vertical karstic shafts. Conduit evolution at 

Castleguard could have taken from 100ka to several Ma, citing the Palmer (1981) method. Smart (1984a) 

thought that the limited depth to which crevasses can penetrate a glacier limits karst to zones of rather 

thin ice that experience extensive flow. Thus, he suggested that the best situation for subglacial karst is at 

a relatively high elevation, near the firn line of a relatively small-scale glacier. Basal regelation films 

(Appendix A3.3) could link to a widely-distributed percolation flow system in the karst. Smart (1983) 

suggested that high pressure regelation water could initiate subglacial karst. A freely-draining karrt may 

reduce basal glacier pressures and thereby reduce glacial erosion rates, explaining the apparent 

"resistance" of carbonate rocks to glacial erosion. Conditions beneath polar, cold-based, glaciers or 

icesheets are quite different. Ford (1987) and Ford and Williams (1989, pp472-496) noted that cold, dry- 

based, glaciers are frozen to the bedrock and may wrench blocks away as the ice creeps past. 

Glacitectonic cavities can be created, especially in carbonate rocks, due to earlier dissolutional 

weaknesses in bedding planes and joints, as described by Rea and Whalley (1994). 

Ford and Williams (1989) differentiated between two types of alpine karst: Pyrenean, where glaciers are 

confined to the highest ground, so that meltwater can discharge into karst inputs, but karst outputs are not 

glaciated; and Canadian, where the glacier ice occupies all the valleys and extends beyond the output 

springs so that opportunities for karst development are more restricted. These two types also appear to 

represent conditions at the onset and at the decay of a Scandinavian glaciation (Chapter 8). Ford and 

Williams also discussed the types of karst landforms in glaciated terrains. Many dolines form at low 

points prepared by glacial scour. Kotlic dolines (or schacht dolinen or schneedolinen) have steep1to- 

vertical sides on scoured fractures, which trap and conserve snow, becoming sites of accelerated 

corrosion. There are many examples of these within the stripe karsts of the study area. Similarly, dolines 

and shafts, created beneath the ice, may occupy what are now anomalous hydrological positions, as can 
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be seen throughout central Scandinavia. They suggested that they were created below crevasses in the ice 

[which form above an irregular bedrock surface]. Most large karst depressions in glaciated terrains are 

polygenetic, i. e. they formed during repeated glacial and karst episodes. However, these are rare in the 

study area (section 4.4.3). Noting that the cirque is the basic alpine glacial landform, in carbonate rocks 
these may be over-deepened by glacial scour to form closed depressions, which may now function 

karstically. These are also rare in stripe karst settings. The apparent cirque at Elgfjell (Z4, Appendix 

B 1.4), which lies across many bands of limestone, has few among more than 100 cave entrances in such a 

situation. Ford (1983) stated that, in the Canadian karst, springs commonly issue in a hanging position in 

the valley walls, without lithological perching control. Such hanging positions are also common in the 

study area, but usually occur at least at a minor lithological barrier (section 4.4.2). 

In considering the effects of glacier action on existing karst systems, Ford (1983) and Ford and Williams 

(1989, p483) listed nine different effects in destructive, inhibitive, preservative and stimulative 

conditions; the destructive and stimulative conditions are especially relevant in the study area (Chapters 

6-9). They concluded that the development of karst landforms and systems is particularly complex in 
formerly glaciated terrains, and analysis is complicated by the inheritance of previous glacial effects. 

Ford (1986) noted that probably the fastest rates of cave genesis in the world could occur at ice margins, 
during mountain glacier advance and retreat. Ford and Williams (1989) also described nival karst, where 
there is heavy snowfall and a large annual snowmelt, as occurs in the study area. However, the effects of 

snow patch deepening are subordinate to the effects of glaciation. They indicated that permafrosted zones 
based on latitude may be continuous, or regionally or temporally discontinuous. The freezing process is 

weak because of the release of latent heat. Thus, little energy is required to keep karst conduits open: a 
now of 5Ls"' may be sufficient. Also, the freezing point of water decreases if it contains dissolved solids, 

again constraining the extent of freezing. They took the Nahanni karst in Canada as the model for alpine 
permafrost with a deep thermoactive layer. It has a mean annual temperature of c. -7°C, a temperature 

range of -50 to +35°C, and exhibits unimpeded conduit drainage. A spectacular surface karst developed 

in these discontinuous permafrost conditions after the region was last glaciated, which was before 350ka. 

Ford (1977a) explained how these surficial landforms developed in a size hierarchy by the same 

processes, but at greatly varying scales. These processes may be similar to those reported by Warwick 

(1971) in citing Ciry (1959), who suggested that in Burgundy (France) there had been a deep zone of 
permafrost, and that a shallow karstic system developed in the active layer above, which melted out each 

year, producing cutaneous caves. Farther north in Canada, the mean annual temperature is lower, and the 

summer temperature is cooler than 5°C. Here the thermoactive layer may be less than one metre deep. 

Whereas it might be anticipated that groundwater circulation down to the base of the active layer would 
favour development of a subcutaneous karst, in practice the surface is usually reduced to a felsenmeer. 
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Lauritzen (1998) reviewed karst morphogenesis in the Arctic, with examples from Spitsbergen. He 

discussed the continuity of hydrology from a warm-based glacier to a seasonal supra-permafrost aquifer 

(thereby providing increased hydraulic gradient and flow), and the abundant evidence of perennial sub- 

permafrost aquifer flow. He deduced that smaller exokarst forms tend to become erased by glacier action, 

whereas large forms may be preserved and infilled with glacial drift. Phreatic caves formed in seemingly 

`impossible' positions arise from "subglacial speleogenesis ". 

Audra (1994) studied speleogenesis in three Alpine karst settings. He concluded that high-altitude 

surface remnants and palaeokarsts derive from intensive Palaeocene karst formation. During the 

Miocene, cone karst formed above large, horizontal, phreatic, underground networks fed from very large 

drainage basins. Strong Alpine uplift in the Pliocene added vertical networks to the existing systems, and 

reduced the sizes of catchment areas. Pleistocene glaciations lowered the surface and both extended the 

networks and deposited sedimentary sequences and varves. Interglacials contributed flowstone-floors, 

especially beneath wooded areas. Audra (1994, pp218,252) concluded that most enlargement of tubular 

Alpine galleries occurs in the temporarily-phreatic (epiphreatic) zone, resulting from the fluctuating 

discharges of varying glacial conditions. Bini et al. (1998) discussed the relationships between karst and 

Alpine valley glaciers. The new paradigm of Alpine cave development, in which most speleogenesis 

occurred under conditions completely unlike those of today, and in which Quaternary glaciations had 

only a modifying role (especially at low altitudes), was also discussed by Audra (2001), Bini (2001) and 

Tognini (2001). Apparently, longitudinal Alpine valleys were formed structurally, and not initiated by 

river or glacier entrenchment. Horizontal passages result from low and stable topographic gradients, and 

vertical elements arise from abrupt changes in base level. Falling levels entrench valleys and form 

endokarst shafts; rising levels flood cave systems and create Vauclusian risings. 

Häuselmann (2002) and Häuselmann et al. (2003) developed the idea of successive passage development 

related to Alpine valley floor and spring outlet lowering by glacial erosion (Bitterli and Jeannin, 1997; 

section 3.1.4). They agreed with Audra (1994) that most phreatic enlargement takes place during 

corrosive flood conditions in the epiphreatic zone, where this dominates over low stage vadose erosion. 

According to Häuselmann, when flooding occurs, the system functions by upstream loops filling and 

overflowing to the next loop downstream. Thus, the water level within a complex cave varies from nearly 

horizontal in lower passages at low stage to become more steeply-sloping towards the outlet spring in 

higher epiphreatic passages at high stage. When the flood subsides, water drains from the higher passages 

to the lower passages via phreatic "soutirage" conduits that are commonly too small to explore and that 

only occur at the upstream end of a system. This thesis linked the Ford and Ewers (1978) Four-state 

model to the Audra (1994) paradigm, and relocated upstream vadose - phreatic transition points (section 

3.1.4) to the top of the epiphreatic zone. 
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3.2.3 The role of carbon dioxide 

Corbel (1954, as cited by Jakucs, 1977, p104) presented data to show that limestone erosion rates are 
higher by a factor of ten in cold zones than in warm zones, for each range of annual precipitation. 
However, Jakucs pointed out that this information cannot be used to infer that karstification is ten times as 
intense in arctic and alpine situations as in tropical karrt, because Corbel had ignored the effects of 

evapotranspiration, production of CO2 from inorganic and biogenic origins, and the dissolutional effects 

of inorganic and organic acids. Ford (1971a, p605) reported that equilibrium solute concentrations fall off 

sharply above the tree line in the Rocky Mountains. Helden (1973, p195) pointed out that the much 
higher concentration of CO2 found beneath vegetation and soil cover does not occur in glacial conditions, 

nor above a contemporary tree line, as confirmed in cave measurements by Ek and Gewelt (1985). Jakucs 

(1977, p109) presented unsourced data to show that, in high mountains and periglacial climatic zones, 

atmospheric CO2 accounted for 45% of karst corrosion, but in temperate zones this reduced to just 7%, 

with biogenic CO2 accounting for 54%. He also stated that the intensity of karrt corrosion was twelve 

times higher in tropical climates than in high-mountain situations, contradicting Corbel (1954). 

From the above, the role of carbon dioxide clearly varies in different climatic environments. High 

concentrations of carbonic acid can be attained in cold regions because the equilibrium solubility of CO2 
in water doubles from 0.52-1.01mgL'1, when the temperature is reduced from 20-0°C (Ford and 
Williams, 1989, p54). Higher CO2 concentrations can therefore be expected in both cold rain and 
snowfall. Drizzle is also more aggressive than heavy rain, as small raindrops absorb more CO2 per volume 
than large drops (FD Miotke, University of Hannover, pers. comm., 1997). However, Miotke (pers. 

comm., 1997) remarked that snowmelt is less aggressive than rain, as air CO2 does not so easily reach 
equilibrium with meltwater under a snow field. Accompanying the increased CO2 solubility, Dreybrodt 
(1998, p36) pointed out that the viscosity of water is doubled, and therefore the flow rate through a system 
of fractures is halved, when temperature is reduced from 25-0°C. 

There is conflicting information about conditions under snow and ice. Cogley and McCann (1971) 

suggested that, as snow ages, its aggressiveness towards calcite decreases. Helld6n (1973, p195) cited 
Williams (1949) as saying that CO2 concentration in air under a snowfield can be twice that of 
atmospheric air at normal pressure. Smart (1981) noted that during the freezing part of a regelation cycle 
beneath a glacier (Appendix A3.3), solutes (including calcite) can be excluded from the ice as precipitates, 
and CO2 forms bubbles because it is less soluble in ice than in water. Thus, from the high partial pressure 
below a thick icesheet, the possibility arises of a high concentration of CO2 in melting regelation waters. 
Lauritzen (1986b) reviewed previous studies of the CO2 content of glacier ice and showed that, in fact, 
basal ice and ablation areas are depleted, when compared to snow and accumulation areas, by up to two 

orders of magnitude. Deep subglacial water may have a solvent capacity of only 13mgL'' CaCO3, at a 
Pco2 of -10-6atm. (Lauritzen, 1986a and b). Ford (1971a) was also strongly suggestive of depleted CO2 
beneath thick glacial ice, away from the snout. According to Siegert et al. (2001), the HC03 concentration 
in water sampled from subglacial environments and in accreted ice from near-surface water in subglacial 
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Lake Vostok (Appendix A3.3) is only 0.3megL-' (18ppm). This is much less than recorded for Norwegian 

cave waters, as shown in Table A2.4. Lauritzen (1986b) used a theoretical modelling approach to show 

that with depleted waters under closed subglacial conditions speleogenesis from tight fractures would be 

negligibly slow, but that subglacial modification of existing conduits could be effective to produce 

significant cave volumes if there is a sufficiently high flow rate, despite the low solvent capacity. These 

ideas are pursued further in section 8.5. 

Warwick (1956, p150) noted that where percolation water enters a cold cave, especially near to an 

entrance, CO2 would be given off on freezing and CaCO3 would be precipitated rapidly in fine crystals, 

probably forming moonmilk. Such moonmilk occurs in the entrance passages at Mollebekkgrotta 3 (Z5) 

and Oyaskjeleren (Z4; Photo 3.2), for example. The concept was supported by Smart (1983), who 

described extensive subglacial precipitates on the benches around Mount Castleguard, Canada; by 

Hubbard and Hubbard (1998), who discussed the precipitation of carbonate deposits beneath a glacier in 

Switzerland; and by Killawee et al. (1998), who froze dilute solutions in the laboratory. Smart (1983) 

noted, from the small stalactite forms on vertical bedrock faces, that water had also passed through tiny 

fissures in the carbonate bedrock. Ford et al. (1970) reported fragile precipitates of calcite and dolomite at 

the soles of temperate glaciers, perhaps caused by supersaturation after reduction of hydrostatic pressure. 

Mulvaney et al. (1988) discussed sulphuric acid at grain boundaries in Antarctic ice (although sulphur was 

undetectable in the bulk of the ice). 

Photo 3.2 11oonntilk in Ohasl. j hi&ii i/J) 
Moonmilk deposits commonly occur in entrance passages. This 
phreatic passage leads from the enlarged main entrance (Photo 8.2). 
Photo by A. Marshall. 

Smart (I 984b) considered the counter-intuitive possibility of speleothem deposition during glacial periods, 

and sedimentation during interglacials, from his study of Castleguard Cave, which he compared to 

oyfjellgrotta (Z5). See also Appendix B I. 5 and a different interpretation in section 8.8.3. Lauritzen 

(1993, p27) presented a diagram to show the effect on speleothem growth in Norway of interglacial, 

periglacial and full glacial conditions. 
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3.2.4 Glacier caves 
Davies (1961) visited two types of glacier caves formed on bedrock in Svartisen, northern Norway. 

Pulina (1984) described caves in glaciers in Spitsbergen. These are large valley glaciers, which, because 

of intense recession, have large amounts of liquid water circulation even in the polar winter. Such 

glaciers can themselves exhibit exokarst and endokarst forms that resemble many features of limestone 

karst. There are two types of drainage systems: N channel marginal passages located within medial 

moraines or between the glacier margin and the unglaciated valley slope, commonly founded on solid 
bedrock, and R channel central conduits located wholly within the ice mass at depths up to 40m. 

Theakstone (1988) discussed glacier caves and subglacial water in Nordland, Norway. Many subglacial 

channels are dry in winter, but discharge and water pressure increase rapidly with snow melt. Caves form 

within the glacier ice where streams flowing down adjacent valley sides continue beneath the ice, and 

may be explorable until the overlying ice is 50m thick. Others form where the moving ice loses contact 

with an irregular surface. Workers in the USA and Canada have found that 20-30% of a retreating 

glacier base is not in contact with the bed, but is separated by connected water-filled cavities. Although 

the meltwater from glacier ice is very pure, subglacial water can be rich in sediments and dissolved load. 

Badino (2001b) discussed the improvement in exploration techniques of the last two decades that enabled 

a general model of glacial karst phenomenology to be described. Commonly, swallow-holes and 

crevasses form at the same places on glacial surfaces each year, despite the movement of the ice (c. f. 

whirlpools in a river bed). However, their formation conditions need to be considered separately, because 

cave conduits do not form where water is absorbed uniformly by crevasses. Most speleological research 
is limited to large, level, temperate, glaciers, where subglacial rivers flow for up to 1200m within the ice 

itself, at depths up to 20m, except for the last few tens of metres where they may emerge to daylight 

below a thin snout from a single conduit, as either a single torrent or as a delta. In larger glaciers, a 
deeper network can form in summer. These cavities commonly start with a waterfall shaft 40-60m deep, 

and may lead to short horizontal canyons and shallow waterfalls. A diminishing canyon may then lead to 

a terminal pool of water at a subglacial reservoir that is less than 100m below the overlying surface. 
There is no unique watertable in glaciers, but many interconnected storage systems. An epidermic and a 
deeper drainage system are common, which may meet near the glacial front. 

The ice behaves like a rock at low pressures and at temperatures below freezing near the surface and 

caves and crevasses can survive for more than one season, becoming dry and moving down-slope with 

the glacier. At greater depths and higher pressures, the ice is deformed by plastic flow and behaves like a 
fluid, so that, at 70-80m depth, a cavity has an average life span of only one season. Below the plastic 
behaviour limit (PBL), collapse times are shorter, caves readily disappear into a fluid mass of ice, and 
deep relict tunnels cannot exist. If a deep conduit is full of water, collapse is delayed because the 

pressure of the denser water rises faster than the ice pressure. (The specific gravity of water is 
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. 
000gmcc 1, compared with 0.917gmcc' for ice). From borehole measurements inside cold-surface 

glaciers in Svalbard (Hodgkins, 1997, Fig. 2) it appears that the PBL of warm-based icesheets may 

coincide with the depth at which the temperature rises to equal the pressure melting point. 

Streams can form in summer on the glacier surface, commonly flowing into depressions at places where 

glacier tongues converge. At high stage, a glacial whirlpool can occur above a shaft that may enlarge and 

deepen to 60m or more throughout the season. Each such moulin is assumed to be an input to a deep 

dendritic drainage system with turbulent phreatic flows that commonly feed just one single channel. 

Most of this system lies above the bedrock and above the PBL. Because the freezing point of water 

reduces by 7.5x1 0"3°C for each increase in pressure of one atmosphere, descending water tends to melt 

the local ice, whereas ascending water tends to freeze. (The pressure melting point beneath 2km of ice is 

-1.3°C). Hence, the rising limbs of deep U-shaped structures tend to close up, and very deep internal 

Vauclusian risings cannot form. When the deeper parts of the system become more constricted by 

freezing, the glacial whirlpool on the surface can become a lake, and the system can continue to exist as a 

static reservoir that descends downwards with the glacier, even in the absence of drainage. At high stage, 

water on a passage floor tends to excavate a channel, whereas water droplets on the ceiling tend to freeze. 

Thus, deep conduits gradually move downward through the ice (at about one metre per week), the 

network tends to settle as low as possible, and bypasses also tend to be eliminated. The Badino (2001b) 

model showed that with a flow of lm3s"1, tunnels at a depth of 100m have a stable diameter of c. 90cm 

and water speeds of 1.5ms''. If the flow is reduced to 0.1m3s"', the equilibrium diameter is 35cm and the 

speed is ims'. At the start of winter, water flows and pressures reduce and conduits begin to cave in, 

filling cavities vertically at a rate of perhaps two metres per week. Each year, the deep network is 

dragged down with the glacier and crushed, whilst new and deep systems form below new glacial 

whirlpools. Thus, the overall picture is that the deep network moves up-slope at the same speed as the 

glacier moves downhill. 

The hydrology of icesheets and glaciers and their relationships to karst during study area deglaciation is 

analysed in greater detail in Chapter 8 and Appendices D2-D5. 

3.3 Karst geomorphology in Scandinavia 

As discussed in section 3.1, most present hypotheses and generic models of karst cave inception and 

development concern broadly holokarstic, non-metamorphic, sedimentary, limestones. The early classical 

studies were primarily about the processes involved within karst aquifers. Increasingly it became 

possible to discuss the chronology of events, and then to propose some minimum dates for the 

enlargement of individual cave passages on the basis of the dating of various cave deposits. How relevant 

is all this information about process and timescale to the caves of the central Scandinavian Caledonides? 

Here, the caves are commonly formed in merokarsts in metalimestones of various metamorphic grades. 

The foliation is commonly steeply dipping (at least within the study area, which may be an extreme 
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example within the Caledonides) and the aquifers are usually very confined. The whole area has been 

repeatedly and extensively glaciated. Hence, it is not immediately certain that much of the world-wide 
knowledge gained about sedimentary karst is applicable in this rather exotic situation. 

Within Scandinavia, most discussion about cave geomorphology used to focus on the chronology of 

events in relation to glaciation. Thus, the early hypotheses sought to justify a primarily `preglacial', 

`subglacial' or `postglacial' origin for the caves studied, most of which had a primarily relict phreatic 

morphology. These works were written from early in the 20th Century, when only four major Pleistocene 

glaciations were known. Subsequently, there was a much greater use of quantifiable erosion rates and 

valley entrenchment rates, coupled with the dating of internal sediments, to determine possible 

timescales within the much more complex picture of multiple Mio-Plio-Pleistocene glacials and 

interglacials that has emerged (section 2.3). This section summarises the knowledge and views presented 

by previous workers, in a roughly historical sequence. Some of this work was done in the study area, but 

most of it was undertaken in northern Norway. However, little work has been done to parallel the studies 

of Worthington (1991) and Lowe (1992a), i. e. to model the detailed behaviour of the karst aquifers and to 

consider how the first proto-conduits formed in solid marble. 

3.3.1 Postglacial and proglacial views 

The postglacial view of speleogenesis is that caves started to form at the end of the final Weichselian 

glaciation, when the valleys were still occupied by temperate glaciers. Hoel (1906) studied the special 

cases of Aunhattenhule and Langskjellighattengrottene near Velfjord (Z2), which were near the shore 

line prior to the postglacial isostatic uplift. He considered three possible formation mechanisms for the 

caves: erosion by fresh water streams, erosion by the sea, and "dislocations", and decided that all these 

caves were formed by sea erosion. Based on arguments about altitudes and strandlines, Hoel concluded 

that the caves were formed at a late glacial stage, except the higher cave at Langskjellighatten, which 

must therefore be interglacial. However, St. Pierre and St. Pierre (1980, p73) cited Rekstad (1917), who 

dismissed the possibility of the formation of any of the caves at Langskjellighatten by marine erosion, 

because of their elevation. Section 8.8.2 deduces that these caves were formed early during the 

Weichselian deglaciation, and some entrances were then enlarged by the sea. 

In the opinion of Oxaal (1914), as cited by Horn (1947), Grenligrotta and other caves in Rana, northern 

Norway, had a proglacial origin, being formed at a glacial margin. Oxaal did however accept the 

possibility that the first "plan" of the caves could have had its beginning during "the interglacial". Oxaal 

(1916) showed that Gronligrotta, and caves at Naustvik (Z2, Hallaran? ), could not be postglacial, 

because they contain large foreign rocks brought in by ice. The postglacial view was shared by Corbel 

(1957), a reversal of the subglacial opinion of Corbel (1952b). His 1957 conclusion was that the present 

size of the caves could be explained by proglacial and postglacial developments, caused by very high 

precipitation immediately after the deglaciation, with high CO2 concentrations in a cold climate. Corbel 
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(I 952a) related karstification at the lower level of Rennselelven (KL) to the level of a glacial lake at an 

altitude of 500m and noted that the nearby Bjuräly karst valley was also occupied by an extended glacial 

lake (Appendix D2.6). See section 3.2.3 for further consideration of Corbel's views. Jakucs (1977, p121) 

discussed the karstification processes in glacial and periglacial conditions, and supported the view 

(attributed incorrectly to Horn) that Scandinavian caves developed in periglacial conditions in not more 

than 8000 to 10000 years. 

3.3.2 Subglacial views 
The first exponent of the subglacial view of endokarst formation was the Norwegian geologist Gunnar 

Horn, as published by Horn (1937) and posthumously by Horn (1947). He noted that the majority of 

caves are now quite dry (and situated within a well-wooded "Green Karst" of long, narrow, limestone 

outcrops, which he called "Stripe Karst"). Hence, he argued, they could not have a postglacial origin, 

although he thought that some small, active, caves with sumps probably had a short formation time. On 

the other hand, the cave altitudes are some 500m below the presumed watertable level of the pre-Ice Age 

[paleic] ground surface at the level of the present mountain peaks. He argued that cave formation at 500m 

depth seemed unlikely because, if so formed, the caves should be larger than they are, in comparison with 

large European caves, because of the long elapsed time involved in their formation. Hence, he thought 

the caves could not be preglacial or even interglacial. Thus, Horn deduced that the caves had a subglacial 

origin. He cited Werenskiold (1922, p9) and Sverdup (1935) who worked in Spitsbergen. They found 

that, whereas the permafrost there generally occurs down to 200-250m in rock not covered by snow or 

ice, there is no permafrost directly under an active glacier that is more than 400m wide (see also Horn, 

1935, and compare with evidence of warm-based glaciation, Appendix A3.3). Such a glacier has a base 

just above freezing, so that meltwater can pass into fissures in any underlying limestone outcrop and 

form subglacial karst. He also noted that cave entrances occur in arbitrary, commonly "impossible", 

positions relative to the present topography. Thus, Horn postulated that a slow movement of water first 

circulated in joints and other channels and then formed dissolutional phreatic pressure tubes that 

enlarged over a long period of time to the size of the present caves. He argued that the water moved 

slowly, because he thought there was little mechanical erosion in the caves: if the water was fast flowing, 

there would be fewer projections. Hence, the mainly-phreatic passages were all drained when the ice 

melted, leaving the dry caves that can be explored today. Additionally, Horn thought that the paucity of 

dripstone formations in the caves is because the caves are relatively young. The "dissolutional phreatic 

pressure tube" concept is supported in this thesis, although the mode and timescale of inception and 

enlargement differ significantly (Chapter 8). 

Kirkland (1958, p84) concluded that the subglacial hypothesis satisfactorily explained the development 

of all caves in the south Svartisen area of northern Norway. These are primarily relict, with phreatically- 

formed cross-sections. He thought the caves originated in the Tertiary, below a watertable, but developed 

mainly in pseudo-phreatic conditions below icesheets, during the last glaciation. Some caves also 
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experienced limited Holocene vadose modifications by misfit streams. He also argued that phreatic 

passages with fragile projecting schist blades must have developed from chemical erosion by slow- 

moving water. He found no evidence that phreatic developments were related to falls of watertable levels 

(Ibid., p72), and hence deduced that tiered phreatic passages could only develop simultaneously. 
Observing the lack of any former surface drainage pattern associated with karst "sink holes" [i. e. 
dolines], he concluded additionally that the exokarst was "fossil" [i. e. relict], and therefore also of glacial 

origin (Ibid., p61). Wolfe (1967) deduced that the upper, phreatic, part of Jordbrugrotta in Plurdal 

(12km north of the study area) formed during the last glaciation or during the most recent interglacial 

period, whereas the lower, vadose, part of the cave developed post-glacially. In his papers about 
Sotsbäcksgrottan (KU), Hellddn (1973,1974a and 1975) argued that glaciofluvial accumulations 
indicate a partially-subglacial genesis. Moreover, because evidence of an ice-dammed lake at Över-Uman 

(Appendix D2.6) was only 20m above the present level, he considered this was far too low to have 
influenced the development of this cave. 

Lauritzen (1981c and 1984b) discussed the evidence for subglacial karstification in Glomdal, northern 
Norway, whilst suggesting from the work of previous authors that, generally, Norwegian caves have 

polygenetic origins. He deduced from their morphology that the caves in Glomdal had experienced seven 

phases of development. In some passages, he observed paragenetic features (Lauritzen and Lauritsen, 

1995) superimposed on vadose features, which suggested that a reversed flow had occurred after a stage 

of base-level lowering. The diagram he presented shows a total flow reversal from the normal downhill 

flow that prevails during interglacials, to an uphill flow that occurs when a lower outlet is blocked by ice 

and the cave is in a subglacial situation. However, he noted the problem of the depleted aggressiveness in 

subglacial waters, so that it was not proven that entire cave passages with radii of 1-2m could form in 

subglacial conditions. He therefore suggested that the (present) powerful allogenic water is important for 

passage enlargement in the narrow carbonate outcrops in which many Norwegian caves are found. From 

principles embodied in the PWP Equation (section 3.1.3), Lauritzen (1986b) concluded that subglacial 
inception was unlikely, but that under high flow rates, conduits could enlarge to 2m diameter in 1000a. 

Lauritzen (1981c) also proposed a classification for phreatic caves in glacial landforms: paleic surface 

caves; valley shoulder caves; and active valley floor caves. Lauritzen (1990b) added a fourth class: 
hanging valley wall cave. Section 5.3.4 of this thesis introduces three more cave location classes. 

Kvithola, at Fauske in northern Norway, was presented as an example of ice contact speleogenesis by 

Lauritzen (1986a). Its very steep, but phreatic, 130m-long passage formed in a fracture zone that is less 

than 10m from the wall of the local valley, so that the cave post-dates the creation of the valley. Mean 

scallop lengths of about 8cm showed that the flow rate was c. I m3s'1, at a velocity of c. 50cros-' (section 

3.1.7), giving a water residence time of only 4 minutes within the cave. If wall retreat rates lay between 

0.1-1 mma', the conduit could form within 7500-750a. Lauritzen concluded that Kvithola formed at the 

margin of, and well below the surface of, a local valley glacier to which it supplied a subglacial stream. 
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3.3.3 Interglacial and preglacial views 
With our present knowledge of the Weichselian glaciation (section 2.3.4), the previous opinions about 

interglacial speleogenesis should perhaps be interpreted to mean an origin prior to the Weichselian LGM. 

Railton (1954) studied caves in Rana, just north of the study area. Undoubtedly familiar with the 

contemporary theories about cave formation in sedimentary limestone, he ascribed a deep phreatic, and at 

least interglacial, origin to them. Thus, he described Gronligrotta, Setergrotta, Hammernesgrotta and 

Opsalgrotta as network caves with impervious overburdens, which had been formed by very slow 

moving water when the watertable was some 300m higher than now. He suggested that Larshulltet, 

Olavsgrotta and Lapphullet perhaps formed by water flow from (lake) Reingardslivatnet, with a 

maximum hydrostatic head of 330m. Initially phreatic, development in Larshullet then alternated 

seasonally between vadose and "pseudo" [i. e. epi] phreatic, as the recharge rate caused water to back up 

well above the sedimented outlet. A lower lake level then cut the water supply and drained the caves. 

Railton explained the general lack of speleothems by the small depth of limestone above them, or 

because of the impervious cover rock. 

Jenkins (1959) reported on the Svartisen area of northern Norway. He suggested that Pikhauggrotta 

possibly originated as an early Tertiary small-scale phreatic system, because its glacially-truncated 

entrances indicate that the main cave development preceded the last glacial phase. The main development 

was by fast-flowing (epi) phreatic water during subglacial drainage, and then by drainage from a 

proglacial lake followed by vadose modification in the Holocene. (Jenkins also gave a possible 

alternative origin as starting at the proglacial stage). He thought that Fosshullet had a similar history, 

together with an early postglacial phreatic modification phase. Theakstone (1964) also thought it likely 

that Pikhauggrotta and other local caves originated in the Tertiary, but were enlarged principally by 

subglacial meltwater. However, Renwick (1962) estimated that the active phreatic Glomdal 

Underground Outlet (also in the Svartisen area) developed in only 30ka, by measuring flow rates and 

assuming dissolution rates (although his treatment was criticized by Aub, 1963, as being simplified and 

unreliable). Lauritzen (1980) reported micro-erosion meter readings on marble that indicate local 

denudation rates (Appendix A2.6). From this data, he calculated that the Glomdal Underground Outlet 

is older than 40ka, suggesting that this significant flooded conduit has at least an interstadial origin, but 

may not be interglacial. 

Engh (1980, summarized in English by Lagerström, 1980) reported the discovery of 

Vuoitaskallogrottan in the Vadve valley in northern Sweden. Its apparent vertical range of 155m 

includes a vertical shaft of 58m. This and other nearby caves are in topographically high positions, 100- 

200m above the present valley floor in an almost vertical wall. Engh argued that these are "hanging 

caves", i. e. fragments of bigger systems that existed before the U-shaped valley was cut out, and so 

cannot have formed, or even have developed, in the Holocene. Believing that these caves are interglacial 

or preglacial, he claimed that they could not be subglacial, because a lack of speleothems indicated a lack 
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of water circulation, as he thought would apply underneath an ice cover. He also cited Warwick (1956; 

1971; section 3.2.1) who said that caves do not grow in subglacial conditions. 

In another study of Pikhauggrottene, Lauritzen (1982) discussed the palaeocurrents and cave 

morphology. He noted that subglacial flow under temperate glaciers can show uphill segments and 

paragenesis, with large amounts of water available. However, subglacial flow under full (polar) 

glaciations was neither confirmed nor rejected. He cited Ford (1977a), who said that in these conditions 

groundwater circulation ceases, with a large-scale silting of cave passages. Pikhauggrottene consist 

predominantly of phreatic passages. Vadose elements account for only c. 4% of passage length, and 

paragenetic roof modifications account for c. 10%. The scallop directions suggested a uniform network 
flow to the south, and there was evidence for subsequent sediment fill and paragenetic incision. Lauritzen 

thought that the local `watertable' lowered from 610 to 575m, when a high discharge occurred. Then it 

lowered to the present watertable at <560m. Lauritzen deduced that if the main shift in watertable was 

caused by bedrock erosion, then probably this occurred at 220ka. Two alternative origins were presented: 

preglacial, in a paleic valley system; or subglacial, and then during deglaciation, when the paragenetic 

changes occurred. The Jenkins (1959) alternative possibility of proglacial genesis was rejected. From the 

evidence of Kvithola (section 3.3.2), Lauritzen (1986b) thought it likely that the relict caves situated 

several hundred metres above valley floors represent glacially truncated fragments of caves developed in 

early interglacials or in the Tertiary, agreeing with Engh (1980). 

Sirijordgrotta (Z4; Appendix B1.4) is the only cave in the Norwegian part of the study area whose 

morphology and sediments were the subject of detailed analysis. St. Pierre and St. Pierre (1980) revealed 

that the cave had experienced a complex history, as they observed unsorted sediments in Birch Passage, 

graded sediments in River Gallery, and fining up sequences to very fine particles at the top of sediment 
banks. These deposits indicate flood events, fluctuating flows, and ponding during peak flow conditions. 
They suggested that these deposits could be explained by subglacial formation, inundation by melting ice 

and subsequent draining. This would explain the lack of a dry valley below the Main Entrance, although 

such a dry valley could have been removed by glacial truncation. The lower vadose series was formed 

after the sudden removal of ice, and the lowering of the outlet level. A more detailed study of the 

sediments described four main depositional environments (Valen and Lauritzen, 1989; Valen, 1991; 

Valen et al., 1997; Appendix B2.10). In sections sampled for palaeomagnetism (Table A5.1), only the 
laminated clay sequence in Arctic Passage was presumed to have been deposited subglacially over a long 

time span. This was tentatively correlated to the Lake Mungo palaeomagnetic excursion at c. 28ka, 

during full ice cover and glacial damming. Three deglacial flushing sediments were probably deposited 

about 10.4ka. This is some 700a before the final local deglaciation at 9.714Cka, from a moraine north of 
MosJoen (Valen et al., 1997; Appendix D3.7). The oldest flowstone was dated to 128ka (Table A5.1), 

perhaps following a high energy deglaciation of the Saalian, or earlier, icesheet, thus confirming an 
interglacial age, at least for the main development of Sirijordgrotta. 
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Holbye (1983a; 1983b; 1983c) and Holbye and Lauritzen (1983) discussed the geomorphological 

development of the deep Greftkjelen in northern Norway. The cave has developed within a highly 

complex folded metacarbonate structure, with shear joints. It displays eight phases of trunk conduit 

development, each defined by a series of phreatic loops showing vadose downcutting from loop tops. The 

later phases show interactions between the cave and the landscape development during both glacials and 

interglacials. From stalagmite dating (Table A5.1), the cave was considered to have an origin at least at 

500ka. This author's deductions are presented in Appendix D6.1.1. 

The speleogenesis of Hammernesgrotta received further attention after the work of Railton (1954), " 
Lauritzen (1981 a) offered two possibilities. If the caves formed below a watertable (with an altitude near 

the present entrances), then he suggested an inter- or pre-glacial speleogenesis. If there was no definite 

watertable, then he suggested subglacial speleogenesis by large paraphreatic fluctuations in an englacial 

watertable. Haugane and Grenlie (1988) attributed a Miocene age of formation, in discussing the 

problems of explaining large phreatic passages in Nordland that are today remote from any major 

drainage systems. They argued that Hammernesgrotta must have been formed from a large water 

supply, which must have been from the area of the main valley catchment. This is presently focused on 

the lake Langvatn, which is now 163-173m below the caves, whose origin must therefore pre-date the 

late Quaternary. They thought that the large passage enlargement required water with a high CO2 

concentration and a high (biogenic) acidity. These could be provided in a temperate and humid climate, 

rather than in a glacial environment inhibited by permafrost and depletion of CO2 in deep subglacial ice. 

Prior to the Tertiary uplift, Scandinavia had been reduced to a peneplain, so they contended that Mid to 

Late Tertiary would be the favoured time for cave development, after sufficient uplift, and prior to 

climate deterioration at 4.5Ma. They argued that Quaternary karstification was mainly during the warm 

interstadials, which is when the main speleothem growth is recorded, and that subglacial caves can only 

rarely form relatively quickly. In support of this argument, they noted that the limited denudation of 

speleothems is consistent with a limited dissolution capacity of glacial meltwater. Assuming no cave 

development below sea level, the uplift curves at Hammernesgrotta indicated that its earliest time of 

formation was the early Miocene (25Ma), at 300m below the contemporary watertable. These authors 

further suggested that all the major caves originally formed during the Miocene. 

Lauritzen (1990b) provided more information and deductions about Hammernesgrotta. Stalagmites 

from the cave are bulk corroded and their bases were apparently dated between 350ka and 1250ka (Table 

A5.1). This age was constrained to 500ka by Lauritzen et al. (1994) on the basis of amino acid dating. 

Lauritzen (1990b) noted, from scallop orientations, that some chimneys acted as bypass loops of 

glacially-blocked conduits, so that the cave system may have developed by headward linking of phreatic 

loops (as discussed by Ford and Williams, 1989). Also, rather than form phreatic loops in the deepest 

possible position in the aquifer, the cave position seems peculiarly high. This suggested to Lauritzen that 
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the flow was perched by an aquiclude downstream of the cave, which was therefore formed by a shallow 

phreatic development or by repetitive englacial flooding. The final active phase could have been with 

modest flows upheld by ice damming just above the level of the present entrances. By referring to 

various published figures, and by following a concept proposed in Ford et al. (1981), Lauritzen assumed 

an average valley to have an entrenchment rate between 150-550mm ka' for full glacial / interglacial 

cycles, and modelled the cave development using estimated discharge and wall retreat rates. His result 

was that cave initiation was likely to have started at 1.1 Ma-320ka, which does not conflict with the 

stalagmite dates. He also argued that the cave was unlikely to have formed in the Miocene, on the basis 

that the relict passages would be much larger than observed today, because "the wall retreat rate from 

condensation (section 3.1.9) and winnowing is at least 0.2mm ka"' (during interglacials, Ibid., p35) ". For 

water-filled caves, Lauritzen commented that "as soon as a cave becomes an active part of a phreatic 

system, the growth is almost instantaneous when seen from the Cenozoic timescale of millions of years " 

(Ibid., p35). The paper presented a diagram to show the hypothetical relationship between the age of a 

cave, its diameter, and its altitude. For a cave to have initiated earlier than 1.6Ma (the strict Plio- 

Pleistocene boundary), it must have a diameter greater than 3m and an altitude over "base level" of at 
least 240m. Lauritzen could find only four caves in Norway that meet these criteria. [On this hypothesis, 

G$svasstindhola (Z4) would be the oldest cave in the study area. It has a maximum diameter of l Om and 

a base level elevation of 200m, and so would still fit inside a Pleistocene genesis]. 

This author considers that, in fact, Hammernesgrotta and all relict phreatic caves in the Caledonides 

formed beneath many deglacial ice-dammed lakes, in the manner described in Chapter 8. Formation 

beneath deep water is supported by the work of Auler (1995, Fig. 3), who described the speleogenesis of 

caves beneath lakes in Brazil. His survey of discrete network cave systems along a cliff edge is similar to 

the survey of Hammernesgrotta by Haugane and Gronlie (1988, Fig. 3). 

Sjöberg (1991a) used the Lauritzen (1990b) model to suggest that, in the whole of Sweden, only 
Vuoitaskallogrottan in the Vadve valley could have originated in Tertiary times. Also in Sweden, 

Norberg et al. (1988) studied the two karst areas of KAtaviken (ZC) and Rödingsfjället (KU). Using 

methods described in Lauritzen (1982), they measured scallops to determine maximum flow rates. 
Combining these data with estimated denudation rates, they calculated an age range of 9-60ka for the 

caves in Rödingsfjället. Isacsson (1989; 1994; 1999) discussed the cave deposits in Korallgrottan (KL), 

but radiometric dating is awaited. The depositional sequence consists of four sediment types. Type A is 

coarse-grained calcified sand and gravel that probably filled three quarters of the cave's volume, but has 

since been washed out during (he presumed) glaciations and interglacials. According to Isacsson (1999), 

the cave reached its present dimensions at the end of the Pliocene, before glaciation scoured the present 
U-shaped valley. 
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According to Lauritsen and Lauritzen (1996), the 800m-long Storsteinhola has the largest paragenetic 

canyon in Norway. This is c. 5m wide and c. 10m high. It rises towards Norcemgrotta. A maze of 

epiphreatic tubes beneath the paragenetic canyon represents two subsequent rejuvenation phases. A 

deglaciation phase of vadose entrenchment had a maximum flow rate of 2-5m3s'', from scallop 

morphometry. However, the present catchment area is 4km2, which would only provide 0.25m3s', from 

an infiltration rate of 2mä'. [Hence, if this example is representative, the deglaciation phase can increase 

annual run off through caves by a factor at least in the range 8-20: see Chapter 8]. The paragenesis was 

thought to have operated over a long timescale (10-100ka), as it shows l Om of vertical corrasion against 

a stable base level, which cannot be seen in the present topographical situation. Lauritsen and Lauritzen 

(1996) thought it unlikely that ice-damming or a sea level could have provided a stable base level for this 

long period, and deduced, therefore, that the base level for the paragenesis was controlled by a more 

resistant bedrock lithology. Study of the Tertiary paleic surface and Tertiary uplift suggested that the 

Kjopsvik caves are much younger than the paleic landscape, but much older than the Weichselian 

glaciation. 

The justifications for speleogenesis prior to the LGM rely increasingly on U-series dating of speleothem, 

and undoubtedly all the relict caves mentioned in this section have pre-Weichselian origins. Three main 

dating methods have been employed in Scandinavia: radio-carbon dating of organic material, 

palaeomagnetic dating of fine clastic sediments and U-series techniques for various calcitic deposits. The 

results of these datings and the conclusions drawn from them are summarised in Appendix A5. 

Scandinavian karrt water chemistry is summarised in Appendix A2.5 and various erosion rate 

determinations are considered in Appendices A2.6 and A3.5. 

This section completes the introductory part of this thesis, which has now discussed the geological 

evolution of the study area and our knowledge of speleogenesis and its relationship to glaciation, prior to 

the work undertaken for this project. So far, little new work by this author has been described, although 

this review from the perspective of glaciated metamorphic karst is itself original. Chapters 4 and 5 

describe in detail the factual results obtained from the author's analysis of the assembled knowledge of 

the karst outcrops and caves in the study area. 
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CHAPTER 4 THE KARSTS OF CENTRAL SCANDINAVIA 

The preceding Chapters introduced this thesis and discussed the present ranges of knowledge about the 

geological history of the Scandinavian Caledonides, about speleogenesis in general, and about 

speleogenesis in glaciated karst terrains. This led to the review in section 3.3 of the work already done to 

understand speleogenesis in Scandinavia. The purpose of this chapter is to report this author's analysis of 
the various metacarbonate outcrops that occur within the central Scandinavian study area. 

4.1 Information about limestone and dolostone outcrops 

Information about carbonate outcrops in the study area was assembled into a database from various 

sources, so that tectono-stratigraphic trends could be identified for various geological attributes and so 
that these could be compared with variations of karst attributes across the study area. 

4.1.1 NGU and SGU mapping 
Figure 1.2 identified the geological maps utilised in this study. The bedrock geology of the whole study 

area has been mapped to a scale of at least 1: 250000 by Norges Geologiske Undersekelse (NGU) and by 

Sveriges Geologiska Undersökning (SGU). In Norway, the bulk of the area is covered by the Mosjeen 

sheet at that scale. This dates from 1981 (Gustavson, 1988). The remaining small-scale maps for the 

Norwegian part of the area were published by the NGU after this, with the solid-geology map for Grong 

(1997) completing the series. The western part of the Mosjoen sheet had previously been mapped at 
1: 100000, in a map series published in the 1970s. These geological maps were based on the older 
1: 100000 series topographical maps that date from about 1900. From the mid- I980s, bedrock maps were 

published at 1: 50000, on sheets that correspond to the new topographical maps that are based on aerial 

photography. In the study area, about twenty such maps were published in black and white, but these are 

not easy to interpret and were not consulted. Three applicable coloured maps have been published in this 

series since 1992, and these have all been utilised in this study. Additionally, NGU has recently 

published eight Quaternary Geology maps that also coincide with the 1: 50000 topographical maps. These 

show karst features with a special symbol. A study by the author in 1998 revealed that not one of these 

symbols coincided with a known karst cave. During the 1998 field trip, it was found that, in general, the 

karst symbol did indicate exokarst features: usually dolines, and, in one case, a previously unrecorded, 

small, cave. It was confirmed by discussion with the NGU in Trondheim that individual geologists decide 

on the criteria for showing the karst symbol. Because of the varying ages and scales of the bedrock maps, 
the recording of nappe structures and identification of rock types has also varied, with sporadic areas of 

conflict between maps. Experience has shown that, in Norway, those carbonate outcrops with widths less 

than 100m (or 50m on the newer maps) are rarely represented. 

in Sweden, the northern part of the study area in Västerbotten was mapped at 1: 200000 (1927), and at 
1: 400000 (1955). The later map shows more carbonate outcrops than the earlier one, but neither has a 
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modern understanding of the nappe structure. Presumably, these maps did not attempt to represent every. 

narrow carbonate outcrop. Part of the area south of 65°45' is now well-covered by 25 bedrock maps at a 

scale of 1: 50000. This map series also covers land well to the east of all the known karst caves. The Kali; 

and Seve nappes are represented in great detail, and the uncertainties of their exact structure are being 

resolved as new maps are published. Field experience in 1998 showed that the Swedish maps tend to. 

exaggerate the extents of carbonate outcrops. Additionally, the SGU maps use the same colour to 

represent marble and calc-silicate rocks in the Seve Nappes. During the 1998 field trip, many mapped, 

small, lens-shaped outcrops in the Seve Nappes and in the Lower Allochthon could not readily be located- 

or identified as being calcitic or dolomitic. This was perhaps because they were masked under the cover 

of forest and till, or perhaps because they are, in reality, calc-silicate outcrops. Other, longer, "stripe- 

karst" outcrops in the lower Koli Nappes were found to have widths of only c. 5m, despite being 

represented on 1: 50000 maps. 

4.1.2 The Central Scandinavian Carbonate Rock Outcrops Database 

The author assembled information about the carbonate outcrops in the study area by taking information 

from all the above sources, coupled with personal experience and other published reports of karst caves 

that exist along unmapped limestone outcrops. This information was placed into a computer-based 
database constructed using Microsoft Excel with Windows XP: The Central Scandinavian Caledonide. 

Carbonate Rock Outcrops Database (Appendix C I). Where there are conflicts, information from later 

maps at larger scales is preferred. If a piece of information about an unmapped outcrop is not known (e. g. 

length or width) then, rather than leave a blank field in the database that could derogate later statistics, an 

estimate of the value is included, but shown in italics. (The number of known, but unmapped, outcrops is 

only c. 30). Outcrops are recorded down to c. 0.01km2 in size, typically 200m long and 50m wide. 

The database is organised according to the tectono-stratigraphical structure of the area (section 2.1) and 

the division of the area into zones (section 1.5). Each identified separate outcrop occupies one row in the 

database tables, and information about it is held in 30 fields organised into columns. Outcrops in each 

zone are grouped together under each applicable topographical map, and listed in a generally west to east 

and north to south order. The database holds details of just over 1000 carbonate outcrops. Its capacity is 

thus about 30000 pieces of information, plus summary information for each map and then each zone. 

Each carbonate outcrop was marked up by hand on the appropriate topographical map (usually the 

Norwegian 1: 50000 series M711). Because this transfer of information was commonly from a 1: 250000, 

or other scale, bedrock geological map, the outcrop positions and outlines are not particularly accurate. 

However, experience has shown that the use of such marked-up topographical maps usually enables the 

outcrops to be located in the field, and related to mapped or observed karst features. Until more of the 

coloured 1: 50000 geological maps become available, a more accurate representation is probably not 
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achievable, because most of the available coloured geological maps are still based on the old, rather 
inaccurate, 1: 100000 topographical maps. 

A convenient, fairly central, 2 alpha +6 figure UTM grid reference is held in the database to identify 

each outcrop, or, where a Swedish co-ordinate has to be used, this is based on the Swedish 10 digit RN 

co-ordinate system. The maximum altitude for each outcrop, together with its maximum vertical ranges 

along its length and across its width, were recorded by studying contours on the topographical map. The 

total length of each outcrop (including lengths of multiple limbs, if applicable) was determined by 

measuring with a ruler on the geological map. The visited lengths of those outcrops examined by cavers 
looking for caves are estimated from the author's records. 

A figure for an estimated, or measured, mean width is also recorded, and used to provide an estimate of 
the area of the outcrop (and dolomite area, if applicable) in square kilometres. This is probably accurate 
to within 20% of the geological map representation. A note about the shape of the outcrop helps speed up 
later checks between the maps and the database. Data about strike, dip and mineralogy are taken from the 

geological maps, or from personal observation. Simple I or 0 fields indicate if the outcrop is at, or close 
to, an adjacent igneous pluton (and therefore probably subjected to a repeated, contact, metamorphism); 
is at, or close to, a major thrust boundary; has been visited by cavers; or is mapped as dolomite. 

A late addition to the database shows whether each outcrop lies mainly east or west of a major ridge. The 

numbers of mapped karst features and bodies of water on limestone, as derived from topographical maps, 

are also recorded. By reference to two Cave Databases (section 5.1), the database also shows the total 

number of recorded caves and the total passage lengths in each outcrop, together with other notes, 
including the number of features noted as Quaternary karst by geologists. 

4.2 Attributes of metacarbonate outcrops 
This section analyses the various attributes of the metacarbonate outcrops, whose variations and trends as 
the allochthons are descended eastwards are shown in Table 4.1. The HNC and RNC of the Uppermost 

Allochthon are sometimes better considered together, as the rather small area of the RNC in the chosen 
study area may not be representative of its larger extent farther north. 

4.2.1 The distribution of metalimestone and metadolostone outcrops 
The total number of recorded carbonate outcrops is 1006. These have a total surface area of about 
860km2, which represents less than 3% of the whole study area. However, the areal proportion of 

carbonates in each nappe group shows a consistent decline when passing downwards stratigraphically. 
For the HNC and RNC it is about 6%; for the Koli Nappes it is about 2%; for the Seve 0.2% (and much 

of this may be calc-silicate rock); and for the Middle and Lower Allochthons taken together only 0.1%. 

(There are actually no carbonate outcrops in the Middle Allochthon). The numbers of outcrops, their 
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total length, and their total visited length, show a similar general decline. Because of the narrow widths 

of most stripe karst carbonate outcrops, the simplest measure of carbonate extent is length, and the total 

carbonate outcrop length is some 3200km. The mean width is 159m. The mean length and mean area per 

outcrop also show general reductions down through the nappes, although they both peak in the RNC. 

The study area means are 3.2km and 0.9 km2. (The large figures for the Lower Allochthon that reverse 

the trend are caused by one large dolostone outcrop that contains nearly half the ML total carbonate 

area). About 20% of both calcitic and dolomitic outcrops have been visited by cave explorers, who have 

walked along some 14% of the total outcrop length (c. 450km). However, only small distances have been 

covered along the smaller carbonate outcrops in the Seve Nappes and in the Lower Allochthon. 

Tahla A1 Variatinna of matfrorhnnata attrihntaa with tertnnn-ctratiuranhie structure 

Nappe complex HNC RNC KOLI SEVE ML ALL Units E. TREND 

Total area 9950 1762 9336 4443 6276 31767 km No trend 

Main count rock Schist Schist Various Various Various 
Main metamor hic grade' Am Am Am/Gr Am SubGr Decreasin 
No. of carbonate outcrops 536 74 252 123 21 1006 No. Decreasing 
Total carbonate area 560 126 163 7 5 861 km Decreasing 

carbonate area 5.6% 7.1% 1.8% 0.15% 0.08% 2.7% % Decreasing 

Mean outcro area 1.05 1.70 0.65 0.05 0.24 0.86 km Decreasin 
Total outcrop length 1911 472 680 99 31 3193 km Decreasing 
Mean length per outcrop 3.6 6.4 2.7 0.8 1.5 3.2 km Decreasing 
No. of visited outcrops 125 31 30 5 4 195 No. Decreasing 
Total visited length 252 101 94 0.4 0.3 447 km Decreasing 
No. of dolostone outcrops 16 12 21 0 15 64 No. No trend 

% dolostone outcrops 3% 16% 8% 0% 71% 6% % Increasin ' 

Total dolostone area 10.8 12.6 26.3 0.0 4.9 54.6 km Increasin 
Mean dolostone area 0.67 1.05 1.25 - 0.33 0.85 km Increasin 
Dolostone to carb. area ratio 2% 10% 16% 0% 96% 6% % Increasin 
Maximum dip 90 90 90 80 45 90 Deg. Decreasing 

Mean dip 63 42 42 30 33 52 Deg. Decreasing 

Minimum dip 10 0 10 5 10 0 Deg. No trend 
Mean outcrop widths 190 225 127 57 110 159 m Decreasin 
Mean length / mean width 19 28 21 14 14 20 Decreasing 
% contact metamorphism 48% 1% 2% 0% 0% 26% % Decreasing 
% outcrops near thrusts 6% 7% 27% 11% 57% 13% % Increasin 

% outcrops east of major ride 46% 35% 70% 87% 100% 57% % increasing 

No. of mapped karst features 196 123 72 0 0 391 No. Decreasing 

No. of features per outcrop 0.37 1.66 0.29 0 0 0.39 No trend 
No. features per 10km outcro 1.0 2.6 1.1 0 0 1.2 No trend 

No. water bodies on limestone 141 38 59 6 1 245 No. Decreasing 

No. water bodies per outcro 0.26 0.51 0.23 0.05 0.05 0.24 Decreasing_ 
No. water bodies per 10km 0.74 0.81 0.87 0.61 0 . 

32 0.76 No trend 

rºmpmovnr@--ureenscnist-buu ureenscrost racies ýý"- 
Dolostone values tend to increase with reducing metamorphic grade 4 Except ML 

Of the 1006 recorded outcrops, only 64 are mapped as dolostones: some 6%. They have the same mean 

area per outcrop of 0.9km2, but the proportion of dolostone area to total carbonate area generally 

increases as the nappes are descended, except that no dolostones occur in the Seve nappes. This apparent 

relationship between metamorphic grade and dominance of calcitic limestone over dolomite is discussed 

in Appendix A2.10. The records for the Seve nappes may be confused (section 4.1.1) because the 123 

recorded Seve outcrops are identified on the SGU 1: 50000 maps as "marble, generally calcitic, calc- 
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silicate rocks". Thus, it is unclear if some of these outcrops are calcitic metacarbonates, whereas others 

are calc-silicates, or whether a proportion of the outcrops contain rocks of both types. 

Another complication is that not all Swedish geological maps differentiate between limestones and 

dolostones. Thus, a rather deep blue colour may be annotated as "limestone or dolomite", "calcitic and 

dolomitic marble" or as "marble". These outcrops are recorded as calcitic in the database, except where 

the word "dolomite" is used first. Field experience in 1998 highlighted the difficulty facing the mapping 

geologists: the two rock types are commonly intermingled within the same outcrop. Thus, slivers of 

mainly dolomite probably occur in many of the metalimestones of the whole study area, and within 

outcrops that appear to be completely dolomitized, larger parts can be found that are very calcitic. 

Dallmann (1987, p45) observed that carbonates in the Hattfjelldal Nappe (KU) have rhythmic calcite- 

dolomite laminations. He cited Gebelein and Hoffmann (1973), who described such features as dolomitic 

laminae at former algal layers, and calcitic laminae for the sediment in between. Because most of the 

geological mapping was undertaken prior to the Tucker and Wright (1990) classification of carbonate 

types (Appendix A2.4), a more accurate description of bedrock carbonate types cannot be gained from 

published geological maps, and the use of the word "dolomite" may cover all carbonates that are not 

clearly LMC, including those of a yellow / brown colour that are probably HMC or DL. 

4.2.2 Attitudinal range 
The maximum, mean and minimum altitudes of carbonate outcrops commonly increase eastwards across 

the zones, as far as the Kali nappes, and then decrease again because of the Scandian Marginal Bulge 

(section 1.4), as observed in the database details. In each zone, maximum altitudes of the mapped 

carbonate outcrops commonly occur in each of the 25m altitude ranges from about 60% of the maximum 

altitude of the highest outcrop down to the maximum altitude of the lowest outcrop. (The highest 30- 

40% of the carbonate altitude range is commonly populated less densely with carbonate outcrops, 

because of reduced land area). Only RNC zones ZA and ZB, the Upper Koli Nappes (KU), and the 

Middle and Lower Allochthons (ML) have sparser carbonate distributions that do not occur at least at 

25m intervals. It is therefore assumed that the vertical distribution of carbonate outcrops across the whole 

study area is essentially random. This is understandable, because the present distribution of most 

carbonate outcrops derives from intense metamorphism, folding and thrusting during the formation of the 

Caledonian mountain chain. These processes caused originally-sedimentary limestones to descend to 

depths up to 50km, where they were thinned, broken and redistributed, before they returned towards the 

surface by uplift and erosion. At the scale involved, where each outcrop is very small compared to the 

size of the zone, a random vertical distribution arises, conditioned by the topography. 

There is a wide spread in vertical ranges of the carbonate outcrops, from a few metres, up to 956m for an 

(unvisited) outcrop in ZC. Typically, a long outcrop crosses and passes through several valleys along its 

mapped length. Hence, because of the large vertical ranges of many carbonate outcrops, carbonate 

exposures commonly occur at a wide range of altitudes in each zone, from a regional base level up to the 
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highest point of the highest outcrop. For all HNC and RNC zones, except Z4, Z7, ZA and ZC, the 

regional base level is sea level. For nappes that are completely inland, the regional base level is 

commonly a large `inland sea', down to which many carbonate outcrops descend. The mean vertical 

range for the carbonate outcrops in each zone commonly reduces eastwards, but with a peak in the RNC, 

following the trend for mean outcrop length. 

4.2.3 Foliation 

Although the recorded angles of dip of the surface outcrops vary considerably within most zones, a 

general trend of less-tightly-packed folding is observed as the nappes are descended eastwards. 

Throughout nearly all the HNC, outcrops can be found with dips clustered towards the vertical. Average 

recorded dips in each HNC zone range from 54-73°. In the RNC, the average ranges from 37-58 °. In the 

Keli Nappes, some near-vertical Leipikvattnet Nappe (KL) outcrops cause a slight trend reversal, so that 

the whole Koli averages range from 32-69°. The reducing trend is resumed in the Seve Nappes and in the 

Lower Allochthon, where the recorded dip averages vary from 28-33°. Figure 4.1 illustrates the 

maximum, mean and minimum angles of dip for each zone and Table 4.1 gives the corresponding values 

for each nappe complex. In all zones, large proportions (19-75%) of the mapped outcrops have dips that 

are recorded on geological maps, or were noted by personal observation. Most of these samples are 

probably representative of the whole set of outcrops. However, in Z8, ZC and KS, there are longitudinal 

or latitudinal gaps in the records so that their samples may not be fully representative. 

Within each surface outcrop the angle of dip may vary, but the metacarbonate outcrops are commonly 

relatively homoclinal at the scale of the explored caves, presenting essentially planar foliations. Thus, 

each recorded angle of dip is commonly typical of the whole outcrop. Exceptions include the complex 

folding at Kvitfjell (Z4; Photo C2.4), at Nedre Helveteshullet (Z7, which has formed at the top of an 

anticline), and at Labyrintgrottan (ZC, where the metalimestone is folded parallel to the strike, with a 

wavelength of only tens of metres). Outcrop dips tend to reduce near to nappe boundaries, where outcrop 

strikes are commonly aligned parallel to thrust zones. 

The HNC Zones Z1-Z8 are characterised by many long, linear, strike-aligned, carbonate outcrops that 

roughly follow north to south directions. Hence, east and west dip directions predominate over north and 

south in the HNC. In Zl-Z3, which are adjacent to the coast, easterly dips predominate over. westerly. 

Farther east, and especially close to the 1-INC basement thrust at Z8, Caledonide over-thrusting caused 

the outcrops to dip overwhelmingly to the west. HNC Z9, which comprises a lower nappe thrusting over 

that part of the RNC that lies to the north of the study area, differs completely: 76% of its measured 

outcrops dip to the south, and none to the east or west. Within that part of the RNC that lies within the 

study area, ZA passes underneath Z8 along a north-south thrust zone (Photo 4.1), and has all its recorded 

outcrops dipping to the west, mirroring the situation in Z8. Farther east, dip directions in ZB and ZC 

have no dominant trend: north, south, east and west directions, and vertical and horizontal foliation, all 

occur. Three sub-horizontal outcrops in ZC are the only such known in the whole study area. Below the 
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Uppermost Allochthon, carbonate outcrops predominantly dip to the north, with some significant 

proportions to the south and to the west. Very few dip to the east. In the Hattf)elldal Nappe (KU) and in 

the Gjersvik Nappe (KG), both of which pass beneath Z8 along the north-south thrust zone south of ZA, 

the north-dipping trend is commonly replaced by a westerly one. 
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As a very general rule, wide outcrops have less-steep foliation. The width of the widest outcrop with 

vertical foliation is c. 800m (Almdalselv, Z7). Table 4.1 shows that the mean outcrop widths have the 

same declining trend as mean lengths and mean areas (section 4.2.1). The carbonate outcrops generally 

retain their "stripe karst" character, with lengths much greater than widths, throughout the whole tectono- 

stratigraphic structure. However, the ratio of mean outcrop length to mean width does decline eastwards, 

showing that as outcrop sizes and dip angles decrease, the outcrops themselves become less linear. 

The structural differences between the HNC and RNC were discussed by Stephens et al. (1985, p153), 

who argued that there were two major deformation phases in the Uppermost Allochthon. The first 

affected the basement gneisses, with amphibolite facies metamorphism and deformation aligned north- 

south in the HNC, but with east west "cross-folding" in parts of the RNC. After deposition of the 

sedimentary carbonates, iron ores and shales onto the folded metabasement, the whole assembly was 
deformed again by a second phase of amphibolite metamorphism with folding aligned north-south that 
left the cover rocks in tightly pinched synclines and over-printed the first phase. Whereas the contact 
between the HNC and the RNC pre-dates the last phase, there is also evidence of multiple movements 

along the contact zone (Table D 1.1: item 48; section 6.3.3; Photo 4.1). 
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Photo 4.2 The HNC / Keli thrust zone 
The Grubblandsely flows over a cliff at the base of 
the HNC onto dark Kali metalimestone. The stepped 
appearance of the overthrust is seen to the north. 

The processes of metamorphism and thrusting caused a random vertical distribution of carbonate outcrops 

(section 4.2.2). However, the areal distributions are clearly not random, as they were driven by plate 

tectonic forces that caused overthrusting of the nappe pile from west to east. This is especially well seen in 

the study area at the thrust zone aligned north-south where the HNC overrides the RNC in the north 

(Photo 4.1) and overrides the Keli Nappes farther south (Photo 4.2). The consequence is the squeezing of 

the carbonate sequences, generally into north-south aligned linear outcrops. Whereas it is to be expected 

that the higher the maximum altitude of an outcrop then the more likely it is to persist for a longer 

distance, this effect is commonly only observed in that part of the study area that is east of Z4. The reason 

for this may be that it is from about Z5 eastwards that the maximum and average dips of the carbonate 

outcrops start to reduce (Figure 4.1). Hence, in Z 1-Z4, folding and thrusting were more intense, producing 

near vertical imbricate structures where minor thrusts are more likely to sever the outcrop into 

discontinuous segments. In addition, and perhaps more importantly, large igneous intrusions are prevalent 

internally within Z1-Z4, Z8 and in the Hattfjelldal Nappe (KU), but are commonly non-existent in the 

other parts of the study area. These also disrupted the previously-existing linear carbonate outcrops during 

their formation. It has also been proposed that during continental collision, the deeper part of a subducting 

slab can break off and drift down into the mantle (Davies and von Blanckenburg, 1998). This loss of 

weight causes rapid uplift immediately above, which can break up the continental plate and allow buoyant 

slivers and "pips" to rise to the surface. 
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4.2.4 Contact metamorphism 
A proportion of the carbonate outcrops experienced high temperature, low pressure, contact 

metamorphism from intrusive gabbros or granites, particularly in the HNC. This typically removed 

organic material, so that the carbonate rock was refoliated with less prominent bands (Gustavson, 1988, 

p12), or so that it became a predominantly massive white colour, perhaps with intruded darker dykes and 

sills (Appendices A2.2 and A2.3). The occurrence of outcrops altered by contact metamorphism sharply 

declines as the nappes are descended (Table 4.1). None occur below the stratigraphical level of the Koli 

nappes. The only one in Sweden is at Övre Ältsvattnet (KU, Appendix B1.13). The field experience is 

that only caves lying within a 250m-wide effective aureole around a pluton exhibit limestone altered by 

contact metamorphism. Sections 5.3.2 and 5.7.4 discuss the influence that contact metamorphism has on 

cave development. 

4.2.5 Proximity of carbonate outcrops to major thrust zones 
The Carbonate Rock Outcrops Database records whether each outcrop occurs adjoining, or near to, one 

of the mapped thrusts. These are commonly the major thrusts between the various nappes, but include 

more minor, internal, thrusts. In the whole study area, 132 carbonate outcrops are recorded as occurring 

near a thrust (13%). The percentage of outcrops lying near thrusts commonly increases as the nappes are 

descended (Table 4.1). The preference for marble to flow more readily than quartzitic rocks was 

discussed by Brodie and Rutter (2000), who concluded that calcite rock flow is predominantly grain-size- 

sensitive, whereas the natural flow of quartzite is an intercrystalline plastic process. Olesen (1988) also 

noted that amphibolites are more ductile than quartzites, so that a fault through quartzites may disappear 

where it traverses amphibolite rocks. Section 5.3.3 discusses karst caves that occur near major thrusts. 

4.2.6 Outcrop situations relative to major ridges 

Large differences in cave distributions and dimensions were noted on each side of major ridges aligned 

north-south (section 5.3.5). Hence, it became important to know if these differences are influenced by 

the relative situations of the carbonate outcrops. A new field was therefore included in the Outcrops 

Database to assign all outcrops as being either east or west of a local major ridge. Where this distinction 

was difficult to draw, for example with east-west aligned outcrops and in low-lying or plateau areas, 

altitudes and / or moraine alignments were also considered, to achieve consistency with the definitions of 

glacial situation, as applied to caves (section 5.3.5). Table 4.1 shows that some 57% of study area 

outcrops lie to the east of a major ridge (and 43% lie to the west). If only those zones that contain caves 

are considered (i. e. ignoring KG, KS, SU, SB and ML: section 5.2), the east / west distribution of 

outcrops becomes 50% / 50%. As expected, there is a general trend for the easterly percentages to 

increase in the direction west to east, as the nappes are descended, because coastal outcrops all lie west 

of the mountains and many Swedish outcrops lie east of the Main Scandinavian Watershed (MSW). This 

increasing trend is commonly maintained within the HNC, RNC and Koli zones, except for Z8 and ZB, 

which lie west of the MSW, and for ZC, which straddles the MSW. See also section 5.3.5. 
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4.2.7 Mapped karst features 

All instances of possible mapped karst features taken from published topographical maps of the entire 

area were recorded in the Outcrops Database against each coincident carbonate outcrop. These features 

are predominantly the sinks or risings of surface streams, but they may also include small lakes and tarns 

along carbonate outcrops without outlets, and individual caves. The Norwegian M711 series maps cover 

Norway and the Swedish border region at a scale of 1: 50000. `Disappearing streams', where a continuous 

blue line is replaced by a pecked blue line for some distance, indicate where surface flow is not visible 

on aerial photographs. They were mapped independently of knowledge of the geological outcrops. 

Whereas some of these features mark stream flows under boulder piles, the field experience is that the 

great majority do indicate allogenic inputs or subterranean outputs at carbonate outcrops, some of which 

are not shown on the geological maps. Caves have been found at many of these sites. The remaining sites 

almost invariably confirmed the karst feature indicated, even if entry to an underground passage could 

not be achieved. `Disappearing streams' are recorded as two features in the database: a sink and a rising. 

For some places, black and white Norwegian "economic" maps at scales of 1: 5000 and 1: 10000 were 

also consulted. These provide larger-scale information, typically up to altitudes of 500m, and commonly 

show many other small streams as pecked black lines. Although some of these are coincident with 

carbonate outcrops, field experience is that, whereas they may correspond to small sinks and risings, they 

rarely reveal previously-unknown cave entrances: these flow paths have not yet created conduit systems 

that are large enough to enter. Consequently, features that are only shown on economic maps are not 

included in the Outcrops Database. However, the economic maps were very useful in providing 

topographical details for karst area surveys. 

Unfortunately, some of the larger streams that are mapped as being continuous on the M711 series maps 

actually sink underground at carbonate outcrops, and may enter explorable cave systems. Thus, the M71 I 

map information, whilst being the best topographical guide to endokarstic activity, also needs to be 

treated with caution. The Swedish 1: 100000 Fjällkartan map series was used for those parts of the study 

area not covered by Norwegian maps. These are not as detailed as the 1: 50000 maps, and probably under- 

represent the numbers of possible karst features in their areas, because few are shown. 

Table 4.1 shows that the total number of mapped karst features decreases as the allochthons are 

descended, although the RNC has a disproportionately high number per outcrop. The mean for the whole 

area is 1.2 mapped karst features per 10km of outcrop, showing that karst and underground drainage are 

relatively common phenomena. This value seems roughly constant in the HNC and the Keli nappes, 

although, again, the RNC value is much higher. The carbonates in the Seve nappes and Lower 

Allochthon have no mapped karst features, perhaps because these all lie in Swedish areas mapped only at 

smaller scales. 
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4.2.8 Water bodies on limestone 

In contrast to the mapped karst features, which are suggestive of speleogenetic processes, the 

topographical maps also show many streams that flow directly on the surface and along, or across, 

carbonate outcrops in most zones. Similarly, the maps also show permanent bodies of water that lie along 

carbonate outcrops. These phenomena may be regarded as non-karstic features, suggestive of a lack of 

speleogenesis. If any result from karrt conduits of various sizes being permanently inundated, it would be 

expected that the phreatic water would rise to the surface lower down the outcrop. The only place where 

this is known to occur is at the `vanishing lake' of Engjavatn, which has an outlet at the cave Aunholet 

(Z2). Anecdotal reports indicate that, on rare occasions, this lake drains completely, sometimes after 

prolonged dry weather. The number of occurrences of these water bodies on limestone per 10km of 

carbonate outcrop is remarkably constant across the study area, lying in the range 0.76±0.15 for all 

allochthons except the Lower Allochthon (Table 4.1). 

Across the study area, about 40 metalimestone outcrops display at least one mapped karst feature and at 

least one body of water. Thus, a single outcrop can exhibit both speleogenetic processes, and a resistance 

to such processes. As most basins and lakes in Scandinavia were formed by glacial scouring, reinforced 

during every stadial, it seems that conduits that could drain such water bodies have not in all cases had 

the opportunity to develop since the end of the last glaciation. 

4.2.9 Field appearance of metacarbonates 

Calcitic metalimestones in Norway were said by Horn (1937) to form "stripe karst". The field appearance 

of the clean-washed rock is commonly also very striped, particularly in the HNC. A black, grey, blue, 

brown, yellow (and at several outcrops in KU, red) colour can alternate with cream or white to create 

attractive stripes, with bands at the millimetre to centimetre scale. The colourings are commonly caused 

by thin layers of mica and / or graphite, which were derived from adjacent clays and / or organic material 

during metamorphism. These foliation layers commonly lie parallel to the line of the outcrop. Such rocks, 

while often considered too `impure' to quarry, are always highly calcitic, giving very vigorous reactions 

with dilute HCl (Table A2.2). In general, lower-grade calcites are darker in colour, because they retain 

more organic material (Gustavson, 1988, p12). In contrast to limestones, massive outcrops of dolostones 

commonly display no striped appearance at all, with little visible layering (Photo 4.3). They are usually 

pure white or weathered cream or faint pink in appearance when observed in quarries and road cuts. 

Tremolite is a common associated mineral. Dolostones commonly show no visual reaction when tested 

with dilute HCI, but a faintly-audible fizz may be heard when the rock is placed near to the ear, probably 

from the reaction of calcite grains within the matrix. Outcrops with a yellow / brown appearance may 

contain HMC or DL, with additional Fe 2+ from siderite, rather than consisting of dolomite (Appendix 

A2.4). They commonly react very vigorously with dilute HCI (Table A2.2). 
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The field appearance of exposed carbonate rock also depends on the extent of weathering. It can vary from 

the rather white, rounded, form, which is similar to that of many weathered sedimentary limestones at the 

surface, to the striped, sculpted, form seen in stream beds, at waterfalls, and inside cave stream passages. 
Carbonate bedrock is commonly stained, or covered by clay washings, in dry parts of cave passages. It is 

also not uncommon to observe such bedrock with a hard, black, veneer on its outer surfaces. This may 

resemble an amphibolite, but such a rock can reveal a white calcitic interior when freshly-broken. Section 

4.4 discusses the exokars[ic properties of carbonate rocks. 

4.2.10 Outcrop conclusions 

The carbonate outcrops, whose key attributes are summarised in Table 4.1, provide a geological template 

against which the karst caves of the study area developed and can be considered further. Chapter 5 

attempts to reveal if and how the various attributes of the caves vary with the attributes of their confining 

carbonate outcrops. A key question is whether, and to what extent, the various cave characteristics follow 

the general eastward trends that can be assigned to the local geology. From this information it may be 

possible to make deductions about any common or varying cave inception and development processes, 

and determine possible timescales for cave formation and destruction across the whole area. 
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43 Non-carbonate rocks 

In contrast to many global karst areas, the karst caves of central Scandinavia occur within larger 

landforms not formed by karst processes, because the carbonate outcrops account for <3% of the study 

area (section 4.2.1) and where they do occur they are commonly relatively narrow. The caves occur in 

both stripe karst and non-stripe karst settings, commonly at the contacts between the metalimestones and 

the non-carbonate rocks. Hence, it is necessary to appreciate what the other country rocks are, because it 

is from these rocks that allogenic streams run into the caves and because the non-carbonate rocks are also 

encountered within the caves themselves (section 5.7.4). 

4.3.1 Skarns 

The metasomatic reactions leading to the production of various calc-silicate skarns are discussed in 

Appendix A2.2. The NGU and SGU maps refer to calc-silicate rocks, without identifying individual 

minerals. As skarns are produced from carbonates, they can occur alongside the limestones, or as total 

replacements, and hence they also display a striped appearance, both regionally and when observed in 

hand-specimen. From the geological maps, skarn rocks appear proximal to carbonates in all the zones of 

the Uppermost Allochthon except for Z5, Z8 and Z9. There are no mapped skarns in the Koli Nappes, as 

expected from the discussion in Appendix A2.10 about the lower metamorphic grade of the Koli 

preserving a higher proportion of dolomite. As mentioned in section 4.2.1, the SGU maps do not 

distinguish between marbles and skarns in the Seve Nappes. Here, the relatively high metamorphic grade 

probably facilitated dedolomitization with calc-silicate rocks produced as by-products. Caic-silicate 

impurities are also noted as occurring in some dolomites of the Lower Allochthon. 

4.3.2 Mica schist 

Mica schists of various types form the bulk of the country rocks of the whole study area. They occur 

extensively in every zone. In the Uppermost Allochthon and in the Seve Nappes, mica schist, calcitic 

mica schist, mica gneiss, calc phyllites and quartzites accompany carbonate outcrops. Garnet mica schist, 

biotite and muscovite mica schist and mica gneiss were all identified from internal cave bedrock samples 

after the 1997 and 1998 field study trips. In the lower grade Koli Nappes, greenstones and greenschists, 

grey, quartz and graphitic phyllites, tuffite and greywackes predominate as contact rocks to carbonates. 

Several schists were identified from internal cave bedrock samples in the Kali Nappes, but they are much 

rarer than in the HNC and RNC. The impression gained from a more limited field experience in the caves 

of the Koli Nappes is that internal aquicludes are also much less common. In the Lower Allochthon, the 

carbonate contact rocks are commonly shales, arkoses and quartzites. 

4.3.3 Granitic intrusions and plutons 

plutonic intrusions, commonly with accompanying dyke swarms, occur in all the zones of the Uppermost 

Allochthon and at Övre Ältsvattnet (KU), but not at all as carbonate contact rocks in the lower nappes, 

although some carbonate outcrops in KU also adjoin HNC granites. The largest granitic pluton is in D. 
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Its surface extent measures some 125x20km. Many other large outcrops exist, especially in Z2, Z6 and 

Z8. The metamorphic effect of these intrusions on the carbonates has not been studied in detail, but the 

high-T, low-P, contact metamorphism conditions are expected to facilitate dedolomitization with the 

production of calc-silicates as discussed in Appendix A2.10. Certainly, the extensive, non-linear, 

metalimestones near Storvatn (Z2) appear different from the normal striped variety, as they are very 

white and not banded (Faulkner and Newton, 1995, p4; section 4.2.4) and dykes and sills are observed in 

local cave passages (section 5.7.4). The lithology of the various plutons varies from granite to diorite and 

trondhjemite. One internal cave sample was provisionally identified as tonalite. 

4.3.4 Amphibolites and gabbros 
Dark-coloured mafic rocks of amphibolite and gabbro are found proximal to carbonates in all zones of 

the Uppermost Allochthon. They are also mapped in KB, SU and SB, but not in the other Kali Nappes 

nor in ML. In SU, the carbonate or calc-silicate outcrops nearly all occur within enclosing outcrops of 

amphibolite. Two types of amphibolite are possible: ortho and para. In the former, a previously-igneous 

rock (commonly an intrusive dyke or sill) is metamorphosed. In para-amphibolites, an originally- 

argillaceous sedimentary rock is metamorphosed. The geological maps rarely distinguish between the 

two, and in the very steeply-dipping bands of metacarbonates in the HNC it is difficult to make the 

distinction in the field. Several samples of amphibolite were identified from internal cave bedrock in the 

HNC. The amphibolites there are not necessarily as extensive as enclosing carbonates: a massive vertical 

lens of unknown height of presumably ortho-amphibolite occurs in Anastomosegrotta (Z4). It is some 

30m long, has rounded 2-2.5m-wide ends, and narrows to a width of 0.5m along much of its length. 

4.4 Karst geomorphology (exokarst) 

In comparison with the literature reviewed in sections 3.1.8 and 3.1.10, the Scandinavian reports of 

surface karst are comparatively sparse. Engh (1977) studied the 14 known holokarst areas of Sweden. 

They are mainly above the present treeline, but within 200m of it. Hence, they are all situated below the 

ancient treeline of the warm Boreal period. They can exhibit >900km"2 "joint dolines" (enlarged 

kluftkarren) if there is little soil cover, and contain three caves longer than 1.5km. Dye tests showed that 

there is not normally a homogeneous karst water surface, as only two areas had more springs than 

swallow holes. In contrast, the merokarst areas contain impure limestones, with an almost vertical dip 

and with few karren features. Their swallow holes connect to only one spring, and the caves are small, 

narrow, active and only up to 150m in length. 

The most thorough qualitative and morphometric study of exokarst was that by Hellden (1973; 1975; and 

especially 1974) above the Sotsbäcksgrottan system (KU), until a statistical treatment of the Glomfjell 

karst area in northern Norway by Finnesand (2003). Onac (1991) discussed exokarst at two areas near 

Narvik in northern Norway, and noted the limited depth of endokarst. He explained the existence of lakes 

lying on karstifiable bedrock as resulting from the karst immaturity (see also section 4.2.8). Lauritzen 
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(1991b) provided the only brief, qualitative, overview of the occurrence of exokarst features in Norway. 

Several authors have described the dolines with >10m diameters in till above the metacarbonate aquifer 

along the Bjuräly karst area (KL, sections 1.6.3,1.7.2 and Appendix B 1.15). The works by Corbel 

preceded these reports and included many sketches of karst areas both in plan and in section. For 

example, Corbel (1952a, 209-210,217; 1952b, p266; 1953, p341) included diagrams to show the 

relationships between dolines and epikarst drainage routes, although this term was not then in use. 

Moe and Johannessen (1980) described cavities in calcareous rocks in the littoral zone of northern 
Norway, with widths up to 3cm, which they assumed were formed by the feeding of Littorina snails on 

algae. Holbye (1989) introduced the term bowl karren, which he distinguished from kamenitzas, to 

describe littoral karst in northern Norway. The "bowls" vary in size groups from a few centimetres to 4m 

in diameter (c. f. Appendix B1.1). Holbye thought that they were probably formed by the turbulence of 

aggressive sea water, and then developed further during uplift. 

In the experience of this author, the central Scandinavian karst geomorphology exhibits the various karst 

processes and landforms described by Ford and Williams (1989) in many situations. However, these 

occur only at small and medium scales, being commonly constrained by narrow linear carbonate 

outcrops. Underground drainage routes longer than a few kilometres are unknown. Below the treeline 

the subcutaneous zone of highly-weathered limestone lies beneath a soil and till cover that may be 

several metres thick, whereas above the treeline it commonly forms the outcrop surface. The following 

sections summarise some of the more obvious landform features seen in the karst areas. 

4.4.1 Ridge and gully structures 

The topography of the study area remains strongly guided by rock type and tectonic structure (section 

2.2.2). Much of the country rock is foliated mica schist. Hence, the carbonate outcrops commonly meet, 

and / or are intermingled with, linear N-S strike-aligned schist outcrops, along which run major and 

minor valleys. Below the tree line it can be difficult to determine the local lithology, because exposures 

are hidden by vegetation and soils. There is no simple topographical rule for placing the limestones, 

because long ridges and gullies commonly follow both the limestones and the schists along the strike. A 

gully may coincide with a limestone outcrop that is wedged between walls of non-carbonate rock on each 

side. Equally common is a (perhaps anticlinal) limestone ridge that overlooks schists on each side. In this 

case, dry cave entrances, shafts and dolines may be found along the limestone ridge tops. The edges of 

gullies and valleys in limestone commonly provide a locus for dolines and allogenic stream sinks. 
Kirkland (1958) noted the presence of similar conformable furrows along-strike at south Svartisen, some 

30km north of the study area. Horn (1947) reported that crystalline limestone can provide a greater 

resistance to glacial erosion than adjacent schists, suggesting that the furrows arise from glacial scouring. 
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Strong guiding features are the foliation dips of both the carbonates and the adjoining non-karstic rocks. 

The dip in the HNC is commonly nearly vertical (section 4.2.3), so that there are commonly no `cover' 

rocks above the carbonates. Consequently, for example, the concept of the erosion of a cover rock, which 

causes previous sinks to be abandoned as new ones form at the latest contact, is not well displayed in the 

west of the study area. Farther east, the local dips tend to flatten out (section 4.2.3), and some of the karst 

geomorphology becomes more `classical' in appearance. Indeed, longer drainage systems occur in ZC, 

KU and KL, all in the eastern part of the area. Hence, the whole region may be regarded as a natural 

laboratory for studying the effect of outcrop dip on surface (and underground) karst geomorphology, 

within stripe karst and other karstic environments. 

4.4.2 Cave entrance positions 
Sink entrances occur in three main topographical positions. Where a significant allogenic stream sinks 

into the limestone, this may occur along the bed or lower wall of an active valley with steep sides that 

continues forward as a dry valley with little change of thalweg. The extent of vegetation on the following 

dry boulder floor gives an indication of the maturity of the sink and its potential for overflowing at high 

stage. Commonly, the preceding valley is along the strike of a narrow limestone outcrop between walls of 

non-carbonates, showing that water does not always flow underground at the first contact with limestone. 

Another typical sink location is at the end of a blind valley, below a steep cliff and rarely >10m high. In 

this case, it is common to find a shallower vegetated dry valley continuing along the strike. In following 

this upper dry valley towards a probable rising it may become even shallower as it merges into a complex 

pattern of ridges and hollows that mask the lithological contacts, so that in the wider limestone outcrops 

no single dry valley may lead directly to the resurgence. Blind valley ends (and dolines) can also occur 

very close to the top edges of steep cliffs above deeper orthogonal valleys, i. e. just before an abrupt 

change of slope at a valley shoulder that is called a "sva" in parts of Norway. Karst sinks are also found 

in gently sloping parts of the landscape and on the paleic surface. 

Resurgence entrances also occur at three main topographical positions: (1) at the heads of `conventional' 

pocket valleys, as in sedimentary limestones; (2) at any part of the profile of the continuing along-strike 

dry valley, i. e. from an enterable conduit at the base of the valley, up to a hanging opening above the 

valley floor from which the stream descends as a waterfall; (3) at the head of a waterfall, or series of 

cascades, in the steep cliffs, or sides, of a deep valley that is orthogonal or angled to the strike, where the 

sinking stream commonly enters the cave above near the valley shoulder. 

In the case of a continuing, higher-level, dry valley, the stream may resurge again on one side of the base 

of a collapse doline, and sink again on the other, in a manner described by Palmer (1990, P198). The 

landform of an intermittently-sinking and -rising stream that follows a narrow limestone outcrop down a 

hillside is extremely common, and may be repeated several times as altitude is lost. The Norwegian 

topographical maps (at both the old scale of 1: 100000 and the modem scale of 1: 50000) commonly show 
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such underground streams as a pecked black or blue line. The length of this pecked line is an unreliable 

indicator of the potential length of a single karst system because of the intermittent nature of much of the 

karst drainage. The final resurgence may be at an area of much lower relief, where the stream joins a 
larger one or flows into a lake, but there are also many examples of such resurgences from one of the 

three main positions described above. The overall effect of the karst drainage is commonly to provide a 
bypass route for a mountain stream, and this can occur even on steep hillsides, where dry waterfalls up to 

l Om high can be left in the bed of the abandoned valley. 

In addition to all the above allogenic recharge and discharge positions, some water-worn relict entrances 
lie along the summits or walls of strike-aligned ridges of limestone, in `impossible' positions. In this 

case, for the entrance to have previously functioned actively, it is necessary to postulate that the 

limestone was more resistant to subsequent erosion (perhaps glacial) than the adjoining lithologies, or 

that the entrance was active at a time of raised water levels such as could occur beneath a valley glacier, 

icecap, icesheet or at the margins of an ice-dammed lake. 

One of only two known Swedish poljes lies at the north end of Mieseken (ZC, R. Sjöberg, University of 
Stockholm, pers. comm., 1998). A (perhaps unique to Scandinavia) `vanishing lake' occurs at Engjavatn 

(Z2, section 4.2.8). No estavelles are reported in the study area, but, at times of spring melt, strong 

resurgences and immediate sinks can form at fast-flowing pools in small and normally-dry dolines, 

informally termed `risinks' by the author. Examples occur at Lid Hjortskar (Z5), where, also at spring 

melt, a small rising was observed as a fountain that gushed up to a height of 30cm from the ground, 

which here is a metre above an adjacent hollow (Photo 7.2). 

Cave passages commonly follow the direction of surface slope downstream and there are no known 

examples of caves in the study area that run deep into a valley side to emerge into another major valley 

that is separate from the first. Similarly there are no known underground drainage routes that link two 

major valleys in this way. There are, however, examples of caves and streams that start on one side of a 

relatively small-scale limestone ridge, to emerge on the other side of the same ridge. Thus, the thickness 

of rock above each cave is generally modest, measuring only up to several tens of metres, as seen from 

cave survey sections (Appendix B I) and as discussed in sections 5.3.7,6.1.4 and 6.5.2. 

4.4.3 Dolines 

Above the assumed line of the underground drainage it is common to find both solution and collapse 
dolines. These rarely exceed 15m in diameter or 10m in depth, and most are therefore not polygenetic 

(section 3.2.2). They may be blocked at the base, or may provide entrances to the karst drainage. In 

seeking entrances to caves that are not enterable at either a sink or resurgence, it is not uncommon to find 

that an entrance occurs along the strike within a few metres of the sink or resurgence. This entrance may 
be at a doline leading to a large passage above or along the stream, or may be via a small, and usually 
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short, shaft. Thus, small dolines may be used to indicate the strike of the limestone, because they 

commonly occur in linear arrangements above the karst outcrop, perhaps being concentrated mainly near 

the sink and resurgence extremities of an underground system to which they act as `windows'. Towards 

the end of the spring melt, the last remaining snow still fills the dolines and dry valleys. Invariably, this 

drains away underground during June and July, except at high altitudes. 

4.4.4 Pavements and karren 

Below the tree line, the carbonate outcrops are rarely exposed away from road cuts, cliffs or mountain 

streams, and so limestone pavements are not seen. Kirkland (1958) noted the presence of clints at 

Svartisen, but pavements were usually absent beneath vegetation. Above the tree line and birch scrub, the 

limestones form easily-visible outcrops that show glacial scouring and smoothing, where clints and 

grykes can also be found. Some of the latter are large enough to enter, and may form shafts into 

underlying cave passages. Although not studied in any detail, various types of karren are known, for 

example on Elgfjell (Z4) and on Kongsfell (ZB). It is generally accepted that these landform types were 

formed subglacially and during postglacial erosion (Lowe and Waltham, 1995, p23). 

4.4.5 Dolostone karst 

Mapped dolostone outcrops commonly include calcitic metalimestones (section 4.2.1), and hence in 

studying the surface landforms above such outcrops it is difficult to know from superficial observations 

if any karst features are truly representative of say, calcian dolomite (CD), or are examples of LMC, 

HMC or DL calcitic exokarst, or if they occur at contacts between calcitic and dolomitic carbonates. The 

question is further compounded by the appearance of dry ridges and gullies on mica schist outcrops 

(section 4.4.1). Several mapped dolostone outcrops were visited during the 1998 field study, and small 

karst Iandforms were commonly found on the mapped dolostones. These included small sinks and 

risings, grykes, dolines, and small fissures in outcrops. In some cases, when the adjacent bedrock was 

tested with dilute HCI, a vigorous reaction resulted indicating the presence of calcite. Otherwise, the 

reaction was only audible and not visible, indicating a more dolomitic lithology. 

Despite considerable searching by the author, only one small cave has been found in presumed 

metadolostone bedrock (Tjuvhelleren, ZB, in a dolostone cliff). It is 4m long, 2m wide and 3m high and 

has been utilised as a shelter. An eyehole just above the entrance confirms a karst origin. The bedrock 

gave only an audible reaction with dilute HCI and appears to contain tremolite. However, even this 

lithology contains too little MgCO3 to be a complete dolomite (Appendix A2.4). Hence, there appear to 

be no known karst caves in a true metadolomite in the study area, although Dolstadgrotta (Z5, near 

Mosjeen) appears to be in a mapped dolostone outcrop. This cave has reportedly been blocked for safety 

reasons. As dolostones account for some 6% of the carbonate outcrops, and 6% of the carbonate area, 

some 60 caves might be expected to have formed in this variety of metacarbonate, if similar processes 

have applied. It is thus concluded that karst caves are not formed in true metadolostones (if they 
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themselves exist). The observed lack of karst caves in the mapped dolostones of the study area, and in 

Scandinavia generally (Appendix A2.7), fits well with the low dissolution rates of all dolostones, and in 

particular with the very low dissolution rates of metamorphic dolostones at low temperatures, as discussed 

in Appendix A2.8. 

4.4.6 Karst on high magnesian calcite and dolomitic limestone 

The conclusion in section 4.4.5 certainly does not preclude the ability of caves to form in HMC or DL 

metalimestones. Such highly calcitic bedrocks, inferred from a weathered colour of yellow or brown, have 

only been recorded in the Uppermost Allochthon in the study area, and the cave databases record nearly 

30 caves that may have formed in them. Appendix A2.7 discusses caves formed at the junction of various 

limestone lithologies in northern Norway. Probably the best example of a junction between the grey- 

banded metalimestone and the yellow / brown striped variety in the RNC in the study area is at Mieseken 

(ZC, in Sweden). Here, the long cave Labyrintgrottan (Appendix B1.12) appears to have formed entirely 

within the folded grey limestone. However, several adjacent very short caves are also found in a brown 

limestone. 

The only places in the HNC where the yellow type is known to occur are at Kvitfjell and at Elgfjell 

(Photos 4.4 and 4.5). These are both in Z4, and may have originally formed one long carbonate structure 

before it was split by complex folding on the southern slope of Kvitfjell (Photo C2.4). This folding is 

itself unusual for the HNC, which has mainly homoclinal outcrops. The yellow limestone abuts the grey 

limestone at both Kvit1jjell and Elgfjell (Appendix B 1.4), and cave entrances are found along the junction 

at both places. On Elg1jell at least, caves are found in both types (Faulkner and Newton. 1990). 

Photo 4.5 \, %. 1 jai %ciiý di 1ucuiiilcl. I IýIlcll 
Angled stripe karst at junction of yellow / brown 

striped and grey marbles. 

The rarity of both the HMC / DL yellow striped metacarbonates and complexly folded karst (CFK: section 

5.3.1) that displays recumbent folds in the horizontal plane (e. g. Photos C2.2 and C2.4) and their 

coincidence at Kvitfjell and Elgfjell suggests a possible common origin. Thus, the repeated cycle of 

prograde and retrograde metamorphism that apparently caused dedolomitization (Appendix A2.10) may 

have terminated in these locations with pressure-temperature-fluid conditions that facilitated complex 
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ductile folding contemporaneously with crystallisations into pairs of commonly-adjoining HMC and 

LMC metacalcites. The absence in the databases of HMC / DL and CFK in carbonates subjected to 

contact metamorphism suggests that high temperature - low pressure conditions did not favour the 

production of HMC /DL and / or replaced these minerals with LMC or dolostone, of which 157 and 5 

such outcrops are recorded with R=1. 

This Chapter has discussed the central Scandinavian karsts in general terms. Prior to this thesis, there 

have been no studies of topographical situations that might be potentially favourable for cave formation 

and development within a wider view of the landscape than just the immediate karst area. Chapter 5 

considers the caves and their external and internal attributes within these karst and topographical 

environments. The presumed effects of glacial environments and processes on cave development in 

Scandinavia were discussed in Chapter 3, and are reconsidered in the third part of this thesis. 
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CHAPTER 5 THE CAVES OF CENTRAL SCANDINAVIA 

There is insufficient space in this thesis to give a full account of the geological structures and 

geomorphology of each zone and all its reported karst caves. Instead, the longer caves in each zone are 

presented in Appendix 131, together with a brief discussion about their character and situation, to 

illustrate the varying morphologies of the caves in the study area. This Chapter describes the databases 

constructed to record standard attributes for all the caves, and draws together qualitative and quantitative 

conclusions about the caves in relationship to the carbonate outcrops and local topography. 

5.1 Cave databases 

Data about the caves in the Norwegian and Swedish parts of the study area are held in separate computer- 

based databases that are constructed using Microsoft Excel with Windows XP and that follow a similar 

organisation to that of the Carbonate Rock Outcrops Database (section 4.1.2). Each recorded cave 

occupies one row in the database tables, and information about it is held in 44 fields organised into 

columns. Caves are grouped by carbonate outcrop, in the order in which outcrops are held in the 

Outcrops Database. The fields are divided into two main headings: External Cave Attributes and Internal 

Cave Attributes, which are defined in Appendix C2 together with notes about derivation and accuracy. 

5.1.1 North Central Norway Cave Database 

Information about the caves in north central Norway was collected from all the published references, and 

from data assembled during an expedition in 1996 and the field study trips of 1997,1998 and 2000. The 

database (Appendix C3) holds details of 728 adequately-reported caves, and thus has a capacity of about 

32000 pieces of information, plus map and zone summaries. Only the cave name is recorded (if known) if 

a cave is poorly described (e. g. location or length is missing) and the record is not included in any 

subsequent analysis, including the total number of caves for each area. The approximate number of these 

poorly-reported caves is an additional 80. Many of these are short, but some are unexplored. 

5.1.2 Central Swedish Caledonides Cave Database 

Information about the caves in the Swedish part of the study area was collected from all the published 

references, from a database that is maintained by the SSF, and from data assembled during the field study 

trips of 1997,1998 and 2000. The database (Appendix C4) holds details of 156 adequately-reported 

caves, and thus has a capacity of over 6000 pieces of information, plus map and zone summaries. The 

number of poorly-reported caves not included in totals is c. 30. 

5.2 Cave dimensions 

This section shows how the cave dimensions recorded in the cave databases vary across the zones and 

nappes and with the dimensions of the carbonate outcrops. Tables and commentary present data 

assembled from a combined Excel database constructed from the two cave databases (Appendix C5), and 
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from further pivot table analysis. The observations deduced in succeeding sections should be regarded as 

descriptive, because discussion is commonly based on changes in mean values, although coefficients of 

variation of cave dimensions lie in the range 100-400%. For example, the mean length of all caves is 

85m, whereas the median length is only 23m. A rigorous statistical treatment is beyond the scope of this 

thesis, but a preliminary analysis showed that the distributions of L, VR, XS and volume for the full set 

of caves have large positive skews in the range 3.6-12.4 (or Pearson's gamma of 0.7-1.1) and high peaks 

in the kurtosis range 18-218, whereas these functions would all equal zero for a normal distribution. 

Only minimum HG approximates to a normal distribution: coefficient of variation 92%; skew 1.65; 

Pearson's gamma 0.93 and kurtosis 2.05. The distributions of the logarithms of all these dimensions 

approximate much more closely to a normal curve: coefficient of variation 30-96%; skew -0.03-+0.56; 
Pearson's gamma -0.13-+0.63 and kurtosis -0.31-+0.09, so that tests of significance could be undertaken 

usefully on logarithmic data. 

5.2.1 The distribution and dimensions of karst caves 
The approximate percentage occurrences of the caves and of their total lengths in the five main 

catchment areas (section 1.4) are: Western: 23% and 19%; Northern: 10% and 13%; Vefsn: 45% and 

43%; Namsen: 3% and 2%; and Eastern: 19% and 23%. The Namsen catchment area comprises 20 caves 

at Dunnfjell in Z6 plus 8 caves in Z8. The Eastern area contains all the Swedish caves, plus 8 Norwegian 

caves that lie in KL. The similarities in the percentages show that mean cave length is roughly constant 

in each main catchment area, suggesting that geological, glacial and geomorphological differences among 

the catchment areas did not exert major influences on the development of those caves that presently exist. 

Section 4.2.1 and Table 4.1 discussed the variations in the metacarbonate outcrops across the nappe 

complexes. This section continues this analysis into the variations of the main cave dimensions, with 

relevant data presented in Table 5.1. The reducing trend eastwards between the Uppermost Allochthon 

and the Kali nappes for the carbonate outcrop dimensions is also apparent for the total number of caves, 

their total lengths and their total volumes. However, because the mean lengths, cross-sections and 

volumes of caves in the smaller RNC area (which contains three of the largest caves) are higher than 

those in the HNC, the total lengths and volumes per unit nappe area peak in the RNC. 

Table 5.1 shows that most mean cave dimensions, when expressed in various ways for each nappe 

complex, vary within a factor of two of the whole area mean, and that within these variations, increasing, 

decreasing and null trends all occur as the nappe complexes are descended. Caves appear to be somewhat 

longer and to have larger mean volumes farther east, although this could be an artefact of exploration and 

recording bias. Smaller caves may be more neglected and / or more covered by glacial till in Sweden. It is 

difficult to decide this issue, because the number of caves, their mean lengths and mean volumes are 

higher in the ICeli nappes than in the I-INC for each visited carbonate outcrop, but remarkably similar 

when expressed as values per kilometre of visited outcrop. 
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Table 5.1 Variations of cave dimensions with tectono-stratinranhic structure 
Nappe complex HNC RNC KOLI SEVE ML ALL Units E. 

TREND 

Total area 9950 1762 9336 4443 6276 31767 km No trend 
No. carbonate outcrops 536 74 252 123 21 1006 No. Decreasin 

Total carbonate area 560 126 163 7 5 861 km Decreasin 
Total carbonate area 5.6 7.1 1.8 0.2 0.1 2.7 % Decreasing 
Mean outcrop area 1.05 1.70 0.65 0.05 0.24 0.86 km Decreasin 
Total outcrop length 1911 472 680 99 31 3193 km Decreasing 

Mean length per outcrop 3.6 6.4 2.7 0.8 1.5 3.2 km Decreasing 
No. visited outcrops 125 31 30 5 4 195 No. Decreasin 
Total visited length 252 101 94 0.4 0.3 447 km Decreasin 
No. of caves 626 102 156 0 0 884 No. Decreasin 
% of caves 70.8% 11.5% 17.6% 100% % Decreasin 

2 
nappe area No. caves/100 km 6.29 5.79 1.67 2.78 10 No. km Decreasin 

Total cave length 47276 11173 16432 74881 m Decreasin 
% of total cave length 63.1% 14.9% 21.9% 100% % Decreasing 
Tot. len h/100km na e area 475 634 176 236 10 m km" Decreasin 
Total cave volume 251 67 101 419 103M3 Decreasing 
Total vol. /100 km nappe area 2524 3779 1085 1319 - 102M3 km" Decreasin 
Mean cave length 76 110 105 85 m Increasing 
Mean cave VR 8.5 11.6 8.4 8.8 m RNC max. 
Mean cave min. HG 28% 27% 26% 27% % Small decr. 
Mean cave XS 3.4 4.3 3.6 3.5 m RNC max. 
Mean cave volume 401 653 649 474 m increasing 
Mean cave CA 2.8 3.9 9.2 4.1 kM2 Increasing 
Mean cave XS/CA 18.2 2.7 2.3 11.9 M2 km-2 Decreasing 
No. of caves per outcrop 1.17 1.38 0.62 0.88 No. Decreasing 
No. caves per visited outcrop 5.01 3.28 5.20 4.53 No. RNC min. 
No. caves per km2 outcrop 1.12 0.81 0.96 1.03 No. km No trend 
No. of caves per km outcrop 0.33 0.22 0.23 0.28 No. km" Decreasin 
No. caves / km visited outcrop 2.5 1.0 1.7 2.0 No. km' Decreasin 
Mean cave length per outcrop 88 151 65 74 m RNC max. 
Mean length / visited outcr 378 359 548 384 In Increasing 
Mean length / km2 outcrop 84 89 101 87 m kin", Increasing 

Mean cave length/km outcrop 25 24 24 23 m km' No trend 
Mean length/km visited outcr. 188 111 175 167 m km" RNC min. 
Mean cave volume / outcro 470 900 402 417 m RNC max. 
Mean volume / visited outcro 2009 2141 3376 2148 m3 Increasin 
Mean volume / km' outcrop 448 530 621 487 m3km"' Increasing 

Mean volume per km outcro 131 142 149 131 m km' Small incr. 
Mean vol. /km visited outcro 998 659 1076 937 M3 km" RNC min. 
outcrop contact metam. 48% 1.4% 1.6% 0% 0% 26% % Decreasin 
Caves contact metamorphism 28% 2.0% 17% 23% % No trend 
Cave length with contact met. 25% 0.5% 7% 17% % Low propn 
outcrops near thrusts 6% 7% 27% 11% 57% 13% % Increasing 
Caves near thrusts 1.4% 2.9% 56% 11% % Increasin 
Cave length near thrusts 2.0% 15% 84% 20% % Hi h ro n 
Outcro s east of major ride 46% 35% 70% 87% 100% 57% % Increasing 
Caves east of a major ridge * 77% 57% 88% 77% % High pro n 
Cave length east of a ride * 79% 48% 94% 78% % High ro n 

* Excluaes all caves in the coastal location (section 53.4) 

Whereas the mean vertical range also peaks in the RNC (which contains Ytterlihullet, ZA, Appendix 

B1.10, the deepest cave in the area), the means for the HNC and the Kali nappes are almost identical. An 

overall summary, therefore, is that, within the declining eastward trends in total carbonate outcrop and 

total cave dimensions, there is a greater consistency in the mean dimensions of the individual caves. 
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However, one external attribute, the mean cave catchment area, shows a strongly increasing trend to the 

east, but this has certainly not resulted in any proportionate increase in mean cave dimensions. 

The final nine rows of Table 5.1 compare the percentages of carbonate outcrops, caves and total cave 

lengths for each of three external attributes. The percentage of caves in limestone altered by contact 

metamorphism (R=I) is less than expected from the proportion of such outcrops in the [INC. but more 

than expected in the Koli nappes. In all cases, contact metamorphism inhibits mean cave lengths. The 

opposite trend appears for caves near thrusts (T=1), where this always increases mean length. Caves 

occur disproportionately on the east side of major ridges compared with the proportion of carbonate 

outcrops (E=l), although overall mean cave lengths are very similar on each side of a ridge. These 

conclusions are analysed further in section 5.3. 

In order to see if the main dimensional trends are visible within each nappe (especially in the HNC), the 

zonal variations of the mean cave dimensions are presented in Table 5.2. (No caves are known in zones 

KG, KS, SU, SB and ML). This also shows a degree of consistency between the proportion of caves 

lying in each zone and the proportion of total cave passage length that these caves represent, as shown by 

the rather small spread in mean cave length across the zones: for zones with more than 4% of the total 

population (35 caves, i. e. those not shaded in Table 5.2), the mean cave length varies, probably non- 

systematically, from 55-106m. The mean cave VR, the mean minimum HG, the mean cross-section, and 

the mean cave volume also seem to vary non-systematically across the HNC zones. The studied caves 

have minimum HGs that range from 0.8% for the 2600m-long Labyrintgrottan (ZA), up to 100% 

(vertical shafts), for which there are examples in most zones. Thus, cave dimensions are probably less 

dependent on their zone than on the properties of the individual carbonate outcrops and local 

geomorphology. Where zones appear to influence cave dimensions, they probably act as proxies for other 

external cave attributes (section 5.3). 

Table 5.2 Zonal variations of cave dimensions Shaded zones have <35 caves) 
Zone No. 

of 
caves 

Total 
cave 

length 
(km) 

% of 
all 

caves 

% of 
total 
cave 

len L11 

Mean 
cave 

length 
(m) 

Mean 
cave 
VR 
(m) 

Mean 
cave 
min. 

HG (%) 

Mean 
cave 
XS 

(m") 

Mean 
cave 

volume 
(m) 

Mean 
cave 
CA 

(km) 

Mean 
cave 

XS/CA 
(m2km-2) 

1 0.03 0.1 0.0 25 5.0 20 10.0 250 0.2 50.0 
4 0.03 0.5 0.0 8 2.3 34 5.5 49 0.1 55.0 

165 10.87 18.7 1 1.5 66 7.7 22 3.8 308 2.0 10.2 

36 3.32 4.1 4.4 92 10.3 36 2.2 451 2.1 4.7 

182 14.49 20.6 19.4 80 9.2 33 2.9 419 2.0 37.8 

79 7.69 8.9 10.3 97 9.8 26 3.1 514 1.8 3.2 

I 

64 5.20 7.2 6.9 81 9.0 23 3.6 413 5.4 4.1 

87 4.81 9.8 6.4 55 6.4 30 4.2 418 5.7 3.8 

8 0.83 0.9 1.1 103 9.0 17 2.3 486 0.2 9.2 

37 3.92 4.2 52 106 13.3 24 5.6 864 5.5 2.8 

7 1.41 0.8 1.9 201 10.9 24 7.4 1047 4.4 5.7 
, 58 5.84 6.6 7.8 101 10.6 29 3.1 470 

- 
2.8 22 

t 1 I25 9.65 14.1 12.9 77 8.4 26 3.5 529 6.4 2.4 

c- 29 6.71 3.3 9.0 231 8.8 26 3.9 1204 20.4 0.3 

KB 2 0.07 0.2 0.1 35 7.0 19 2.1 71 0.3 12.1 

ALL JLý 884 j 74.88 100.0 100.0 85 8.8 27 >. 5 474 4.0 11.9 
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5.2.2 Cave catchment areas (CA) 

The largest cave catchment area is c. 1700 km2 in extent. It includes the whole catchment for the 

artificially dammed `Inland Sea' of Rossvatn (ZA), and has a mean annual flow-rate of c. 57m3s 

(Appendix A4.4). Because it is so exceptional, it is excluded from the analysis of catchment area in 

Table 5.2. Several caves in the study area have a CA of c. 40km2, but the great majority have catchments 

of <6km2. There are also many examples of significant caves at high altitudes that have very small 

contemporary catchments. The mean CA for caves in the Norwegian part of the area is 3.6km2 (excluding 

the Ressvatn catchments). In the Swedish part it is 6.1 km2, giving a mean CA for all the caves of 4.0km2. 

The zonal means tend to increase eastwards, as the land-surface rises, and as the scenery becomes more 

subdued. However, because of the very wide distribution of cave catchments, averages may not be 

helpful. The large peak in KL is caused by the small number of caves in two main valleys. 

There is a considerable, but non-systematic, variation of cave dimension to CA ratios across the zones. 

Indeed, the mean XS/CA ratio at each cave is very variable, as shown in the final column of Table 5.2. 

Because individual catchment areas vary by three orders of magnitude (from -0.01-40km2), there is 

commonly little correspondence between mean cave XS/CA ratios and ratios of mean zone XS / mean 

zone CA. The very high mean XS/CA value in Z4 is caused by the relatively large passages on the 

plateau of Elgfjell, which are situated near ridge-tops at altitudes of c. 600m. Hence, it is difficult to 

observe any consistent relationships between the cave catchment areas and cave length, cross-sectional 

area or volume for the total set of caves, leading to the initial conclusion that cave dimensions appear to 

be independent of catchment area (but sections 5.4 and 5.5 give a more detailed analysis). 

5.2.3 Total cave length and volume for the whole study area 
Because karst conduits are natural features of the landscape, their dimensions can range in size from the 

kilometre-scale down to at least the centimetre-scale. A roughly continuous distribution of decreasing 

size against increasing frequency might be expected. Thus, in theoretical terms, discussions based on 

mean numbers, mean lengths, mean volumes etc. might be considered to be without meaning. A rigorous 

treatment, which is beyond the scope of this thesis, would use rank/size correlation plots (Ford and 

Williams, 1989, p245) and a fractal calculus, as proposed by Curl (1986). In practical terms, however, it 

is found in the study area that such mean values are of some utility, when applied to distributions of 

explored caves with lengths of 5m or more. Thus, a set of 40 newly-explored caves would invariably 

have a mean surveyed length between 70 and 100m. This applies even when the set consists of caves 

from several different zones, as well as, commonly, from the same zone (Table 5.2). This rather constant 

mean cave length also applies when caves are grouped by individual external attributes (sections 5.3.1- 

5.3.5). The reasons for the validity of natural mean dimensions are examined further in Chapter 8. Hence, 

there are some characteristics of the naturally-formed caves and the behaviour and motivation of cave 

explorers and surveyors that combine together to create a simple model of cave existence, which can be 

used as a predictive tool. Estimates of the unexplored but explorable cave potential of the study area can 
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be made by assuming no difference in cave frequency distributions for caves of 5m length or more 

between the total visited length of carbonate outcrops (447km) and the total mapped length (3193km). 

Taking data from Table 5.1, such a calculation leads to the estimates in Table 5.3. 

Table 5.3 Estimated cave nntential 
Dimension Units Known 

cave totals 
Frequency per 
visited km 

Estimated totals 
for 3193km 

Number of caves No. 884 2.0 6386 
Total passage length km 75 0.17 543 
Total cave volume 10 m 419 0.94 3027 
Mean cave length m 85 85 
Mean passage cross-section m 3.5 3.5 
Mean cave volume m 474 474 

The calculation assumes that the visited outcrops are representative of the whole set of outcrops in each 

zone, and that the visited length of each of these outcrops is also representative. A study of individual 

zones showed that the visited outcrops commonly do represent most of the geographic and altitudinal 

spread of the full set of outcrops. The size of the visited outcrop sample is probably significant, because 

some 20% (195) of all recorded outcrops have now been visited by cavers searching for caves: 25% 

(163) in Norway) and 9% (32) in Sweden. However, cave exploration has been very much biased 

towards visiting those sites that are identified as possible karst features, either on the 1: 50,000 

Norwegian topographical maps, or from local reports, and searches of other carbonate outcrops have 

been biased towards the larger outcrops and the western zones. Thus, future explorations may reveal 

proportionately fewer, and smaller, caves, so that the estimates in Table 5.3 probably represent the 

greatest possible figures. The estimates may not be excessively high, because 66% (129) of all visited 

outcrops have yielded at least one cave. These figures split into 69% (112) (Norway) and 54% (17) 

(Sweden). If outcrops below the Kiili Nappes are ignored, then the Swedish figure rises to 79% (17 out of 

23 visited outcrops). A complication is that some caves occur in carbonate outcrops not recorded on 

geological maps. For these, the likely dimensions of the outcrops were estimated from personal 

observation or experience. As these unmapped outcrops only number about 32 (all in Norway) out of the 

195 visited outcrops (16%), this should not cause a significant perturbation to the above figures. On the 

one hand, the number of outcrops that are still unknown and unmapped is unpredictable, but a proportion 

will contain additional caves. On the other hand, many of the unmapped outcrops containing significant 

caves may now have been visited, as the main karst features drawn on topographical maps have 

undoubtedly been investigated by now. 

5.2.4 Cave altitudes and vertical ranges (VR) 
The Carbonate Rock Outcrops Database records the maximum altitude reached for each outcrop in the 

study area, together with the vertical range measured along the total length of each outcrop. The two 

Caves Databases record the altitude of the highest entrance and the vertical range for each cave. Table 

5.4 is constructed from zonal summaries of this data. 
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Tahh- 5.4 Carbonate outcrop and cave altitudes and vertical ranges (m) 

Zone Max. 
Max. 
carb. 
alt. 

Max. 
cave 
alt. 

Mean 
max. 
carb. 
alt. 

Mean 
max. 
cave 
alt. 

Min. 
max. 
carb. 
alt. 

Min. 
cave 
alt. 

Max. 
carb. 
VR 

Max. 
cave 
VR 

Mean 
carb. 
VR 

Mean 
cave 
VR 

Z9 600 113 116 113 10 113 225 5 95 5.0 
ZI 100 25 27 24 5 20 100 3 26 2.8 
Z2 849 580 176 182 5 3 560 53 129 7.7 
Z3 1000 680 421 387 40 5 690 101 220 10.3 
Z4 1000 940 584 570 140 100 687 90 224 9.2 
Z5 980 880 342 450 40 55 730 105 177 9.8 
Z6 900 515 393 331 70 40 630 80 190 9.0 
Z7 1200 770 606 526 310 175 780 30 219 6.4 
Z8 1220 735 786 684 460 660 750 45 230 9.0 

ZA 980 817 595 437 240 93 738 180 213 13.3 
ZB 1220 620 634 530 200 402 740 28 235 10.9 
ZC 1340 900 734 680 390 550 956 60 248 10.6 
KU 1392 926 740 718 370 423 842 110 163 8.4 
KG 840 667 510 201 109 
KL 740 620 561 502 475 460 280 144 89 8.8 
KS 1080 761 480 330 82 
KB 1280 920 732 860 440 800 480 11 84 7.0 
su 1097 740 540 200 49 
SB 1110 720 460 320 64 

ML 728 510 360 228 54 

ALL 1392 940 *542 475 5 3 956 180 *145 8.8 

* Average of above figures, Shaded zones have <35 caves. 

The following observations from Table 5.4 apply to the nine unshaded zones with more than 35 caves 

(section 5.2.1): (a) columns 2 and 3 show that the maximum cave altitude is always more than 50% of the 

maximum outcrop altitude, but is rarely within 10% of it; (b) from columns 4 and 5, the mean cave 

altitude is always within 30% of the mean maximum outcrop altitude, and column 7 shows that minimum 

cave altitudes can vary almost down to sea-level. The present and early Holocene altitudes of the 

treelines do not appear to influence the mean zonal entrance altitude (not shown in Table 5.4); (c) from 

columns 8 and 9, the maximum cave vertical range is always less than 15% of the maximum outcrop 

vertical range, except for Ytterlihullet (ZA, Appendix BI. 10) at 24%, or 29% of its own outcrop VR. 

The Korallgrottan (KL, Appendix B1.15) VR is 51% of the VR of its outcrop, which is the KI. outcrop 

with the largest VR; (d) columns 10 and 11 show that the mean cave vertical range is never more than 

6% of the mean outcrop vertical range. (The small sample in KL is at 10%. The mean outcrop vertical 

range for HNC, RNC and Koli taken together is 153m), (e) the distribution of mean cave vertical ranges 

in column 11 also shows a remarkably low variation, lying within the range 6.4-13.3111. The means 

exhibit a shallow peak in the RNC zones, as LA, ZB and ZC occupy the top three rankings in the table. 

Section 4.2.2 concluded that the vertical distribution of carbonate outcrops is essentially random, and 

that surface exposures are common in all zones at all altitudes, from a regional base level up to the 

highest outcrop. Observations a) and b) above suggest that cave entrances can be found in any limestone 

outcrop and that the vertical distribution of their entrance altitudes is also probably random, except that 

they have rarely been recorded close to the maximum altitude of' the highest outcrop. This exception 
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probably does not arise from exploration being biased towards lower altitudes, because section 5.3.5 also 

shows that caves rarely occur near summits, although many occur along minor ridges. 

For most zones of the study area, scatter diagrams were plotted to show the distribution of cave entrance 

altitudes eastwards. In all zones, the cave entrance altitudes are well-scattered vertically, with no obvious 

concentrations, although in KL the cave entrances have similar altitudes because they all occur in 

essentially the same long carbonate outcrop, as discussed in Appendix 131.15. The scatter diagrams 

differentiate between active caves and relict caves (as defined in section 5.4), and show that the relict 

cave entrance altitudes are well-scattered both vertically and horizontally amongst the distribution of all 

cave entrances. Hence, this zone by zone analysis supports the above conclusion that cave entrance 

altitudes are scattered randomly below summit areas, within the overall constraints of the local 

topography and the carbonate outcrops. 

Observations c) and d) above indicate that rarely, if ever, do the depths of the cave systems approach the 

potential of the vertical exposure of their containing limestone outcrops. Only five caves are known to 

exceed 100m in depth (section 5.3.6), and the overall mean depth is only 8.8m. Korallgrottan, and to 

lesser extent Ytterlihullet, are quite exceptional in both their depths (144m and 180m) and the vertical 

proportions of their limestone outcrops that they exploit. Their karst types (section 5.3.1) may be 

significant, because Ytterlihullet is in low angle karst and Korallgrottan is in angled stripe karst, but 

most of its length is along the strike. There is also no single cave system in the study area that exploits 

the full range of glaciated valley topographical situations from sink to resurgence. 

Scatter diagrams were also plotted for most zones of the study area to show the distribution of cave 

lengths and vertical ranges against cave entrance altitudes, for both active and relict caves. There is 

commonly a good spread of lengths and depths at all applicable altitudes, although within individual 

zones the longest and deepest caves may peak about one or two altitude values. Taking the study area as 

a whole, there is no obvious relationship between active or relict cave lengths or vertical ranges and their 

entrance altitudes. This result may be considered alongside the comment by Hellden (1975, p25) that in 

Sotsbäcksgrottan (KU, Appendix B1.13) "It has been impossible to relate the levels of the passage 

systems to fluctuations in the erosion base level ". This cave has a sink entrance at the paleic surface, and 

an undived resurgence sump that is 80m above the lake Över-Uman, the local base-level. 

For each zone, a scatter diagram was plotted to show the relationship between the length and vertical 

range for every cave in the zone. These diagrams show that there is little, if any, relationship between the 

length and the vertical range of cave systems anywhere in the study area. There are few deep shafts in 

these caves. The deepest is a 30m-deep, steeply-sloping, underground shaft in JOBshullet (Z2). In 

Djupdalsbullet (KU), there are 15m and 13m vertical pitches within the same deeper shaft. 
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5.2.5 Cave types (CT) 

The cave databases record the type of cave for each entry, from a classification scheme devised by the 

author that is based on his experience of applicable cave passage relationships in the study area. These 

are defined in Appendix C2.2 and cave types S and a-h are illustrated in Figure 5.1. 

NNMNINN 

CT 
ý 

Morphology Plan Projected elevation 

S Shaft 

a Linear 

b Meander 

c Rectilinear ý--- 

D 
d Dendritic J J 

e Tiered linear 

f Tiered rectilinear 

g Tiered dendritic 

h complex f+ g+ sloping phreatic passages 

rigure 5.1 Cave Types 

Cave dimensions for each cave type are shown in Table 5.5. This information was assembled from the 

combined cave database and from derived pivot table analyses, which are not presented in full, to 

economise on space. Single shafts account for c. 10% of the recorded cave population, and the `process' 

types account for another 3%. For the bulk of the caves, `simple' caves are the most numerous, because 

>60% of all the reported caves are single linear or meandering passages (types a and b). These may be of 

phreatic or vadose development or both. 
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Table 5.5 Vskrintinna of Ewa dimonainna with n vP *vna 

Cave 
Type 

No. 
of 

caves 

Total 
cave 

length 
(km) 

% of 
caves 

% of 
total 
cave 

length 

Mean 
cave 

length 
(m) 

Mean 
cave 
VR 
(m) 

Mean 
cave 
min. 
HG 

Mean 
cave 
XS 

(m) 

Mean 
cave 

volume 
(m) 

Mean 
cave 
CA 

(km2) 

Mean 
cave 

XS/CA 
(m2km-2) 

S 90 0.93 10.2 1.2 10 7.3 81 3.1 39 2.1 10.4 
a 315 7.05 35.6 9.4 22 4.2 28 3.1 128 3.8 7.0 
b 230 11.60 26.0 15.5 50 7.7 18 3.4 273 4.6 14.5 

c 57 6.40 6.4 8.5 112 7.8 14 3.7 488 6.5 71 
d 59 7.76 6.7 10.4 132 12.2 13 3.8 856 5.1 19.8 

e 17 2.20 1.9 2.9 130 14.7 20 3.7 699 3.5 2.6 
f 23 3.41 2.6 4.6 148 15.4 15 2.8 469 4.2 7.2 

28 7.03 3.2 9.4 251 20.6 18 4.6 1657 3.0 40.5 
h 39 27.42 4.4 36.6 703 38.6 11 4.6 3964 2.7 10.7 
H 12 0.61 1.4 0.8 50 8.8 21 10.1 544 2.9 24.2 
I 3 0.28 0.3 0.4 92 11.0 33 3.7 602 7.0 0.5 
J 0 0 
L 7 0.08 0.8 0.1 12 3.1 36 7.1 91 2.7 36.8 
R 0 0 
T 4 0.11 0.5 0.2 29 9.5 31 6.5 335 7.1 42.1 
ALL 884 74.88 100.0 100.0 85 8.8 27 3.5 474 4.0 11.9 

The numbers of caves of each type tend to reduce with the complexity of the type (a-h), whereas the 

mean cave length, the mean cave vertical range, and the mean cave volume all increase fairly smoothly 

with complexity. These are as expected, because the longer a cave is, then the more degrees of freedom it 

has to display a complex morphology, and the definitions of the more complex cave types include 

references to levels and shafts, which are related to the vertical range. These observations commonly 

apply to caves in all `inner' zones (i. e. all cave zones, excluding Z1, Z9 and KB), and in all main karst , 

types, cave locations, glacial situations, combinations of contact metamorphism and proximity to thrusts 

(as defined in section 5.3) and for all cave hydrological classes where appropriate (section 5.4). The total 

length of caves in each cave type shows no systematic trend, although the 39 caves of the most complex 

type (h) account for a disproportionately large length (27422m of the total cave passage length of 

74881 m). 

Mean cave XS, CA and XS/CA ratios show little relationship to cave type (a-h). The 12 hybrid caves 

(Hy) have a very large mean XS of 10.1 m2, a large mean XS/CA ratio, and relatively large volumes for 

their short lengths, as expected for caves modified by marine action. The 7 purely littoral caves (L) have 

twice the average mean XS and a very large mean XS/CA ratio, again, as expected, if they have formed 

by marine action rather than by meteoric dissolution. The mean minimum hydraulic gradient has a 

commonly reducing trend with cave type, because cave lengths vary much more than cave depths. 

To summarise, the typical cave consists of a single passage that is less than 100m long and less than 10m 

deep. However, caves over a kilometre in length and over 100m in depth also occur in the area, and these 

can display extremely complex arrangements of inter-linked passages at several levels, which do not 

appear to be strongly controlled by the external attributes. 
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53 External cave attributes 

This section reviews how the various external attributes recorded in the two cave databases vary across 
the zones and nappes of the study area, and discusses what influences they may have on cave dimensions. 

5.3.1 Karst types (KT) and foliation 

The declining, across-zone, trend in the stratal dip of the mapped carbonates was discussed in section 
4.2.3 and Figure 4.1. A similar, but less clear, trend is also found in the angles of dip of the foliation 

measured inside the caves themselves, as shown for each zone on Figure 5.2. The overall mean ̀ cave 

measured' dip angles are: HNC 70°; RNC 45°; and Kali 39°. The discussion on individual caves in 

Appendix B1 highlighted the importance of the dip of the containing limestone and Chapter 9 also 

records that the geological properties of the carbonate bedrock play an important role in influencing cave 
morphology, as seen in the shapes of passages and in the relationships between them. Kirkland (1958) 

observed that, in the Svartisen area of northern Norway, caves are commonly conformable to the bedding 

and to major joint sets. In the study area, cave passages are commonly conformable to the strike, to the 
dip of the foliation and to joint sets. 
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In order to simplify analysis, the containing karst at each fully-reported cave in the study area is 

classified as one of a number of karst types in the cave databases, as defined in Appendix C2.1 and as 
illustrated in Figure 5.3. Cave dimensions for each karst type are shown in Table 5.6. 
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r 
Diagrammatic west to east profile along UTM 33W 7267000: c. 65°30' 

GLACIAL CAVE KARST SLOPE 
SITUATION LOCATION TYPE RELATIONSHIP 
U Uppermost P Paleic surface V Vertical U Up 
T Below highest col, east of a major" ridge G Gently sloping A Angled D Down 
S Below highest col, west of a major ridge S Valley shoulder L Low angle N Not related to dip 
L Below lowest col, east of a major ridge R Ridge crest 
K Below lowest col, west of a major ridge W Valley wall 
H Below glaciation marine limit east of a major ridge F Valley floor 
G Below glaciation marine limit, west of a major ridge C Coastal 
E Below deglaciation marine limit, east of a major ridge All examples are shown with 
D Below deglaciation marine limit, west of a major ridge orientation OR = P, i. e. the karst 
C Coastal strike is parallel with the topography 
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r-igure 5.3 Generalised cave locations, glacial situations and karat types 

Table 5.6 Cave dimensinns and Ichrat tuna 

Karst Type Units V A L C X ALL 
No. of caves No. 235 480 127 3 39 884 
Total cave length km 20.25 37.79 12.64 2.91 1.30 74.88 
% of caves "/. 26.6 54.3 14.4 0.3 4.4 100 
% of total cave length % 27.0 50.5 16.9 3.9 1.7 100 
Mean cave length m 86 79 100 968 33 85 
Mean cave VR m 8.6 9.0 9.5 17.3 5.5 8.8 
Mean cave min. HG °/. 33 25 25 7 29 27 
Mean cave XS m 3.0 3.8 3.8 3.2 3.1 3.5 
Mean cave volume m 460 428 703 3738 127 474 
Mean cave CA km 3.3 4.0 6.1 1.9 1.5 4.0 
Mean cave XS/CA m km 8.7 16.0 4.8 1.7 5.0 11.9 

Caves occur in approximate V: A: L ratios of 2: 4: 1. Caves in type V are only recorded in HNC and RNC, 

plus Landbrua in KL. They do not occur in the Swedish part of the study area. Caves in type A are 

scattered across most zones and nappes. Caves in type L only occur in ZI, Z2 and Z8 of the 1-INC, and in 

most of the lower nappes. Thus, the karst types agree with the eastward decreasing trend in dip angles. 

The table also shows that there is little difference in the mean cave lengths from the overall study area 

mean of 85m for the two main karst types, with an indication that caves in low angle karsts are somewhat 

longer, and have larger volumes. The mean cave vertical range and the mean minimum hydraulic gradient 

appear to be little dependent on the karst type, with a slight increase in mean VR as the karst dip angle 
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decreases, but a decrease in mean minimum HG if the foliation is not vertical. Caves in vertical karsts 

have somewhat smaller passage cross-sections than caves in angled and low angle karsts, perhaps 

because of exploration bias towards the west. The catchment area appears to increase as the karst angle 

of dip decreases, but in this case the karst type is acting as a proxy for a progression eastwards, as 

discussed in section 5.2.2. The mean XS/CA ratios show wide variations, with no trend. 

By comparing Tables 5.6 and 5.7, it is apparent that the most complex cave type, h, occurs less 

frequently than expected from the full cave populations if KT=V, and more frequently if KT=A or L. The 

reason for the low frequency of cave type h in vertical stripe karst is probably the criterion of `steeply 

sloping (phreatic) passages' in its definition: only five such caves are known in VSK: Toerfjellhola 

(Z3), Sirijordgrotta (Z4), Etasjegrotta (Z4), Geitklauvgrotta (Z5) and Blafjellgrotta (Z5). These 

caves therefore demonstrate that angled, along-strike, phreatically-formed, ramp passages can occur in 

vertically foliated metalimestones, as well as in angled stripe karst and low angle karst. The small 

number of type h caves with KT=V contrasts with their longer mean lengths. Indeed, Table 5.7 shows 

that the mean major cave dimensions (length, VR and volume) of type h caves all reduce with foliation 

dip (V: A: L), in contrast to differing rankings for the total set of caves. The larger cross-sections and 

smaller catchment areas of type h caves suggest that these caves in particular were developed primarily 

before present hydrologies became established, for all karst types. The two caves of type h in complexly 

folded karst with steeply sloping ramps are Kvitfjellhola (Z4) and Labyrintgrottan (ZA). 

Takle 5.7 Cave tvoe h dimensions and karat tvne 
Karst T ype Units V A L C X ALL h 

No. of eh caves No. 5 23 9 2 0 39 
of type h caves % 12.8 59.0 23.1 5.1 100.0 

Mean cave len h m 1232 641 414 1403 703 
Mean cave VR m 53.6 39.8 31.1 21.0 38.6 
Mean cave min. HG % 4 11 14 6 11 
Mean cave XS m 6.3 4.2 4.9 3.3 4.6 
Mean cave volume m 8191 3231 3156 5456 3964 
Mean cave CA km 2.2 2.4 4.1 1.9 2.7 
Mean cave XS/CA m km' 3.2 14.9 6.1 1.8 10.7 

Unlike the mean outcrop widths determined from the carbonate rock outcrops database, which seem to 

decrease eastward across the nappe complexes (section 4.2.3), the mean outcrop widths recorded at the 

caves themselves increase as the nappes are descended: HNC 355m; RNC 527m; and Keli 1363m. The 

HNC and RNC mean widths are roughly twice as wide as the mean widths of all their carbonate 

outcrops, and the Koli mean width at caves is wider by an order of magnitude than the total mean l(oli 

width. This may indicate a preference for caves to form in wider outcrops, but the exploratory bias is also 

to visit the larger outcrops first. Additionally, there are examples of caves formed in outcrops down to 

3m wide (and less), and internal aquiclude layers also commonly reduce the effective width of the 

carbonate outcrop at the cave. This finding was tested at the zonal level. The mean widths of the 

carbonate outcrops vary non-systematically through the HNC, RNC and Kali Nappes from 432m in Zl to 
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53m in KS. They remain narrow in the nappes below the Koli, where the outcrops are commonly much 

shorter. Plots of the number of caves and total passage length against visited outcrop width were made, 

for most zones. They show no relationship, so that endokarst density seems to be independent of outcrop 

width. This result suggests that caves may form along the edges of carbonate outcrops, or along 

aquiclude contacts, or occupy the full width of narrow outcrops. 

5.3.2 Contact metamorphism (R) 

Section 4.2.4 discussed the sharp eastward decline of carbonate outcrops subjected to contact 

metamorphism (R=1) across the study area nappes. A similar trend is seen at the outcrops in which the 

explored caves are found: HNC 178 caves; RNC 2 caves; and Kali 27 caves. The 27 caves in the Koli 

nappes all lie in the large metacarbonate outcrop near Övre Ältsvattnet (KU, Appendix B1.13), in which 

small-scale Swedish geological maps indicate several granitic intrusions. Half the caves recorded in this 

area lie within 250m of an intrusive rock. In these caves, the foliation is generally removed, so that the 

dip is more difficult to determine, and the metalimestone karst is predominantly white, sporadically with 

intrusive aquiclude rocks. 

Table 5.8 shows that mean cave lengths, vertical ranges, minimum hydraulic gradients, cross-sections; 

and volumes are all smaller if the host carbonate was affected by contact metamorphism (R=1), for both 

T=0 and T=1 (section 5.3.3). However, the mean logarithms of each of these dimensions (and their 

standard deviations) are commonly similar for each R and T combination. This shows that the restrictions 

caused by contact metamorphism apply disproportionately to the caves with the greatest dimensions, 

because of the positive skew in the dimension distributions (section 5.2). The small number of caves 

adjacent to both intrusions and thrusts follows from the tendency for igneous plutons to `stick' nappes 

together, restricting thrusting. 

Table 5.8 Cave dimensions, contact metamorphism and proximity to major thrusts 
Contact metamorphism 

and thrusts 
Units Rý 

T=O 
R=1 
T=O 

Rý 
T=1 

R=1 
T=1 

ALL 

No. of caves No. 587 198 90 9 884 
Total cave length th km 48.11 11.99 13.84 0.95 74.88 
% of caves % 66 22 10 1 100 

of total cave length % 64 16 18 1 100 
Mean cave length th m 82 61 154 105 85 
Mean cave VR m 8.9 7.5 11.3 9.7 8.8 
Mean cave min. HG % 28 24 30 17 27 
Mean cave XS m 3.6 3.0 4.4 3.1 3.5 
Mean cave volume m 467 256 989 565 474 
Mean cave CA km 3.6 3.1 9.4 0.5 4.0 
Mean cave XS/CA m2 kkm'2 15.2 6.4 3.1 8.5 11.9 

5.3.3 Proximity to major thrusts (T) 
Section 4.2.5 discussed the generally increasing trend of carbonate outcrops to lie near major and internal 

thrusts as the nappes are descended. Only 12 caves occur in outcrops that are near thrusts in the HNC and 
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RNC. Most of these are quite short: the longest, Nedre Jengelgrotta (Z8), is only 460m long. However, 

87 caves are near thrust boundaries in the Kali Nappes. These include: a) the caves at Rödingsfjäll and 
Sotsbäck, including Sotsbäcksgrottan (1850m), which all lie at the top of KU beneath the RNC sole 
thrust (Appendix B1.13); and b) the caves in KL, including the Bjuräly karst and Korallgrottan (5600m 

long), which all occur in one dismembered outcrop that lies near to, and in places on the base of, the 
Leipikvattnet Nappe (Appendix B1.15). Thus, the evidence from the caves is in agreement with the 

general trend from the carbonates database, and the occurrence of two of the three longest Swedish caves 
in the study area at thrust zones may not be coincidental. The possibility that the presence of a thrust 

zone could cause fractures and fissures in the limestone that promote cave development was not 

addressed by Helld6n (1975). No records have been kept of the occurrence of large faults (with 

displacements of several metres) within the carbonate outcrops, and none have been reported from inside 

any of the caves of the area. However, it is noted in passing, that Akervikgrotta (Z7) is close to a large 

normal fault, and Nordlysgrotta (Z2), which contains a linear rift some 220m long, is probably fault- 

aligned, as is the nearby Marimyntgrotta. 

Table 5.8 shows that mean cave lengths, vertical ranges, cross-sections and volumes are all greater if the 
host carbonate was affected by thrusting (T=1), for both R=0 and R=1. As argued in section 5.3.2, these 
larger sizes appear to apply disproportionately to the caves with the greatest dimensions. The mean 

minimum hydraulic gradient for caves near thrusts (29%) remains close to the study area average (27%). 

The larger mean catchment area for caves with R=0 and T=1 (9.4km2) arises because there are more 
thrusts and less intrusions in the eastern part of the study area, where catchment areas increase in size. 
Girdsfjellgrotta (Z6) and a group of eight low angle karst caves at Jengelvatn (Z8) are distinctive, 

because they all lie along the sole of the HNC thrust and are assigned both T=1 and R=1. 

By comparing Tables 5.8 and 5.9, it can be seen that the frequencies of the most complex caves, type h, 

in each R, T combination do not vary greatly from those in the full cave population. Their mean cave 
dimensions are also reduced with contact metamorphism, and increased with thrusting. These findings 

that contact metamorphism restricts cave development compared with purely regional metamorphism, 

whereas thrusting commonly enhances cave development, are discussed further in section 6.5.1. 

Tohle S_9 

Contact metamorphism 
and thrusts 

Units 11=0 
Tý 

R=1 
T=O 

Rý 
T=1 

R=1 
T=1 

ALL 
h 

No. of type h caves No. 22 11 6 0 39 
%Y. oft eh caves % 56 28 15 100 
Mean cave length m 646 303 1645 703 
Mean cave VR m 39.0 24.6 62.7 38.6 
Mean cave min. HG 

_% 
10 13 9 11 

Mean cave XS m 4.4 4.3 5.8 4.6 
Mean cave volume m 3561 1374 10187 3964 
Mean cave CA kM2 2.2 1.1 7.9 2.7 
Mean cave XS/CA m km" 14.1 8.6 1.9 10.7 

Cave type h dimensions, contact metamorphism and thrusts 
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5.3.4 Cave locations (CL) 

Homoclinal stripe karsts occur in various geometrical relationships to the surface topography at the 

location of each cave. From the experience with sedimentary limestones, these relationships are expected 

to influence the presence of caves, the positions of cave entrances, and internal cave morphology and 

hydrology. In an attempt to determine if there are such relationships for the study area caves, further- 

external cave attributes are defined in Appendix C2.1 and quantified in the two cave databases. These 

are Cave Location (CL), Slope Relationship (SR) and Orientation (OR). 

Section 2.2.1 discussed the apparent extent of the paleic surface in the study area (CL=P), according to 

Rudberg (1997). By plotting assumed surfaces on to the topographical maps of the area, it was found in 

this study that they commonly, but not universally, occur at altitudes over 700m, rising to 900m over 

mountain ranges, and are typically characterised by even, parallel, contours. They lie above the tree line 

in Norway, where they commonly correspond to the more resistant, higher, mountains of igneous 

emplacements. There are no carbonate outcrops at the paleic surface west of Z4. Paleic surfaces that 

expose proportions of carbonate outcrops occur in Z7, Z8 and all lower nappes, and increase eastwards. 

In the Norwegian part of the study area, caves only lie fully on the paleic surface in V. In the Swedish 

part, most carbonate outcrops, and 67% of the karst caves, are located on the paleic surface. Some of the 

longer caves of the study area are thus located beneath the assumed paleic surface, including 

Labyrintgrottan (ZC) and Sotsbäcksgrottan (KU). Ytterlihullet (ZA), although close to the paleiC 

surface, is assigned to the S location. 

The relationships between cave dimensions and cave locations are listed in Table 5.10. These figures 

reveal some notable variations amongst the different cave locations. Thus, paleic surfaces favour caves 

that are slightly shorter, less deep and have smaller cross-sections and volumes than the total average, 

despite having larger-than-average catchment areas. Valley shoulder and ridge locations favour longer 

and deeper caves, with larger volumes, and yet, because of their high locations within their local 

landscapes, they have very small catchment areas. Caves located on valley walls are somewhat deeper 

than average, but are shorter and smaller. These findings may indicate the ease with which new fractures 

can form in narrow ridges and at angular valley shoulders, and may suggest a slightly more tectonically- 

stable condition along the walls of glacial valleys (Chapter 6). Caves in valley floors are less deep, and 

have catchment areas that are around twice the average (as expected), but they are only slightly longer 

and larger than the average. These observations clearly demonstrate that cave dimensions are commonly 

not related to present catchment areas, as also shown by the large variations in mean XS/CA ratios. The 

mean minimum HG shows little variation, although a higher value occurs for caves in location S, because 

of their larger mean VR. Coastal caves are commonly very short and shallow. Whereas deep coastal 

caves would be submerged and difficult to explore, there are no reports of submarine resurgences along 

the coast of the study area. However, Langfjordgrotta (Z2) is at an altitude of only 10m. Its resurgence 

entrance leads to a sump deeper than 10m, which heads towards a sinking lake at an altitude of 43m, 
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some 1500m away. Thus, this long system acted as a submarine resurgence prior to its emergence by 

isostatic uplift some 1500 years ago (Figure 8.1 b). The cave type h dimensions for each cave location are 

given in Table 5.11, which shows some variations in rank order compared with the full set. In particular, 
three type h caves with CL=S reverse the full set trend, with restricted mean lengths and volumes. 
Takle 5.10 Cave dimensions and envp Inpfii n 

Cave Location Units C F W R S G P ALL 
No. of caves No. 15 246 197 62 57 197 110 884 
Total cave length km 0.23 23.30 13.01 7.83 5.90 15.74 8.87 74.88 
% of caves % 1.7 27.8 22.3 7.0 6.4 22.3 12.4 100 
% of total length % 0.3 31.1 17.4 10.5 7.9 21.0 11.8 100 
Mean cave length m 15 95 66 126 104 80 81 85 
Mean cave VR m 2.9 7.4 10.0 11.8 14.2 8.4 7.2 8.8 
Mean cave min. HG % 31 22 30 28 39 28 26 27 
Mean cave XS m 4.0 4.2 3.1 4.0 3.1 3.9 2.2 3.5 
Mean cave volume m 70 523 321 614 663 549 382 474 
Mean cave CA km2 8.6 8.2 1.6 0.8 0.9 2.2 5.1 4.0 
Mean cave XS/CA m km' 17.3 4.9 25.5 31.0 11.1 6.5 1.9 11.9 

Table 5.11 Cave tvne h dimensions and cave Ineatinn 
Cave Location Units C F W R S G P ALL h 

No. of t3V h caves No. 0 8 9 5 3 5 9 39 
Total h cave length km 0 10.25 3.23 3.99 1.14 3.06 5.76 27.42 

of eh caves % 21 23 13 8 13 23 100 
of total cave length % 37 12 15 4 11 21 100 

Mean cavelength m 1281 359 798 381 611 639 703 
Mean cave VR m 43.4 39.6 43.2 29.0 38.8 34.0 38.6 
Mean cave min. HG % 6 14 6 16 10 12 11 
Mean cave XS m 5.1 4.4 4.2 4.2 6.8 3.3 4.6 
Mean cave volume m 6422 2223 3561 2021 5532 3519 3964 
Mean cave CA kM2 

-4 
6.9 1.6 1.2 0.8 1.7 2.3 2.7 

Mean cave XS/CA m Tkm 

= 4.1 30.6 5.7 10.5 5.5 2.2 10.7 

Because stripe karsts are commonly aligned with valleys and ridges, it is appropriate to consider the 

slope relationship to the dip of the foliation at each cave, as discussed by Osborne (1999, Fig. 12). Table 

5.12 shows that over 70% of the caves are situated where there is no relationship between the surface 

slope and the dip of the foliation, because many caves are in vertical stripe karst or in cave location F. 

The mean cave length and vertical range for caves in slope relation U are somewhat more restricted than 

those of caves in slope relation D. This is Heap's Hypothesis: "... limestone which dips very steeply back 

into the hill.... usually limits cave development in Norway" (Heap, 1975, p5), also supported by Osborne 

(1999, Fig. 12), which appears to be confirmed for vertical range, and more weakly confirmed for cave 
length. The mean minimum HG and cross-section show little variation. 

Regarding orientation, Table 5.13 shows that nearly 80% of the caves are indeed situated where the 

outcrop strike is aligned with the local topography. It appears that caves may be longer and deeper (but 

smaller) where the strike is angled to the topography, and shorter (giving a high minimum HG) where it 

is orthogonal, but these are much smaller samples. Where there is a parallel relationship or no 

relationship, the mean cave dimensions are very close to the overall means. 
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Table 5.12 Cave dimensions and clnne relatinnchin 
Sloe relationship Units D N U X ALL 

No. of caves No. 85 636 141 22 884 
Total cave length km 6.91 57.53 9.69 0.75 74.88 
% of caves % 9.6 71.9 16.0 2.5 100 
% of total cave length % 9.2 76.8 12.9 1.0 100 
Mean cave length m 81 90 69 34 85 
Mean cave VR m 12.4 8.3 9.5 6.6 8.8 
Mean cave min. HG % 30 26 30 24 27 
Mean cave XS m 3.8 3.5 3.5 3.1 3.5 

Table 5.13 Cave dimenoinnc and nrientatinn 
Orientation Units P A 0 N X ALL 

No. of caves No. 694 35 32 109 14 884 
Total cave length km 57.87 5.33 2.21 9.08 0.40 74.88 

of caves % 78.5 4.0 3.6 12.3 1.6 100 
% of total cave len th % 77.3 7.0 3.0 12.1 0.5 100, 
Mean cave length m 83 152 69 83 28 85 
Mean cave VR m 8.6 15.3 8.7 8.9 4.9 8.8 
Mean cave min. HG % 27 33 44 23 26 27 
Mean cave XS m 3.6 2.5 3.2 3.6 2.3 3.5 

5.3.5 Glacial Situations (GS) 

It is hypothesised herein that the hydrogeological development of the karst caves is influenced by their 

settings relative to the various situations that occurred during the Quaternary glaciations, where the 

elevation of the glacial situation of each cave is defined in Appendix C2.1 and illustrated in Figure 5.3. 

The significance of glacial situations is clarified in section 8.1.5. In summary, they are primarily altitude 

and isobase dependent, descending from near a high peak down towards sea-level, and are not strongly 

linked to the surface topography at the cave. Caves occur commonly in each of the main glacial situations 

T to D in all cave locations (apart from the coastal and paleic surface extremes), suggesting that the main 

cave location and glacial situation attributes are independently variable. However, large percentages 

(39% and 34%) of caves with GS=S and T have CL=P, in the higher (paleic) parts of the landscape, 

primarily in Sweden. 

Table 5.14 summarises the relationships between cave dimensions and the paired west and east glacial 

situations. Nearly half the caves are in situation L, only two cave fragments (in Z4) are in the uppermost 

situation, U, only 1.7% are coastal, C, and only 2.0% are in situation S. Situation C only occurs in Z1, Z2 

and Z3, and D, E, G and H only occur in ZA and zones to the west, agreeing with their proximity to the 

sea. Situations K and L occur in all inner zones (section 5.2.5), except that K does not occur in Z8 and 

KL, and L does not occur in ZB. Situations S and T occur more sparsely. 

Only 214 of the 884 caves (24%) lie west of major ridges, despite the occurrence there of 50% of the 

carbonate outcrops in those zones that have known caves (section 4.2.6). This under-representation is 

evident for all GS=D, G, K and S, and in most zones. Mean cave lengths, vertical ranges and volumes are 
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higher for caves east of major ridges but below marine limits (GS=E and 11), and higher for caves west of 

major ridges but above marine limits (GS=K and S). The differences in mean length and volume between 

GS=K and L would be greater if Korallgrottan (KI-, length 5600m), whose VR straddles the lowest 

local col elevation, was assigned GS=T instead of L. The very high mean VR for GS=S (22.1 m) is partly 

accounted for by the presence of Ytterlihullet (LA, I80m deep, GS=S), which also straddles its lowest 

col. However, even without the inclusion of Ytterlihullet, the other 17 caves still have a large mean VR 

of 12.8m. Mean minimum HGs do not vary much between east and west counterparts. 

Table 5.14 Cave dimensions and glacial situation 

Glacial situation C D E C H K L S T U ALL 

No. of caves 15 23 67 30 64 128 419 18 118 2 884 
Total cave length 0.23 1.19 6.07 1.82 7.86 11.85 37.91 2.02 5.91 0.01 74.88 
% of caves 1.7 2.6 7.6 3.4 7.2 14.5 47.4 2.0 13.3 0.2 100 
% of length 0.3 1.6 8.1 2.4 10.5 15.8 50.6 2.7 7.9 0.02 100 
Mean lenth 15 52 91 61 123 93 90 112 50 7 85 
Mean cave VR 2.9 5.8 8.3 6.2 10.9 9.7 9.1 22.1 6.2 2.0 8.8 
Mean min. HG 31 21 18 17 22 27 30 27 30 29 27 
Mean cave XS 4.0 5.9 4.6 3.9 3.8 3.9 3.2 4.8 2.7 2.0 3.5 
Mean volume 70 302 514 282 965 561 479 636 190 14 474 
Mean cave CA 8.6 2.7 1.7 2.5 4.0 7.3 4.0 1.7 2.2 0.5 4.0 
Mean XS/CA 17.3 20.3 11.4 5.0 7.1 2.9 18.0 3.8 3.7 4.0 11.9 

Units as Table 5.8. Glacial situations east of a major ridge are shaded. 

Mean cave cross-sections are consistently higher west of major ridges, and consistently reduce for both 

east and west situations at higher altitudes (except For the large value for the small sample with GS-S, 

and despite the existence of some large passages at high altitude). I lowever, there are no similar trends in 

mean CA, which suggests that many caves did not develop under present conditions. 

The values in Table 5.14 show that mean cave dimensions vary as much with glacial situation as with 

cave location (section 5.3.4). The increases in cross-section for caves below marine limits (especially 

west-facing), and in volume for GS=E and FI, may arise from enlargement of entrance areas by wave 

action during glaciation and deglaciation (section 8.8), and as may be supported by the large values of 

mean XS/CA occurring in the three lowest glacial situations (C, 1) and F). The relatively larger XS/CA 

ratios for caves above the deglaciation marine limit but below the lowest col that presently drain 

eastwards suggests that caves with GS=II and I. enlarged less under present conditions than caves that 

drain westwards (GS=-G and K). No similar conclusion can be drawn fier caves above the lowest col 

(GS=S or T). Any caves previously existing in the very high U situation may have been preferentially 

weathered away by glacial erosion. These relationships are analysed in more detail in section 5.5, where 

caves are divided into hydrological classes. 

Table 5.15 provides similar information for just type Ii caves, which occur even more predominantly on 

the east side of major ridges. There are none below marine limits and on western sides, but otherwise, the 
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rank orders for GS occurrences are fairly similar to those for the full set. Mean vertical ranges are higher 

on the western sides above the glaciation marine Iimit, but mean cave lengths and volumes are variable. 

Table 5.15 Cave tvne h dimensions and glacial situation 

Glacial situation C D E G H K L S T U ALL h 

No. of caves 0 0 5 0 6 3 19 I 5 0 39 
Total cave length 0 0 1.21 0 4.40 2.49 17.05 0.32 1.96 0 27.42 
% of caves 13 15 8 49 3 13 100 
%, of length 4 16 9 62 1 7 100 
Mean length 241 734 830 897 316 391 703 
Mean cave VR 16.8 51.7 55.7 40.4 50.0 25.6 38.6 
Mean min. HG 12 12 10 10 16 8 II 
Mean cave XS 4.4 8.2 5.0 4.1 2.5 2.4 4.6 

can volume 1070 7254 4587 4533 790 1007 3964 
Mean cave CA 1.1 1.7 1.1 3.8 1.5 2.7 2.7 
Mean XS/CA 10.2 8.0 5.0 15.5 1.7 1.3 10.7 

Units as "Table 5.8. Glacial situations east of a major ridge are shaded 

5.3.6 The longest and deepest caves in the study area 

The 12 longest and 12 deepest caves in central Scandinavia are shown in Tables 5.16 and 5.17, which 

also record their external attributes and cave types. The first ranking cave in each table is exceptional 

within the study area. Thus, Korallgrottan (KL) has a length of 5600m, which is more than twice the 

length of the second ranking cave, and Ytterlihullet (ZA) has a depth of 180m, which is 25% more than 

that of the second ranking cave. 

Most zones and nappes are represented in each table, showing no zonal trend, except that there are no 

representatives from the `outer' cave zones ZI, Z9 and KB, i. e. the extreme north, west and east zones of 

the [INC / RNC / Koli sequence. The longest and deepest caves formed in a contact metamorphism karst 

are ranked eleventh and sixth, whereas three of the five longest caves and two of the three deepest caves 

are formed near thrust boundaries, again illustrating the restrictive and enhancing effects of igneous 

intrusions and thrust zones. The longest and deepest caves are concentrated in glacial situations H, K and 

L, with only the exceptional Ytterlihullet (assigned GS=S) and Koraligrottan (assigned GS=L) having 

their highest and lowest points above and below the level of the lowest local pass. Thus, very long and 

deep caves are commonly absent at the altitudinal extremes. Additionally, glacial situation G is 

noticeably absent. As with the whole set of caves (section 5.3.5), the number of longest caves is higher 

on the eastern side of adjacent mountain ranges and ridges, as only Toerfjellhola, Gronndalsgrotta and 

Akersvanngrotta (with GS=K) lie west of major watersheds. The mean length of these eastern caves is 

1903m, which is greater than the 1399m mean length of the western caves, in contrast to the finding in 

section 5.3.5 that total mean cave dimensions above the glaciation marine limit are higher west of major 

ridges. The numbers (12 and 6) with east- and west-draining systems in the deepest 18 systems (Table 

5.18) also seem significant, and in this case their mean VRs (71m and 87m) follow the previous rule. 
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Table 5.16 Longest caves 
LONGEST 
CAVES 

L 
m 

Z C R T GS CL KT SR OR CA 
km2 

CT Min. 
HG % 

XS/CA 
m2km 2 

Korallgrottan 5600 KL S 0 1 L F A N P 3.5 h 2.6 1.4 
Lab rant rottan 2600 ZC S 0 0 L P C N P 2.5 h 0.8 1.6 
Toerfjellhola 1896 Z3 N 0 0 K R V N A 1.1 h 5.3 5.5 
Stor 
Grubblands rotte 

1890 KU N 0 1 L F A N N 19.0 h 2.6 0.3 

Sotsbäcks rotten 1850 KU S 0 1 L P L N A 2.5 h 5.9 4.0 
Sirijordgrotta 1411 Z4 N 0 0 H G V N P 2.0 h 5.5 6.0 
Grenndals rotte 1400 ZA N 0 0 K S L U P 5.0 h 5.0 2.0 
Etas' rotte 1055 Z4 N 0 0 L F V N P 3.0 h 4.0 1.0 
Geitklauv rotte 935 Z5 N 0 0 H G V N P 3.5 h 1.7 2.4 
Akersvann rotte 900 ZB N 0 0 K G L N N 1.0 c 2.2 2.0 
Svartdalgrotta 899 Z2 N 1 0 H S L D P 0.3 h 5.9 24.0 
Kvannlihola 889 Z7 N 0 0 L G V Nmj 

m" m2.0j mmj=j m 
2.1 7.5 

TAhle 5.17 Deeuest caves 

DEEPEST 
CAVES 

VR 
m 

Z C R T GS CL KT SR OR CA 
km2) 

CT Min. 
HG % 

XS/CA 
m2km 2 

Ytterlihullet 180 ZA N 0 0 S S L D N 0.4 d 25.7 20.0 
Korallgrottan 144 KL S 0 1 L F A N P 3.5 h 2.6 1.4 
Sotsbäcks rotten 110 KU S 0 1 L P L N A 2.5 h 5.9 4.0 
0 ell rotte 105 ZS N 0 0 H W A D P 2.0 h 13.1 7.5 
Tce ellhola 101 Z3 N 0 0 K R V N A 1.1 h 5.3 5.5 
Luktindgrotta 80 Z6 N 1 0 L R A N P 5.0 b 13.3 1.2 
Sirijordgrotta 78 Z4 N 0 0 H G V N P 2.0 h 5.5 6.0 
Grenndals rotte 70 ZA N 0 0 K S L U P 5.0 h 5.0 2.0 
Kloftholet 60 ZC N 0 0 K G A N N 10.2 b 28.6 2.9 
Cold Wind Cave 58 Z3 N 0 0 K W V N A 0.7 15.6 8.6 
Du alshullet 55 KU N 0 1 L W A U P 0.8 a 22.9 18.8 
Svartdalgrotta 53 Z2 N 1 0 H S L D P 0.3 h 5.9 24.0 

Z: Zone c: Country N: Norway S: Sweden 

All main karst types and all cave locations except the coastal are well-represented in Tables 5.16 and 

5.17, although the longest caves do not occur at CL=W. Hence, long and deep caves can indeed occur in 

most geological and local topographical conditions. The long caves seem to favour conditions where 

there is no relationship between the angle of dip of the karst and the surface slope, and no long or deep 

caves occur where the karst strike is orthogonal to the glacial topography. However, there are only 32 

caves with this condition, which may be too small a sample to draw firm conclusions. The catchment 

areas for these caves vary from 0.3-24km2, with no discernible trend. As expected (section 5.2.5), most 

long caves are of the most complex type, h, but deep caves exhibit a greater range of cave types. The 

longest and deepest caves thus occur in a slightly restricted set of the various external attributes. The 

shorter and less deep caves can be expected to occupy the various conditions more completely, so that, 

overall, there should be few direct relationships between cave types and the external variables, 

supporting the observation made at the end of section 5.2.5. 

The 12 longest caves have minimum HGs from 0.8-5.9%, in the lowest part of the possible range (Table 

5.5), again suggestive that HG varies as the inverse of the cave length. The 12 deepest caves have HGs 
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from 2.6-28.6%, still in the lower part of the possible range, which seems to be counter-intuitive, but this, 

is again explained by the mainly inverse relationship between HG and cave length. Furthermore, there 

seems to be little relationship between the minimum HG and the cave type for either the 12 longest or the 

12 deepest systems. The lack of any obvious relationship between length and catchment area, and the 

small catchment areas for many of the deepest caves, strongly suggests that these caves could not have 

formed primarily by dissolution in the present climatic environment. However, all but three of the longest 

and deepest caves have individual XS/CA ratios that are much lower than the study area mean of 

I I. 9m2km"2. This suggests that a considerable proportion of these caves did enlarge under present 

interglacial conditions. Thus, the longest and deepest caves commonly exhibit enlargement under both 

earlier and interglacial climatic environments. 

5.3.7 Distance from surface 
Because the mean vertical ranges for the caves in the study area are small (sections 5.2.1 and 5.2.4), it is 

surmised that VR is not the most important geomorphological measurement for caves situated in steeply, 

sloping locations. Accordingly, Table 5.18 records the maximum subsurface cave distance from the 

centres of passages (section 6.5.2: Figure 6.3) in the 18 deepest systems, taking the information from the' 

surveyed sectional profiles of the caves and from local maps. 

Ttihlo 4 12 Minimum enhenrfora rnva dietunnn 

DEEPEST 
CAVES 

VR 
m 

Zone Country R T GS CL KT SR OR Max. subsurface 
cave distance m 

Ytterlihullet 180 ZA Norwa 0 0 S S L D N C. 93 

Korall rottan 144 KL Sweden 0 1 L F A N P 50? 

Sotsbäcks rotten 110 KU Sweden 0 1 L P L N A 50 

0 rjell rotte 105 Z5 Norway 0 0 H W A D P 40 

Toerf'ellhola 101 Z3 Norwa 0 0 K R V N A 47 
Luktindgrotta 80 Z6 Norwa 1 0 L R A N P 15 
Slri'ord rotta 78 Z4 Norway 0 0 H G V N P 45 

Grenndals rotte 70 ZA Norway 0 0 K S L U P 40 

Kloftholet 60 ZC Norway 0 0 K G A N N 50 

Cold Wind Cave 58 Z3 Norway 0 0 K W V N A C. 50 
Du dalshullet 55 KU Norway 0 1 L W A U P 50 
Svartdalgrotta 53 Z2 Norway 1 0 H L D P 50, to cliff 
Stor 
Grubblandsgrotta 

50 KU Norway 0 1 L F A N N 50 

Baaa rotte 50 ZC Norway 0 0 S G A N P 40 

JOBshullet 46 Z2 Norway 1 0 H R A N P 25, to ridge walls 
Östra 
Jordbäcks rottan 

45 ZC Sweden 0 0 T W A U P 27 

Nedre Jen el rotte 45 Z8 Norway 1 I L G L N P 10? 
Etasjegrotta 42 Z4 Norwa 0 0 L F V N P 40 

7 1nese are uncertain, as cave survey elevations have not been pubusnea. 

The data reveal that the maximum rock thicknesses for each cave are commonly much less than the cave 

vertical ranges, especially for the deeper systems. The greatest rock thickness above any cave formed in 

vertical or angled stripe karst is about 50m. Only Ytterlihullet (ZA, in LAK) has a greater rock thickness 
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(c. 93m) above the lowest parts of its streamway. Hence, many caves in the study area gain depth below a 

gently descending surface slope, to which they keep within a relatively close range. This suggests that 

caves in vertical and angled stripe karst have formed entirely within an upper zone of fractured rock that 

has a maximum thickness of -50m. This zone might, perhaps, be compared to the epikarst or 

subcutaneous zone of sedimentary limestone, but in the case of metamorphic stripe karst, there is no 

lower `percolation' zone and probably no cave development below the level of fracture porosity. 

5.4 Hydrological cave classes 

The `cave type' classification (section 5.2.5) was devised to represent the internal structure of the caves 

in a manner that is primarily neutral to their mode and timescale of formation. Another approach is to 

consider the relationship of the caves to their present climatic and hydrological environment. A clear 

distinction can be made between the large number of caves that exist independently of present drainage 

('relict caves ), and those that are integrated within their local meteoric fluvial systems (`active caves'). 

A second distinction within the active caves is between those that contain relict passages and / or levels 

above active streamways, and those that only consist of active streamways. It is shown in section 5.6.7 

that the relict caves, and the relict passages within active caves, were predominantly developed 

phreatically. Caves that only consist of explorable active streamways are regarded as `mainly vadose 

caves' in their mode of development, although their early formation would usually have been phreatic 

and they may contain (commonly short) active phreatic sections. Thus, the total set of caves may also be 

divided into (phreatic) relict caves, mainly vadose caves, and `combination caves, which consist of both 

relict phreatic passages and / or levels, and active, mainly vadose, streamways. This section introduces 

the properties of these three classes of cave, by further pivot table analyses of the combined cave 

database, and section 5.5 compares the influences that the external attributes have had on them. 

5.4.1 Relict caves (RC) 

Those caves with zero cave streams (CS=O; Appendix B2.2) are regarded as relict caves. The dimensions 

of these caves in each zone are presented in Table 5.19. Some 279 (32%) of the recorded caves are relict, 

varying non-systematically from 17-54% across the inner zones. However, they account for only 13% 

(about 9km) of the total length of cave passage, this percentage varying non-systematically from 2-79% 

across the same zones. The high percentage in ZB arises from the presence of the 900m-long 

Akersvanngrotta. Relict caves have a mean length of only 34m, and this has some consistency across 

the unshaded zones with larger sample sizes. The zonal volumes and VRs are similarly restricted, only 

averaging 131 m3 and 5.9m in total, and, together with the mean minimum HGs, do not show a systematic 

variation. The mean cross-sections (Photo 5.1) and catchment areas of relict caves are variable zone by 

zone and the mean XS/CA ratio for all relict caves has the high value of 20.3m2km-2, suggesting that a 

large proportion of cave development occurred in relict caves before the establishment of present 

hydrological conditions. 
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Table 5.19 Zonal variations of relict cave dimensions 
Zone No. 

of 
relict 
caves 

Relict 
% per 
zone 

Relict 
cave 

length 
% per 
zone 

Mean 

relict 
cave 

length 
(m) 

Mean 
relict 
cave 
VR 
(m) 

Mean 
relict 
cave 

min. HG 
(%) 

Mean 
relict 
cave 
XS 

(m2) 

Mean 
relict 
cave 

volume 
(m3) 

Mean 
relict 
cave 
CA 

(km2) 

Mean 
relict 
cave 

XS/CA 
(m2km-2) 

Z9 1 100 100 25 5.0 20 10.0 250 0.2 50.0 
ZI 4 100 100 8 2.3 34 5.5 49 0.1 55.0 
Z2 45 27 16 38 6.4 26 4.5 168 1.7 16.8 
Z3 15 42 12 28 5.2 37 1.9 57 2.6 2.8 
Z4 99 54 21 31 6.8 41 2.5 83 1.0 42.8 

Z5 15 19 5 28 4.5 29 3.2 202 2.0 2.6 

Z6 16 25 7 24 5.0 39 2.6 106 3.2 2.1 
Z7 19 22 8 19 5.8 37 5.9 255 3.8 8.3 

Z8 2 25 2 7 2.0 29 2.0 14 0.3 6.7 
ZA 11 30 22 80 6.6 30 3.5 306 3.5 3.6 

ZB 3 43 79 371 11.0 27 4.0 1163 3.2 7.6 
ZC 22 38 6 16 4.3 29 2.1 42 2.3 2.1 

KU 22 18 5 23 5.6 23 1.6 57 7.0 0.6 

KL 5 17 2 24 4.4 33 4.7 170 20.8 0.3 
KB 0 

ALL 
RELICT 

279 32 13 34 5.9 34 3.1 131 2.6 20.3 

ALL 
CAVES 

884 100 100 85 8.8 27 3.5 474 4.0 11.9 

Shaded zones have <35 caves. Relict caves have CS=O 
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Table 5.20 lists relict caves that are _I00m 
long or >40m deep. This shows that the longer relict caves 

are biased towards the western zones (especially Z4), as none occur stratigraphically lower than ZB, and, 

therefore, there are none in Sweden. They also occur in most external attribute classes, but not with T=1 

(because of the western bias), and only one is below the deglacial marine limit. Three are in 're- 

metamorphosed' karst (R=1), a representative proportion. The maximum length is 900m, but the 

maximum VR is only 40m. The trend for west-facing relict caves to be longer is confirmed, because 44% 

of this group lie to the west compared with only 21% for all relict caves. Only eight relict, caves have 

lengths >_200m. The short mean length of relict caves may be explained by an increased probability of 

allogenic streams to enter caves that are longer, thereby forming combination caves. Their restricted 

mean vertical range arises from the absence of a vadose entrenchment phase. 

Tahle 5.20 Lon'est and deenest relict ri e 
RELICT 
CAVES 

L 
m 

VR 
m 

SD Z C R T G 
S 

C 
L 

K 
T 

S 
R 

O 
R 

CA 
(km2) 

C 
T 

Min. 
HG % 

XS/CA 
m=km'2 

Akersvann otta 900 20 15? ZB N 0 0 K G L N N 1.0 c 2 2.0 
Sarve'aell otta 411 31 24 Z4 N 0 0 L A U P 0.1 h 8 15.0 
Two Bridges Cave 395 36 30 Z2 N 1 0 K A D P 1.5 h 9 2.0 

i#sk'eleren 300 15 15 Z4 N 0 0 H S V N P 0.1 f 5 10.0 
Revholet 268 15? 20? ZA N 0 0 K G L U P 5.0 6 0.8 
200m Grotta 250 15? 20? ZA N 0 0 K G L U P 5.0 d 6 0.8 
Leirskarelvgrotta 210 10? 10? ZB N 0 0 K F A N P 8.5 I 5 0.9 
Dripsteinhola 200 30 30 Z6 N 1 0 K G A D P 0.8 h 15 7.5 
Balcony Cave 175 18 14 Z3 N 0 0 HI VA A D P 25.0 f 10 0.1 
Kalkdal rotte 165 16 16 Z2 N 0 0 D G A N P 1.8 b 10 1.2 
Saeterbekkgrotta 153 9 9 Z5 N 0 0 L F A N P 4.0 a 6 1.2 
Musk Cave 150 30? 30? Z4 N 0 0 L A U P 0.01 b 20 400.0 
Ridge Pot 140 13 13 Z4 N 0 0 I. G A N P 0.1 9 10.0 
Fault cave 119 16 16 Z4 N [O 0 T R V N P 0.7 d 13 8.6 
Kidney Lake Cave 114 16 16 Z4 N 0 0 T R V N P 0.8 b 14 7.5 
Grotte Aug. 82 60 40 40 Z2 N 1 0 L F A N P 0.5 e 67 6.0 

Jv. iviax. 3uuauiºaa, c %, avc IJ, auuIcc kill) c.: cone U: country N: Norway S: Sweden 

Many cave types are represented in Table 5.20 and catchment areas and minimum HGs are very variable, 

showing that this group of caves seems to have even more `random' attributes than the total set. The 

individual XS/CA ratios show a large range (0.1-400 m2km"2). Several small relict caves in the study area 
have even smaller ratios (min: 0.03m2km'2), whereas Shelter Cave (Z4) has a ratio of 800m2km 2, the 

greatest in the whole study area, giving a spread of four orders of magnitude. Because of their phreatic 

nature, those relict caves with small ratios cannot be considered to have developed in present conditions, 

as can be assumed for active caves with small XS/CA ratios. Rather, there is just no relationship between 

present catchment area and the dimensions of relict caves. 

The only relict type h cave additional to the three listed in Table 5.20 is the short Draugenshullet (Z2), 

which is in LAK, unlike the other relict type h caves that are in ASK. All but Sarvejaellagrotta are in 

`re-metamorphosed' limestone, and all have CL=W, except Dripsteinhola, which has CL=G. 
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5.4.2 Mainly vadose caves (MV) 

A large proportion of the caves appear to be `immature' in their development, identified in the cave 

databases as mainly vadose (MV=1). All these caves are active, with one or more cave streams (CS>O) 

and they seem to have developed primarily under vadose conditions. They may include active phreatic 

sections (sumps) along their streamways, but they do not contain separate relict phreatic passages or 

significant phreatic upper levels above the stream passages. Some of the caves include relict vadose 

passages (RV), but as these caves are all active, this probably represents rather recent stream capture, 

within the same cave. Most of this class comprises active shafts (CT=S) and cave types a-d, in 

accordance with their definitions. For convenience, this class also includes a few short caves that are 

mainly submerged, including sumped resurgences. One such cave is a hybrid, Aunholet (Z2), and 

another, Nedre Laksfors Rising (Z5), is assigned cave type f, because it consists of a flooded resurgence 

dived to the top of a shaft. 

It seems likely that these caves evolved to their present morphology and dimensions under climatic 

conditions similar to those of the present, and they may therefore differ fundamentally from caves with 

significant relict phreatic development. The occurrence of mainly vadose caves in each zone is shown in 

Table 5.21. From these data, 245 of the total 884 caves (28%) are mainly vadose, although this 

proportion varies considerably and non-systematically across the zones. Mainly vadose caves account for 

only 9% of total passage length. They have a mean length of only 26m and the means of XS, volume and 

VR are similarly restricted. However, zonal mean catchment areas are commonly large, and the mean 

XS/CA ratios are commonly small, showing that MV cave development is, indeed, closely related to 

present hydrology. The mean dimensions of MV caves in zones ZC, KU and KL are commonly smaller 

than the total MV means, suggesting that vadose development is driven by the present hydraulic gradient, 

which reduces in the softer scenery in Sweden. Although a full statistical treatment is needed for this 

subject, these preliminary findings provide evidence to support Lauritzen's Conjecture that the caves in 

Norway fall into two sets: those whose dimensions are related to present catchment areas, and those that 

are not (S-E Lauritzen, pers. comm., 1998). 

Table 5.22 lists the 13 mainly vadose caves that are >100m long. As with the longer relict caves (section 

5.4.1), these longer MV caves are biased towards the western zones, with none east of ZB, and, therefore, 

none in Sweden. This explains why none have T=1, nor KT= L. Two caves have R=1, which is quite 

representative. The cave locations are biased towards valley floors and walls, as may be expected. Their 

glacial situations are almost all above marine limits, with GS=K, L and T each having four 

representatives, showing no east to west bias between GS=L and K. The maximum length is only 208m, 

and the maximum vertical range is only 22m. Minimum HGs are restricted to the range 3-19%, with 

possibly an inverse relationship with cave length. The short MV mean cave length is explained by the 

extremely epigean nature of MV cave development, as all MV caves lie within 20m of the surface, and 

truncation is therefore more likely. The MV restricted vertical ranges arise from the absence of a 

significant phreatic development phase. 
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Table 5.21 Zonal variations of mainly vadnse cave dimensions 

Zone No. 
of 

MV 
caves 

MV 
% 
per 

zone 

MV 
cave 

length 
% per 
zone 

Mean 
MV 

cave 
length 

(m) 

Mean 
MV 
cave 
VR 
(m) 

Mean 
MV cave 
min. HG 

(%) 

Mean 
MV 
cave 
XS 
m2 

Mean 
MV 
cave 

volume 
m' 

Mean 
MV 
cave 
CA 
km2 

Mean 
MV cave 
XS/CA 

m2km-2 
Z9 0 
ZI 0 
Z2 62 38 15 27 4.0 24 2.3 65 2.5 3.9 
Z3 13 36 7 17 4.2 44 l. 6 38 0.6 5.6 
Z4 16 9 I 13 2.7 32 1.4 22 3.9 5.4 
ZS 33 42 18 43 6.5 29 1.9 86 1.8 1.9 
Z6 14 22 6 21 3.6 23 1.9 49 3.0 1.4 
Z7 41 47 26 30 4.1 34 2.6 90 7.0 1.9 
Z8 3 38 9 24 2.7 17 1.0 24 0.2 5.0 
ZA 8 22 4 21 2.9 16 2.5 58 5.9 1.3 
ZB 2 29 12 85 4.0 9 2.0 235 8.5 0.2 
ZC 4 7 I 12 3.5 34 1.6 35 0.8 2.8 
KU 40 32 8 19 2.3 22 2.0 37 7.3 1.4 
KL 7 24 2 19 1.5 11 2.1 45 26.7 0.4 
KB 2 100 100 35 7.0 19 2.1 71 0.3 12.1 

ALL 
MV 

245 28 9 26 3.9 27 2.1 62 4.7 2.8 

ALL 
CAVES 

884 100 100 85 8.8 27 3.5 474 4.0 11.9 

Takle 5.22 Longest mainly vadose caves 

MAINLY 
VADOSE 
CAVES 

L 
(m) 

VR 
(m) 

SI) Z C R T C 
S 

C 
L 

K 
T 

S 
R 

0 
R 

CA 
(km2) 

C 
T 

Min. 
IIG 

XS/CA 
(m2km-2) 

Col Cave 208 15 10 Z5 N 0 0 TI \k V N P 1.2 a 7 0.8 
Doorway Cave NJ V1 N P 0.5 b 3 4.0 

Saeterfjellhullet 180 20 20 Z_2 N 1 0 1. A U A 0.2 d 11 7.5 
Drowning Cave 174 9 9 Z5 N 0 0 L A N P 3.0 b 5 0.3 
Rainbow Cave 160 22 5 Z5 N 0 0 T V N P 1.2 b 14 3.3 

Teimskar Stream 
Cave 

160 12 12 Z7 N 0 0 L G V N P 0.7 a 8 2.9 

Gully Sinks 150 5? 5? ZB N 0 0 K F A N P 8.5 d 3 0.4 
Cascade Pot 144 11 10 Z5 N 0 0 T F V N P 1.5 b 8 1.3 

Memorial Cave 126 5 5 Z7 N 0 0 K F A N P 15.0 c 4 0.3 
Cairn Pot 113 15 10 Z5 N 0 0 T V N P 1.3 b 13 1.5 

Whirl ool Cave 107 6 6 Z7 N 0 0 K F A N P 15.0 d 6 0.3 
Trap 0.7 h 19 2.9 

Däaran'ueniehola IL-1 15 15 Z3 N 0 0 K F A N A 0.5 a 15 6.0 
SD: Max. Subsurtace Cave Distance (m) /.: Zone C: Country N: Norway S: Sweden 

The catchment areas of the caves in Table 5.22 are quite variable, without an apparent relationship with 

cave length, but their XS/CA ratios have a fairly tight spread, because the highest, Saeterfjellhullet (Z2, 

7.5m2 km-2) has a value that is well inside the study area mean of I I. 9m2 km-2. The mean XS/CA ratio for 

these caves is 2.4m2 km-2, which is even lower than that for all MV caves of 2.8m2km-2 (Table 5.21). The 

full range of XS/CA ratios for all MV caves is from 0.01-25m2 km' (Blade Crawl, Z7 to Cave 2N2, 

Elgfjell, Z4). Thus, it could be estimated initially that any cave with an XS/CA ratio above about 

25m2km-2 (or perhaps a lower limit) cannot have enlarged solely under present conditions. The reason for 

the extremely variable catchment areas and XS/CA ratios even for MV caves could be that, from the 

Trevor Faulkner Page 13 I June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 5- Caves 

method of estimation (Appendix C2.1), the CA values in the cave databases do not represent accurately 

the annual recharge at each cave, because, depending on topography, much of the precipitation could 

bypass the caves and / or overflow them at high stage. Figure 5.4 shows how cave cross-section varies 

with estimated catchment area fot each of the MV caves and that there appears to be a relationship, 

between the maximum cave cross-section and the logarithm of its catchment area (ignoring the special 

case of the SvartAs Doline, Z2): 

22 Maximum MV cave XS- c. 3(2+logCA) m, where CA is expressed in km. 
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9- -- -- - 
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Figure 5.4 Cave cross-section and catchment area for MV caves 

Figures 5.5 and 5.6 also illustrate possible relationships between maximum cave length and volume and 

the logarithm of catchment area: 

Maximum MV cave length = c. 60(2+logCA) m 

Maximum MV cave volume = c. 150(2+logCA) m3 

The constant values in these equations were. determined from plots of MV caves at valley floors (CL=F), 

which are more likely to capture the full flows from their catchment areas (not shown separately). The 

three equations are not mathematically consistent when taken together, because they do not represent any 

one cave, but the maximum envelope obeyed by all MV caves. it is rare for a cave to approach the 

maximum for more than one of these dimensions. No such simple relationships exist for non-MV caves 

(the great majority), because they can have large dimensions with very small catchment areas. 

Whereas a consistent relationship between cross-section and catchment area can be visualised 

conceptually, one between cave length and catchment area is not so obvious. However, caves are only 

explorable above a cross-sectional size related to the human body, and the internal variations in cross- 
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section, whether caused by changes in passage size or changes in sediment thicknesses, means that 

exploration length, and therefore also the recorded volume, is a function of cross-section, at least for 

smaller caves, such as these MV caves. 

Saeterfjell- 
hullet (Z2) 

240 
220 

200 

." 180 

160 

140 - 
120 

.2 
100 
80 
60--- 
40 
20 - 
0 
0.01 100.00 

lo LENG. 

Figure 5.5 Cave length and catchment area for MV caves 
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Figure 5.6 Cave volume and catchment area for MV caves 
Figure 5.5 suggests (for example) that it is only possible to explore truly vadose caves that are longer 

than 120m if they have a catchment area >_ 1 km2, which is equivalent to a mean continuous flow rate c. 

32Ls"' throughout the Holocene, assuming a mean Holocene infiltration rate of I mä'. 

Doorway Teimskar Col Rainbow Drowning Cascade 
Cave (Z7) Stream Cave (Z7) Cave (Z5) Cave (Z5) Cave (Z5) Pot (Z5) 
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Those few caves shown above the `maximum' lines in Figures 5.5 and 5.6 probably illustrate some 
difficulty in distinguishing between border-line MV caves and combination caves, when the study is 

restricted to cave surveys. Indeed, it may now be possible to invert this discussion, and conclude that 

those caves cannot really have formed entirely by vadose processes, because they fall above the 

`maximum' lines. On this basis, at least the top six caves in Table 5.22 may be too long to have 

developed wholly within the Holocene, although their cross-sections do lie within the limits of Figure 

5.4. Furthermore, although the three formulae appear to apply for CA<10km2, some of the few caves 

plotted with XS>6m2 on Figure 5.4 (at a CA >1 km2) have short, presumably phreatic, oxbows, and others 

are primarily short passages to sumps at sinks and resurgences, whilst still fulfilling the criteria for the 

MV class. Thus, caves assigned to the MV class with XS>c. 6m2 may be transitional between fully 

vadose caves and combination caves, or else they may represent those few active caves that have 

developed primarily by phreatic processes during the Holocene. 

There are probably no examples of MV caves with a vadose entrenchment greater than 3m (except, 

perhaps, at shafts), which implies a maximum Holocene floor-lowering rate of c. 0.3mma' from the 

effects of both chemical and mechanical erosion. Skromthelet (KU) is the (water-filled) MV cave with 

the largest cross-section (10m2). A Holocene enlargement to this size would require a dissolutional wall 

retreat rate of c. 0.2mm a', which is well below the maximum lmmä' allowed by the Palmer / Dreybrodt 

model (section 3.1.13). Therefore, all the above findings about MV caves are consistent with these caves 

enlarging to present sizes during the time of the Holocene. MV caves that plot well below the maximum 

lines may either not capture the full flow from their catchment areas, or else they did not start to enlarge 

until after the beginning of the Holocene period. Additionally, some lengths and volumes may be 

constrained by the dimensions of the containing metacarbonate outcrops. 

The formula for maximum XS shows that the use of a simple XS/CA ratio to determine if a cave could 

have developed wholly from vadose processes (as initially estimated above) is incorrect. Instead, it is 

concluded that a cave could be entirely vadose only if XS :S 6m2 and XS < 3(2+logCA) m2. To compare 

this with the previous estimate, for catchments from 0.03-1.00-10km2, the maximum XSICA ratio for 

caves to develop wholly by vadose processes within the Holocene varies from 50-6-O. 9m2km 2. 

5.4.3 Combination caves (CC) 

The combination class of cave includes all those that are not counted as relict or mainly vadose, i. e. those 

caves that contain both relict phreatic passages or levels, and active streamways. It also includes the 

active caves (CS>O) of cave type S, Hy, I, L and T, although the morphologies of these caves have not 

been studied in detail. More caves that are mainly shafts (CT=S) could perhaps be assigned as mainly, 

vadose (MV=I), although some may have developed nearly to their present sizes during deglacial 

outflows under both phreatic and vadose conditions. 
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Combination caves account for 360 (41%) of the recorded caves, the percentages varying non- 

systematically across the inner zones (Tables 5.23). Mean cave dimensions are consistently large, 

although the mean minimum HG and the mean XS/CA ratio are close to the study area averages. The 

longest and deepest caves in the study area (as listed in tables 5.16,5.17 and 5.18) are almost invariably 

combination caves: the only significant exception is Akersvanngrotta (/13), a relict cave of length 

900m. 

Table 5.23 Zonal variations of combination cave dimensions 
Zone No. of 

comb. 
caves 

Comb. 
caves 
% per 
zone 

Comb. 
cave 

length 
% per 
zone 

Mean 
comb. 
cave 

length 
(m) 

Mean 
comb 
cave 
VR 
(m) 

Mean 
comb 
cave 
min. 
HG 

Mean 
comb 
cave 
XS 

(m) 

Mean 
comb. 
cave 

volume 
(m) 

Mean 
comb 
cave 
CA 

(km2) 

Mean 
comb. 
cave 

XS/CA 
(m2km-2) 

Z9 0 
Z1 0 

......... __- Z2 58 35 69 130 12.7 18 4.7 677 1.7 II. 9 
Z3 8 22 81 336 29.9 19 3.8 1863 3.7 (,. 5 
Z4 67 37 77 167 14.4 21 3.8 1010 3.0 38.2 
Z5 31 39 76 189 15.7 22 4.5 1121 1.7 4.8 
Z6 34 53 87 133 13.2 is 4.7 707 7.4 6.2 
Z7 27 3I 67 II9 I0.3 2I 5.5 I03I 5. I 3.5 
Z8 3 38 90 247 20.0 10 3.7 1263 0.2 15.0 
ZA 18 49 73 160 2I. 9 24 8.2 1564 6.5 2.9 
ZB 2 29 9 63 17.5 33 18.0 1686 2.2 8.2 
ZC 32 55 93_ 

_____170 
9.0 28 4.2 820 3.4 2.1 

KU 63 50 87 133 13.2 29 5.2 1007 5.1 3.6 
KL 17 59 96 380 13.1 30 4.4 1986 17.7 0.4 
KB 0 

AALL 
COM 13. 

360 41 79 164 14.5 23 4.8 1020 4.6 II. 6 

ALL 
CAVES 

884 100 100 85 8.8 27 3.5 474 4.0 11.9 

5.5 Cave classes compared 

This section reviews how the three hydrological cave classes and their cave types compare amongst each 

other and how they are influenced by karst type, contact metamorphism and thrusting, cave location and 

glacial situation. 

5.5.1 Occurrences and dimensions 

The major cave dimensions for each of the three cave classes against cave types and the Four main 

external attributes were derived from pivot tables, as listed in Tables 5.24-5.28 in the following sections. 

Their overall occurrences are: relict 32%, mainly vadose 28% and combination 41%. Because the mean 

lengths of relict caves and MV caves are only 34m and 26m, 79% (c. 59km) of total passage length (c. 

75km) is contained in combination caves, which have a mean length of 164m. It is hypothesised here that 

most relict caves and the set of mainly vadose caves have each separately experienced only one phase of 

cave enlargement after inception, whereas the combination caves are more representative of the range of 

enlargement opportunities that were available to the caves during the local geomorphological evolution. 
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The total study area mean cave length, VR, XS and volume all increase in the order mainly vadose: 

relict: combination, with mean values always much greater for combination caves. This is expected for 

MV caves, because they mainly comprise cave types a-d. The order is consistently maintained for each 

classification for all cave types and for all four external cave attributes, except that the rank orders of 

MV and relict caves are sporadically reversed, commonly for small sample sizes that still give similar 

values. Overall mean minimum HGs are greatest for relict caves, and least for combination caves. They 

vary among the external attributes and their detailed classifications. 

The overall mean catchment areas increase in the order relict: combination: mainly vadose caves, 

whereas XS/CA ratios decrease in the same order, so that combination caves appear to be transitional 

between the relict caves, whose dimensions are independent of CA (section 5.4.1), and the MV caves, 

whose maximum dimensions are related to CA by simple formulae (section 5.4.2). If this is the case, then 

a proportion of the mean XS of combination caves may be quantitatively attributable to the present 

vadose mechanical and chemical erosion, and the rest to development under different climatic conditions. 

Thus, the maximum dimensions of the lowest, presently-active, parts of combination caves should be 

governed by the same formulae as the MV caves, so that their minimum relict dimensions could be 

obtained by subtraction. This means that the higher the ratio of XS/CA for a study area cave, then the 

smaller is the proportion of vadose development experienced. Because it is deduced in section 5.5.6 that 

MV caves enlarged during the Holocene, it also follows that the smaller is the XS/CA ratio, then the 

`younger' is the cave. The use of this method to illustrate development phases of individual caves is 

beyond the scope of this thesis. However, as an example, the large combination cave St" 

Grubblandsgrotta (KU, Appendix B1.13) has CA=19km2 and a mean XS=c. 6m2, giving an XS/CA 

ratio of only 0.3m2km"2. From the relationships proposed at the end of section 5.4.2, all its explored 

passages could have developed under vadose conditions within the Holocene, if cave morphology is 

ignored. 

From Tables 5.25-5.28, the cave class CA order is maintained for 5 of 20 major external attribute 

classifications, but in eight places combination caves have greater mean CAs than mainly vadose caves. 

Paradoxically, in three places (CL=P and GS=G and H) combination caves have smaller mean CAs than 

relict caves and in six places (CL=S and R (small samples), CL=W, GS=S, T and G (small samples)) 

mainly vadose caves have the smallest mean CAs of all classes, or they are all similar. The mean XS/CA 

ratio order is maintained for 13 of the 20 classifications, but combination caves have higher values than 

relict caves in four places. In three places (R=0 and T=1, CL=P and GS=S (small sample)) relict caves 

have the smallest mean XS/CA ratio of all classes. On no occasion does an MV cave have the highest 

XS/CA ratio. 

A conclusion from this analysis is that the overall study area finding that vadose development is related 

to larger CAs and smaller XS/CA ratios and that phreatic development tends to obey the reverse rule is 
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maintained fairly well for most classifications of the external attributes. Mainly vadose caves are the 

most restricted in their dimensional development of the three hydrological cave classes, suggesting that 

they have experienced less efficient cave enlarging processes, perhaps over shorter periods of time, than 

the other two classes. The frequencies and mean dimensions of type h combination caves for each 

external attribute have values almost identical to those of the full set of type h caves (Tables 5.7,5.9, 

5.11 and 5.15), because combination caves account for 90% of all type h caves. 

5.5.2 Cave classes and cave types 

Table 5.24 shows how the attributes of the caves of each hydrological class vary with cave type. The 

numbers of relict caves, mainly vadose caves and combination caves of each cave type (a-h) tend to 

reduce with complexity (except that combination cave types f-h actually increase), whereas the mean 

cave length, mean vertical range and mean volume tend to increase, but more sporadically than for the 

total set of caves (Table 5.5). The means of these values for relict and mainly vadose caves for each of 

the cave types a-h are less or much less than the means for combination caves. Additionally, the means 

of these values for all the relict caves and for all the mainly vadose caves are also all much less than the 

means of the values for all combination caves. These consistently reduced dimensions provide some 

quantification to the hypothesis that both the relict caves and the mainly vadose caves have experienced 

less `development', in terms of timescale and / or processes, than the combination caves. 

The mean minimum hydraulic gradients show a reducing trend with cave type for all cave classes, as 

found with the total set of caves, with relict cave values being commonly greater than combination cave 

values and similar to MV cave values for cave types a-d. This suggests that minimum hydraulic gradient 

is little influenced by a cave being relict or active, being mainly influenced by cave length. 

Mean cross-sections of relict and MV caves are less than for the combination caves for all cave types. 

Mean catchment areas of relict caves are commonly lower than those of MV caves and combination 

caves, which might explain why these caves are, indeed, relict. The MV shafts (CT=S) appear to have 

greater mean XS and XS/CA values than the other MV caves, suggesting that they either enlarged faster 

than the vadose passages (section 3.1.16), or that some of this sample is incorrectly assigned. 

Mean XS and mean CA show little relationship with cave type a-h for relict and combination caves, 

strongly suggesting that these caves did not develop primarily under present hydrological conditions. 

However, MV caves appear to have increasing trends for both values for cave types a-d (which increase 

in mean length), as expected from the discussion in section 5.4.2. Additionally, the mean XS/CA ratios 

are small and close together for MV caves type a-d and the rank order of decreasing XS/CA ratios for 

relict: combination: MV caves is maintained for most cave types. This supports the concept that the 

maximum dimensions of MV caves are controlled by their present catchment areas, which also control 

the maximum vadose passage dimensions of the intermediate combination caves. 
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5.5.3 Cave classes and karst types 

Karst type trends (Table 5.25) display interesting variations when considering the standard order V: A: L 

of decreasing foliation dip. Because these karst types all occur in the approximate ratios of 2: 4: 1 for MV, 

relict and combination caves, the cave hydrological classes appear to be distributed fairly randomly 

amongst each other. The karst types themselves exert little influence on the existence of caves in each 

hydrological class, because their occurrence frequencies are remarkably consistent for KT=V, A and L. 

Mean length and volume commonly decrease in the standard order for mainly vadose caves, but increase 

for relict caves, and are at a minimum for the large population with KT=A for the intermediate 

combination caves. Mean VR and mean minimum HG decrease for both MV and relict caves, but 

commonly increase for combination caves. These particular trends do seem to be direct functions of 

foliation dip, as they are not apparent in an east or west direction across the zones (Tables 5.19,5.21 and 

5.23). Mean XS increases for combination caves, but relict and MV caves show no trend. On the other 

hand, mean CA increases for MV caves and relict caves (probably just following the eastern trend of 

more subdued scenery into Sweden), but show no trend for combination caves. The mean XS/CA ratios 

peak for KT=A for relict and combination caves, but decrease in sympathy with the CA increase for MV 

caves. 

Iro161o 4 9i Cave dimenainna_ £Rve hvdrnlnaical claaae and karat tvnea 

Cave 
hydrological 
class 

Dim. 

_ 
KT 

No. 
of 

caves 

% 
of 

class 

Mean 
cave 

length 
(m) 

Mean 
cave 
VR 
m 

Mean 
cave 

min. HG 
% 

Mean 
cave 
XS 
m2 

Mean 
cave 

volume 
m3 

Mean 
cave 
CA 
km2) 

Mean 
cave 

XS/CA 
m2km 2 

Mainly vadose V 78 31.8 29 4.8 34 1.8 63 2.1 3.0 
Mainly vadose A 119 48.6 28 3.8 22 2.3 71 5.9 2.7 

Mainly vadose L 35 14.3 18 2.9 23 1.8 35 8.1 2.5 
Mainly vadose C 
Mainl vadose x 13 5.3 16 2.3 26 2.3 41 1.3 3.3 

MV ALL 245 27.7* 26 3.9 27 2.1 62 4.7 2.8 

Relict V 75 26.9 25 6.5 45 3.1 76 1.6 17.2 
Relict A 153 54.8 34 6.2 31 3.4 155 2.7 25.9 

Relict L 38 13.6 57 4.5 22 2.6 171 4.9 8.4 

Relict C 
Relict x 13 4.7 19 3.8 36 2.5 53 0.7 7.0 

RELICT ALL 279 31.6* 34 5.9 34 3.1 131 2.6 20.3 

Combination V 82 22.8 196 14.1 20 4.1 1187 6.1 6.4 
Combination A 208 57.8 141 14.1 23 4.9 833 3.9 16.3 
Combination L 54 15.0 182 17.4 27 5.9 1511 5.6 3.7 
Combination C 3 0.8 968 17.3 7 3.2 3738 1.9 1.7 
Combination x 13 3.6 65 10.5 24 4.5 288 2.6 4.7 

COMB. ALL 360 40.7* 164 14.5 23 4.8 1020 4.6 11.6 

All V 235 26.6 86 8.6 33 3.0 460 3.3 8.7 
All A 480 54.3 79 9.0 25 3.8 428 4.0 16.0 

pll L 127 14.4 100 9.5 25 3.8 703 6.1 4.8 

pll C 3 0.3 968 17.3 7 3.2 3738 1.9 1.7 
pll X 39 4.4 33 5.5 29 3.1 127 1.5 5.0 

ALL ALL 884 100.0 85 8.8 27 3.5 474 4.0 11.9 
*% of all caves 

Trevor Faulkner Page 139 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 5- Caves 

Table 5.24 Cave dimensions. cave hvdroloaical classes and cave types 

Cave 
hydrological 
class 

No. 
of 

caves 

% 
of 

class 

Mean 
cave 

length 
m 

Mean 
cave 
VR 
m 

Mean 
cave 

min. HG 

Mean 
cave 
XS 
mZ 

Mean 
cave 

volume 
m' 

Mean 
cave 
CA 
km2 

Mean 
cave 

XS/CA 
m2kmf 

Mainly vadose 

F 

20 8.2 8 4.9 71 2.7 21 2.8 5.6:. 
Mainly vadose 114 46.5 18 2.9 29 1.7 37 4.2 2.4. 
Mainly vadose 78 31.8 36 4.7 16 2.3 85 5.8 2.6 
Mainly vadose 13 5.3 37 4.5 19 2.2 99 3.4 2.1 

Mainl vadose 18 7.3 53 5.1 12 2.6 135 6.8 3.3 

Mainly vadose f 1 0.4 15 6.0 40 2.0 30 3.0 0.7 
Mainl vadose H 1 0.4 27 4.0 15 4.0 108 1.5 2.7 

MV ALL 245 27.7* 26 3.9 27 2.1 62 4.7 2.8 

TOT. SUBSET S, a-d 751 85.0* 46 6.6 29 3.4 257 4.1 111 

Relict S 47 16.8 11 8.0 85 3.2 44 1.3 14.5 
Relict a 112 40.1 17 4.0 28 3.2 103 3.0 11.2 
Relict b 64 22.9 31 5.4 19 2.0 80 1.9 32.5 

Relict c 14 5.0 108 6.6 18 3.9 333 6.4 9.4 

Relict d 10 3.6 69 7.1 16 3.2 301 2.1 87.1 

Relict e 3 1.1 34 14.7 35 1.7 74 3.3 2.3 

Relict f 6 2.2 111 11.3 15 2.0 186 5.1 7.7 
Relict 3 1.1 149 12.7 13 2.3 431 1.8 6.9 
Relict h 4 1.4 264 27.5 14 3.6 800 0.7 9.5 
Relict H 6 2.2 30 4.8 20 9.4 340 1.0 44.6: 

Relict I 1 0.4 210 10.0 5 8.0 1680 8.5 0.9 

Relict L 6 2.2 10 3.0 39 7.3 85 0.8 42:! 
Relict T 3 1.1 14 3.0 28 3.3 63 9.4 2.9 

RELICT ALL 279 31.6* 34 5.9 34 3.1 131 2.6 20.3 

Combination S 23 6.4 12 8.1 80 3.3 46 3.1 6.2 ` 

Combination a 89 24.7 35 6.4 27 4.8 276 4.2 7.4 
Combination b 88 24.4 77 11.9 20 5.4 581 5.4 12.0 
Combination c 30 8.3 147 9.9 9 4.3 729 7.8 8.4 
Combination d 31 8.6 197 18.0 13 4.8 1453 5.1 7. 

. 
Combination e 14 3.9 150 14.7 16 4.2 832 3.5 2.6 

Combination f 16 4.4 171 17.5 14 3.2 602 3.9 7.4 
Combination 25 6.9 263 21.6 18 4.9 1805 3.1 44.6: 
Combination h 35 9.7 753 39.9 10 4.7 4325 3.0 10.8 

Combination Hy 5 1.4 80 14.4 23 12.2 875 5.4 4.1 

Combination 1 2 0.6 33 11.5 47 1.5 63 6.3 0.3 

Combination L 1 0.3 21 4.0 19 6.0 126 14.0 0.4 
Combination T 1 0.3 72 29.0 40 16.0 1152 0.1 160.0 

COMB. ALL 360 40.7* 164 14.5 23 4.8 1020 4.6 11.6 

All S 90 10.2 10 7.3 81 3.1 39 2.1 10.4 
All a 315 35.6 22 4.2 28 3.1 128 3.8 7.0 
All b 230 26.0 50 7.7 18 3.4 273 4.6 14.5 
All c 57 6.4 112 7.8 14 3.7 488 6.5 7.2 

All d 59 6.7 132 12.2 13 3.8 856 5.1 19.8 
All e 17 1.9 130 14.7 20 3.7 699 3.5 2.6 

All f 23 2.6 148 15.4 15 2.8 469 4.2 7.2 
All 28 3.2 251 20.6 18 4.6 1657 3.0 40.5 
All h 39 4.4 703 38.6 11 4.6 3964 2.7 10.77 
All H 12 1.4 50 8.8 21 10.1 544 2.9 24.2 
All I 3 0.3 92 11.0 33 3.7 602 7.0 0.5 

All L 7 0.8 12 3.1 36 7.1 91 2.7 36.8 
All T 4 0.5 29 9.5 31 6.5 335 7.1 42.1 

ALL ALL 884 100.0 85 8.8 27 3.5 474 4.0 11.9 

*% of all caves 
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From these results, it is inferred that steep foliations favour longer vadose caves but shorter phreatic 

caves, and low angle foliations favour the reverse. Vertical range is paradoxical, because steep foliations 

seem to favour deeper vadose and relict phreatic caves, perhaps up to a particular depth, but low angle 

karst favours deeper caves with combinations of vadose and relict phreatic passages. The larger cross-- 

sections in low angle karst for combination caves may be explained by this karst favouring vadose 

passage entrenchment, as well as the opening of deeper fractures. The smaller mean cross-sections of 

MV caves and relict caves with KT=L may be artefacts of smaller sample sizes. Additionally, foliation 

dip may have a neutral effect on the chemical dissolution of phreatic passages in relict caves and 

combination caves. 

5.5.4 Cave classes, contact metamorphism and thrusts 
The occurrence percentages of caves in the four contact metamorphism (R=0 or 1) and thrusting (T=0 or 

1) combinations are shown in Table 5.26 for each cave hydrological class. 66% of all caves have R=0 

and T=O, and this combination has the highest population in all cave classes. The combination R=1 and: 

T=l only occurs in 1% of the caves, and this small sample is not considered further. The other two 

combinations display considerable variations in the percentages of the cave classes. Thus, the existence 

of mainly vadose caves is favoured over both relict caves and combination caves if R=1, and combination 

caves are strongly favoured over both MV and relict caves if T=1. The latter result may be partly 

explained, because it is shown below that thrusting seems to favour vadose enlargement. Thus, vadose 

flows in caves that would otherwise remain relict created more combination caves where T=1. 

In contrast to the smaller mean dimensions of combination caves affected by contact metamorphism 

(R=1), MV cave mean dimensions are similar, most relict cave mean dimensions are only slightly smaller 

and the relict cave mean VR is actually larger. Mean dimensions are greater for combination caves in 

proximity to a thrust (T=1), except that mean VR is slightly less. However, MV cave mean dimensions 

are smaller if T=I, except that mean cross-section is larger, perhaps following the eastward increase in 

mean catchment area. Relict cave mean length, cross-section and volume are similar, and only mean VR 

is much larger. Combination caves have larger mean catchment areas and smaller mean XS/CA ratios for 

both R=1 and T=1, suggesting a closer relationship to present hydrology and therefore a higher 

proportion of vadose development in each case. Mainly vadose caves have a larger mean CA for T=1, but 

each mean XS/CA value remains close to the low overall MV cave mean of 2.8m2km"2. This suggests that 

`vadose favouring' effects have little impact on vadose caves themselves. Relict caves that do not have 

R=0 and T=O demonstrate a proportion of hidden vadose development, because their mean XS/CA ratios 

are much less for both R=1 and T=l (when mean CAs are also larger). The trend of eastwardly- 

increasing catchment area is shown by the smaller total mean CA for R=1 and the larger total mean CA 

for T=1. 
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Takle 5.26 Cave dimensions. cave classes. contact metamnrnhism and thrusting 

Cave 
hydro- 
logical 
class 

Dimension 

_ 

T 

No. 
of 

caves 

% 
of 

class 

Mean 
cave 

length 
(m) 

Mean 
cave 
VR 
(m) 

Mean 
cave 

min. HG 
% 

Mean 
cave 
XS 
m= 

Mean 
cave 

volume 
m' 

Mean 
cave 
CA 

(km2) 

Mean 
cave 

XS/CA 
m2km Z 

MV R=0 T=0 142 58.0 28 4.1 29 2.0 64 5.0 2.8 
MV R=1 T=0 82 33.5 26 3.9 24 2.1 63 3.0 2.9 
MV R=0 T=1 18 7.3 20 2.2 19 2.3 46 11.1 2.5 
MV R=1 1=1 3 1.2 24 2.7 17 1.0 24 0.2 5.0 

MV ALL 245 27.7* 26 3.9 27 2.1 62 4.7 2.8 

Relict R=0 T=0 218 78.1 34 5.7 34 3.2 134 2.4 24.0 
Relict R=1 1=0 45 16.1 33 6.6 31 2.7 119 1.7 8.3 
Relict R=0 T=1 14 5.0 31 8.4 38 3.4 139 8.9 1.8 
Relict R=1 1=1 2 0.7 7 2.0 29 2.0 14 0.3 6.7 
RELICT ALL 279 31.6* 34 5.9 34 3.1 131 2.6 20.3 
Comb. R=0 T=O 227 63.1 162 15.1 22 4.9 1039 3.7 14.4 
Comb. R=1 T=0 71 19.7 118 12.1 19 4.2 566 4.1 9.2 
Comb. R=0 T=1 58 16.1 225 14.8 24 5.4 1487 8.9 3.6 
Comb. R=1 1=1 4 1.1 215 18.8 19 5.3 1247 0.9 12.1 
COMB. ALL 360 40.7* 164 14.5 23 4.8 1020 4.6 11.6 
All R=0 T=0 587 66.4 82 8.9 28 3.6 467 3.6 15.2 
All R=1 1=0 198 22.4 61 7.5 24 3.0 256 3.1 6.4 
All R=0 T=1 90 10.2 154 11.3 30 4.4 989 9.4 3.1 
All R=1 T=1 9 1.0 105 9.7 17 3.1 565 0.5 8.5 
ALL ALL 884 100.0 85 8.8 27 3.5 474 4.0 11.9 

*% of all caves 

The above discussion shows that the earlier simple observations that contact metamorphism and 

proximity to a thrust act in opposing directions to restrict and to enhance cave development (sections 

5.3.2 and 5.3.3) commonly remain valid for combination caves but commonly are not valid for MV and 

relict caves. The reason is probably that R and T disproportionately influence longer fractures (section 

5.3.2), and therefore have a greater effect on the combination caves that are commonly much longer than 

the relict and MV caves. Additionally, thrusting may only affect combination caves, because they have 

experienced more than one phase of enlargement after inception. The commonly-smaller mean length of 

MV caves at T=1 is inexplicable at present, as are the various anomalies concerning the variations in 

vertical range. 

5.5.5 Cave classes and cave locations 

Table 5.27 shows that mainly vadose caves and combination caves have cave location occurrences in 

almost identical rank orders, although the order for relict caves is different. However, there are large 

variations in the percentage of each cave hydrological class occurring at each cave location. Thus, relict 

caves disproportionately account for 42%, 63% and 40% of all caves in shoulder, ridge and wall 

locations (CL=S, R and W), reducing MV occurrences to only 9%, 8% and 21%. (These figures are not 

shown explicitly in Table 5.27). In the other direction, MV caves account for 37% at valley floors 

(CL=F), reducing relict caves to 19% there. The small samples at coastal locations (CL=C) have only 

13% of combination caves, and are not considered further. Combination caves comprise the largest class 
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at all other cave locations, except CL=R (29%). Hence, shoulder, ridge and (less importantly) wall 

locations appear to favour phreatic development over vadose, and floor locations appear to favour the 

reverse, when compared with the more `standard' occurrence distributions at the less steep paleic and 

gently sloping locations (CL=P and G). The MV and combination caves with the largest mean vertical 

ranges also occur at shoulder, ridge and wall locations, but relict cave mean VRs show little variation 

about their overall mean of 5.9m, except for low values at CL=P and C. Some active caves at CL=S have 

lower resurgence entrances at a knick point above a surface waterfall, and so are not at all graded to local 

topography. This indicates immature vadose development, probably entirely within the Holocene (e. g. 

Kvitfjellgrotta, Z4, Photo C2.4 and the unexplored Naeverskardhullet, ZA, Photo C2.6). 

Table 5.27 Cave dimensions. cave hvdrolooical classes and cave locations 

Cave 
hydrological 
class 

Dim. 

_ 

CL 

No. 
of 

caves 

% 
of 

class 

Mean 
cave 

length 
(m) 

Mean 
cave 
VR 
(in) 

Mean 
cave 

min. HG 
(%) 

Mean 
cave 
XS 

(m2) 

Mean 
cave 

volume 
(m3) 

Mean 
cave 
CA 

(km') 

Mean 
cave 

XS/CA 
(m2km-') 

MV p 35 14.3 19 2.3 21 1.7 33 7.7 2.0 
MV G 64 26.1 25 3.8 31 2.2 60 1.6 2.8 
MV S 5 2.0 10 5.6 57 1.4 15 0.2 8.5 
MV R 5 2.0 25 5.6 46 2.0 52 0.9 3.3 
MV W 41 16.7 38 6.1 29 1.8 78 1.0 3.0 
MV F 91 37.1 27 3.4 21 2.3 71 7.2 2.6 
MV C 4 1.6 13 2.8 47 2.4 27 20.7 4.0 

MV AH, 245 27.7* 26 3.9 27 2.1 62 4.7 2.8 

Relict p 26 9.3 17 3.5 24 1.6 44 5.6 1.3 
Relict G 58 20.8 52 6.6 32 2.9 157 1.4 7.2 
Relict S 24 8.6 28 6.5 53 2.2 68 0.7 11.6 
Relict R 39 14.0 32 6.0 32 4.0 160 0.8 25.5 
Relict w 78 28.0 32 6.4 38 2.9 126 1.8 45.8 
Relict F 45 16.1 32 5.9 28 4.2 182 6.3 2.9 
Relict C 9 3.2 10 2.2 28 4.2 47 3.4 26.7 

RELICT ALL 279 31.6* 34 5.9 34 3.1 131 2.6 20.3 

Combination p 49 13.6 159 12.7 31 3.0 810 2.9 2.2 
Combination G 75 20.8 149 13.6 22 6.0 1268 3.2 9.0 
Combination S 28 7.8 185 22.3 23 4.2 1289 1.2 11.2 
Combination R 18 5.0 358 25.9 14 4.6 1754 0.9 50.5 

Combination w 78 21.7 115 15.6 23 3.9 644 1.7 16.9 
Combination F 110 30.6 176 11.3 21 5.7 1036 9.8 7.7 
Combination C' 2 0.6 43 6.5 16 6.0 258 8.0 1.7 

COMB. AI. I. 360 40.7* 164 14.5 23 4.8 1020 4.6 11.6 

All p 110 12.4 81 7.2 26 2.2 382 5.1 1.9 

All G 197 22.3 80 8.4 28 3.9 549 2.2 6.5 

All S 57 6.4 104 14.2 39 3.1 663 0.9 11.1 

All R 62 7.0 126 11.8 28 4.0 614 0.8 31.0 
All w 197 22.3 66 10.0 30 3.1 321 1.6 25.5 

All F 246 27.8 95 7.4 22 4.2 523 8.2 4.9 
All C 15 1.7 15 2.9 31 4.0 70 8.6 17.3 

ALL ALL 884 100.0 85 8.8 27 3.5 474 4.0 11.9 

"% of all caves Paired locations are shown by alternate shading 
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It is convenient to pair cave locations in the commonly `upward' order CL=F/W: R/S: G/P, although 

CL=G is not necessarily at a relatively high level. Within these pairings, all internal mean cave 

dimensions except vertical range commonly decrease upwards for all cave classes. However, there is 

much less consistency in CAs decreasing upwards (and XS/CA ratios increasing upwards) than for the 

internal cave dimensions. Apart from VR, mean MV cave dimensions tend to decrease for cave location 

pairs in the order F/W: G/P: RJS, again showing the lower vadose development in shoulder and ridge 

locations. The reason may be that vadose water soon drained out of fractures in these locations, reducing 

the timescale for their enlargement. Relict cave mean lengths hardly vary between the lower two 

pairings, whereas cross-sections and volumes decrease upwards. Combination caves have the largest 

mean lengths and volumes at CL=R/S, with CL=F/W and G/P having smaller but similar values. Their 

paired cross-sections decrease upwards slightly and also decrease upwards within pairings. 

For all cave hydrological classes, the smallest mean catchment areas and the largest mean XS/CA ratios 

commonly occur at CL=R/S, although relict caves have a large mean XS/CA ratio at CL=W. The largest 

mean CAs commonly occur at CL=F/W, although MV caves have a slightly higher value at the CL=G/P 

pair. The smallest mean XS/CA ratios always occur at CL=G/P. The MV cave locations have relatively 

high mean CAs (except CL=S) and their mean XS/CA values (except for CL=S) are concentrated close 

to the overall MV cave mean value, suggesting again a relationship between XS and CA, so that vadose 

chemical and mechanical erosion is closely related to present catchment area, for most MV cave 

locations. 

To summarise the above results, the vadose development of vertical range (in both MV and combination 

caves) is favoured most strongly at shoulder, ridge and wall locations where MV cave minimum 

hydraulic gradients are greatest, but vadose development of length is probably least favoured at shoulder 

and ridge locations. Phreatic vertical development appears to be independent of cave location, but 

phreatic length development appears to be particularly favoured at shoulders and ridges, from the 

evidence of the rather small samples of combination caves there. For all cave classes, the largest mean 

cross-sections occur along valley floors, where catchment areas are greatest. Because caves of all three 

hydrological classes are commonly distributed across all cave locations (and most glacial situations: 

section 5.5.6), cave entrance altitudes are well-scattered vertically, despite the preponderance of relict 

caves and the rarity of mainly vadose caves at CL=R and S. 

5.5.6 Cave classes and glacial situations 

The mean dimensions of caves in each hydrological class at each glacial situation are presented in Table 

5.28, in a format that allows cave class trends and the differences for each west and east counterpart to be 

observed directly. Two small caves at GS=U are omitted. The small sample of caves at GS=C is also 

omitted, but the same set of caves is included at CL=C in Table 5.27. 
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Table 5.28 Cave dimensions, cave hydro 

Highest Relict Comb. MV 
elevation and caves caves caves 

dimension West West West 

logical cl 

All 
caves 
West 

asses and 

Relict 
caves 
East 

glacial situations 

Comb. MV All 

caves caves caves 
East East East 

Highest col 
_j 

GS=S r GS=S GS=S GS=S GS=T GS=T GS=T GS=T 

No. of caves 1 /4 3 18 49 41 28 118 

% of class 0.4 3.9 1.2 2.0* 17.6 11.4 11.4 13.3* 

Mean length 8 14/ 13 112 21 93 38 50 

Mean VR 1.0 27.7 3.0 22.1 5.1 8.6 4.6 6.2 

Mean min. HG 13 28 27 27 33 30 24 30 

Mean XS 1.0 5.3 4.0 4.8 2.9 3.0 1.9 2.7 

Mean volume 8 806 53 636 76 400 80 190 

Mean CA 1.6 1,8 1.1 1.7 2.1 2.9 1.6 2.2 

Mean XS/CA 0.6 4.1 3.6 3.8 4.7 3.5 2.4 3.7 

Lowest col GS=K GS=K (, S=K GS=K GS=L GS=L GS=L GS=L 

No. of caves 31 50 47 128 131 179 109 419 

% of class 11.0 13.9 19.3 14.5 * 46.9 49.7 44.5 47.4* 

Mean length 89 156 27 93 26 178 24 90 

Mean VR 8.3 16.3 3.8 9.7 6.2 14.4 3.9 9.1 

Mean min. HG 41 20 26 27 37 24 30 30 

Mean XS 3.3 6.0 2.0 3.9 2.7 4.5 1.8 3.2 

Mean volume 343 1 150 79 561 103 1018 45 479 

Mean CA 3.8 10.4 6.3 7.3 2.9 4.5 4.6 4.0 

Mean XS/CA 4.5 2.4 2.3 1 1 2.9 32.4 16.8 2.7 18.0 

(: ML GS=C GS=C GS=G GS=G GS=H GS=H GS=H 1 1 GS=H 

No. of caves 8 7 15 30 19 28 17 64 

% of class 2.9 1.9 6.1 3.4* 6.8 7.8 6.9 7.2* 

Mean length 42 /47 30 61 40 237 27 123 

Mean VR 7.9 10.4 3.3 6.2 5.4 18.5 4.7 10.9 

Mean min. HG 22 8 19 17 29 17 23 22 

Mean XS 4.4 4.7 3.2 3.9 2.3 5.5 2.5 3.8 

Mean volume 201 785 91 282 87 2107 65 965 

Mean CA 3.0 2.6 2.2 2.5 2.5 1.5 9.9 4.0 

Mean XS/CA 12.3 /. 8 2.6 5.0 8.1 8.2 4.0 7.1 

DML GS=D GS=D GS=D GS=D GS=E GS=E GS=E CS=E 

No. of caves 9 5 9 23 20 34 13 67 

% of class 3.2 1.4 3.7 2.6* 7.2 9.4 5.3 7.6* 

Mean length 47 /25 /6 52 25 154 27 91 

Mean VR 7.3 8.6 2.7 5.8 3.9 12.5 3.8 8.3 

Mean min. HG 25 17 19 21 22 15 17 18 

Mean XS 8.4 8.2 2.1 5.9 4.1 5.5 2.9 4.6 

Mean volume 327 731 39 302 100 918 91 514 

Mean CA 0.9 6.9 2.2 2.7 1.1 2.2 1.1 1.7 

Mean XS/CA 39.4 14.8 4.4 20.3 9.9 15.3 3.2 11.4 

ALL SKGD SKGD SKGD SKGD TLHE TLHE TLHE TLHE 

No. of caves 49 76 74 199 219 282 167 668 

% of class 18.3 21.2 30.7 23.0* 81.7 78.8 69.3 77.0* 

Mean lenth 72 150 26 85 26 169 27 86 

Mean VR 7.9 17.4 3.5 9.9 5.7 13.4 4.1 8.5 

Mean min. HG 34 20 24 25 34 23 27 28 

Mean XS 4.4 5.9 2.3 4.2 2.8 4.5 2.0 3.3 

Mean volume 310 1025 76 496 95 1024 56 478 

Mean CA 3.1 7.9 4.8 5.5 2.5 3.7 4.4 3.5 

Mean XS/CA 12.1 3.5 2.7 5.3 22.0 13.8 2.8 13.8 

Units as Tables 5.25-5.27 Small sanr/des are sho n rn Nulrrs I` 4; 'o Of t'al'c 
GMI, Glaciation marine limit DML Deglaciation marine limit 
Shaded values are much larger than their east or west counterpart *% of all caves 

class) 
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The percentages of relict, combination and MV caves in each glacial situation are fairly similar to each 

other. Nearly half of all caves in each class are at GS=L, and very few are at GS=S. Each class is under- 

represented in all west-draining situations. However, the westward representation differences below the 

glaciation marine limit (GS=D and G) are much less for the small number of MV caves there than for 

relict and combination caves. Ignoring the one 8m-long relict cave at GS=S, i. e. GömstAllet grotta (KU), 

which has a doubtful relict nature, the relict cave mean length, VR, XS and volume in each glacial 

situation on the west of major ridges are consistently larger than those on the east, both above and below 

marine limits. Additionally, relict caves situated below both marine limits commonly have marine- 

enlarged cross-sections (sections 5.3.5 and 8.8) that are larger than the total relict cave mean of 3.1 m' 

(Table 5.27). 

Relict cave mean minimum HGs and XS/CA ratios are commonly larger and catchment areas are 

commonly smaller than those of mainly vadose caves and of combination caves. The XS and CA 

relationships confirm that relict caves developed less under present interglacial conditions than the caves 

of other classes, as expected. The mean CAs of the relict caves do not vary much between east and west 

counterparts, remaining consistently smaller than the study area mean of 4.0km2 (Table 5.27). 

Consequently, these caves had less opportunity to collect allogenic drainage, partly explaining why they 

remain relict. Above the glaciation marine limit, the mean relict XS/CA ratios are larger for eastward- 

draining valleys, whereas below this limit, they are larger for westward-draining valleys. This suggests 

that `higher' relict caves east of major ridges are even less related to the present hydrology than those on 

the western sides and that marine enlargement was greater for `lower' relict caves facing west than for 

those facing east, in agreement with the differences in mean cross-sections. 

in complete contrast to relict caves, which commonly have larger dimensions for western glacial 

situations, the mean length, VR, minimum HG and XS for MV caves with GS=L are all within 15% of 
those with GS=K. Thus, for MV caves, there is little difference in mean dimensions for caves that are 

above the glaciation marine limit but below the lowest local col, whether they lie east or west of major 

ridges. There is also variety in the western or eastern ranking of these MV cave mean dimensions for 

lower glacial situations. This provides further evidence that, uniquely amongst the three hydrological 

cave classes, MV caves commonly developed under present conditions at all glacial situations. The mean 

XS/CA ratios of MV caves also commonly reduce upwards, following the reduction of vegetation and 

soil cover with altitude and the consequent reduction of biogenic CO2 and humic acids. MV caves also 

show less increase in mean cross-sections in the deglacial marine situations C, D and E compared with 

other hydrological classes, suggesting that they did not exist to be enlarged by wave action when their 

carbonate outcrops emerged from below sea level at the start of the Holocene (section 8.8.2). 

MV cave mean catchment areas are commonly larger than those of relict caves, but in most glacial 

situations they are smaller than for combination caves. This suggests that the vadose development (and 
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therefore the mean vadose XS) of combination caves is commonly greater than that of MV caves. The 

MV cave mean XS/CA ratios are much smaller than those of relict and combination caves in most glacial 

situations, remaining close to their MV overall mean of 2.8m2km"2 (Table 5.27), again confirming that 

MV caves are much more closely related to present hydrology than the other two cave classes. As a set of 

caves, MV caves are rather smaller than relict caves, because most of their dimensions are smaller in 

most glacial situations. This suggests that across the whole of the study area, those conditions that favour 

enlargement of phreatic passages are somewhat more important than those that favour vadose 

entrenchment, and this principle should also apply to combination caves. 

Combination caves have mean internal dimensions that are much larger than those of relict and MV 

caves in nearly all glacial situations. The conclusions about glacial situation and total cave occurrences 

and dimensions (section 5.3.5) also commonly apply to combination caves. Thus, their mean lengths, 

VRs, XSs and volumes commonly remain greater west of major ridges but above glaciation marine limits 

and commonly greater east of major ridges but below marine limits. The greater mean length at GS-L 

compared with GS=K is accounted for by the long length of Koraligrottan (KU). If this cave was 

assigned GS=T instead of GS=L (section 5.3.5), the mean length at GS=L would become 151 m, i. e. less 

than the 156m at GS=K. Combination cave mean XS also tends to increase with lowering altitude, and 

mean minimum HGs do not vary much between east and west counterparts (except for GS---G and H). 

The relatively large volume for GS=H, XS for GS=C, D and E and XS/CA ratio for GS=D and E are 

again suggestive of enlargement of such combination caves by marine action. 

The west to east differences are less marked for combination caves than for relict caves, illustrating the 

intermediate position of combination caves between relict caves and MV caves in this respect and the 

`competition' between phreatic and vadose processes. The differences remain large enough to confirm 

that, in combination caves, those conditions that favour enlargement of phreatic passages are more 

important than those that favour vadose entrenchment, as suggested above. 

Because the trends for combination caves and for all caves (section 5.3.5) are so similar, it seems 

possible that combination caves could merely represent relict caves that enlarged in a single phreatic 

phase before experiencing vadose entrenchment. If this is the case, then the overall mean combination 

cave XS (4.8m2: Table 5.27) should equal the sum of the mean relict cave XS (3.1 m2) and the mean MV 

cave XS (2.1 m). Thus, if the mean vadose cross-sections in combination and MV caves are similar, the 

mean relict cave XS appears to be too large by 0.4 m2 (13%). However, for most glacial situations below 

the marine limits (GS=C, D, E and G), the relict cave mean cross-sections are disproportionately large, so 

that the enlargement of entrance areas by marine activity may distort the total mean figures. For higher 

situations (GS=H to S, but excluding T), the mean combination cave XSs are commonly greater than the 

sums of the mean XS for relict and MV caves. This suggests that, in these cases, some combination caves 

started their phreatic development before the relict caves (in perhaps an earlier phase) and / or they 
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started their vadose entrenchment before the MV caves and / or they have a mean vadose XS that is 

larger than for MV caves because of their larger mean catchment areas in most higher glacial situations. 

The variations in mean cave dimensions for each cave hydrological class at each glacial situation are 

subtle and complex. At this stage, there seem to be few obvious explanations, and yet there are sufficient 

internal consistencies to suggest that the variations arise from local geomorphological processes, rather 

than just being derived stochastically. Succeeding chapters, especially Chapter 8 and its section 8.1.10, 

address this issue further and derive models that demonstrate the importance of glacial situation in the 

karst evolution of the study area. 

5.6 Internal cave attribute trends 

The various internal attributes recorded in the cave databases and the influences that the external 

attributes and cave classes have on them are discussed in Appendix B2 and summarised in this section. 

5.6.1. Cave class influences 

Because relict caves contain no SE, RE, CS or SP and have few RV, comparisons of these hydrological 

attributes among the cave classes have little value. However, the frequencies of all the other internal 

attributes increase in the order mainly vadose: relict: combination and this trend is commonly observed 

within each karst type, in agreement with the same trends in the major cave dimensions (section 55.3). 

5.6.2. Cave type influences 

Appendix B2 shows that cave type, and therefore cave length, is a major determinant of all internal 

attribute frequencies, except SE and RE. This relationship is also commonly maintained within all cave 

classes (where appropriate), all karst types, all (most for RV and FS) cave locations and most glacial 

situations. The increases of BC with cave type are more erratic for each attribute, and are more rarely 

observed in each glacial situation. The cave type increase in DC is only observed in those cave locations 

and glacial situations where DC is well represented. 

5.6.3 Vadose and phreatic favouring 

The concept of `vadose favouring' of cave occurrences and dimensions was introduced in section 5.5.3, 

where it was proposed that some external attributes favour vadose over phreatic passage development, 

and vice versa. Thus, broadly speaking, the development of long vadose passages is favoured by large 

CAs and small XS/CA ratios, whereas phreatic passages are independent of CA (section 5.4.1). Vertical 

stripe karst (VSK) favours longer MV caves, but low angle karst (LAK) favours longer phreatic caves 

(section 5.5.3). The existence of MV caves is favoured if R=l (although their mean length reduces) and 

vadose cross-sections increase if T=1 (section 5.5.4). Cave locations R, S and W favour phreatic caves, 

and location F favours vadose caves (section 5.5.5). The large differences in occurrence and dimensions 

for phreatic passages in west and east glacial situations are not observed in MV caves (section 5.5.6). 
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Vadose or phreatic favouring by external attributes is also observable for the internal, non-dimensional, 

cave attributes. These influences can be understood by noting that a) the hydrological internal cave 

attributes of sink and resurgence entrances, cave streams and sump pools appear to be all diagnostic of 

vadose development, and b) relict entrances, chambers, shafts, boulder chokes, chemical deposits and 

fluvial sediments appear to be commonly diagnostic of phreatic development, because they occur least 

frequently in MV caves. Thus, although LAK increases the mean SE and RE of active caves, it reduces 

the number of their DE, and increases the DE of relict caves. Hence, reducing the foliation angle is 

commonly `phreatic favouring'. This `phreatic favouring' of reducing foliation angle is supported by the 

increase in Ch, BC, DC and FS as dip reduces. Only the shaft frequency decreases, because of the 

relative ease with which shafts form in VSK. Contact metamorphism (R=1) and thrusting (T=1). both 

tend to favour vadose development, because SE, RE, CS and SP commonly increase, whereas DE and Sh 

decrease. Cave locations R and S are especially `phreatic favouring', because SE, RE and CS decreases, 

whereas DE, Sh and FS all increase. The eastern glacial situations are also `phreatic favouring' because 

DE, Sh (commonly) and DC are greater there, but SE and RE are greater to the west. RV is also greater 

to the east, which suggests that even relict vadose passages had significant phreatic origins. This finding- 

agrees with the greater occurrences of relict and combination caves on the eastern sides of ridges, but 

contrasts with their commonly larger dimensions (including cross-section) on the west (section 5.5.6). 

To summarise, in contrast to the general zonal trends recognised for the carbonate outcrop and external 

cave attributes, the internal cave attributes commonly display fewer, and weaker, trends. They have less- 

strong relationships with the external attributes, so that their mean values tend to remain more constant, 

as partly shown in Table B2.1. However, there is considerable consistency in the phreatic or vadose 

influences of the various external attributes when considering cave occurrences, dimensions and internal 

attributes. The reasons for these influences are deduced in chapters 6-9. 

With the large amounts of data now available, and the finding that they display a considerable measure of 

consistency, a full statistical treatment would be a large but worthwhile task, but one that is beyond the 

scope of this thesis. Thus, the suspicion that cave internal attributes commonly follow Poisson, normal ; '' 

and lognormal distributions that are statistically significant remains untested. 

5.7 Cave morphology in the study area 

Many descriptions of the metamorphic karrt caves in Scandinavia refer, in general terms, to the guidance 

of cave passage morphometry by structural geological features, such as folding, faulting and the presence 

of inter-layered aquicludes. Cave surveys commonly show the angle of dip and direction of strike, where 

these are straightforward, together with guiding mica schist layers. Probably the most comprehensive 

study of geological guidance is that by Holbye (1983a, b, c), who analysed the highly-complex refolded 

geometry of the host rock and the passage development at the Greftkjelen / Greftsprekka system in 

northern Norway. A block diagram to explain their relationships was reproduced by Ford and Williams 
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(1989, P40). Sjöberg (1979) explained that Trollhullet and Vest Trollhullet (KU) formed near the hinge 

of a long, narrow, anticlinal, outcrop that runs parallel to the valley. The first cave developed along-strike 

in the northern limb, which dips into the valley side. The second cave formed along-strike in the southern 

limb, which dips parallel to the valley slope. Bottrell (1988) discussed the geological controls on 

speleogenesis at Glomdal, northern Norway, as discussed in Appendix A2.7. However, despite these 

isolated examples, the relationships between local geology and cave geomorphology have rarely been 

studied in detail, neither at the scope of individual caves, nor in a wider scope to embrace caves across a 

region. Sections 5.2-5.6 discussed the various elements that together comprise a cave system in the study 

area. This section takes a broader view, to discuss the passage morphologies that are observed in the 

caves and to consider the main influences on internal cave morphology. 

5.7.1 Cave plans 

The cave type classification defined in Figure 5.1 may be compared with the 15 cave patterns and their 

relationship to types of recharge and porosity given by Palmer (1991; Figure 5.7). 
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Figure 5.7 Karst cave patterns (Palmer, 1991, Fig. 25) 

Palmer's scheme was designed to illustrate typical passage morphologies for intergranular, bedding 

parting and fracture porosities for each of various types of recharge in sedimentary limestones in non- 

glacial situations (section 3.1.16). In this thesis, cave types a, b, d and e lead to the more complex g 

(tiered dendritic). They are similar to the Palmer patterns for sinkhole recharge into bedding partings 

with dominant porosity (giving sinuous, curvilinear passages) and into fractures (giving angular, fissure- 

like, passages). Types c and f (rectilinear and tiered rectilinear) approximate to Palmer's networks and 
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mazes formed along sinking streams or by diffuse recharge through sandstone into fractures. The most 

complex, type h, resembles Palmer's shaft and canyon complexes, formed by interstratal dissolution by 

recharge through sandstone into bedding partings. Caves comparable to Palmer's "spongework" and 
"ramiform" patterns are totally absent from the study area. Because these patterns are diagnostic of 
intergranular porosity, of diffuse recharge into porous rock, and of hypogean recharge, these mechanisms 

can be disregarded in central Scandinavia. 

5.7.2 Passage profiles 
The cave survey sections presented in Appendix B1 show that most of the longer, more complex, caves 

display upper-level passages that have a single shallow, phreatic loop (or part loop), long profile and that 

have phreatic cross-sections. Individual phreatic passages almost never comprise multiple loops. As well 

as passages with roughly circular and elliptical profiles, many phreatic passages have profile shapes that 

are determined by the angle of dip and the impurities within the metalimestone. Thus, cross-sections are 

commonly square or rectangular in vertical stripe karst, with one, or even both, wall(s) comprising an 

aquiclude rock. Cross-sections in angled stripe karst are commonly rhomboid-shaped. Vadose passages 

may be similarly guided by the metacarbonate structure, but they are commonly more vertical in profile, 

and have steps at floor-level without corresponding steps at roof-level. 

Below the abandoned phreatic loops in combination caves there is commonly a large vadose passage that 

carries the present allogenic stream towards the resurgence from its sink-point entry into the cave. The 

cave surveys do not reveal any soutirages (section 3.2.2) leading from the floors of any relict passages 

down to these vadose passages. Their closest analogues in the study area are commonly-inaccessible 

fractures that capture the flows from active vadose passages (section 7.2.1). Along the stream passage 

there may be one or more active phreatic sections, where sumps occupy the lowest levels of the cave. 

Higher-level relict vadose passages are commonly absent from all caves of all hydrological classes and 

there are even fewer relict vadose to phreatic transitions (Appendix B2.7 and section 8.4.12). However, 

some sink entrances have been abandoned by upstream capture on the surface. Given the complexity of 

many of these caves, the lack of relict, older, vadose passages is very significant. 

The vadose, shallow phreatic and deep phreatic illustrations of cave development theories provided by 

Ford and Ewers (1978, Fig. 3) all show many vadose inlets reaching down to phreatic passages nearer to 

resurgence level, as indeed does the Four-state Model of Ford and Williams (1989, Fig. 7.14). These are 

`snapshot' profiles that are intended to illustrate the active routes through a cave system at any point in 

time. They are only representative of the mainly vadose caves of the study area. However, from the above 

discussion, the combination caves appear commonly to possess an `upside-down' profile when compared 

to these profiles, because phreatic passages lie above vadose passages. The combination caves appear 

instead to be somewhat similar to, but less complex than, the multiphase example from the Mendip Hills 

(UK; Ford and Williams, 1989, Fig. 7.16f), where relict multiple phreatic loops lie above an active 
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streamway that is vadose, at least in its upstream parts. The relict caves are remarkable in having 

predominantly developed phreatically, without significant vadose captures or entrenchments. 

5.7.3 Influence of karst type 

Etasjegrotta (Z4; cave type h; Appendix B IA: Figure B1.8) is proposed as the ultimate example of a 

combination cave formed in monoclinal vertical stripe karst (VSK), because it displays the most 

vertically-tiered phreatic passages in vertical stripe karst in the study area, and perhaps in the world. 

Vertically-tiered passages that may be connected directly by tall or short vertical shafts mainly occur in 

VSK. Observations inside such caves reveal that the vertically-foliated limestone supports three main 

orthogonal joint systems. One system is a set of horizontal joint planes that are normal to the vertical 

plane of the outcrop and could be confused with the bedding planes of classical sedimentary limestones. 

The other two sets of joint planes are vertical. One set is strike-aligned and parallel to the banding, 

impurities and aquicludes within the limestone; the other set is normal to the vertical plane of the 

outcrop. Thus, VSK can support cave morphologies that are very similar to those in horizontally-bedded 

limestones, within the confines of the narrow outcrop. They include such features as anastomoses, 

phreatic tiered passages, vertical shafts and avens, vertical meandering vadose streamways, and small 

networks of joint-aligned vertical rifts. The survey sections of the caves in VSK presented in Appendix 

B1 show a general tendency for tiered shallow and fairly symmetrical phreatic loops to form along the 

strike. At the upstream ends of such systems, the descending passage segments are commonly invaded by 

an allogenic stream and display considerable vadose modification. At the downstream end of the system, 

unaltered phreatic passages may rise gently towards entrances above the stream resurgence, or ramp 

upwards more steeply, towards boulder chokes and / or dolines, to form type h caves. 

The widths of the vertical carbonate outcrops in the study area vary from the infinitesimally small up to 

c. 800m. However, as the vertical outcrops are almost entirely within the Uppermost Allochthon, which 

contains many aquiclude layers within the carbonates, the effective width of the vertical stripe karst 

rarely exceeds a few tens of metres. The distinctiveness of VSK may be compared with that of horizontal 

sedimentary limestones with a dip of 2-5°. According to Ford and Ewers (1978, p1793), there are 

important probabilistic differences [in the cave depths reached? ] between such flat-lying strata and strata 

that dip more steeply. Palmer (1999b) showed statistically that the tendencies for vadose passages to 

follow the dip direction, and phreatic passages to the follow strike direction, are most applicable in 

prominently-bedded strata with very low dip and few fractures. Section 5.5.3 showed that the mean depth 

of combination caves increases as the metalimestone foliation decreases, whereas they reduce for relict 

and MV caves. Hence, there are also probabilistic differences for the dip of metalimestones, although the 

effects may vary from those of sedimentary limestones. 

Gevirgrotta on Elgfjell (Z4; cave type h; Appendix B IA: Figure B 1.6) is proposed as a good example 

for combination caves formed in monoclinal angled stripe karst (ASK). In ASK, passages at different 
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levels are typically offset down dip, and have less directly-vertical linkages: shafts and avens are 

commonly steeply inclined. Phreatic loops are less symmetrical, and utilise aslant dip and joint 

directions. Joint systems in angled stripe karst commonly have the same relationship to the foliation as 

those in vertical stripe karst, and therefore form inclined planes, which guide passage cross-sectional 

shapes. These caves also show a general tendency for (offset) tiered shallow and fairly symmetrical 

phreatic loops to form along the strike. In caves formed in VSK or ASK, water flow is always either 

directly or generally along strike. It is suspected that phreatic passages tend to form along the hanging 

wall and vadose passages along the foot wall in ASK, but this was difficult to verify from cave surveys. 

The low angle karsts (LAK) support a variety of passage forms and linkages, and therefore no one cave is 

a representative example. Some water flow may be generally down-dip, i. e. normal to the strike. Very 

few horizontal outcrops are known, but in Akersvanngrotta (ZB), a single-level rectilinear network 

relict cave has formed in sub-horizontal metacarbonates, below a mica schist caprock, as cave type c. Its 

plan morphology is probably guided by two sets of fairly widely-spaced vertical joints that are 

orthogonal to each other, as discussed further in Appendix B1.11. 

The extent to which cave morphology is affected by lithological variations within the metalimestone is 

unknown. In the study area, the most important distinction is probably between the mainly grey calcitic 

limestones and the yellow / brown variety that is assumed to be HMC or DL (Appendix A2.4 and section 

4.4.6). Although several cave entrances occur at or near the junctions of these two varieties (e. g. 

Sarvenvärtoehullet, Z4 and Labyrintgrottan, ZC), present surveys do not indicate the variety of 

limestone in individual passages, and so conclusions cannot be drawn. Any future underground studies 

would need to overcome the problem that many caves at such a junction are primarily relict, so that 

limestone surfaces are not clean-washed and the lithology is not immediately identifiable. 

5.7.4 Influence of aquicludes 
An important geological factor in determining cave morphology in central Scandinavia is the presence of 

aquicludes within, and adjoining, the carbonate bedrock. The common non-carbonate rocks that are 

associated with metalimestone outcrops were described in section 4.3, together with information about 

their occurrence in the various nappes of the study area, including their occurrence within the karst 

caves. The two cave databases record non-carbonate rock samples from several caves. Where aquicludes 

are present within caves, their influence on cave morphology is prominent. 

An impression from field experience is that nearly all aquiclude rocks occur as internal layers within the 

carbonates, or as the adjacent country rock, and that they therefore share the same local strike and dip, 

over the whole range from vertical to horizontal foliation. Commonly, they do not occur as dykes or sills 

within the caves. It is mainly in some of the caves of Z2, where the carbonates were extensively altered 

and their foliation dips reduced by contact metamorphism from large intrusive plutons (R=l), that 
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intrusive dykes and sills can easily be recognised underground. For example, a folded dyke in 

Melnvatngrotta that is orthogonal to the cave passage (in ASK) has formed a one-metre-high waterfall 

along the streamway (Photo 5.2). 

The morphological effect of the aquicludes is most pronounced in the caves in VSK in the HNC. These 

are formed commonly as straight linear passages, or as vertically tiered passages, alongside a vertical 

wall of non-carbonate rock. The other wall of the passage may similarly be formed alongside another 

aquiclude, with the intermediate limestone being removed, to create a rectangular cross-section (section 

5.7.2). As the aquiclude separation varies randomly, these passag s can be low and wide, square, or high 

and narrow. In Kvitfjellhola (Z4), a passage formed in Comr exly Folded Karst alongside just one 

aquiclude wall has a `quarter tube' in the roof rather than th : more usual half tube, which is the 

diagnostic form for early phreatic development or for paragenesis. Where several parallel vertical 

aquicludes occur, it is common to see small, parallel, sub-horizontal passages at the same level. Vadose 

streamways are typically narrower, with just one wall against the aquiclude. Thin blades of the non- 

carbonate rock commonly protrude vertically, standing proud of the dissolved limestone. The largest size 

noted for these blades approaches a metre in RassAgagrotta (ZA; Appendix A4.4 and section 5.2.2). 

Peak flow in this system after heavy rain and during the early spring-melt must be much greater than the 

author-estimated 57m3s' mean annual flow, all contributing to limestone dissolution adjacent to the 

aquiclude blade. 

Non-carbonate layers typically act as complete aquicludes if they maintain a thickness greater than c. 

30cm. They can be breached by karst waters and provide `doors' or `windows' that can be walked or 

crawled through into passages formed in the next vertical layer of limestone where they become narrower 

(Photo 5.3). Typically, all the waterfalls (Photos 5.2 and 5.4) and many sumps in the caves in VSK 

(Photo 5.5) occur at places where a mainly vadose stream has breached a non-carbonate aquiclude. It is 

only by breaching these layers that caves can enter a second plan dimension that is orthogonal to the 

plane of the carbonate outcrop and larger than the separation distance between the aquicludes. 

The effects of the aquiclude rocks on cave morphology in ASK are less well understood. These layers 

should occur with similar frequencies and thicknesses across the strikes of the carbonate outcrops as in 

the vertical case. However, whether phreatic passages form preferentially above or below angled 

aquicludes, and whether vadose streamways cut down into the limestone below a sloping aquiclude wall, 

or erode into a sloping aquiclude itself, are questions that remain unaddressed (c. f. section 5.7.3). An 

impression from field experience is that as the angle of dip of the limestone reduces below c. 70°, then 

the frequency of breaches of the aquiclude layers also reduces. 

In caves in LAK, aquiclude rocks commonly form roofs and / or floors of passages that are otherwise 

formed within marble. Again, they cause obstacles to exploration, such as waterfalls where they are 
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breached at floor level by a vadose stream, and sumps, where gently-dipping non-carbonate roofs form 

perched sumps, along a streamway. The farther the dip moves away from the vertical, then the more a 

non-carbonate rock should behave as an Inception Horizon (Lowe, 1992). These features are seen 

especially well in some of the caves of the RNC (e. g. Ytterlihullet, ZA), which are commonly formed in 

marbles that dip gently to the west towards the thrust zone beneath the HNC. 

Photo 5.5 Klausmarkgrotta (Z2) 
Upstream sump in phreatic passage formed 

against a near-vertical wall of amphibolite 

The relationship between the frequency and thickness of internal aquicludes and the lengths and depths of 

caves is unknown, but there is no evidence that aquicludes affect overall cave dimensions, except that 

passages may be constrained to lie within a metalimestone sandwich bounded by extensive sheets of non- 

metacarbonates. Caves form commonly at the junction between limestone and an aquiclude rock, such as 

mica schist, along one edge of the karst outcrop. Sporadically, an allogenic stream sinks at one edge of an 

outcrop to rise lower-down, along the strike, but from the other edge of the same limestone outcrop. A 

corollary to the lack of dissolution of metadolostones to form caves (section 4.4.5) is that these rocks may 
instead be regarded as aquicludes when observed underground, so that they should behave as other non- 

metalimestones in this respect. 
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Photo 5.2 ýN aterf: º11 in NIeln%atngrotta (1,2) 
Formed at amphibolite barrier with white angled stripe 
karst marble, altered by contact metamorphism. 

Photo 5.3 Bulandsdatgrotta (Z2) 
Bright marble streamway, passing through left wall 
of amphibolite. Photo by M. Smith. 

Photo 5.4 5m Cascade, Sirijordgrotta (Z4) 
Formed where the active stream has breached schist impurities 
within the vertical stripe karst 
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5.8 Relationships between caves, carbonate outcrops and topography 

This section draws together the major conclusions from Chapters 4 and 5 about the relationships between 

caves, carbonate outcrops and topography, to complete the factual review and analysis of study area 

caves and karst. From apparent haphazard arrangements of metacarbonate outcrops and karst caves, 

several consistent patterns have emerged that point the way towards a single, if complex, explanation of 

cave inception and development. 

5.8.1 Approximate dimensional consistency across the zones 

The data in sections 4.2.1 and 5.2.1 show that karst frequencies and total cave dimensions in the study 

area follow the declining eastward trend in the extent of carbonate outcrops. A simple normalising 

parameter that can be used to model and predict the numbers of mapped karst features, the total length 

and volume of caves and the frequencies of many internal attributes is the total length of carbonate 

outcrop in each zone. Karst caves have formed in clusters along these outcrops in all carbonate-bearing 

nappes down to the lower Kali Nappes, but there are no significant, explored, caves at the geographical 

extremities of the study area, i. e. at the coast in Z1 and Z9, and in the east in KB. None are known in the 

Seve Nappes, or in the Lower Allochthon, where there are only relatively few, small, carbonate outcrops. 

5.8.2 Dimensional independence from metalimestone lithology 

Each carbonate outcrop has undergone various complex and individually uncertain processes of 

diagenesis, dolomitization, prograde and retrograde contact and / or regional metamorphism, 

dedolomitization and partial conversion to calc-silicate skarns. Predominantly, the outcrops are of Low 

Magnesian Calcite (LMC) composition. Yellow / brown layers of a presumed (less stable) High 

Magnesian Calcite (HMC) or Dolomitic Limestone (DL) composition occur uniquely in HNC Z4 and 

RNC ZA, and contain cave passages. The declining frequency of interlayered aquicludes follows a 

similar pattern to the decreasing metamorphic grade down through the nappes. This pattern cannot be 

detected in the frequencies and dimensions of karst features and caves per kilometre of metalimestone 

outcrop in each zone. Hence, it is concluded that cave dimensions are independent of the lithological 

history and chemical purity of the limestones, except that high temperature contact metamorphism tends 

to restrict overall cave development, whereas proximity to major thrust zones considerably enhances it. 

Thus, the number, length and volume of karst caves and the frequency of underground drainage are 

governed primarily by the solubility of the metalimestone (both LMC and HMC / DL), however it has 

been derived, and are little influenced by, for example, crystal size or interlayered impurities. Quartz and 

mica from interlayered schists may also promote erosion by abrasion. This independence of limestone 

chemistry certainly does not extend to pure dolomite outcrops. Although exokarst features and one short 

cave have been found by the author in rocks appearing to be dolostones, no caves are found in true 

metadolostone rocks (i. e. those with more than 42% of MgCO3). 
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5.8.3 Apparent independence of altitude and catchment area 
Sections 4.2.2 and 5.2.4 demonstrated that the vertical distribution of the carbonate outcrops is 

essentially random, and that cave entrance altitudes are scattered randomly within the overall constraints 

of the local topography and carbonate outcrops. An exception is that there are no significant, explored, 

caves at the altitudinal extremities, i. e. at the strandflat, and at the uppermost glacial situation. Indeed, 

there are no known karrt caves above 940m, although many carbonate outcrops lie above this altitude, up 

to a maximum of 1392m (in KU). This lack of caves at very high altitudes seems significant (Chapter 8). 

Furthermore, mean lengths, cross-sections, volumes and vertical ranges of the full set of caves are mainly 

independent of altitude (but vary with glacial situation), unrelated to the local tree line, and not related to 

the contemporary cave catchment area, except as discussed in section 5.8.9. 

5.8.4 The shallow, epigean, nature of most cave systems 

The vertical ranges of the carbonate outcrops (which can exceed 900m) do not appear to influence the 

depth of cave systems, which have a study area mean of only 8.8m, because many of the caves appear to 

occupy only the near-surface part of the limestone outcrop (Photo: Frontispiece 2). Cave vertical ranges, 

and the maximum depths of passages, or distances from the adjacent land surface, appear to be 

influenced by the dip of the foliation, with caves in low angle karst having deeper potentials. Section 

5.3.7 showed that the maximum subsurface cave distance in VSK is 50m, whereas it is 93m in LAK. 

5.8.5 Influence of cave location and glacial situation 
There appears to be no systematic influence of zonal position and altitude on cave dimensions and 

internal attributes, as the mean values remain roughly constant in samples of sufficient size, although the 

means represent broad distributions, with large standard deviations of natural measurements. However, 

the various external cave attributes are more influential, and can vary the mean values by up to +100% to 

-50% (taking the extreme example of cave volume), especially if cave location and glacial situation are 

considered together. Of particular note is that caves in valley shoulder and ridge locations, which may be 

tectonically less stable (Chapter 6), tend to be longer and deeper, and contain more shafts, than the study 

area average. There are major frequency and dimensional differences between all the caves situated west 

of major ridges compared with all those on the eastern sides. Thus, the mean dimensions of all caves 

above the glacial marine limit are greater on the western sides of major ridges compared with the eastern 

sides, despite their smaller frequency, and despite the dominance of caves on the eastern sides within the 

12 longest caves and 18 deepest caves (section 5.3.6). 

5.8.6 Importance of marine influences to entrance sizes 
Caves below the deglacial marine limit and, to a lesser extent, caves below the glacial marine limit, tend 

to have obviously-enlarged entrances compared with higher caves. This is also illustrated numerically by 

an increased mean cross-section for such caves and shows the effect that marine action and ice wedging 

can have on pre-existing cave passages during isostatic changes. 
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5.8.7 Internal morphological guidance by limestone dip and by aquicludes 
Within the general west to east decline in the angles of dip of the limestone outcrops and of their 

foliation, the dips can vary markedly within each zone. The longer caves, as well as the deeper caves, 

seem to form in limestones with rather low angles of dip. The dip of the foliation is a major influence on 
internal cave passage shapes, orientations and relationships. Where aquicludes occur, they also have a 

very strong influence on internal passage shapes and alignments. Additionally, many cave entrances are 

situated at the along-strike junction of the limestone with an aquiclude country rock, and this contact is 

commonly observed to form a wall of the internal cave passages. 

5.8.8 Importance of glacial situation to internal deposits 

The frequencies with which the caves display internal chemical and clastic deposits reduce for higher 

glacial situations. Assuming that most of these deposits date from the Holocene, it is suggested that this 

trend follows the reduction in annual temperature with altitude, the corresponding reduction in vegetation 

and soil cover, the associated increase in extent and duration of winter snow cover, the reduced sediment 
load in higher deglacial outflows and the increased flushing power of streams flowing from larger 

catchment areas to the east. 

5.8.9 Importance of cave classes 
The caves of the study area have been grouped into three large hydrological cave classes: mainly vadose, 

relict and combination caves, which occur randomly intermingled amongst each other geographically and 

altitudinally. The mean cave class occurrences, dimensions and non-hydrological internal attributes 

consistently follow this same rank order. 

Combination caves display the greatest variety of processes because they contain relict phreatic passages 

above active stream passages, which themselves combine vadose and phreatic elements. Most relict and 

mainly vadose caves experienced single (but different) development processes after inception, because 

all their mean cave dimensions are smaller than those of the combination caves, making them even more 

epigean in nature. The distinction between phreatic and vadose processes is confirmed, because the mean 

ratio of cave cross-section to present catchment area reduces markedly from relict to combination to 

mainly vadose caves. This suggests that only the mainly vadose caves and the active parts of combination 

caves have dimensions directly related to the flow-rates of present allogenic recharge, for which simple 
formulae for maximum dimensions were deduced (section 5.4.2). 

The external cave attributes variously favour phreatic or vadose development. In particular, the 

occurrence and dimensional differences apparent on western and eastern sides of major ridges are 

primarily a phreatic effect, with mainly vadose caves exhibiting more uniform characteristics. Cave 

internal attributes are themselves diagnostic of the prime development process, because the hydrological 

attributes indicate vadose entrenchment and the non-hydrological attributes indicate phreatic 
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enlargement. Also, it is only the mainly vadose caves that do not have enlarged entrances below the 

deglaciation marine limit. This suggests that they developed after the start of the Holocene, whereas 

relict caves and at least the relict phreatic parts of combination caves were then already in existence. 

Chapters 8 and 9 discuss the probable development processes and timescales for each cave class. 

5.8.10 Consistent pattern of cave types and morphologies 
Sections 5.2.5 and 5.3 showed that the distribution of cave types is fairly consistent across all the zones, 

and that all cave types commonly occur in most karrt types, in most cave locations, in most glacial 

situations, in all contact metamorphism / thrust combinations, and in both relict and combination cave 

classes. In all zones, two thirds of all caves appear to consist of a single linear or meandering passage, 

and these commonly represent the shorter caves. The longest cave in each zone commonly has the most 

complex type of passage arrangement. These commonly display interconnected, abandoned, shallow, 

phreatic-loop passages above a large, mainly vadose, streamway that may pass through several 

submerged sections. Present karst recharge is predominantly allogenic, and relatively few caves have 

more than one active stream. However, high-level static sumps are rare, as are relict vadose passages and 

the vadose entrenchment of relict phreatic passages, which is even more rarely found at the `downstream 

but ascending' end of phreatic loops. 

There is a high frequency of multiple entrances for the caves (the area mean is 1.5 entrances per cave), 

although many of these are relict, and even short caves can have many entrances. The frequencies and 

probabilities of the non-hydrological internal cave attributes commonly follow the increase in cave 

complexity, as identified by the cave type, and are therefore roughly related to cave length, for all three 

cave hydrological classes. There is a very low frequency of significant chambers, and these are 

concentrated in the more complex caves. There are also very few large boulder chokes in the caves, and 

only 34 restrict further exploration. Only 4.5% of the caves contain significant speleothems or other 

chemical deposits. These must therefore be regarded as consistently rare, although those that do exist can 

be very distinctive. Some 22% of the caves contain recorded clastic deposits. There is much evidence for 

the complete inundation of some caves during large modern flood events, and the consequent progressive 

movement and flushing of earlier deposits down, and eventually out of, the caves. 

MAI Consistent karst development processes 
The above conclusions confirm that the major dimensions and much of the internal cave morphologies 

are independent of zonal geographical position and individual cave altitude. This suggests that similar 

cave inception, cave development and cave removal processes operate, and have operated, across all 

zones of the whole study area, for similar periods of time and with similar effectiveness. 

This outcome is hardly surprising, because the zones of the study area share a common geological history 

after the Devonian, when thrusting caused by the final docking of the Laurentian plate with the Baltic 
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plate brought all the zones together in basically their present form. Thereafter, peneplanation in the 

Carboniferous was followed by uplift and subsequent erosion in both the Mesozoic and Cenozoic. The 

whole area has since suffered multiple glaciations during the Late Miocene, Pliocene and Pleistocene, 

when huge icesheets formed over the whole of Scandinavia. These glaciations have dominated the 

evolution to the present day landscape, which is still shaped by the geological structures. The climatic 

changes since the start of the Holocene have been fairly uniform across the whole study area, as 
discussed in section 2.4 and Appendix A4. Any moderating influence of varying tree line, mean annual 

temperature and mean annual precipitation on karst development (other than on internal deposits) across 

the study area is considered to be slight. 

5.8.12 Consistent palaeokarst processes 

As the whole area is almost devoid of post-Caledonian sediments, the timescale of possible karst 

development is very long. Carbon dioxide was available in rainwater from before the original formation 

of the Caledonides. Thus, the various processes of cave inception, development and removal may be 

normal components of landscape development since the Caledonian Orogeny. Within this continuum of 

processes, individual caves may develop relatively quickly or slowly, and persist in the landscape for 

short or long time periods, depending on geological constraints and topographical inheritance. Hence, the 

known caves may represent a range of examples from long persistence caves (perhaps represented by 

relict and combination caves), through to more-recently-developed caves (probably represented by the 

mainly vadose caves). 

Many kilometres of bedrock were eroded from above the present surface after the Caledonian Orogeny, 

but due to the random nature of the vertical distribution of the present carbonate outcrops and their 

general alignment with tectonic structures, it seems likely that the distributions of such outcrops in 

previous landscapes were similar to those at present. That is, they would occupy about the same 

proportion of land area, and have a similar distribution of length, width and area. The outcrops would 

also be aligned generally N-S or NNE-SSW, and occupy all parts of the vertical range. The vertical 

range of each outcrop or group of outcrops would however depend on the degree of peneplanation and 

uplift applicable at the time. Additionally, the carbonate outcrops would comprise similar lithologies and 

contain about the same amount and types of non-karstic impurities. Thus, at the zonal scale, the 

geological distribution of surficial lithologies can be regarded as roughly a constant throughout the time 

since the Caledonide events. Hence, the conclusion that each present zone represents a continuum of 

processes of cave inception, development and removal, with a distribution of timescales being 

represented for each phase, may be extended to any time period back to the Early Devonian. For all this 

time, the whole area can be regarded as a single entity regarding climate and uplift, so that at each point 
in time, the same processes applied across the whole region (and indeed to other parts of the 

Scandinavian Caledonides). As and periods would slow down all erosional and dissolutional processes, 

and very wet periods would speed them up, these climatic effects moderated the age distribution of the 
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caves. However, at any one point in time, the physical distribution of caves, their lengths and their 

volumes remained related roughly to the contemporary lengths of the carbonate outcrops, although they 

would not necessarily have mean dimensions similar to present values. 

The effects of uplift, peneplanation and glaciation also moderated this general model, because erosional 

processes generated a set of deeper and longer caves during times of high uplift, and destruction or 

infilling of caves occurred during peneplanation, tectonic sinking or marine invasion. Internal cave 

morphologies across the whole study area also varied across geological time from the effects of the 

multiple glaciations. It is known that Scandinavian karst caves became flooded, and acted as component 

parts of glacial hydraulic regimes, during the onset, maturity and recession of the Scandinavian ice caps 

(e. g. Lauritzen, 1986). Thus, total cave dimensions, and the proportion of phreatic to vadose passage 

elements across the study area increased in a consistent fashion across the whole area during periods of 

glacial activity. 

5.8.13 Single series of cave development models 
Taking a broad view of the above conclusions, the study area, its carbonate outcrops, and its karst caves 

can be regarded as a rather consistent entity in which the sequences and timescales of cave development 

can be considered further. Thus, it should be possible to construct a single series of models to describe 

cave development processes that apply commonly across the whole area, to which variations determined 

by the external cave attributes of karst type, contact metamorphism, thrusting, cave location and glacial 

situation can be applied universally. Indeed, this Chapter 5 itself provides the first of these models: the 

Static Internal Model of Cave Development. This is a framework that describes the present snapshot 

view of internal cave morphologies and how they are influenced by their geological and 

geomorphological environments. To achieve this model it has been necessary to describe some 24 

individual external attributes that apply to each of three major cave hydrological classes. The numerical 

data presented herein can be used within the framework to model and predict the character of the known, 

and the unknown, caves of the area as represented by the quantifiable internal cave attributes. 
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5.9 The inter-related five main hypothetical models 
The static internal model answers the question `what', when describing the physical properties of the 

caves. It is now necessary to address the questions `why', `how' and `when' the caves came to exist in 

their present form and to propose the sequences of passage development within the caves themselves. 

The main aim of this thesis is to develop a conceptual model for cave development in metacarbonate 

rocks in central Scandinavia, and to test the applicability of the model in similar geological 

environments in other parts of the world (section 1.1). It is now appropriate to introduce the five main 
hypotheses used to underpin the conceptual model. The conceptual model requires external and internal 

frameworks. The external framework (Chapters 6,7,8 and 10) shows how the formation, development 

and destruction of karst caves are related to the geomorphological evolution of the host region. The 

internal framework (Chapters 5 and 9) shows how cave morphologies are guided by the geological 

attributes of the carbonate aquifers, in both space and time. The external and internal frameworks are 

supported by the following hypothetical models: 

1. The Tectonic Inception Model (Chapter 6). This shows that it is only open fracture routes, primarily 

created by the seismic shocks that accompany deglaciation, which provided the opportunity for 

dissolution of metalimestone rocks that have negligible primary porosity. 

2. The External Model of Cave Development for central Scandinavia (Chapter 7). This black-box 

approach reveals how the formation, development and destruction of the karst caves were related to the 

evolution of their local landscape, for all time periods. In this approach, the cave is regarded as an 

unknown system between sink and resurgence. 

3. The Hydrogeological Model (Chapter 8). This model demonstrates that the present caves developed to 

their mapped dimensions in timescales compatible with the first two models, within the constraints 
imposed by the physics and chemistry of calcite dissolution and erosion in almost pure water, in both 

deglacial phreatic and interglacial, primarily vadose, conditions. 

4. The Internal Model of Cave Development (Chapter 9). This dynamic white-box approach demonstrates 

the sequence of evolution of karrt aquifers and caves along inception surfaces and inception fractures 

that follow the structural geology of the carbonate outcrops, to reach the present static internal cave 

morphologies described in Chapter 5. 

5. The Caledonide Model (Chapter 10). This model shows that the same processes commonly apply to 

cave development in most of the Caledonide terranes that exhibit metalimestone outcrops, and that the 

prime influences on present cave and karst occurrence and dimensions are the severity and frequency of 

northern Atlantic glaciations. 

Trevor Faulkner Page 161 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 5- Caves 

Trevor Faulkner Page 162 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 6- Tectonic Inception 

CHAPTER 6 TECTONIC INCEPTION 

The factual review of the karsts and caves of the Caledonides of central Scandinavia, as presented in 

Chapters 4 and 5, revealed many fundamental differences between these caves and those formed in 

sedimentary limestones. The most obvious difference is the metamorphic grade of the karst bedrock, and 

its very low primary porosity. Allied to this is the fine-scale foliation and consequent lack of 'bedding- 

plane' partings. Indeed, for the western part of the study area in the HNC the foliation is commonly 

vertical, and any sub-horizontal openings must be along joints or other fractures. The vertical foliation 

and metamorphic history led to the occurrence of many completely separate ̀ stripe karsts', in which their 

contained caves are, by necessity, commonly short and completely unrelated to each other internally, 

even if proximate in the field. However, despite the large vertical ranges of some of the metalimestone 

outcrops, the deepest cave is only 180m deep, and only four others are more than 100m deep. 

Additionally, despite the long lengths of some of the karrt outcrops, there are no regional scale caves, nor 

even regional hydrogeological drainage systems. Recharge to the karst is primarily allogenic, with 

autogenic recharge being relatively insignificant, and mainly occurring during the spring snowmelt. The 

caves are relatively short, and commonly extremely epigean: there is a total absence of long, hypogean, 

cave systems. Cave development has been predominantly phreatic, so that, commonly, just a single 

vadose streamway underlies upper-level relict passages that have, almost universally, developed 

phreatically with few vadose elements, creating an upside-down morphology. Thus, in many different 

ways, these caves have their own morphological style, recognisable right across the area, which 
differentiates them from caves formed in `classical' karsts. Chapters 6-9 attempt to explain the various 

geomorphological and climatic processes that combined to create the caves in their present form. The 

first question to address is "Why do these caves exist at all? " 

6.1 The inception problem 

The Inception Horizon Hypothesis (IHH; section 3.1.12) proposed that the first initiation of proto- 

conduits occurs as a syngenetic cave formational process during diagenesis (which may be accompanied 

by strong acid dissolution). The long, slow, non-karstic, inception phase is driven by capillarity, earth 

tides or ionic diffusion at great depth and over great distances within stratigraphical partings or adjacent 

porous or fractured rocks. How does this hypothesis stand in relation to the karsts and caves of the study 

area? 

6.1.1 Lack of primary porosity 

From the discussion in Appendices A2.2 and A2.3 it is clear that most of the high-grade metalimestones 

of the study area can exhibit no memory of their original diagenesis, after their subduction and 

metamorphism to marble at elevated temperatures and pressures. Thus, any proto-conduits originally 
formed syngenetically during diagenesis were closed as the rock experienced chemical and physical 

changes in lithology. The recrystallisation to metacalcite produced a rock with a primary porosity that 
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can be regarded as negligible, even over the long timescales available for `conventional' inception. Thei 

same applies to any mica schist, amphibolite, granite or gneiss lying adjacent to the marble: these rocks 

could not have sufficient primary porosity to act as aquifers carrying water to the limestone surface. 

6.1.2 Lack of stratigraphical horizons 

Taking the case of caves in vertical stripe karst (VSK), these commonly display morphologies similar to 

those in horizontally-bedded limestones (section 5.7.3). However, the inception horizons that guide the 

formation of horizontal passages along particular sedimentary bedding planes are completely absent, in 

horizontal passages in VSK. The foliation is orthogonal to, not parallel to, such passages, and there are 

no consistent systems of horizontal sills or other intrusions to act as inception horizons. 

6.1.3 Lack of regional-scale systems 
The IHH suggests that inception takes place over extremely long timescales, at great depths and over 

great distances. There is no evidence that such a mechanism has taken place in the study area. Certainly, 

there are no explorable caves that meet these criteria, there are no known allogenic or autogenic sink-to- 

rising drainage systems more than 3.5km in length, and there is no evidence of very deep cavities or 

wells in the metacarbonates. Indeed, regional-scale inception is not possible in small, short, and possibly 

shallow, metalimestone outcrops. Yet caves do occur in such outcrops. 

6.1.4 Existence of shallow systems 
Most caves in the study area have vertical ranges of less than 10m, which rarely exceed 15% of the 

outcrop vertical range (section 5.2.4). It is self-evident when visiting such systems (e. g. a short shallow 

`through cave' that carries a vadose stream from one entrance to another) that such passages have no 

relationship to any deeper, regional-scale, hydrogeology, even if it existed. Whereas it could perhaps be 

considered as a possibility that all such short caves are the lowest remnants of much longer systems 

formed deep below landscapes that have since been eroded away, this seems most unlikely as the 

carbonate outcrops would not have been consistently longer in the past than they are at present. 

6.1.5 The implausibility of the IHH to explain inception in some metalimestones 
From the four arguments presented above, it is clearly implausible to expect the IHH, as summarised 

simply in section 6.1, to account for the inception of the overwhelming majority of caves in the study 

area. However, elements of the Hypothesis may explain parts of the inception process in some caves, or 

groups of caves. For example, inception that is guided along sub-horizontal aquicludes within the 

foliation of marbles in low angle karst (LAK) seems very likely, as at Ytterlihullet (ZA). Similarly, 

inception along-strike at lithological boundaries within lower grade metacarbonates in angled stripe karst 

(ASK), as at Korallgrottan (KL) is also feasible. However, even in these examples, some other 

mechanism seems to be needed to explain an initial porosity. 
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61 The tectonic solution 

Despite the difficulty in utilising the IHH in its pure form to explain the inception of any of the studied 

caves, these caves exist and must have origins that at least post-date the last phase of metamorphic 

activity. As discussed in sections 5.8.10-5.8.13, the consistent style of the caves across the whole area 

suggests that a consistent set of processes guided the inception, development and destruction of caves in 

all timescales since the formation of the Caledonides. Two major clues to the inception process were 

noted in analysing the morphology of the studied caves: externally, their epigean association with the 

landscape, and internally, the dominance of relict phreatic passages. 

6.2.1 Association of caves with landscape 

All cave passages in VSK and ASK lie within 50m of the overlying surface (section 5.3.7), as do caves at 

Glomdal in northern Norway (Lauritzen, 1988b). Even in Ytterlihullet (ZA, LAK), all parts of its 

streamway are <95m below the surface. Its stream resurges, flows along a short surface valley, and sinks 

again in the same limestone outcrop before finally resurging some 200m above the limestone base, which 

is c. loom above the valley floor. Thus, this cave and most other active caves act in harmony with local 

hydrology and have an intimate, epigean, association with their local landscape. Hence, it seems safe to 

assume that these caves evolved in association with, and at a similar time to, their local topography. As 

observed in Appendix A3.5, the dominating process that governed the shaping of the visible landscape is 

the cycle of glaciation and deglaciation that was repeated many times since the late Tertiary. 

6.2.2 Relict phreatic passages 

All the relict caves of the area appear to have developed phreatic Ily, as have nearly all the higher level 

abandoned passages in the active caves (Appendix B2.7). Howe, er, in most cases, it is not possible to 

imagine present circumstances, even at times of high flow or floc d during spring melt, when these caves 

could be inundated with meteoric water to create phreatic con, Bitions for their enlargement. It may be 

possible to envisage earlier landscapes where these passages were submerged under meteoric conditions, 

but a much simpler explanation is to consider that these passages enlarged subglacially or during 

deglaciation phases, when whole valleys could be inundated by glacial meltwater. 

6.2.3 Tectonic inception model 

The development (and destruction) of the present suite of karst caves can therefore be addressed by 

considering the way that glaciation has eroded the land surface, and perhaps provided sufficiently 

aggressive meltwaters to enlarge passages by dissolution. But these processes cannot explain the actual 

inception along proto-conduits. Without such openings, glacial meltwaters would not penetrate into high 

grade metalimestone, even under pressure. 

The Tectonic Inception Model of this thesis hypothesises that, through several separate, but commonly 

related, mechanisms, the stress release arising from the isostatic rebound and surface erosion that 

accompanied the deglaciation of the study area at the end of each glacial cycle, plus longer-timescale 
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plate tectonics, caused the formation of tectonic fractures in the upper (epikarstic) part of the limestone 

(Photo 6.1). These fractures commonly follow planes of foliation and planes orthogonal to it. Thus, 

openings are created along inception surfaces between the limestone and adjacent aquicludes (which may 

include dolostones), and by inception fractures that are entirely within the limestone, but are commonly 

(though not universally) parallel to, or orthogonal to, the foliation. This model builds on the observations 

that "the continuing seismic and tectonic activity (in similar settings) in Scotland may be best understood 

in terms of a partially detached' thin upper crustal layer" (Davenport et al., 1989, p 191) and that near- 

surface limestones, and dolostones especially, are not very ductile and produce brittle fractures during 

folding, faulting and removal of overburden stress by erosion (e. g. Dore and Jensen, 1996, pp426-427). 

In this context, Appendix A3.4 assumed that the maximum thickness of permafrost during glaciation is c. 

100m. Hence, rock above this level is subjected to more severe temperature cycling and freeze-thaw 

processes than rock below it, and is therefore more likely to form inception fractures when triggered by 

seismicity. The practical expression of these processes was provided by Boulton et al. (1996, p403), who 

noted from pumping tests that the crystalline basement rocks of the Scandinavian shield (primarily non- 

carbonates) have "a surface horizon of fractured bedrock about 100m thick which has a hydraulic 

conductivity of 10"6ms"I". This provides a near surface aquifer that is commonly found in crystalline 

rocks worldwide (Gustafson and Krasny, 1994; section 3.1.18). 

The idea of tectonic inception in karst rocks has a precedent, because Riggs et al. (1994; section 3.1.18) 

proposed the tectonic speleogenesis of Devils Hole, Nevada. The only known (and largely ignored) paper 

to discuss the importance of fracturing by stress release in the development of cave passages in 

sedimentary limestones was by Sasowsky and White (1994). These authors anticipated some of the 

independently-deduced processes described in this thesis, but for a non-glacial setting in Tennessee. 
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6.2.4 The glacial / tectonic cycle 

Because the tectonically-induced inception fractures are commonly produced at the end of each 

glaciation, there may not always be sufficient time for phreatic passages to enlarge to explorable 

dimensions during the remaining time of that particular deglaciation. Hence, the cyclic processes of 

glaciation, deglaciation and tectonic opening combine together to develop cave passages: the tectonic 

inception at the end of one deglaciation provides voids and fractures that permit the circulation of 

aggressive waters, both during that deglaciation and during the next glacial and deglacial phases. As the 

cycle repeats itself, passages near the surface enlarge and become removed by glacial and fluvial erosion 

(as noted by Isacsson, 1994, at Korallgrottan, KL), and new passages form at geologically lower levels. 

6.3 Formation of tectonic fractures 

Tectonic inception (and indeed any inception hypothesis) is not easy to prove. Tectonic fractures are 

likely to be too narrow to observe visually. Any such fractures that lead to karstic dissolution and 

enlargement to explorable passages may no longer be in a recognisable form. Thus, the Tectonic 

Inception Hypothesis will be supported by an accumulation of circumstantial evidence. The following 

sections discuss general modes of fracture formation in the Scandinavian Caledonides, the evidence for 

tectonic activity in Scandinavia and in the study area itself, and what evidence there is for tectonic 

inception from the metalimestone caves of central Scandinavia. The hydrogeology of fractured rock was 

discussed in section 3.1.18, and that of fractured metalimestone is considered in Chapter 8. 

6.3.1 Caledonide evidence for tectonic activity 
Section 3.1.17 and Faulkner (1998) discussed the latest ideas on the importance of tectonic activity to 

cave development in sedimentary limestones. The idea that tectonism sensu lato has influenced karst 

cave development in at least the Caledonides has been suggested, or hinted at, by several authors. Thus, 

Hoel (1906, p8) raised the possibility (before dismissing it) that Aunhattenhullet 1,2 and 3 (Z2) and 

Langskjellighattengrotta (Z2) were formed by "dislocations". Horn (1947: McGrady translation, 1978, 

p135) noted that the Norwegian coastal area at the Arctic Circle is still unstable tectonically, which 

should favour joint formation, or the widening of old joints. Kirkland (1958) thought that collapsed 

blocks on the floors of chambers in the Svartisen area could have resulted from movements along faults 

and from seismic disturbances. Lauritzen (1989a, 1989b and 1991 b, p122) suggested that cave passages 

in Norway are almost always guided by the line of intersection between two planes (but see section 6.4). 

His statistical analysis of several metalimestone caves revealed that commonly shear fractures (faults and 

shear joints) and less commonly tension fractures are utilised as primary guiding voids for speleogenesis. 

Attempts to predict cave passage trends were made by modelling the fractures, which gave acceptable 

results in some situations. Lauritzen did not consider the possibility that the fractures in metamorphic 

limestones remain sealed, but act to guide inception in the adjacent rock (as suggested for sedimentary 

strata by Lowe, 1992a), because he relied on the assertion that `from the theory of speleogenesis it 

follows that cave conduits are formed from pre-existing fractures" (Lauritzen, 1989b, p 118). Onac 
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(1991) noted caves formed by gravitational mass movement near Narvik, and the influence of tectonic 

faults in guiding subterranean streams. 

As noted in section 3.1.18, Randall et al. (1988) reported on the hydrogeological framework of the NE 

Appalachians, a region that has a comparable metamorphic Caledonide geology to the study area. They 

noted high hydraulic yields from fractured non-porous bedrock, especially from wells that intersect 

contacts between different lithologies. Earlier work was quoted that showed that fractures decrease in 

size and frequency some 50-75m below the surface. "Zones of tension fracture and zones perpendicular 

to the bedrock fabric are more likely to be open and bear water than zones of shear fracture or zones 

parallel to the bedrock fabric" (Ibid., p179). The watertable configuration in uplands nearly replicates 

the topography throughout the region, so that inter-basin flow systems involving significant flux have not 

been shown to exist All these observations seem relevant to the study area. Carlsten and Strahle (2001) 

reported that open, and partly-open, fissures were found in a borehole at Bodagrottorna in non-carbonate 

rock on the Swedish Baltic coast at depths at least down to 150m, in an area that was very active 

seismically in the early Holocene. 

Seismic and aseismic tectonic activities that lead to the creation of fractures can arise from several 

separate mechanisms. The evidence for considerable uplift, starting from a rapid rise at the start of the 

Holocene is well documented, and some of it was discussed in section 2.4.6. That part of the evidence for 

uplift that is associated with caves includes Sjöberg (1981a and b), who discussed 50 elevated caves in 

east Sweden formed by cobble abrasion at the coast of the Baltic sea or its predecessors, and Sjöberg 

(1988) who discussed elevated coastal caves in central Norway. That seismic tectonic activity 

accompanied the uplift was documented by: Husebye et al. (1978); Mörser (1980); Stephansson and 

Carlsson (1980), who discussed a Caledonian Zone of seismicity; Anderson (1980), who suggested that 

the maximum number of earthquakes (brittle shear failures) after deglaciation would occur just inland 

along the coast, especially in regions of large elevation differences perpendicular to the coastline; 

Sjöberg (1987a and 1987b), who classified Swedish neotectonic cave types as occurring a) in split roches 

mouton6es, b) in collapsed mountain slopes, and c) in sub-horizontally displaced mountain tops, and who 

postulated that talus caves in Sweden were formed by earthquakes caused by the early and rapid (20- 

50cma') Holocene uplift (although an alternative mode of formation for the Swedish talus caves in 

Precambrian rocks was proposed by Bergsten, 1976, who thought that they formed by the movement of 

rock masses caused by the pressure of over-riding glaciers); Sjöberg (1996b), who dated the formation of 

scree and talus caves by a huge tectonic event at 9400-9200a BP; Sjöberg (1996c) and Mörner (2003), 

who recorded that, for the first time, the Swedish nuclear industry has had to accept that Sweden suffered 

heavy earthquakes immediately after the Weichselian glaciation; Sjoberg (1996d), who listed Swedish 

Holocene earthquakes with magnitudes from 5-8 and showed how the formation of seismotectonic caves 

could be dated by studying soft sediment deformation in varved clay, as also discussed by Sjoberg 

(1999a; 1999b); Kejonen (1997), who described seismotectonic crevice caves in Finland that developed 

from 12-8ka BP; Laberg and Vorren (2000), who described Holocene megaslides in northern Norway; 
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and by Mörner (2003) who presented 15 papers to demonstrate that Scandinavia was an area of high 

seismic activity at the time of deglaciation. 

Mörner et al. (2000) noted that palaeoseismic events occurred in the Stockholm area about every 20 

varve years from -10490 to -10410a BP, and listed 15 events in Sweden with magnitudes between 6 and 

>8 from -12500 to -1000a BP, some being associated with tsunamis. As the records came from the 

whole of Sweden, no region could be considered aseismic during the deglaciation period. The formation 

of the Bodagrottor talus cave (close to the borehole discussed in a previous paragraph) by the 'blowing- 

up' of a roche mouton6e occurred at 9663a BP, by the dating of a varve that arose from a synchronous 

earthquake-generated tsunami that swept across the Baltic sea 33 varve-years after local deglaciation. 

From the size of the individually moved blocks, this earthquake may have had a magnitude greater than 

9-10. A map produced by Mörner et al. (2000, Fig. 1) shows that each seismic event occurred as the ice 

margin passed overhead. Thus, from all this evidence, it is sensible to suggest that some fractures in the 

metacarbonates of the Caledonides were caused by surface strain release, or by deeper seismic activity, 

associated with the fast, early Holocene, uplift, at a time coincident with the passing of the ice margin. 

The uplift was not necessarily uniform, even at a local scale. Differential uplifts caused crevasses and 

other changes of slope, particularly along ridges. Braathen et al. (2004) described four types of failure of 

rock slopes that occur especially in valley shoulder locations (CL=S), where this thesis shows that cave 

dimensions are maximised (section 5.3.4). Additionally, Warwick (1971), Ford and Ewers (1978) and 

Lauritzen (1986a) suggested that pressure release at the sides of valleys could create fracture zones, 

including after melting of the local valley glacier (section 3.2.1; Photo 3.1). 

Rohr-Tore (1994) confirmed that fractures in Scandinavian crystalline rocks are strongly related to 

isostatic uplift, rather than being a common phenomenon among all regions with crystalline rocks. He 

found excellent linear relationships (R2>0.85) between the local present rate of uplift (which itself is 

positively correlated with the total Holocene uplift) and the mean and median of both borehole yield and 

the reducing depth required to achieve an adequate yield, at sites across southern Norway. Concluding 

that young tectonic events have rejuvenated old fractures, he proposed a simple rule to predict the typical 

yield of a randomly-placed drilled well in Precambrian rocks in Fennoscandia: the yield is 180Lh"' at a 

place with Ommä' uplift from a well at 80-85m depth, increasing by 10OLh"', from a required depth of 

6m less, for each extra mma 1 of uplift. Present study area uplift rates vary from 2.5-5.5mma (at the 

coast to beyond the MSW). The fracture patterns and dimensions that may support this groundwater 

storage and flow in Norway were discussed by Banks et al. (1996) and by Gudmundsson et al. (2002). 

Ford (1983, p157) referred to this mechanism in Canada as "isostatic groundwater pumping". 

Thorson (2000) noted that, with the new recognition of the effects of glacial mass transfers, there is now 

a blurring between the study of basic tectonics, and the study of glaciotectonics, and further, that 

seemingly trivial changes in stress may be sufficient to nucleate earthquakes, especially if there is a 
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change in crustal pore pressure. Citing other authors, he reported that crustal permeability reduces 

systematically with depth in a simple log-log relationship spanning at least 10 orders of magnitude. Muir- 

Wood (2000) discussed a new generation of models of glacial unloading of the lithosphere that show that 

the horizontal strains developed may have a greater potential for seismotectonics than just the vertical 

component of rebound. Whereas changes in vertical stress instantaneously follow the ice load, the 

changes in horizontal stress are chiefly a function of the viscoelastic response of the underlying mantle. 

Thus, at deglaciation, tectonic strain energy that was accumulated during the whole period in which the 

icesheet had been in place "can be liberated in a major seismic outburst" (Ibid., p1410). Modelled 

horizontal velocities along the Norwegian continental margin are - 2mma' away from the icesheet centre. 

Stewart et al. (2000) noted that horizontal plate motions normally drive crustal deformation, but with the 

onset of glaciation, this style is overprinted by the glacial stress, and new horizontal crustal motions 

increase outwards from the icesheet centre. Their Fig. 3a showed that subglacial water penetrates into the 

crust below enhanced icemelt in topographic hollows, increasing the pore-water pressure. Their model 

showed that large icesheets stabilise underlying crustal faults, whereas deglaciation destabilises the 

faults. Periods of cover by maximal Scandinavian icesheets represent times of seismic quiescence, due to 

the muffling effect of the weight of ice, as the land is gradually compressed and isostatically depressed 

(Johnston, 1987). Each glaciation tends to reverse the direction of tectonic movement of the previous 

deglaciation. The reverse movement occurs in smaller steps of lower seismic intensity, because ice sheets 

take longer to grow than to decay, and may be incomplete because of the prevailing stress from the mid- 

Atlantic ridge push. For small icesheets of radius c. 333km, ice loading increases stability only at shallow 

depths, and promotes instability at greater depths. Stability is decreased beyond the ice margin for all 

icesheets, and it is also decreased there during deglaciation, relative to the pre-glacial state. Thus, the 

effects of icesheets vary as they wax and wane and seismic activity can also occur during glaciations, 

prior to a `pulse' of deglaciation seismotectonics. 

Hunt and Malin (1998) suggested that the six major ice-rafting Heinrich events from 70-14.514Cka BP 

(section 2.3.3), known from layers of rock-fragments in Atlantic sediments from NE Canada, were 

triggered by ice-load-induced earthquakes around the perimeter of the Laurentide icesheet. In 

Fennoscandia, faulting is linked to zones with very steep ice gradients (which must occur early or late in 

the life of an icesheet), or to the final stages of recession, when the bulk of seismic activity probably 

occurs within a few hundred years. Following Johnston (1987), who noted that artificial reservoirs can 

trigger earthquakes by increasing hydrostatic pressure, it occurs to this author that local deglacial 

earthquakes may also be triggered by the formation of ice-dammed lakes (section 8.4). Fjeldskaar et al. 

(2000) suggested that stress-generating mechanisms can be grouped into three classes: first-order stresses 

across Fennoscandia that arise from the NW-SE compression normal to the mid-Atlantic ridge at the 

plate margin, which propagate stresses through an elastic lithosphere; second-order stresses that are 

limited to Scandinavia; and third-order stresses that relate to local features (e. g. topography) and rarely 

extend beyond -100km. 
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Any of the above mechanisms may result in fractures that are open to the surface. Such fractures have the 

potential to fill with water in summer, so that any freezing during winter would subject the rock to 

increased stress. The magnitude of any widening is proportional to the sub-zero (°C) temperature at the 

surface (Matsuoka, 2001). Although most widening is reversed on thawing, there is a tendency for the 

fracture to be permanently enlarged, and then to admit a higher volume of water during the next freezing 

cycle. The temperature cycling of rocks of differing lithologies that have unequal coefficients of thermal 

expansion would also promote fracture enlargement along contact zones. Indeed, Gudmundsson et al. 

(2002, p64) stated that "stresses tend to concentrate at the contact between dyke rock and the host rock 

and generate fractures that may conduct groundwater". Thus, it is envisaged that tectonic inception 

commonly leads to a growth in the size of the near-surface fracture network, even without invoking 

karstic processes. If ice-dammed lakes completely froze in winter, then submerged fractures would also 

be subjected to further stress. 

Another mechanism to increase fracturisation is hydrofracturing (e. g. Gudmundsson et al., 2002). As 

discussed in Appendix A3.4, this process can force groundwater upwards through bedrock at gaps in 

permafrost, and this may possibly apply to metacarbonates during parts of the glacial cycle. A 

hydrofracturing technique to increase the well-yields of boreholes in crystalline rocks is to inject water 

under high pressure, to dilate existing fractures or to create new fractures. This can increase hydraulic 

conductivity by two orders of magnitude in the vicinity of the borehole (Howard et al., 1992). At the base 

of a 500m-deep ice-dammed lake, the pressure would be 50 atm. Thus, water can be injected into 

fractures that may occur within any underlying metalimestones, and, according to Banks et al. (1996, 

p230), such pressures in a borehole may be sufficient to stimulate already fractured bedrock, and, 

possibly, to create new fractures. However, unlike at a pressurised borehole, the water pressures within 

fractures beneath deep lakes could be evenly distributed at each depth, so that the potential for 

hydrofracturing would appear to be more limited. Nevertheless, strain release, lubricated by the water, 

could still arise from local pressure differences between the rock and the water. Additionally, if the 

injected water froze during a period of local permafrost, fractures, and especially horizontal fractures, 

would be widened. A further mechanism suggested by Banks et al. (1996, p226) is that frictional stress at 

the base of a glacier, coupled with hydraulic fracturing (e. g. below a deep ice-dammed lake: Chapter 8), 

may develop permeability in underlying rock. 

There is no reason to suppose that the concentrated seismic creation of fractures during Holocene 

deglaciation was unique: similar processes must have occurred during the approach of all previous 

Cenozoic interglacials (and perhaps interstadials), although the magnitude of the effects varied. From the 

speleothem chronozones proposed for Norway (Lauritzen, 1991 a, Table 1), there are long intervals of 

several l Oka when speleothems did not grow, and full glacial coverage can be inferred. It therefore seems 

likely that large magnitude earthquakes only occurred once per 100ka glacial cycle. Similarly, the 

deglaciation of earlier icesheets, even going back to the Varanger Ice Age from - 620-58OMa during the 

formation of the Caledonides, can be expected to have caused earthquakes and near-surface fractures that 
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would promote tectonic inception in exposed limestones and metalimestones. However, along with the 

surface bedrocks, any caves formed therein are likely to have been eroded away well before now, or to 

have disappeared during metamorphism. Another mechanism for creating tectonic fractures was probably 

important during the slow, but large, Mesozoic and Cenozoic uplifts (Appendix A1.3.2 and section 

2.2.2). Such uplifts of a large, rigid, crust were almost certainly accompanied by both seismic and slow 

tectonic movements, possibly creating in this case a deeper-seated set of fractures, but without ice 

wedging in the warmer climates. This tectonic activity was probably also supplemented by adjustments 

made during erosional unloading as the surface weathered. 

6.3.2 Neotectonics 

In addition to the postglacial uplift, there are two main sources of evidence of neotectonics in 

Scandinavia: the earthquake record, and the observation of movement along faults (e. g. Husebye et al., 

1978; Olesen, 1988; Bungum, 1989; Olesen et al., 1992; Olesen et al., 1995). The science of seismology 

has developed considerably since the early 1980s, with the use of local instrumentation that can record 

small earthquakes of magnitude 2. The results are summarised on a neotectonics map by Dehls et al. 

(2000a; Figure 6.1). The seismic events tend to follow N-S alignments at depths commonly focused 

above 15km at the Atlantic Ridge, along the Continental Shelf edge, along the Norwegian coast, rather 

randomly along the border and onto the Swedish shield, and along the Swedish Baltic coast. 
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Many earthquakes have occurred in north Nordland and along the coast of southern Norway since 1750 

AD, but lower frequencies and magnitudes coincide with the study area, which occupies part of the 

`saddle' position between higher mountain ranges. Central Scandinavia probably acted as a focus for ice 

flow during late Cenozoic glaciations (section 2.3.3). With thinner icesheets, there was less stress relief 

and lower seismicity at each deglaciation. Additionally, increased ice flow increases glacial erosion, 

leading to less surface relief and less differential stress, and the increased sedimentation on the Vering 

Plateau may have a dampening effect. The historical record of significant, but comparatively smaller and 

less frequent neotectonic earthquakes in the study area (Figure 6.2) may be representative of relative 

seismic activity during the whole Holocene, although, following the `pulse' of deglaciation 

seismotectonics, the style of seismicity does change, as noted by Stewart et al. (2000, p1381): "Whereas 

present-day seismicity is concentrated around the margins of the former icesheet, on deglaciation, 

earthquakes predominated at the centre of the rebound dome ". However, neotectonic earthquakes do 

follow the Rana Fault Complex south along the coast of the study area, and the largest recorded Northern 

European near-shore earthquake, of magnitude 5.8, occurred on 31 August 1819 AD in Rana, just north 

of the study area. Some 10000 micro earthquake shocks were recorded instrumentally at Meley, 70km 

north of the study area, during 10 weeks in 1978 (Bungum et al., 1979). These were up to magnitude 3.2, 

were heard and felt locally, and caused cracks in walls and chimneys. 

The documented active postglacial faults are commonly NE-SW-trending reverse faults that lie within a 

400km x 400km area in northern Fennoscandia (e. g. Arvidsson, 1996). Their lengths and maximum scarp 

heights vary from 3-150km and from 1-30m. Fault offsets range up to 13m (Dehls et al., 2000b). A 

magnitude 4 earthquake occurred near one of these faults in 1996, and large amounts of groundwater 

poured out of the escarpment. The fault length to offset ratio indicates that the structure itself resulted 

from an earthquake with a magnitude above 7. The work of Olesen et al. (2004, p17) "supports previous 

conclusions regarding a major seismic pulse' (with several magnitude 7-8 earthquakes) which followed 

immediately after the deglaciation of northern Fennoscandia ". 

The earthquakes may not just be caused by isostatic rebound after the removal of ice. They may also 

indicate the opportunity for adjustment to glacial erosion after the `muffling' effect of the ice cover has 

gone. The W-E B$smoen Fault can be traced for 50km along Ranafjord (Figure 6.2). It has a maximum 

displacement of l Om, escarpments up to 80m, provides evidence of recent movements (30-40cm between 

8780 and 3880a BP: Hicks et al., 2000), and was associated with the 1819 earthquake. The 2km-wide 

fault zone is just north of the junction between the HNC and the RNC along the northern extremity of the 

study area for part of its length, and displays an anomalously high present uplift of 9.2mma' at Hemnes 

(Z6), and anomalously low uplifts for the islands of Hugla (Z9) and Tomma (Olesen et al., 1995). The 

Rana area was the subject of an in-depth seismic study, NEONOR, from 1997-1999 (Hicks et al., 2000). 

Some 267 local earthquakes were recorded, with magnitudes up to 2.8. The data showed a predominance 

of normal to strike-slip faulting with the tension axis normal to the coast, the same direction as the 

compression axis in other areas. "The Rana area has a significant amount of the total seismic activity in 
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onshore northern Norway" (Ibid., p1431). However, none of this particular activity was directly 

connected to the BAsmoen Fault. The authors concluded that postglacial uplift is the most likely cause for 

this continuing high level of seismic activity. 
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Figure 6.2 Historical earthquakes in the study area 
(Various sources) 

Muir-Wood (2000) suggested that the constructive or destructive interference between the postglacial 

and (plate) tectonic strain fields is strongly dependent on the `original' tectonic regime, i. e. whether it is 

primarily extensional, compressional or strike-slip, and predicted that the present-day effects include 

alternating quadrants of enhanced seismicity and aseismicity around both rebound domes and former 

peripheral forebulges. His model showed a highly seismic forebulge offshore along the Norwegian 

coastal area, in front of an aseismic quadrant over northern Scandinavia with an apex at the centre of the 

previous icesheet, and a seismic quadrant over southern Norway and Sweden. The model is reasonably 

consistent with the seismic record from 1880 to 1990. Thus, the long postglacial faults (above) that arose 

from large earthquakes soon after the Holocene deglaciation in northern Scandinavia now lie in a region 

of reduced seismicity, as do, for example, Ireland and NE Scotland. This model was offered as an 

Trevor Faulkner Page 174 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 6- Tectonic Inception 

explanation for the contrasts in seismicity between regions that in other respects have similar geological 

histories. Muir-Wood (2000) also discussed postglacial very shallow stress-relief phenomena, known as 

`pop-ups', which are prevalent along the margins of the Laurentian icesheet, but relatively unknown in 

Scandinavia. However, Roberts (2000) reported offset structures in boreholes at road-cuts that are 

regarded as stress-relief features initiated by blasting. Fjeldskaar et al. (2000) supported the finding of 

Muir-Wood (2000) that stresses in western Scandinavia arise from the constructive interaction of 

postglacial uplift and ridge push, and noted that deep earthquakes occur mainly offshore, whereas 

shallow earthquakes occur predominantly onshore. Normal faulting (extensional regime) is dominant, 

with horizontal tension perpendicular to the coast. They explained the high seismic activity offshore from 

mid-Norway as being caused by the high bending stress in the transition zone between uplift and 

subsidence, which, as Hicks et al. (2000) remarked, is the zone with highest postglacial uplift gradients. 

Olesen et al. (2004, Appendix A) included 54 classified claims of neotectonic movements from onshore 

mainland Norway. This was prior to new evidence discussed in section 6.3.3. The earthquakes and fault 

movements are commonly parallel manifestations of neotectonic activity that arise from both glacial 

isostatic uplift and longer-term plate tectonic ridge-push forces caused by oceanic spreading from the 

Atlantic Ridge. Thus, the bedrocks of the area are subjected to a mainly horizontal compressional stress- 

field (of >20Mpa at depths of 200-800m in the Ranafjord area: Olesen et al., 1995), commonly 

orthogonal to their strike, which may be relieved in various ways. Within road tunnels there is anecdotal 

evidence that civil engineers report the sounds of rock moving, and `rock bursts' occur when rocks fall 

from the roof, after blasting is complete. At the surface, crushed rocks and slipped blocks and notches on 

skylines may indicate postglacial movements along faults and nappe boundaries. Olesen et at (1992) 

reported that as well as Holocene movement along one major fault in Finnmark (the northernmost county 

in Norway), the earliest detectable displacement is of Proterozoic age, indicating an extremely long-lived 

fault zone. Such fault zones lie parallel to the strike of the foliation, and give low resistivity readings due 

to ingress of water into fractures. Accommodation faults can lie sub-parallel to the main fault, a short 

distance away. Whereas the plate tectonic processes constitute the most important fault-generating 

mechanism in Finnmark, stress relief could still have been triggered during the deglaciation period. 

There are no known extensive faults wholly within the study area, which, as noted above, is less 

seismically active, although Olesen et al. (1995) showed an earthquake zone that extends NE across the 

north of the study area, passing through Mosjeen and Korgen (Figure 6.2). Even with the publication of 

all recent Norwegian seismic events above magnitude 2 on the World Wide Web, there is insufficient 

data to correlate these events with the geological structure of the study area. Because the Weichselian 

icesheet had melted by 850014Ca BP, the present pattern of neotectonic seismic activity corresponds 

more to the horizontal stress field. As well as being concentrated at the centre of the rebound dome, the 

earthquake pattern from 10000-850014 Ca BP was probably aligned along the mountain ranges, and 

represented the vertical isostatic rebound. During the similar deglaciation of Scotland, local movements 
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were caused by differential glacial load flexure stresses (Davenport et al., 1989; Ringrose et al., 1991), at 

places with the steepest ice gradients (Stewart et al., 2000). 

Heki (2001) showed that the interseismic stress build-up in NE Japan is modulated by the weight of 

winter snowfall, which reaches depths up to 3m in the backbone mountain range. GPS readings show that 

the mountains subside in winter, with vertical amplitudes of -2cm peak-to-peak. At the same time, 

horizontal deformation up to 5mm occurs, with the land shortening beneath the load, and extending 

outside of it. A winter atmospheric pressure increase of -1kPa acts as the equivalent of an additional 

snow depth of 25cm, enhancing the annual signature by -10%. There is the possibility of earthquakes 

being triggered by these stress changes. It seems very probable that similar processes act in central 

Scandinavia to supplement other neotectonic activity, and to contribute to the continual enlargement of 

near-surface fractures within the metalimestones. 

A conclusion from this review of neotectonic activity is that the seismic and aseismic creation and 

enlargement of near-surface fractures continued throughout each interglacial, to supplement the more 

intense fracture sets produced at each deglaciation. These processes probably combine to create a 

spectrum of fracture widths, lengths, frequencies and interconnectivities within the metalimestones. Such 

fracture systems may include subsystems that vary from being too small to transmit water, to those that 

are great enough to permit turbulent flow (without requiring karstic dissolution) over path lengths that in 

the study area reach up to 3.5km, as at Vallerdal (KL). 

6.3.3 Evidence for tectonic activity from the study area 
None of the 54 claimed examples of Norwegian neotectonic movement (section 6.3.2) lie within the 

study area. The lithologies of affected or adjacent rocks are rarely given, but there is no indication that 

any are in carbonate rocks. Thus, the list of 56 possible examples of tectonic movements presented in 

Appendix Dl may be the first recorded for the study area, and the first observed in both exokarstic and 

endokarstic situations. These uncorroborated observations were made by the author after the importance 

of tectonic activity to speleogenesis had become apparent, primarily during field trips in 1998 and 2000 

and by the study of previous photographs. Altitudes range from near sea level to 770m. Elgfjell (Z4) 

provides many good examples. Most underground examples are intended to provide direct evidence of 

movement, after formation of the observing passage, rather than direct evidence of tectonic inception. 

Only one observation concerns fallen, broken or curved stalactites and stalagmites, which are good 

diagnostics of earthquakes and relative roof movement. A few more unrecorded examples probably do 

exist, but speleothems are rare in the study area anyway (Appendix B2.9), and most of those that do exist 

are small and probably grew in the Holocene, after the large earthquakes occurred. Speleothems that 

grew in earlier interglacial periods have commonly been removed by subsequent deglaciations. The few 

chambers with roof spans greater than c. 6m commonly contain fallen blocks, which almost universally 

comprise limestones with clean, sharp, angular surfaces. This is suggestive that they fell after deglacial 
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deposition, and are situated high enough above streamways to have been little-eroded by Holocene flood 

waters. Only two of the chambers are lit by daylight from nearby entrances, so that only these two may 

experience severe, seasonal, frost action. The others (as noted) are not in entrance areas, and disturbance 

by seismic shock seems the best explanation for the occurrence of fallen limestone blocks. However, all 

the large chambers are within 30m of the overlying surface, and most within 15m, so that a second 

possible process is downward flexing of the roof by the weight of an over-riding icesheet (providing the 

cave was not filled by ice or water), as proposed by Warwick (1971; section 3.2.1), and upward flexing 

when the ice melted. A third explanation based on the freezing to a total ice fill during glacial conditions 

also cannot be ruled out. 

It is the author's opinion, made after the 1998,2000 and 2002 field trips to central Scandinavia and to 

northern America, that evidence of recent small neotectonic movement (e. g. bedrock movement that 

displays sharp edges or slickensides, without subsequent calcite dissolution or deposition) can probably 

be found in all relict and combination caves in metalimestones in the Caledonides. The rarity of 

observations from caves in the Koli nappes is probably not significant, because the author has looked for 

tectonic movements less often there. 

On the basis of the available data, there appear to have been many movements in limestone in VSK and 

steep ASK. Those in VSK seem to occur in either vertical or horizontal slabs that are typically 1-3m 

thick, with the other dimensions of unknown extent. The movements, presumably caused by compressive 

stress from west to east, are commonly horizontal, normal to the strike, and with typical moved distances 

of only a few centimetres (and, rarely, several tens of centimetres), as expressed at the surface and within 

cave passages. The horizontal movement of vertical slabs of limestone 1-3m thick is compatible with the 

survey leg length of many caves in the study area, suggesting that joint systems (in, e. g., VSK) may be 

accounted for by this process (Photos 131.12,131.14 and DI. 38). Longer straight passage elements, and 

very wide, but low, passages, may arise from the horizontal movement of horizontal slabs of limestone 

(Photos D1.1,131.6,131.8,131.20,131.23,131.27 and DI. 37). These observations agree with those of 

Olesen et al. (2004, p13): "the Norwegian bedrock consists of individual blocks that, to some degree, 

move independently of each other". According to Mörser (2003, p72), a passing seismic wave can cause 

bedrock to lift up and then sink back, whilst the ground is being severely shaken. This probably happened 

at Cliff Cave (Z4; Photos 131.22 and D1.23). Exfoliation fractures subparallel to the surface may also 

form by rapid erosional and deglacial unloading, perhaps supplemented by hydrofracturing 

(Gudmundsson et al., 2002). With most tectonic movements being only a few centimetres, explorable 

cave passages are unlikely to be truncated along faults, and no such blind passages are known in the area. 

A possible alternative explanation is that there has not been any movement, but that differential erosion 

or corrosion has given the appearance of movement. This could arise particularly if the apparent 

movement is aligned with the foliation. However, the visual and photographic evidence for tectonic 

movements at observations 18,19,22,24,29,37 and 38 (Table 131.1) is compelling. The evidence 
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provided at Elgfjellhola (Z4; observation 18) is particularly convincing, because the movements are 

across the foliation. The evidence of protruding fault gouge wafers at surface sites (observations 22 and 

39) that appear to cross-cut karren and stream channels suggests that these movements occurred in the 

Holocene, after the transport of ice across the area. This type of observation assumes that the wafers were 

extruded beyond the faces of the limestone blocks by seismic movement. An alternative explanation is 

that there was no extrusion, the movement occurred in an indeterminately-earlier timescale, and 

Holocene chemical dissolution of the surface has left the more resistant wafers exposed to a height that 

indicates the maximum extent of local surface lowering, or wall retreat in a cave. The wafers are calcitic, 

with polished surfaces and unknown dissolutional characteristics. 

Whereas the movements along fractures in caves primarily formed by karstic dissolution are commonly 

small (the c. lm movement in Cliff Cave, Z4, Photo D1.23 is exceptional), the movements at the purely 

tectonic caves are much greater, with minimum movements of around one metre. The observed tectonic 

movements in karst caves commonly follow the plane of the supposed inception fracture. Additionally, 

all caves probably display a high concentration of joints and fractures (c. f. the epikarst in sedimentary 

limestones) that lie parallel or normal to the plane of foliation, and in some cases at other angles. These 

openings may not show lateral movement, but the variable degree of sharpness or smoothing by 

dissolutional water indicates that they probably represent a general settling upwards of large superficial 

carbonate blocks after seismic shocks. The sporadic lines of speleothems beneath roof joints indicate 

`failed' vertical inception fractures, which transmit water more readily in vadose rather than phreatic 

conditions, and in which precipitation is not possible without degassing of CO2. 

6.4 Evidence for tectonic inception 

It is self-evident that if tectonic caves can form in non-carbonate rocks, such as the entrance to Secret 

Stream Cave (Elgfjell, Z4) in mica schist (Photo D1.13), then, despite metalimestone perhaps being 

slightly more ductile than some other local lithologies, there almost certainly exist natural conditions that 

promote the creation of tectonic caves in marbles. Indeed, Table DI. I lists several apparently-tectonic 

caves in limestone. Such caves may be recognised by their angular or triangular passage profiles, 

especially at roof level (sediments, clastic materials and fallen rock may still provide a flatter, sub- 

horizontal, floor). It is also self-evident that if a limestone tectonic cave later became part of a drainage 

route, under vadose or phreatic conditions, then normal karstic chemical and mechanical erosion 

processes would apply, and, over time, the passage would enlarge. If the drainage was phreatic, then 

eventually the evidence of its tectonic inception could dissolve away. Even in vadose conditions, the 

signs of an original tectonic movement may be destroyed in all but the highest, perhaps inaccessible, 

levels. The only known examples in the study area of caves in metalimestone that possibly enlarged 

tectonically to explorable dimensions and later enlarged significantly by karstic processes are 

Nordlysgrotta and Marimyntgrotta (Z2). However, whenever a karst passage has been studied by the 

author, it has always been found to follow either the contact between metalimestone and another, non- 

carbonate, rock, or a narrow (commonly horizontal in VSK) fracture plane in the limestone. Because 
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there are likely to be rheological differences between rocks of differing lithologies, tectonic fractures are 

particularly likely to form at lithological contacts, under all conditions of seismic and aseismic tectonic 

movement. It is not necessary to have intersecting fractures for tectonic inception: apertures are uneven, 

and channel flow follows the widest part of the opening (Hanna and Rajaram, 1998). Nor is movement 

along the plane of the fracture necessary: a separating aperture adjacent to, or within, the limestone is 

sufficient. Such local rock splitting, especially vertical, may arise near the surface from deglacial and 

erosional unloading, without necessarily being triggered by seismic or aseismic processes. 

On the basis of the accepted facts of seismic and slow tectonic activity in Norway (section 6.3), it is 

argued here that all the karst caves of the study area were subject to tectonic inception. Tectonic activity 

creates fractures, as shown in section 6.3.3, and some of these fractures must be open, as shown by the 

extreme cases of explorable tectonic caves. For the vertical stripe karsts in the Helgeland Nappe Complex 

(at least), it seems probable that horizontal movements produce sub-linear sections of horizontal fractures 

with apertures that match the mm- and cm-scale banding of the foliation. The availability of aggressive 

waters during meteoric and glacial conditions that can pass easily through connected fissures that lie close 

to the surface, and that commonly have high hydraulic gradients (Photo 7.2) promotes karstic enlargement. 

Indeed, just as it seems impossible for karst caves to exist in the mnetalimestones of the study area without 

tectonic inception (section 6.1), it also seems impossible for them not to exist, given the tectonic history 

and the availability and flow regimes of aggressive waters. Hence, all the karsi caves are hybrids. After 

tectonic inception, conduits enlarged by dissolutional karstic processes, some with marine modification, 

and some with observable tectonic modification subsequent to inception. Photo 6.2 is an example of an 

enlarged proto-conduit on Elgf ell (Z4) that developed phreatically from a horizontal inception fracture. 

Monogenetic cave types in carbonate rocks include wholly tectonic caves, wholly sea caves (formed by 

wave action), and jettegrvter (rock-mills, formed by mechanical action during deglaciation). 

Trevor Faulkner Page 179 June 2005 

Photo (. .-'III! )!, °'In kit III. II jvII 

Enlarged from horizontal inception 

fracture. Compass for scale. 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 6- Tectonic Inception 

6.5 Relationship between seismicity and extent of cave development 

The neotectonics map (Figure 6.1) seems to suggest a rough relationship between the frequency and 

magnitude of earthquakes, and the lengths and depths of karst caves in a region. This linkage is 

considered further in this section. 

6.5.1 Neotectonics and caves 

The areas of Norway that are seismically the most active at present are the south Norway coast area, 

which has virtually no carbonate outcrops, and that part of the county of Nordland that is north of the 

study area. The area of northern Norway from Mo i Rana to Narvik has caves up to 17km in length and 

up to 580m in vertical range (Appendix D6.1.1). In contrast, the study area may have a comparable 

density of karst caves, but with lengths and VRs only up to 5.6km and 180m. It is therefore hypothesised 

that the depth of inception fractures below the surface, and hence the total lengths of potential proto- 

conduits, are related to the magnitude, and perhaps to the frequency, of local deglacial earthquakes. As 

this seismicity is probably related to the scale of isostatic uplift and to the differential pressure change 

that occurs along valley walls as the icesheet recedes (Davenport et al., 1989; Ringrose et al., 1991), it 

follows that cave depth and length = function (fracture depth and extent) = function (strength of tectonic 

activity) = function (change of ice thickness during deglaciation). 

From the above conclusion, it can be anticipated that the caves with the greatest dimensions lie along the 

Swedish border area, because the icesheet was thickest there during each glacial and this should cause 

the largest earthquakes at the end of each deglaciation, and therefore the most extensive and deepest set 

of fractures. This may account, at least in part, for the presence near the border of four of the five longest 

caves of the study area (Table 5.16): Korallgrottan (KL), Labyrintgrottan (ZC), Stor 

Grubblandsgrotta (KU) and Sotsbäcksgrottan (KU). The three deepest caves (Table 5.17) also lie in 

this region: Ytterlihullet (ZA), Korallgrottan (KL) and Sotsbäcksgrottan (KU). 

The relationship between seismicity and cave development is supported by the evidence summarised in 

section 5.8.2, that those caves in close proximity to a major thrust zone have larger-than-average mean 

dimensions, whereas those in close proximity to a major igneous pluton tend to be smaller. If the 

enhancing relationships are, in fact, directly controlled by the thrust attribute (rather than this just acting 

as a proxy for some other controlling variable), then this implies that the reactivation of old thrusts by 

deglacial seismic shocks promotes fracturing in adjacent metacarbonate outcrops, creating longer and 

deeper voids for cave inception. To be effective at the deepest parts of each cave, these movements must 

have been more recent than the time it would take for the bedrock above to be removed by the erosional 

lowering of the surface. Two mechanisms are possible to explain the restricting case. Firstly, the previous 

high-temperature contact metamorphism of metalimestone may reduce its fracturing ability, by making 

the rock more homogeneous. Secondly, the presence of a large igneous pluton may, of itself, reduce the 

magnitude of local earthquakes, and, therefore, their ability to create long and deep fractures. Of the five 
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caves mentioned above, three occur disproportionately near a major thrust zone (T=1), and none lie in an 

outcrop subjected to contact metamorphism, again lending support to the relationship hypothesis. 

6.5.2 Subsurface cave distance 

Sections 5.3.7 and 6.1.4 discussed the shallow nature of most cave systems, suggesting that caves in 

stripe karsts have formed entirely within an upper zone of fractured rock. In section 6.5.1, it was 

hypothesised that there is some relationship between cave depth and the local change of ice thickness 

during deglaciation. A more direct relationship is likely to be with the maximum distance of cave 

passages from the overlying surface. This subsurface cave distance is taken to be the length along a line 

orthogonal to the surface and the centre of any intersected passage (Figure 6.3). For short caves and 

vertical caves, it approximates to the cave vertical range, which is the vertical difference between the 

highest and lowest explored points of a cave. 
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Figure 6.3 Subsurface cave distance and other terms 

In order to test the distance and relief relationship, the maximum subsurface cave distances of 39 of the 

deeper caves of the study area (obtained from cave survey sections) were plotted against the local relief 

differences (Figure 6.4). The local relief differences were taken from the 1: 50000 topographical maps by 

measuring the height of the local ridge-shoulder above the base of the valley, where the slope profile was 

consistently steep. The caves occur at any altitude along this profile, and the total lengths of the profiles 

were always less than a few kilometres. There are few caves in areas of local relief difference of less than 

loom, and none of these have VR>10m. Figure 6.4 shows that the maximum distance of cave passages 

(and therefore of dissolutionally enlarged inception fractures) from the surface is commonly one-eighth, 

or less, of the extent of the change of local relief. The maximum envelope for the relationship of 

subsurface cave distance to local relief difference appears to be approximately linear, at least for a local 

change in relief of up to 400m, and perhaps up to 800m. Most of the inner zones of the study area are 
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represented by the caves shown in Figure 6.4, which shows that the one-eighth relationship probably 

applies across the whole area. Four of the 39 caves in Figure 6.4 are relict caves, 35 are combination 

caves and 15 (38%) are type h, the most complex caves. 
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Figure 6.4 Relationship between maximum subsurface cave distance and local relief difference 

6.5.3 The influence of external attributes on inception fractures 
The relationship between seismicity and the extent of cave development is explored further in Table 6.1. 

Information about how the various external cave attributes influence mean cave vertical ranges, lengths 

and volumes was taken from Tables 5.6-5.14. From Table 6.1, the contact metamorphism, thrust 

proximity, cave location and glacial situation attributes have the most consistent effect on the main cave 

dimensions. Karst type, slope relationship and orientation have much less consistent influences. The 

influences on cross-section are examined in Chapter 8. 

The percentages of the 39 caves in Figure 6.4 with each value of each of the influencing external 

attributes were compared with the same percentages in the total set of caves. This exercise showed that 

the individual attributes that promote caves towards the one-eighth limit of the distance / relief 

relationship are the same as the VR key influences in Table 6.1. Thus, R=1 only occurs in 18% of the 39 

caves compared with 23% overall and T=1 occurs rather more often (13%, compared with 11%). Cave 

locations CL=F and P are under-represented, CL=G and W are similarly represented, and CL=R and S 

have two to three times the representation. The glacial situation is slightly more complex, because GS=E, 
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L and T are under-represented and GS=D and G are similarly represented. However, GS=H, K and S are 

over-represented. The rank order representations of karst type, slope relationship and orientation 

attributes for the 39 caves do not vary from those of the full set of caves. 

Table 6.1 External attribute in fluences on mean cave vertical range 
External attribute Mean VR 

<8.8m 
Mean VR 

c. 8.8m 
Mean VR 

>8.8m 
Notes 

Karst Te V A L Other cave dimensions v 
Contact metamorphism R=1 R=0 Similar for all cave dimensions 

Thrust roximi TO T=1 Similar for all cave dimensions 

Cave Location F and P an G and W R and S Locations in bold have similar 
influences for mean length and 
mean volume 

Slope Relationship D and U Other cave dimensions va 
Orientation P N and 0 A Other cave dimensions va 
Glacial Situation 

! 

D, E, G 
and T 

L H, K and S Similar for mean length and 
volume. Eastern situations are 
shown in bold 

RPfpr to section 5.3 for indi vidual attribute definitions Excludes attributes with populations <2% 

These results confirm that the seismic production of deep inception fractures is enhanced near major 

thrusts, in ridge and shoulder cave locations, and above westward-draining valleys that are above the 

glaciation marine limit. Inception fracture depths are restricted near igneous intrusions, at coastal, valley 

floor and paleic cave locations, and both below the deglacial marine limit and in the large population 

above eastward-draining valleys that are above the highest local col. Karst type, slope relationship and 

orientation do not have much influence on the distance / relief relationship. The differing properties of 

caves east and west of major ridges are discussed further in Chapter 8. 

The proximity of the caves in Figure 6.4 to the one-eighth `limit' can be discussed in terms of the 

competition between their various external attributes. Only Oyäskjeleren (Z4) and Svartdalgrotta (Z2) 

exceed the normal relationship, with subsurface cave distances that reach about one-seventh the local 

relief difference. Not only are these two caves situated in the shoulder cave location (CL=S) at GS=H, 

they also both lie behind large vertical cliffs, suggesting that the effect of seismic shock is magnified 

even more by steep topography. In the case of Svartdalgrotta, this overcomes the restrictive effect of an 

adjacent, but small, intrusive outcrop. Korallgrottan (KL) is shown at the one-eighth limit, probably 

because of its proximity to a thrust, despite lying essentially in a valley floor location at GS=S. However, 

its maximum distance from the surface is only estimated approximately. JOBshullet (Z2) also lies on the 

one-eighth line, despite being surrounded by an enormous granite outcrop, probably because it is at 

GS=H and has its cave location in a narrow ridge, which is seismically very favourable. Fractures in R 

and S locations are also more likely to open farther by ice wedging and by gravitational mass movement, 

explaining why caves in these locations have the largest numbers of entrances per cave (Appendix B2.1), 

creating many through caves. 
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Previous discussions (Appendix B1.10 and sections 5.2.4,5.3.4,5.3.7,5.8.4 and 6.1.5) suggested that 

part of Ytterlihullet (ZA) achieves its exceptional (for this study area) 93m subsurface cave distance 

because it occurs in a low angle karst with interlayered amphibolites that acted as inception horizons. 

This remains a valid factor, but the cave is also situated at GS=S and CL=S, on the eastern shoulder (i. e. 

facing west) of the largest and deepest glaciated valley in the study area. This is 5000m wide and 800m 

deep and lies below the Okstind mountain range that has the area's largest remnant glacier. The cave is 

thus ideally situated to take advantage of deep fractures produced by high-magnitude seismic events that 

shook the area after each of its deglaciations. From Figure 6.4, inception fractures formed along the 

observed amphibolite layers still lie within the limits of the one-eighth relationship. 

From the evidence in Figure 6.4, fractures are created only rarely up to the one-eighth `limit'. 

Additionally, their enlargement into cave passages at the depths reached must be constrained by the 

extent of the limestone outcrop in that area, and by the geological and topographical inheritance: 

passages can only develop in size (even under deglacial conditions) if there is a suitable hydraulic 

pathway. Deep fractures that have no route back to the surface can only fill with static water, and not 

enlarge. Thus, some caves with subsurface depths that are well inside the one-eighth line can be 

explained by a lack of suitable limestone extent (e. g. Bakliagrotta, ZB, and perhaps Toerfjellhola, Z3). 

At the extreme, areas that do not exhibit cave systems, or that contain unexpectedly shallow systems, 

despite containing extensive striped metalimestone outcrops, such as Stordal (Z2), may be areas of 

anomalously low seismicity. Indeed, the Stordal marble lies along the floor of a glacially-rounded valley 

that is surrounded by large plutons of quartz diorite and trondheimite, so that its lack of karstification can 

be ascribed to the contact metamorphism restriction and to its location. The many short and shallow 

caves at Övre Ältsvatn (KU) commonly lie in a low angle karst, `remetamorphosed' in places by granitic 

intrusions, on a paleic surface plateau in glacial situations L and T. Thus, their small dimensions 

probably derive from both contact metamorphism and their location and situation. These all reduce local 

seismic activity and, additionally, CL=P restricts the opportunities for deep hydrogeological drainage. 

A conclusion from the above commentary is that the largest positive influence on the production of 

inception fractures is the seismic magnification that can occur at cave locations R and S, especially if 

near a re-activated fault or thrust. Other locations and attributes are much less influential in enhancing or 

restricting cave development. 

6.5.4 Fracture separations 

The surveys of 34 of the more complex caves in the cave databases reveal (Table 6.2) that the mean 

vertical separation between sub-horizontal phreatic passage tiers varies from 2-13m (overall mean c. 5m) 

and the mean horizontal separation between near-vertical shafts and joints varies from 3-50m (overall 

mean c. 16m). The ratio of mean shaft separation to mean tier separation varies from 1-10 (overall mean 

c. 4.6). All these ranges appear to be independent of karst type. Because Marrett et al. (1999; section 

3.1.17) provided evidence that fracture apertures in limestone follow a power-law scaling, it might be 
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assumed that, at any one time and place, fracture apertures commonly decrease with depth, so that the 

horizontal and vertical separations between tectonic fractures of a particular aperture size increase with 

depth, i. e. they become less frequent. However, from the survey sections of the two caves with the most 

passage tiers in the study area (8 in Toerfjellhola, Z3, and c. 20 in Etasjegrotta, Z4), there is little 

evidence of an increase in fracture separation with subsurface cave distance, which in these cases 

approaches 50m. It is assumed therefore that within the "partially detached thin upper crustal layer" of 

Davenport et al. (1989; section 6.2.3), fractures occur at essentially random intervals, but that the 

distance of this detachment from the contemporary surface equals the maximum subsurface cave 

distance. This random arrangement within an upper crustal layer contrasts with the finding of Milanovic 

(1981, p48) that the "depth of karstification" in sedimentary limestone obeys an exponential law. 

Tahle 6.2 Senarations between nassave tiers and between shafts 
Cave Zone KT CT Mean tier 

separation 
m 

Mean shaft 
separation 

(m) 

Ratio 
shaft/ 
tier 

Klausmark S stem Z2 A h 3 3-30 1-10 
Two Bridges Cave Z2 A h 4 20 5 
Hornet Pot Z2 A 6 30 5 
Lislvatn otta Z2 A 3 25 8 
Tourist Cave Z2 A 4-8 22 3-5 

Svartdal otta Z2 L h 10 10-20 1-2 
Neptune's Cave Z2 A h 5-10 10-15 1-3 
Balcony Cave Z3 A f 2 4 2 
Toerf ellhola Z3 V h 5 12-22 2-4 

Ask'eleren Z4 V f 5 8 2 
EiterAdal otta Z4 A 5 50 10 
Siri'ord otta Z4 V h 8 16 2 

H otta, Z4 A h 3 10 3 
Green Valley Cave Z4 V e 2 5 2.5 
Jordhulefellhullet Z4 V f 4 20 5 
Pustehola Z4 A h 6 12 2 
Brown Stains Cave Z4 A 4 10 2.5 
Sarvenvartoehullet Z4 A 5 20 4 
Gevir otta Z4 A h 5 15 3 
Sarvejaellagrottene Z4 A h 8 12 1.5 
Je erhullet Z4 A h 3 10 3 
Etas'e otta Z4 V h 2 7 3.5 
Invasions rotta Z4 V f 13 40 3 

Anastomose rotta Z4 V e 3 8 3 
Mellebekk rottene Z5 V 2 8 4 
Geitklauv otta Z5 V h 3 6 2 
Kom ass tta Z5 V 5 10 2 
BlAfell rotta Z5 V h 4 10 2.5 

He li otta Z6 A f 4 10 2.5 
Kvannlihola Z7 V d 5 50? 10 

Grr nndals rotta ZA L 8 16 2 
Gielasvara often KU (Sw) L h 2 3 1.5 
Sotsbäcks often KU (Sw) L h 10 20 2 
Korall ottan KU (Sw) A h 4 18 4 

SUMMARY All def h 2-13 3-50 1-10 

MEANS 5 16 4.6 
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6.6 Cenozoic seismicity 
The tectonic inception concepts are explored further in Chapter 10, which makes comparisons between 

the caves of the study area and those in other parts of the Caledonides. If the existence of cave passages 

in metalimestones can indeed be used as a proxy for the formation of tectonic fractures, then the 

conclusions in this chapter are important in the field of seismology: they imply that fracture creation 

mainly arises from local earthquakes caused by adjustment to local-scale differential ice load, rather than 

from earthquakes or slow tectonic movements caused by Scandinavian-scale isostatic uplift or by mid- 

Atlantic ridge-push. Additionally, the presence and structure of the cave passages themselves may 

provide a method to deduce the strength and nature of the deglacial earthquakes. 

From the evidence of water bodies on limestone (section 4.2.8), which suggests a lack of speleogenesis in 

parts of many limestone outcrops, it is assumed that tectonic activities and fractures occur in clusters 

along the various outcrops. As each successive glaciation deepened glacial valleys and fjords further, the 

ice thickness variation, and therefore the intensity of seismic shock in some earthquake zones, must have 

increased during the time of the Mio-Plio-Pleistocene glaciations, whilst remaining approximately 

concentrated on the same position. Hence, each successive deglaciation commonly re-activated previous 

fracture sets, and extended them farther along, and farther below, the contemporary surface than the 

previous one. Because the present maximum subsurface cave distance is commonly one-eighth the range 

of local relief, it seems likely that both the depth of the partially detached crustal layer and the subsurface 

distance of cave passages also increased at one-eighth the rate of glacial valley deepening. However, 

acting synchronously with this deepening, there is also the probability that previous palaeo caves were 

removed by glacial stripping. The competition between these two processes is explored in the following 

Chapter, to create a general external model of cave development. 
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CHAPTER 7 THE EXTERNAL MODEL 

The aim of this chapter is to analyse how the study area caves developed in the context of the 

geomorphological evolution of their host region. Ideas discussed in Chapter 6 indicate that cave passages 

have the opportunity to enlarge from inception fractures that deepen after each glacial cycle. And yet, 

this deepening process is itself a consequence of the deepening of glacial valleys, which must also impact 

existing caves. An external model of cave development is derived in a black box approach by considering 

the caves as simple conduits at the competitive interface between the lowering surface and the deepening 

maximum subsurface cave distance. 

7.1 Cyclic speleogenesis 
As summarised in section 6.2.1, most active caves in the study area act in harmony with local hydrology 

and have an intimate epigean association with their local landscape. Because relict caves appear to differ 

from combination caves only by their chance lack of allogenic stream capture (section 5.5.6), it is 

hypothesised that the development of all study area caves is integrated with the local geomorphological 

evolution. In late Cenozoic times, the overall dominating process for exokarst, endokarst and non-karst 

geomorphology was the cycle of repeated glaciations and deglaciations. This was accompanied by the 

tectonic and mass movement activity necessary for the creation of inception fractures, which not only 

guide cave morphology, but provide the earliest pathways for aggressive waters (Chapter 6). The 

existence of palaeokarst caves from the Proterozoic to the mid Cenozoic, as Baltica moved north, is 

conjectural. It can be envisaged that caves developed slowly, in the more and conditions, and only during 

floods. With less frequent and less strong tectonic events, caves reached smaller depths below the 

surface. However, with less dramatic processes acting over longer timescales, the largest passage sizes 

may still have been significant. Direct evidence of these passages is probably not observable now, firstly, 

because all caves would have enlarged in cross-section during the Mio-Plio-Pleistocene glaciations 

(Chapter 8), except perhaps for those that remain filled with palaeokarstic sediments (of which none are 

known in the study area), but, more importantly, because such caves would have been removed by 

surface lowering. 

The Norwegian rate of valley lowering lies in the range 15-55m per 100ka glacial cycle (Tables A3.1 

and A3.2). It also seems reasonable to assume that basal valley wall-retreat rates are in a similar range. 

Sirijordgrotta (Z4) has possible Holstein, Eemian and Holocene interglacial spring outlets at altitudes of 

275m, 235m and 205m (Figure B1.5). These valley-floor lowerings of c. 40m and c. 30m during the 

Saalian and Weichselian glaciations may be typical for other local major N-S aligned glacial valleys. 

Because almost all cave passages in the study area occur within 50m of their overlying surface (Table 

5.18), the removal and destruction of their higher and `outer' levels by glacial erosion must be a 

significant component of the endokarst processes. Evidence for such `unroofing' and `dewalling' is 

presented in section 7.2. Cave destruction in sedimentary limestones was discussed in section 3.1.11. The 
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Sustersic (1999) concept of a speleothanatic ̀ death' zone below the surface, towards which caves appear 
to move, is one that is readily applicable to the study area caves. However, Sustersic did not discuss the 

idea that cave formation and cave destruction can proceed together, so that caves can also seem to move 

simultaneously downward through the carbonate lithology. The idea behind the External Model of Cave 

Development is that, viewed over several glacial cycles, individual caves develop downwards via 

tectonically-induced inception fractures, whilst, at the same time, appearing to move upwards, as their 

upper levels become destroyed near the lowering surface, to create palaeo caves in the sky! In the long 

term, any very old passage would actually slowly ascend relative to sea level before being destroyed, as 

isostatic adjustment compensates for weight lost by erosion. However, the mean elevation of caves 

within the whole landscape slowly descends relative to sea level, as the land erodes back to a peneplain. 

(Appendix Al. 2.3 noted that up to 10km thickness of thrust sheets may have eroded away since the 

Devonian). 

From the above logic, speleogenesis in the study area currently follows the glacial cycle. Caves may pass 

through one, or more, inception-enlargement-destruction sequences. It is suggested that caves systems 

ought commonly to be described in four dimensions, so that a cave, e. g. in vertical stripe karst (VSK), 

may be said to migrate vertically downwards over time, always exploiting and enlarging fractures below 

the level of its explorable passages at ever lower lithological levels, whilst the land surface follows 

behind it, removing the upper levels. Hence, in VSK, the geographical coordinate position of a cave may 

hardly change over long periods of time (or it may slowly migrate along the strike), whilst its detailed 

internal morphology evolves under the influence of the structural geology that it encounters during its 

total lifetime. The shortest cave existence time is less than one glaciation cycle, where the inherited 

situation is unable to provide tectonic fractures that go deeper than the thickness of carbonate bedrock 

removed by glacial and fluvial erosion per cycle. In this case, successions of independent (in four 

dimensions) single-cycle caves or conduits follow the lowering surface down through the lithology 

(Figure 7.1). The longest cave existence time occurs when, in the extreme, a single cave migrates all the 

way down from the upper karst surface formed during an orogeny, to the base of that carbonate outcrop 

as all the intermediate rock is removed. This multi-cycle cave development model is considered more 
fully in section 7.3. 

It is envisaged that the phreatic enlargement of conduits primarily takes place under the surface of ice- 

dammed lakes (IDLs, Chapter 8). This enlargement occurs simultaneously with a corresponding 

dissolutional lowering of the exokarstic surface. With large quantities of very under-saturated water 

available at the limestone surface and in its underlying conduits, the rate of cave wall retreat commonly 

must equal the rate of surface lowering i. e. a passage radius increase of one metre would occur in the 

same time interval as a surface lowering of one metre. As passage radii rarely exceed a few metres, this 

constrains the total carbonate surface lowering by chemical dissolution to about one metre per glaciation, 

an amount that is not significant at the macro geomorphological scale, as represented on topographical 

maps, where the dominant processes are glacial scouring and fluvial erosion. 
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GLACIAL VALLEY EXPLANATION 
PERIOD SECTION 
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Interglacial 

position of previous 
"""""" single-cycle cave 
"" "" ". "" ". shallow cave system 
--..... inception fractures, with 

possible flow capture 

r figure -i. i Single-cycle speleogenesis 

7.2 Evidence for recent conduit formation and passage destruction 

The interglacial vadose and phreatic enlargement processes are obviously visible at present in mainly 

vadose caves and in the streamways of combination caves. Less obviously, there is also observable 

evidence of both the first phase and the final phase of single-cycle cave development. Thus, the possible 

Holocene exploitation of inception fractures and the effects of glacial erosion on pre-existing caves were 

recorded during the various field trips. 
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7.2.1 Exploitation of recent fractures 

Table 7.1 records 23 examples from many study area zones of present water flows along inaccessible 

fractures and conduits that lie below explorable cave passages or that appear as surface springs during the 

spring melt. None of these underflow routes is equivalent to a soutirage (sections 3.2.2 and 5.7.2), nor to 

the vadose entrenchment of a phreatic passage. Keyhole profiles are fairly common at the lowest level 

cave passages, but they do not require a new inception fracture for their vertical development: chemical 

and mechanical erosion of an existing passage floor are sufficient. Additional to the 23 inaccessible 

examples, the narrow vadose slot below a previous resurgence at Slot Chamber in Jegerhullet (Z4; no. 

15; Photos D 1.21 and 7.1) can be followed to the surface. These examples are all cases where the stream 

flow has migrated below the level of a continuing passage (or the surface) and has thus exploited an open 

fracture. It is hypothesised that such fractures were formed tectonically late in the Weichselian 

deglaciation. They commonly had insufficient time for dissolutional enlargement to reach explorable 

dimensions (Figure 7.1). If they had formed tectonically before a previous interglacial, they could have 

enlarged to form significant phreatic passages in the time available during phases of the last glaciation and 

deglaciation, as shown in Chapter 8. Such recent flow routes will be targets for enlargement during any 

Photo 7.1 Slot below final chamber of Jegerhullet (Z4) 
This Holocene vadose capture passage in VSK leads to the 
surface behind the camera, beyond a previous Vauclusian rising 
that is now blocked (Photo D1.21). Photo by P. Hann. 

Photo 7.3 Spring on Hemnesoya (Z6) 
Water emerges from metalimestone fractures 

at the HNC / RNC thrust zone 
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Table 7.1 Examples of (probably Holocene) hydrological exploitation of lower fractures 

No. Location Observation Reference 

1 Sevikgr. (Svarthullet? ) Disappearance of water below waterfall Ive (1980) 
Z2 UP84771285 

Bulandsdalgrotta Flow from Wet Passage into small fissures Faulkner and Newton 
Z2 UN90536700 (1995, Fig. 7) 
3 Nordlysgrotta Stream enters main rift from impenetrable Author's unpublished cave 
Z2 UN81035251 passage sketch 
4 Svartdalgrotta Inaccessible route from base of Wet Pitch to Figure B1.1 

Z2 UN82074465 resurgence on surface 
5 Skyttergravhola Inaccessible stream route near end of cave Faulkner and Newton 
Z2 UN855423 (1995, Fig. 21) 
6 Melnvatngrotta Inaccessible stream route from Waterfall Faulkner and Newton 

Z2 LJN85724155 Chamber to resurgence on surface (1995, Fig. 22) 
7 Toerf)ellhola Several inaccessible stream routes Figure B1.3 
Z3 VN08424982 
8 Cave of the Cold Wind Several inaccessible stream routes Faulkner and Newton 
Z3 VN08775007 (1995, Fig. 17) 
9 Sirijordgrotta Stream route from sump below l Om pitch to Figure B1.5 

Z4 VN 15027065 Elk Sump 
10 Sfinxhullet, Kvitfjell Stream route from above Dry Pitch Author's unpublished cave 
Z4 VN 15446270 survey 
11 GAsvasstindhola Inaccessible stream routes Faulkner and Newton 

Z4 VN 15175400 (1990, Fig. 20) 
12 Jordhulefjellhullet Inaccessible stream routes Faulkner (1987, Fig. 10) 
Z4 VN11875080 
13 Elgfjellhola Stream route below pitch Faulkner and Newton 
Z4 VN14525084 1990, Fig. 9 

14 Buktgrotta Inaccessible stream routes Faulkner and Newton 
Z4 VN 15495142 (1990, Fig. 18 

15 Jegerhullet Fissure passage below Slot Chamber, large Faulkner (1987, Fig. 7) 
Z4 VN 15644702 enoup-h to be entered Photo 7.1 
16 Invasjonsgrotta Stream route from Odd Chamber (above the Faulkner and Newton 
Z4 VN 15924600 flooded Whybro Passage) (1990, Fig. 7 

17 Mellebekkgrotta 2&3 Capture Passage below M3 entrance + stream Author's unpublished cave 
Z5 VN21137835 route to resurgence on surface, at low flow survey 
18 Trench Pot Stream route from The Pit Author's unpublished cave 
Z5 VN22276595 survey 
19 Kompassgrotta Three lower stream routes Newton and Faulkner 

Z5 VN21675921 1992, Fig. 11 
20 Litle Hjortskar Karst area with very immature hydrology, with Photo 7.2 
Z5 VN223527 fountain rising during flood conditions 
21 Gärdsfjellgrotta Stream lost under boulders to re-appear from Whitehouse (1969) 
Z6 VP46054705 small resurgence sump 
2 Hegligrotta Lowest stream route disappears along small Author's unpublished cave 
Z6 VP22121260 fissures, to re-appear from resurgence sump survey 
23 Hemneseya Water springs from fracture in cliff beside Photo 7.3 
Z6 VP44354215 road at the HNC / RNC thrust zone 
24 Renstlingselgrottoma Inaccessible streamway Sjoberg (1991 b) 
KU VP92672200 

CO-ordinates are to UTM WGS84. HNC and RNC zones and Keli Nappes are listed in the `No. ' column. 
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7.2.2 The unroofing, dewalling and removal of cave passages 
As with tectonic inception, the removal of cave passages by glacial erosion is difficult to prove. Little 

work has been undertaken to look for unroofed caves that may occur along gorges in carbonate outcrops, 

but lie away from known caves. Indeed, there are no known examples of internal cave chemical or clastic 

deposits now exposed to direct meteoric erosion in the manner described for sedimentary limestones 

(section 3.1.11). This is not surprising, given the local comparative rarity of these deposits (Appendix 

B2.9 and section 5.8.10), and the likelihood that they would also be removed by glacial action. Perhaps 

because most carbonate outcrops are aligned with the physical topography, there are also no known 

examples of truncated passages that continue on opposite sides of a valley, although there are many 

examples of such aligned passages on opposite sides of a doline. Thus, in the study area, conspicuous 

passage removal may only be associated with the upper, and outer, parts of the known caves. Table 7.2 

gives some 39 possible examples of seven different observation types. 

Tohln'7 1 Ti vomiiL 1f1 4, ilýly I u*n Wninkanliunl nova roof unrl wall removal 

No. Location Observation Te Grade Reference 
I Klausmark Res. Cave Removal of passage between Res. WW C Faulkner and Newton 

Z2 UN86477822 Cave and Through Cave (1995, Fig. 5) 

2 Reppelv Resurgence Removal of connecting passages RL C Faulkner (1981, Fig. 7) 
Z2 UN91522835 between caves 

3 Langskjellighatten Passages removed between Sud- RL B Author's unpublished cave 
Z2 UN93405180 Ovre and Ovre-Laveste caves survey 

4 Aunhattenhule 1-4 Removal of four continuing passages PL C Author's unpublished cave 
Z2 UN94564950 by creation of a cirque (? ) at surveys. 

Tarmaunvatnet. Or just formed 
beneath an IDL plus marine erosion? 

5 Nedre Landegrotta Dewalling at resurgence entrance WW or C Newton (1999, Survey 12) 

Z2 UN96723940 RP? 
6 Kringlotheia Shortening of both Wet and Dry PW B Author's unpublished cave 

Z3 VNO 1674745 Caves by valley widening. Orjust survey 
formed beneath an IDL? 

7 Toerfjellhola Removal of upward cave loops by PL B Figure B1.3 
Z3 VN08424982 valley lowering, as seen by boulder 

chokes at passage ends 
8 Oyaskjeleren Shortening of cliff entrances by PW B Faulkner (1983, Fig. 27) 

Z4 VN 16529815 valley widening. Or just formed 
beneath an IDL plus marine erosion? 

9 Eiterädal Res. Cave Entrance shortened RP B Faulkner (1980, Fig. 3) 
Z4 VN 14477285 Frontispiece 2 
10 Kvitfjellgrotta Res. Shortened by valley widening. Or PW C Author's unpublished cave 

Z4 VN 15476242 lust formed beneath an IDL? survey 
11 Gevirgrotta Passage removal between Surprise PL B Figure B 1.6 
Z4 VN 15225148 Inlet and Lon horn/Shorthorn Caves 
12 Cliff Cave Entrances shortened by collapse PW C Faulkner and Newton 
Z4 VN 15824605 (1990, Fig-7). 

Photos 131.22 and D1.23 

13 Oyfjellgrotta Removal of connecting passages to PL C Figure B1.10 
Z5 VP16770005 short caves at upper entrance 
14 Mollebekkgrotta 3 Recession of entrance PW or B Author's unpublished cave 
Z5 VN21137835 RP? survey 
15 Geitklauvgrotta Removal of Wasp Nest Passage link PW B Figure B1.11 
Z5 VN20607700 to Fearsome Passage 
16 Geitklauvgrotta Roof removal at entrance doline RC B Figure B 1.11 
Z5 1 

I Photo 7.4 

Trevor Faulkner Page 192 June 2005 



Cave Inception and Development in Metacarbonate Rocks: Chapter 7- External Model 

17 Wide Cave Doline collapse RC B Newton and Faulkner 
Z5 VN22226560 (1992, Fig. 3). 
18 Camp Cave Doline collapse. Also at Upper Camp RC B Newton and Faulkner 

Z5 VN21775974 Cave and Baptists Cave (1992, Fig. 7). 
19 Virgin Hole Doline collapse. Also at Upper RC B Newton and Faulkner 
Z5 VN21705920 Virgin Hole 1992, Fig. 10). 
20 Saeterbekkgrotta Doline collapse RC B Newton and Faulkner 

Z5 VN20644800 (1992, Fig. 4). 
21 Kammelvgrotta Roof collapse at resurgence entrance RP C Sutcliffe and Hobbs 
Z6 VP32122190 (1972) 
22 Kumragrotta Removal of roof at Middle Entrance RL A Photo 7.5 

Z6 VP23772025 
23 Rok6sgrotta Wall removal at resurgence WW or B Author's unpublished cave 
Z6 VP20071480 RP? sketch 
24 The Big Sink (D2) Roof collapse at entrance RB C Newton (1999, Survey 
Z6 VN17022995 22). 
25 White Cave Roof collapse at entrance sink RB C Newton (1999, Survey 

Z6 VN17073015 24). 
26 Dunfjell D8-D15 Entrance collapses RC B Newton (1999, Survey 
Z6 VN17073025 25). 
27 Mellanselvgrotta Shafts into streamway RC C Doj (1993) 

Z7 VN350691 
28 Fliflangahullet Many shafts into streamway RC B Unpublished notes by Y. 
Z7 VN32205868 Frei' 1991 
29 Kvannlihola 150m surface flow to Nedre RL Or C Figure B1.14 
Z7 VN28023985 Kvannlihola entrance RP? 
30 Jengelgrotta Collapse doline separates Ovre and RC B Faulkner (1987, Fig. 4) 
Z8 VN35672340 Nedre sections 
31 RsssAga Sink Cave Dewalled passage filled with rocks WW C Author's unpublished cave 

ZA VP43880740 survey. Photo 7.6 
32 Ressägagrotta RI, R2 entrances and link to R3 WW B Author's unpublished cave 

ZA VP43870760 dewalled by valley widening survey. Photo 7.7 
33 Remnant Cave Walls removed at north end of cave WW A Photo 7.8 

ZA VP47152258 
34 Fjellbrygga 20m-long, IOm-high, natural arch PL A 

ZA VP49152190 carrying l0m3s'' stream 
35 Gronndalsgrotta Shortening of resurgence entrance RP B Figure B 1.15 

ZA VP54721720 
36 Grenndalsgrotta Krateret collapse into underlying RC B Figure B1.15 

ZA passage 
37 Bakliagrotta Sink entrance shortening at gorge RB C Author's unpublished cave 
ZB VP51304385 end survey. 
38 Glimäkragrottan Doline collapse between Ovre and RC B Lindh (1978a) 

KU VP83670750 Nedre entrances 
39 TjArrogrottorna Roof removed between Tj2 and Tj3 RL C Faulkner (2000a) 

KU 14604 72906 Swedish co-ordinates 

Co-ordinates are to UTM WGS84. 
Observation types: RL 

RC 
RB 
RP 
ww 
PL 
PW 

Observation grade: A 
B 
C 

HNC and RNC zones and Keli Nappes are listed in the ̀ No. ' column 
Roof removal by lowering of valley floor No. 5 
Roof removal by collapse doline 11 
Roof removal at blind valley entrance 3 
Roof removal at pocket valley entrance 3 
Wall removal by widening of valley 6 
Complete passage removal by valley lowering 5 
Passage removal or shortening by valley widening 6 

Total 39 

Almost certainly caused by glacial erosion No. 3 
Probably caused by glacial erosion 21 
Possibly caused by glacial erosion 15 

Total 39 
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Although these examples are easy to list, there may be other explanations for the observed features. 

Thus, a passage that may appear to have been shortened by the widening of a glaciated valley, may 

instead have functioned, and developed in size, purely as an input to, or outlet from, a glacial hydraulic 

system, with little later valley widening. Similarly, caves with thin roofs that have collapsed in places 

may not have had their roofs eroded by passing icesheets and glaciers: they may have formed just below 

the surface, with corrosion extending upwards from the inside. The shortening of entrance passages at 

blind and pocket valley ends may be caused by seasonal weathering during the Holocene, rather than by 

glacial action. From the observation grade provided below Table 7.2, the author is only very confident 

that glacial erosion is the process that accounts for the observed feature in three cases, although another 

21 cases seem likely and 15 cases seem possible. 

Despite some uncertainty about the processes that have created each of the individual examples listed in 

Table 7.2, the general case for the stripping of cave passages by glacial erosion (possibly supplemented 

by deglacial exokarst dissolution) is overwhelming. The known passages in at least half the study area 

caves would probably be removed by another glaciation of a similar size to the Weichselian, because 

their depths are <9m (section 5.2.4). The presence of short rock bridges (`natural arches') that are in 

limestone, but completely isolated from other karst features, (such as Fjellbrygga, ZA, example 34 in 

Table 7.2) may be accounted for by the glacial removal of previously longer passages. These rock 

bridges are common phenomena in the study area, but being apparently insignificant as karst features, 

they are rarely recorded. Some phreatic relict caves were likely shortened considerably by glacial 

truncation, leaving them in situations unrelated to present hydrology. The destruction of upper cave 

levels in the study area speleothanatic zones by fracturing and glacial removal is a much faster process 

than the total chemical disintegration observed by Sustersic (1999), being additional to the study area 

analogue of an ice-dammed lake dissolutional attack on all exposed exokarst and endokarst surfaces. 

Glacial erosion and the tectonic, including seismic, creation and widening of fractures are processes that 

co-operate in sequence to weaken the upper (and outer in valley walls) part of the bedrock. These 

processes appear to be particularly important for the creation of many shattered cave entrances in valley 

shoulder locations (CL=S). Where karstic dissolution has already produced caves below the surface, this 

further weakening of the bedrock leads to enhanced glacial erosion, so that carbonate outcrops 

containing shallow caves are preferentially eroded and lowered, and glacial shear forces lead to the 

creation of further fractures. Thus, the many shafts into sub-horizontal meandering streamways and dry 

passages may themselves indicate surface lowering caused by glacial scouring. 
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Photo 7.4 Geitklauvgrotta entrance 
The roof has been removed between the upper cave 
and the main cave entrance (to left of figure in red) 

Photo 7.8 Remnant Cave. Ressigadal (LA) 
Outer passages and walls removed by glaciation. 
Tape measure for scale. 
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Photo 7.5 Kumragrotta (Z6) 
Removal of the roof at the Middle Entrance 

June 2005 

Photo 7.7 Ressägagrotta (ZA) 
Glacial dewalling and roof collapse at this large 
former resurgence. 

Photo 7.6 Massa a ýSml% (o c ýLA) 
The present entrance is to the left of the phreatic arch 
that was dewalled during the Weichselian glaciation 
and filled with rocks during deglaciation. 
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7.3 Cave development model 
From Chapter 6 and sections 7.1 and 7.2, it is concluded that the very processes that lead to cave 

inception are the same processes that cause their destruction. A simple theoretical model describes the 

relationships between cave existence and the deepening of glacial valleys. For any one valley, if 

VL = Mean valley lowering per glaciation 

VD� = Valley depth after n full glacial / deglacial cycles 
FD� = Maximum depth of inception fractures below the valley floor after n cycles 
(An inception fracture is defined here as a fracture of sufficient size and geometry that turbulent flows 

through it exceed the breakthrough point of the Palmer / Dreybrodt model). Then, 
VD� = nVL, and FD� = nVL/8, assuming that the one-eighth relationship, as 

derived empirically in section 6.5.2, applied throughout the Quaternary glaciations. 

By making the simplifying assumption that the land surface was flat prior to the first major glaciation, it 

follows that, for about the first eight major glacial cycles, all valley floor caves (CL=F) formed by 

fracture enlargement during deglaciation and the next interglacial were so shallow that they were 

removed during the subsequent glaciation. Such single-cycle caves enlarged phreatically beneath 

deglacial IDLs with high flow rates during their early formation (section 8.6), with synchronously- 

formed passage tiers being possible. After deglaciation, some of thes ; caves were left as relicts. 

Interglacial development of combination caves continued, with relict phrc ; tic passages above upstream 

vadose passage elements in suitable topographic positions, as deglaci I outflows reduced, and as 

interglacial snowmelt followed an annual cycle. They may have contain( I relict vadose passages and 

shafts where headward capture occurred via initially small phreatic concuits. It is unlikely that they 

would have exhibited significant paragenesis, and could not have contained large chambers with 

seismically induced collapse. Active mainly vadose caves could also be created. 

For n>8, some fractures, and therefore caves, may survive below the surface after the ninth and 

subsequent glacial cycles. Such multi-cycle caves have the potential to become much larger and more 

complex than single-cycle caves (Figure 7.2), because all their existing passages with any remaining 

sediments will be subjected to further deglacial karstic dissolution, and new, lower, passages can form 

along new and deeper fractures during subsequent deglacial and interglacial phases. Thus, such caves are 

more likely to exhibit: tiers of relict phreatic passages, with cross-sections commonly increasing 

upwards; relict vadose passages, away from upstream entrances, which may have experienced later 

phreatic enlargement; paragenesis above previous clastic sediments; and large chambers with collapsed 

blocks. If new, lower, passages did not form, existing passages may have just enlarged during subsequent 

deglaciations, until removed by surface lowering. Thus, both single- and multi-cycle caves can contain 

either single or multiple tiers of passages, complicating diagnosis. 
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GLACIAL VALLEY EXPLANATION 
PERIOD SECTION 

Interglacial n 
position of previous single-cycle 

::...... caves 

0 

Interglacial n+1.: 

ý' :"""" "" " """ " position of previous upper passage 

}"""""" "" phreatic passage tiers, connected 
by upstream vadose streamway 

Interglacial n+2 

"" "" " "" "" "" "" new and old inception fractures, 
with possible flow capture 

Figure 7. z Multi-cycle speleogenesis 

Because many glacial valleys are aligned with older Tertiary valleys, the transition that enabled the 

generation of multi-cycle caves at valley floors may have occurred sometime before the eighth major 

glaciation. On the other hand, the one-eighth relationship gives the maximum depth reached by inception 

fractures, and so for many places it would take many more than eight glaciations to create caves deep 

enough to survive the next erosional cycle. 

Figures 7.1 and 7.2 utilise cave location CL=F for simplicity of illustration, although caves can form at 

all locations beneath ice-dammed lakes. From section 6.5.3, the one-eighth relationship is achieved most 

frequently if CL=R or S, intermediately if CL=G or W, and least frequently if CL=P or F. However, the 

glacial removal of bedrock may vary at each cave location and may depend on valley alignment with ice 

flow direction at glacial maxima. This complicates the interesting competition between the depth of 

inception fractures and the amount of bedrock removed by each glaciation, and therefore complicates the 

conditions necessary to achieve multi-cycle caves. Indeed, section 9.8.2 deduces that wall retreats 

decrease upwards from valley bottoms. 
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The glacial removal of bedrock probably does not depend on thrust proximity or contact metamorphism, 

so that the chance of a multi-cycle cave being preserved should increase if T=1 and reduce if R=1, 

according to their influences on fractures depths (section 6.5.3). This provides another explanation for 

the rankings of the longest and deepest caves in the study area (which are primarily multi-cycle 

combination caves) relative to their R and T attributes (section 5.3.6). However, some multi-cycle caves 

may only survive a few cycles before stochastic reductions in seismic intensity and reduced new fracture 

depths allow a premature removal by subsequent glacial erosion. Hence, in practice, the oldest age of 

cave passages may be considerably more variable than the simple theoretical model predicts. In 

particular, very old passages may still (rarely) remain in locations protected from glacial erosion by their 

topographic situation. 

During interstadials, the icesheet primarily melted at low elevations near the coast (section 8.1.1). Some 

interstadial ice-dammed lakes may have been created at high altitudes, so that extra dissolution could 

enlarge existing passages in these situations. It is not known if deglacial earthquakes occur in these 

conditions, but from section 6.3.1, it seems that high-magnitude seismicity only occurs at deglacial ice 

margins. As successive deglaciations produce fracture sets commonly extending to greater depths below 

the contemporary surface than previous ones (within the one-eighth relationship), caves developed during 

later glaciations are likely to grow to greater sizes, and to survive longer, than caves developed during 

earlier glaciations. 

If the simplifying assumption is made that nine major glacials have occurred in Scandinavia at 100Ka 

intervals after the Mid Pleistocene Revolution (section 2.3.1), then the existence of multi-cycle caves 

(which only occur after about eight glacials) should be rare. They may therefore depend on interstadial 

deglacial erosion, significant glaciations prior to 0.9Ma (such as the long Eburonian from 1.8-1.4Ma and 

the Menapian at 1.1 Ma: section 2.3.1) and the pre-glacial depths of Tertiary valleys (section 2.2.2). This 

rarity does appear to be the case, at least in the study area, and the overwhelming majority of existing 

caves are suspected to be single-cycle caves. 

lt might be considered that all caves in the study area can now be classified against the single-cycle and 

multi-cycle models, according to their internal morphologies and any dating evidence. However, this 

analysis is best deferred until after the development of the Hydrogeological and Internal Cave 

Development Models in Chapters 8 and 9. 
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CHAPTER 8 THE HYDROGEOLOGICAL MODEL 

From section 6.2.4, the present caves in central Scandinavia developed as a consequence of the cyclic 

processes of glaciation, deglaciation and the tectonic formation of fractures, which were repeated many 

times since, perhaps, the Miocene. The purpose of this chapter is to examine the various hydrological 

opportunities for the enlargement of fractures into conduits and cave passages that arose during each 

glacial cycle and to consider, using the latest theories of the physics and chemistry of karst dissolution, 

the likely timescales for the development of the present caves. 

The deglaciation phase is shown to be the most important for cave development, and its characteristics 

are discussed in general terms from knowledge of the Weichselian glaciation (sections 2.3 and 2.4). The 

deglacial sequence of the whole study area is derived in Appendix D2, and then the Tosenfjord- 

Fiplingdal region (Z2-Z7) and its caves are studied in greater detail in Appendix D3. From this analysis, 

the various glacial conditions, flow regimes and processes that apply to inception fractures, conduits and 

caves are determined, and enlargement rates in phreatic and vadose conditions are calculated. A common 

set of processes defines the hydrogeological model of cave development, to which must be overlaid the 

effects of marine action and modification by ice in some cases. To unravel the various hydrogeological 

conditions that apply to the study area caves, it is necessary to introduce some topics from a theoretical 

basis before giving them a practical expression, and to analyse the relevant glacial and geomorphological 

processes to a greater extent than has so far appeared in the literature discussing the Scandinavian 

Quaternary. 

8.1 The glacial cycle 

Two major parameters were most influential during each stadial and interstadial: firstly, the thickness 

and condition of the ice at each karst area, and secondly, the sea level. The condition of the ice is 

important because, under cold- or warm-based icesheets and glaciers (Appendices A3.2 and A3.3), 

existing caves variously contained ice, ice and air, or glacial meltwater. Sea level is important because 

those caves at altitudes low enough to be depressed isostatically below sea level by the weight of the 

Scandinavian icesheet at early and late stages of the glacial cycle could experience marine inundation. 

8.1.1 Mid to Late Weichselian stadials and interstadials 

There is now considerable information available about the Late Weichselian deglaciation of the study 

area (e. g. section 2.3.4; Grenlie, 1975 and section 8.1.4; Andersen and Karlsen, 1986; and various maps 

of Quaternary geology, e. g. Bergstrom, 1995). With the removal of the ice burden, Fennoscandia 

rebounded isostatically at a very fast rate initially, with the elevation increasing inland. Mörner (1979, 

Fig. 28) showed a peak elevation rate of 50cmä l at the centre of uplift at the end of the Younger Dryas. 

The tilting shorelines were raised progressively, with the oldest and highest raised shorelines showing the 

greatest tilt. Sorensen et al. (1987) presented land uplift maps for Norway that show YD isobases and 
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isobases for the maximum Holocene marine transgression at 6500 (when global deglaciation was almost 

complete), as well as a map for the present annual uplift. Their isolines smooth out scanty observations 

and uncertain datings, generating isobases that are remarkably linear and parallel in north central 

Norway. Thus, the coastal area, at a YD isobase of 100m, has risen I 00m relative to the YD sea level 

since the start of the Holocene, and the Caledonide thrust front, at a YD isobase of some 340m, has risen 

340m relatively in the same time. A Fennoscandian postglacial uplift map showing fairly smooth uplift 

rate curves in mma' from 1892-1991 was presented by Ekman (1996), but no measurements were made 

in the study area. 

Moller (1989) presented a 3D model of Holocene relative sea level changes for northern Norway. Off the 

Norwegian coast, towards the isostatic hinge-line, marine invasion initially overcame the glacio-isostatic 

uplift. The uplift always outpaced rising sea level at all parts of the indented north central Norway coast, 

and after the maximum Holocene marine transgression at 6500-6000 elsewhere. At Inndyr, the closest 

analogue to the north central Norway coastal area, Moller (1989) showed that 38% of the present uplift 

occurred within the first 1000 years. Svendsen and Mangerud (1987, Fig. 12) drew sea level curves for 

Trondheim that showed that 53-44% of the present uplift occurred within 1000 years, at isobases 

equivalent to those going inland at Velfjord. 

Information from the last glaciation phase and from the glaciation and deglaciation of previous stadials 

and glacials is much more difficult to obtain, because stratigraphical and dating evidence is commonly 

altered or destroyed by the glaciation process. From the recent evidence discussed in section 2.3.4, 

Figures 8.1a and b present highly-conjectural glacial-deglacial scenarios since the Mid Weichselian for 

the 180m Younger Dryas isobase near Elgfjell (Z4), with an indication of the differences for other 

relevant YD isobases. These scenarios follow the "yo-yo" glaciation model of Olsen et al. (2001b). They 

should be most accurate for the main deglaciation that was initiated during the Bolling interstadial, 

because Figure 8.1a (icesheet thickness) is based on the work of Gronlie (1975, as adapted in section 

8.1.4), and Figure 8.1b (sea level) is based on the sea level curve near Trondheim by Svendsen and 

Mangerud (1987). 

It is suggested in this thesis that the form of these curves was repeated for all glaciations and 

deglaciations throughout the Mio-Plio-Pleistocene history of the glaciation of the study area. Thus, their 

upper and lower summer ice-melting curves (Figure 8.1a) and their sea level curves (Figure 8.1b) are 

assumed to have similar shapes at each relevant isobase, although the thicknesses of the icesheets, the 

maximum isostatic depressions and their durations varied at each stadial. For the larger stadials, the 

lower summer ice-melting height was equal to the level of the sea as it encroached inland. For the Little 

Ice Age, and perhaps for other smaller stadials when the glaciers did not reach the sea, it was determined 

by summer temperature and glacier dynamics. 
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The local sea level did not lower to its present level at each interstadial because a significant part of the 

Scandinavian landmass remained glaciated, or was only unglaciated for a short time. Indeed, Olsen and 

Grosfjeld (1999) suggested that sea level averaged 50m above the present level during the Mid 

Weichselian. Also, the (interglacial) minimum sea level, as measured at the Norwegian coast, probably 

lowered with each major glaciation, because of the extra isostatic uplift caused by the subsequent 

unloading by glacial and fluvial erosion. 
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Figure 8.1 Conjectural Mid to Late Weichselian stadial cycles for central Scandinavia 

Figure 8.1 covers the period from an assumed interstadial at c. 45ka BP through the Last Glacial Maxima 

(LGMI and 2) to the present. It does not attempt to represent the detailed effects of the various stadials 

and interstadials between LGM2 and the Younger Dryas (YD), i. e. the Bolling interstadial, the Older 

Dryas stadial and the Allered interstadial. [Various authors have called LGM2 the Oldest Dryas, Late 
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Weichselian Maximum 2 (LWM2), Heinrich event 1 (H1) and the Tampen advance; its maximum ma 

correlate with the Dimlington stadial in Yorkshire, UK (e. g. McCabe et al., 1998)]. 

8.1.2 The deglaciation marine limit 
As discussed in section 2.3.4 and Appendix A3.1, it is accepted herein that the last deglaciation was. 

driven by two summer heat fluxes: warming by sea water that caused both the icesheet to retreat 

eastwards and the melting sea to encroach up coastal valleys, and direct solar warming that caused the 

icesheet to melt and ablate from its upper surface. 

By locating moraines where the open sea met the land ice, creating deltaic marine terraces, Grenlia 

(1975, pp456-457,466-471) recorded the highest sea levels in the valleys south of Mosjeen (Z5). This, 

elevation that the sea reached against the ice margin along the coastal fjords and valleys, when it melted. 

the last remnant of the tidewater valley glacier before retreating because of isostatic elevation, is 

commonly called the marine limit (section 2.4.1), but is henceforth called the deglaciation marine limit 

in this thesis. This limit is important for the enlargement of karst caves that lie below it, with caves at 

lower altitudes being inundated for longer, as indicated by the sea level curve in Figure 8.1b (sections 

8.8.1 and 8.8.2). The deglaciation marine limit depended on the recession of the ice margin and on the 

isobase of the location. It varied from c. 125m at 1200014 Ca BP at coastal islands at the 100m YD 

isobase, via 150m at 10000 at the 150m isobase and c. 160m at 9890 at Tosenfjord at the 170m isobase, to 

133m at 9080 (Grenlie, 1975) in Vefsndal at the 200m isobase, the farthest east that the sea penetrated in 

the Holocene. The intermediate 150m-isobase sea level curve in Figure 8.1b shows that all points on and 

underneath the surface below a present 150m altitude would have been inundated by the sea at the start 

of the Holocene, providing that the ice had melted by then at that location. The deglaciation marine limit 

in the Eemian interglacial, at the end of the Saalian glaciation, was somewhat higher than that at the end 

of the Weichselian, from the evidence of a higher eustatic level (Funder, 2000; Huybrechts, 2002; section 

2.3.2) and the principle of subsequent erosional isostasy (section 8.1.1). 

8.1.3 Other marine limits 

It is assumed herein that the curves for each parameter were also self-similar during glaciation phases. 

Following the discussion in Appendix A3.1, the glaciation at each stadial started by winter snow 

persisting through the next summer, initially at an average altitude appropriate to the study area of C. 

I 000m. The ice gradually thickened into flowing glaciers, with rising summer upper melting heights, and 

falling summer lower melting heights. Such a scenario was reported for the neoglaciations of the Okstind 

mountains in the Little Ice Age (Griffey and Worsley, 1978), when, perhaps, the Holocene almost ended. 

It is speculatively hypothesised here that the glaciation curve for the falling lower melting height had a 

similar shape to the deglaciation curve for the falling upper melting height (Figure 8.1 a). Thus, after the 

onset of each glaciation cold signal, valley glaciers and mountain icesheets progressively extended 
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towards the sea, which remained frozen in summer some time after the icesheet reached sea level. 

However, the icesheet now had a considerable thickness, and at the end of the Eemian "depression 

extended ahead of the ice margin" (Lundqvist, 1986, p288). Hence, the sea encroached significantly 

inland before its surface froze permanently and there must be another marine limit, not previously 

explicitly recognised in the literature, that equals the elevation that the sea reached up each valley before 

freezing (or before falling eustatically relative to the land) during a transgressive glaciation phase. This 

limit is called the glaciation marine limit in this thesis, to distinguish it from the deglaciation marine 

limit that occurred during a regressive phase. If glaciation proceeded whilst the sea remained frozen even 

in summer from an early stage, then the local glaciation marine limit would be no higher than the local 

interglacial sea level. However, the depression of the freezing point of sea water to c. -2°C, caused by its 

solute load (Nesje and Dahl, 2000, p53), would tend to delay such perennial summer freezing. The 

glaciation marine limit could also be non-existent if eustatic sea levels fell rapidly due to a large build-up 

of icesheets in northern America and / or Antarctica prior to glaciation in Scandinavia, as suggested by 

Mangerud (1991) for the start of the Herring stadial (OIS5d), following the Eemian interglacial. 

Nevertheless, Mangerud (1991) and Fredin (2002) reported that several present coastal caves in southern 

Norway, which are well above the deglaciation marine limit, were submerged after the Eemian, because 

of rapid isostatic depression caused by the YD-sized Herning glaciation in the Early Weichselian. 

The concept that the icesheet thickened from the tops of the mountains and annually advanced westward 

across the study area during each glaciation phase has not been quantifiably modelled, and the geometry 

of the glaciation marine limit is presently unknown. However, from the evidence of Mid Weichselian 

marine-influenced deposits at high elevations, e. g. sediments dated from 35-24ka at 260m near 

Hattfjelldal in the study area (Olsen et a!., 2001b; section 2.3.4), it is clear that this interstadial marine 

limit was 120m above the equivalent local (210m YD isobase) deglaciation marine limit (although the 

sea did not quite reach this point during deglaciation). This evidence appears credible, because, although 

marine-influenced deposits from all Mid Weichselian interstadials may have been transported by later ice 

movements to different elevations, confusing the evidence (a possibility recognised by Olsen and 

Gresfjeld, 1999), it does seem probable that their studied deposits were in protected and unmoved 

positions, because marine deposits were more likely be shifted downwards by the radially-moving 

icesheets or later valley glaciers. The 21 Om YD isobase may mark the eastward limit of any Weichselian 

marine impact in the area because there are no eastern caves and few carbonate outcrops below 260m in 

altitude. This also means that the Swedish part of the study area and the Koli nappes (except those along 

upper Vefsndal) remained above all Weichselian sea levels. 

it is also probable from the survival of Mid Weichselian fine grained sediments and Early Weichselian 

speleothems dated to 80±9ka in the elevated sea cave Skjonghelleren in southern Norway (Appendix 

5.1) that that cave was not inundated again by the sea after these depositions, and that it formed at a high 

sea level even earlier in the Weichselian or before. This suggests that the maximum Weichselian marine 
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limit occurred relatively soon after the start of the Weichselian glaciation. With no evidence to the 

contrary, it is concluded that this also applied in the study area, so that the extra 120m above the 

deglacial marine limit reported near Hattfjelldal is a conservative value to use for the local glaciation 

marine limit. For simplicity therefore, glacial situations G and H were set with an upper limit 120m 

higher than the local deglacial marine limit (section 5.3.5 and Appendix C2.1). 

It is assumed in this thesis that glacial decay during Weichselian interstadials was driven primarily by a 

rising sea level caused by the melting of ice on other continents. This resulted in ice calving and melting 

from the Norwegian coast into the fjords and valleys. There was no sharp rise in summer temperature as 

occurred at the end of the Weichselian, so that ablation at the surface of the inland icesheet was muted 

farther east. The continuing weight of this ice thus maintained a large isostatic depression, causing the 

high marine incursions discussed above. 

If the principle that "depression extended ahead of the ice margin" also applied during the transition 

from interstadial to stadial conditions, then it seems likely that maximum marine limits were reached 

during ice build up at the end of each interstadial, rather than at each beginning. These other marine 

limits may also be indirectly related to the deglacial isobases, but the nature of any relationship is 

unknown. This thesis assumes that the maximum Weichselian glacial marine limit was everywhere 120m 

higher than the deglaciation marine limit, for reasons given in section 8.8.3, which also concludes that 

the maximum Weichselian marine limit did, in fact, occur at the start of the Weichselian glaciation. 

The glaciation marine limit and the interstadial limits may also be important for cave development, 

because all existing karst caves below them were inundated by sea water for periods up to thousands of 

years at a time, and when this water froze as the ice margin extended beyond the coast (annually during 

winter, and then perennially), all submerged passages and fractures were subjected to stresses that caused 

enlargement (section 8.8.3). Because it is assumed that these earlier marine limits were higher than the 

deglaciation marine limits, more of the caves then existing were affected by marine inundation during 

early glaciation and interstadial phases than during deglaciation phases, although the timescales of all 

such inundations reduced with increasing altitude. As with the minimum local sea levels reached during 

interglacials, all types of marine limits were commonly progressively higher (relative to the underlying 

basement rocks) for each previous glaciation, from the principle of subsequent erosional isostasy (section 

8.1.1). Whether this means that more of the known caves were flooded by sea water during the Saalian 

and Elsterian deglaciations depends on the extent to which these caves were eroded from the landscape 

by subsequent glaciations, as discussed in Chapter 7. 

8.1.4 Weichselian deglaciation inland: application of the Grenlie formula 

Grenlie (1975, p473) devised a parabolic relationship ("H=0.75t2") to give the height, place and time at 

which the land became ice-free in the central part of the study area at the end of the Weichselian 
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glaciation, from his study of the geological evidence (e. g. section 2.4.1). His empirical formula must also 

take into account the dynamics of icesheet evolution, including receding accumulation areas and the 

increasing velocity of valley glaciers. It is reconstructed by this author to include the isobase: 

H� = 1700 + 5(YD Isobase-220) - 0.75x10'x(13500-t)2 m 

where H� = summer upper ice-melting height and t= number of14Ca BP (Figure 8.2a and b). 

This formula assumes that time runs smoothly and does not attempt to resolve the radiocarbon plateaux 

problem (section 2.4). The ice began to melt in earnest after 13500a BP (at the start of the Belling 

interstadial), below the present 1700m altitude (at the 220m YD isobase at Bergefjell) that was already 

free of ice. After c. 11ka BP, the melting height lowered at roughly 0.5mä' at all isobases. The formula 

shows that all ice melted by 8740a BP, even at sea level, as far east as the 220m YD isoline. It also 

reveals that, at 12,11,10 and 9ka BP, all land west of the 220m isoline was clear of ice above 1500, 

1200,800 and 200m respectively. Melting was complete in Svenningdal (at 131m altitude) and in 

Vefsndal (at 133m) by 9150 and 9080a BP, when the sea melted the tidewater glacier from one side, 

whilst the falling upper ice-melting height caused the remnant ice to melt away on the other side 

(Grenlie, 1975). The isobase adjustment in the upper melting height formula compensates for both the 

reducing heat flux from the Atlantic and the increasing isostatic depression in the eastward direction. 

Despite later improvements in the accuracy of place heights, radiocarbon datings and isobase structures, 

this reconstruction of Gronlie's formula gives many marine marginal moraine date predictions that are 

within 300 years of published results. It is therefore used in the form represented above to reconstruct the 

deglaciation of the study area (Appendices D2 and D3). 

The Grenlie (1975) formula was only tested by him in the Vefsn and Northern catchment areas. In the 

Eastern catchment area, there is evidence that glaciers remained longer than predicted by the formula 

(Appendix D2.9). In the Western catchment area, the acceleration of icesheet downwasting was much 

greater than used in this reconstruction, because of the extra warming and calving effects of the sea as it 

submerged large areas of low-lying and isostatically-depressed land and because of the increased velocity 

and ice-streaming effects along the fjords. This is clear by considering the low maximum altitudes of the 

moraines identified by Andersen et al. (1981; 1982). However, a simple relationship between isobase, ice 

melting height and date at the coast cannot be determined from these results, probably because the 

cooling caused by the Older and Younger Dryas stadials caused significant elevations of the icesheet 

surface, back towards previous altitudes. In the other catchment areas, these effects can be ignored, 

because, by analogy with northern America (Cwynar and Spear, 2001), they are probably attenuated 

inland from the coast. Additionally, the ice-melting height varied between adjacent eastern and western 

slopes, and this effect was also magnified nearer the coast and at lower altitudes. Thus, the Grenlie 

formula may give elevations from 0-300m too high for YD isobases below c. 180m in the Western 

catchment area. Figure 8.2a attempts to extrapolate these effects, suggesting that the lowering icesheet 

may have exposed low coastal hills up to 1000a earlier than predicted by the formula. 
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Figure 8.2a Upper ice-melting heights at each YD isobase 

According to Gronlie (1975), the lower melting height (Hi) caused by the sea melting the glaciers in 

Vefsndal and Svenningdal also followed a parabolic relationship with time, at least during a shorter time 
interval. This author's reconstruction of this formula is: 

H, = 105 + 0.75xI04x(9680-t)2 m (Figure 8.2b). 
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Figure 8.2b Deglacial changes in upper ice-melting heights witn time 

8.1.5 Ice-dammed lakes 

Apparently, the generation of ice-dammed lakes (IDLs) in the Caledonide mountains during deglaciation 

used to be controversial (e. g. Lundqvist, 1972, p34). However, their existence during the rapidly- 

warming climate of the early Holocene is regarded as well-established in this thesis, from the 

descriptions of deglacial IDLs in Scandinavia, northern America and Scotland by Lundqvist (1972 and 

1986), Stone and Borns (1986), Andersen and Borns (1994), Donner (1995), Dahl et al. (1997; Figure 

8.3), Dawson et al. (2002) and LaRocque et al. (2003). The present rarity of perennial IDLs behind 
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glaciers and within icesheets is explained by the relative stability of the late Holocene climate and the 

absence of large-scale non-polar icesheets, so that no environment on earth now provides an analogue for 

the unstable deglacial conditions of the non-Arctic Caledonides. However, the author observed small 

short-term `1DLs' in Z4 during the 1997 spring melt. 

Gronlie (1975, pp459-465) recognised non-marine moraines and terraces formed some 10-30m above the 

levels of present lakes in many places in the Vefsn catchment area. The diagnostic features of these areas 

of lacustrine sedimentation are stream meanders, groups of isolated tarns, deltas, linear terraces, and lakes 

with uneven contours. The author is also able to recognise these features on the M711 series maps of the 

other four catchment areas and therefore regards the deglacial generation of IDLs as widespread 

throughout the mountains of the study area. 

Whereas section 8.1.2 discussed the fact that most caves situated below their local deglaciation marine 
limit were inundated by sea water at the start of the Holocene, succeeding sections show that practically 

all karst cave sites were inundated by glacial meltwater under IDLs for a considerable time during the 

deglaciation process. Lundqvist (1972) defined an IDL as a body of water whose existence depends on 

damming by ice that is dynamically active. Tweed and Russell (1999) reviewed the literature on present 

IDLs and associated jökulhlaup characteristics. Their identifications of IDL types and those of other earlier 

authors concentrated on the present annual hydrological cycle of IDLs formed adjacent to valley glaciers 

and on the effects of geothermal heating. They are therefore relevant to specific interglacial conditions, 

none of which apply to study area caves. This thesis classifies six different types of deglacial IDL, plus 

one situation where IDLs cannot occur, which are defined relative to glacial situations (section 5.3.5). 

Their characteristics are considerably amplified in section 8.4, but they are briefly introduced here to 

enable the deglaciation sequences to be described adequately in Appendices D2 and D3: 

Coastal western slope A position where an IDL cannot form, on lower coastal western slopes 

Nunatak IDL The lake surface is above the level of the highest local col (GS=U) 

Westward-flowing IDL The lake surface is west of a major ridge and between the highest local col 
and the deglaciation marine limit (GS=S, K or G) (Figure 8.3) 
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Drained IDL A previous IDL that drained subglacially 
Backward-flowing IDL The lake surface is east of a major ridge, and between the highest and 

lowest local cols (GS=T) (Figure 8.3) 

Eastward-flowing IDL The lake surface is east of a major ridge, and between the lowest local col 

and the deglaciation marine limit (GS=L or H) 

Ice margin IDL A backward- or eastward-flowing IDL at the western extremity of the 

receding icesheet 

These IDL types build on the types defined by Lundqvist (1972) and are partly illustrated in Figures 83 

and 8.4. These show a stage of deglaciation when the surface of the icesheet has lowered to the level of a 

col along a ridge oriented N-S. Higher parts of the ridge are exposed in meteoric conditions above the 

ice. Lower parts (including lower cols) remain covered by ice. Ice-dammed lakes have formed between 

the walls of the ridge and the ice sheet, with water flowing "backwards" from the eastern IDL over the 

col into the lower western IDL. 
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Figure 8.4 Plan and section diagrams of ice-dammed lakes 

8.1.6 Subglacial reservoirs 
An IDL without a continuing Nye channel, i. e. with a vertical back wall of ice, commonly has a depth 

approximately equal to twenty times the distance from the ice surface down to the water surface, 

assuming that the water in the IDL is entirely glacial meltwater and ignoring evaporation. The reduced 

volume occupied by water compared to ice thus allows glacial meltwaters and meteoric waters to `create 

their own space' and to flow down and `disappear' under icesheets and glaciers, by melting more ice, to 

create subglacial reservoirs (SGRs; Figure 8.4). These may lie behind frozen ice margins towards the 

end of the deglaciation process (e. g. Fisher et al., 2002). Thus, IDLs deepen and enlarge without the 

necessity of an immediate outlet. Dropstones contained in the ice fall to the base of the IDL or SGR, 
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potentially impeding undetyirig cave or conduit entrances. This' author supposes that subglacial 

y; reservgjr$ eeq`exjst in three forms: low pressure (lp-SGR), when the weight of the Qverlying ice (which 
} 

must, be <200m thick: section 8,1.8) is insufficient to, deform the lneltiq. g base, of the ice, and a near- 

vacuum , 
develops above the, meltwater; high pressure ' (hp-SGR), when" Nye channel connects the 

reservoir (' chose upper'surfiýcemay'lie at-any depth below the surface of a"warm-based icesheet) to an 

external IDL, keeping the reservoir space full of water; and air pressure (ap-SGR), when a drained IDL 

leads to the reservoir via a Nye channel with mainly vadose flows. The lowest point of an SGR 

commonly marks the transition from bedrock above the freezing point to bedrock at the pressure melting 

point of the over-lying icesheet or glacier. SGR formation above the plastic behaviour limit (section 

8.1.8) can be supplemented by the flow of the icesheet or glacier around obstacles to create cavities 

(Tweed and Russell, 1999). Subglacial reservoirs are distinct from subglacial lakes, which form beneath 

warm-based icesheets without hydraulic connections to the surface (section 8.4.2). 

8.1.7 Subglacial waterways 

Subglacial waterways (SGWs) form near the Atlantic coast and at late stages of deglaciation, when 

subglacial reservoirs coalesce along warm-based valley bottoms above the deglaciation marine limit to 

create meltwater subglacial waterways. If they flow to below the contemporary sea level in Norway, they 

continue as brackish subglacial waterways to the ends of the tidewater glaciers. Such water routes that 

were active during the deglaciation of Ireland were described as "tunnel valleys" by Knight (2002). 

8.1.8 The plastic behaviour limit 

According to Badino (2001b; section 3.2.4), most glacial drainage systems lie above the bedrock in 

present thick glaciers and icesheets. Below c. 100-200m (the plastic behaviour limit, PBL), ice moves by 

plastic flow, closing up any openings, as normally observed in "polar" glaciers (Nesje and Dahl, 2000) 

and because "it is conventially assumed that non-temperate ice is an aquiclude" (Hodgkins, 1997, p957). 

Significant upward-flowing elements are precluded by the reducing pressure, which raises the freezing 

point above its likely -2°C. This causes more ice to form on the walls of englacial conduits, choking them 

off, and ensuring that the Nye and Röthlisberger conduits maintain a general downhill trend. Hence, it is 

assumed in this thesis that IDLs can only have active englacial outlets into Röthlisberger channels in the 

upper 100-200m of the icesheet, so that the deeper parts of IDLs do not drain away at an early stage. 

8.1.9 Proglacial lakes 

Proglacial lakes are rather loosely defined in the literature. Whereas those lakes that lie in advance of, 

and therefore below, a glacial snout are distinguishable from the IDLs described herein, which all lie 

above the main body of a glacier, the two expressions are commonly treated synonymously. In the study 

area, it appears that all the deglacial valley glaciers ultimately terminated either as tidewater glaciers in 

Norway, or flowed east into Sweden and out of the area. Thus, probably few caves encountered any 

proglacial lakes formed by the forward melting of glaciers in valley bottoms. 
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8.1.10 The influence of deglaciation and seismicity on cave occurrences and dimensions 

Section 6.3.1 discussed the evidence that a pulse of earthquakes followed the eastward recession of the 

ice margin. Figure 8.5 shows that the local isostatic strain was released On the west side of N-S aligned, 

ridges first, so that the intensity of degläcial earthquakes was commonly 'higher on the west side. The 

continuing presence of an IDL and the icesheet on, the east side also muffled the effect of the earthgäakes 

there. The eastward recession of the ice margin and. the different behaviours of IDLs and earthquakes on 

each side of major ridges in consequence explain the asymmetry in the occurrences and mean dimensions 

of relict and combination caves that existed before the establishment of present interglacial conditions 

(sections 5.3.5 and 5.5.6). It is hypothesised that the under-representation of caves (especially relict and 

combination caves) but with greater mean dimensions on the west side of ridges above the glaciation 

marine limit (section 5.5.6, Table 5.28) is explained by the production of a smaller number of longer and 

deeper inception fractures there, with larger apertures, compared with a larger number of smaller and 

more-scattered fractures on the ̀ muffled' eastern sides. 
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Figure 8.5 Ice margin degiacial earthquakes 

The inception fractures were not necessarily created solely during the Weichselian deglaciation: they 

resulted from the accumulation of fractures created in the same manner from all previous deglaciations. 

Thus, fracture sets on higher western sides of ridges (GS=S or K) always have larger dimensions than 

those on eastern sides (GS=T or L), although both are also subjected to surface lowering. [It is not known 

if there is differential erosion on the western and eastern sides of ridges when they are over-ridden 

westwards by icesheets at glacial maxima]. This provides an additional reason for the commonly small 

dimensions of the caves at the plateau area of Övre Ältsvattnet (KU; GS=T and L; section 6.5.3). 
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There is probably a reduced existence time or flow rate for many IDLs on the west compared with IDLs 

on the east (especially at GS=S), with some quantification given in section 8.4.12. From Figure 8.5, it is 

also clear that western IDLs cannot exist for long after the time of their local earthquake, whereas there is 

no such constraint on eastern IDLs. Because the phreatic conditions necessary for the enlargement of the 

relict passages on the western sides of ridges commonly did not persist after their local earthquake, a 

greater proportion must have enlarged beneath westward-flowing IDLs before the local earthquake, 

utilising fractures that were created during earlier deglaciations. The occurrence and dimensions of relict 

caves and passages in central Scandinavian metacarbonates therefore depend on a combination of seismic 

intensity and persistence of active phreatic conditions. Scalloping on the surfaces exposed by tectonic 

movement at Cliff Cave (Z4; Photo D1.23) indicates that, at least in this cave, deglacial seismicity 

occurred after submersion beneath an active IDL but before the IDL lowered below the cave. See also 

Appendix D5.5. In contrast, the absences of scallops on smooth and sharp-edged slickensides in 

Elgfjellhola and Paradox Cave (Photos 131.12 and D1.14), both at higher altitudes on Elgfjell (Z4), 

suggests that the (same) IDL had lowered below their level prior to the time of that inferred deglacial 

earthquake. The small numbers of above-average-dimension relict caves high on the west of major ridges 

must be located in positions where active IDLs lasted for significant periods of time. Such an explanation 

is required to resolve the anomaly that phreatic passages in western glacial situations have larger mean 

cross-sections, despite the mean western IDL submersion periods being shorter. 

For those parts of the study area that are near coastlines, the effects are different. Here, the western 

under-representation of relict and combination caves below the glaciation marine limit (GS=G or D) 

coincides with the situations where IDLs cannot form (section 8.1.5). In these western situations, when 

the ice margin passed overhead, the weight of encroaching sea water (increased in depth by c. 150m 

compared with now) reduced the pressure change, and so reduced the intensity and muffled the effects of 

the following earthquakes (Figure 8.5). These consequences increased further with reducing altitude, 

providing an excellent explanation for the commonly reduced and reducing oc currences and mean 

lengths and VRs of caves of all hydrological classes as glacial situation lowers from GS=G to D to C 

(Tables 5.27 and 5.28). In addition, the lower the altitude of a fracture below the deglaciation marine 

limit, then the longer was its marine inundation, when there was little opportunity for enlargement 

(Appendix D4.12). 

Mean cave lengths and VRs also reduce near eastern coastlines for all cave classes from GS=H down to 

GS=E, again confirming a muffling effect by the sea. However, the dimensions of these caves are 

commonly larger near eastern coastlines than near western coastlines, in contrast to the larger western 

dimensions above the glaciation marine limit. This indicates that the muffling effect of the Atlantic ocean 

at western coastlines is greater than the corresponding muffling effect of an IDL (or the sea) plus the 

continuing icesheet along fjord coasts east of major ridges (Figure 8.5). 
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The under-representation of MV caves on the west side of major ridges (section 5.5.6) can be explained 

by assuming that even these caves required a phreatic `kick start' beneath their IDL, before taking 

advantage of the fractures created by the Weichselian deglacial earthquakes and enlarging to present 

dimensions during the Holocene. Section 5.5.6 noted that mainly vadose caves have mean dimensions 

within 15% of each other at GS=K and L. In fact, their mean length, mean XS and mean volume are still 

slightly larger to the west, but so are their mean catchment areas. Below the glaciation marine limit, their 

mean VRs decrease downwards near both western and eastern coastlines, with this dimension slightly 

larger in eastern situations. Thus, the fracture sets followed by the MV caves (and the streamways>of 

combination caves) follow the same seismicity muffling effects as for phreatic relict caves, although with 

less pronounced differences. It seems possible, therefore, that inception fractures for both phreatic and 

vadose caves have similar, and perhaps contemporary, origins, with the type of passage enlargement and 

its timing dictated by `phreatic favouring' or `vadose favouring' factors (section 5.6.3). 

It is also possible that there were two types of deglacial tectonic activities. The first is the type that 

immediately followed behind the recession of the ice margin in association with ice-dammed lakes, as 

discussed above. These earthquakes had local, but significant, asymmetric impacts, within the range of 

each north to south-aligned valley (i. e. a lateral west to east extent of the order of one kilometre), and 

were also amplified by steep topography. They started at the Norwegian coast and ceased after the 

icesheet receded into Sweden. A second type was caused by the continuing, but decaying, isostatic uplift. 

These tectonic activities probably operated regionally, with symmetrical effects on both sides of major 

ridges, and continued well into the Holocene as neotectonics. They may have comprised both seismic and 

aseismic movements. If there were two distinct types of tectonic activity, from their timings, the relict 

caves resulted primarily from inception fractures created by local earthquakes, and the mainly vadose 

caves and passages utilised fractures from both local earthquakes and regional tectonism. This would 

explain why the mean length and vertical range at west and east glacial situations are much more similar 

in the MV caves. Additionally, MV caves utilised the subset of fractures that provided suitable hydraulic 

gradients within the local topography, which therefore had more-symmetrical W and E distributions. 

8.2 Deglaciation in the study area 

Section 8.1 introduced terms and concepts whose relevance to endokarst evolution may not be 

immediately apparent. Appendix D2 puts these terms into context by deriving the deglacial sequence for 

the whole study area. Contemporary influences on the karst cave sites are also discussed in general terms. 

The Tosenfjord-Fiplingdal area deglaciation is presented in more detail in Appendix D3. These 

reconstructions are considered to be approximate in detail, but correct in principle. They illustrate the 

recession of the icesheet margin from west to east, and the synchronous thinning of the icesheet 

downward from the mountain tops. The ice margin lost its sharp, morainal, definition as it retreated 

eastward out of the Western catchment area, because of the declining influence of heat from the sea and 

the increasing influence of topography on the lowering and decaying icesheet. 
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8.3 Earlier glaciations and deglaciations 

Whereas the reconstructions in Appendices D2 and D3 are for the final Weichselian deglaciation, this 

thesis proposes that similar conditions arose at the beginning of all previous interglacials. During 

Weichselian and earlier stadial deglaciations, the ice margin may have progressed a reduced distance 

inland and stopped at higher upper melting heights before being overtaken by the next glaciation 

sequence. However, if interstadial summer temperatures did not reach interglacial values, the melting 

may have been primarily driven by the heat flux from the sea, with less summer ablation. Such a `bottom- 

up' deglaciation mode may explain the interstadial ice-free valley floor of Hattfjelldal (section 2.3.4), 

and would reduce the influence of IDLs during interstadial transitions. 

Narrow ice-dammed lakes could also form in summer during glaciation, also at about the level of the 

upper ice-melting height. Such lakes therefore rose upwards as glaciation strengthened year by year, until 

summits were permanently covered by ice. Indeed, Dawson et al. (2002) described the formation of a 

rising and then falling sequence of backward-flowing IDLs during the Younger Dryas glaciation and 

deglaciation of the Parallel Roads of Glen Roy in the Scottish Caledonides, which reached depths up to 

170m. However, if glaciation started with an upper ice-melting height at or above 1000m, few, if any, 

karst caves in the study area could have been submerged by such glaciation summer lakes. On the other 

hand, when glaciers grew large enough to block river valleys, IDLs formed behind them in summer 

(Rudoy, 2002) and flooded any underlying caves. It is also possible to envisage a westward-moving ice 

margin as the sea cooled during glaciation. However, as discussed in section 6.3.1, any pulse of 

seismicity associated with such a glacial ice margin was likely to be restricted in magnitude, because of 

the compressive effect of the increasing weight of ice. 

Another scenario to consider is when a partially deglaciated interstadial was reversed by a return to 

stadial conditions. In this case, the growth of perennial ice may have occurred at two levels: from the 

same 1000m altitude, and by extension of the valley glaciers or by build-up on to an already extensive 

icesheet. This may be the situation modelled by Arnold et al. (2002) for the Hattfjelldal interstadial I 

(section 2.3.4). During the summers of a stadial episode, there are then likely to have been two series of 

IDLs, and, although probably smaller, the lower series may have functioned in ways compatible with the 

deglacial IDLs, and experienced both forward and reverse flow conditions, thereby providing additional 

dissolutional opportunities at existing submerged caves and fractures. 

potential differences in the style of ice-dammed lakes during glaciation and deglaciation under each of 

cold-based and warm-based conditions may also be relevant. Valen et al. (1996) deduced that the floor of 

Hamnsundhelleren (southern Norway) was covered by a lake that was dammed by a fjord glacier at the 

mouth of the cave during the onset of glaciation, supporting the concept of glaciation IDLs. Caves at 

higher altitudes and nearer the coast were subjected to immersion beneath advancing and retreating 

IDLs more frequently than inland caves at lower altitudes during stadial / interstadial sequences, because 
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lower altitude inland caves were more likely to remain permanently covered by the icesheet. This may 

explain the large diameter (10m) of Gt, svasstindhola (Z4, altitude 778m; Photo 8.1) and the existence of 

relatively large caves in the Western catchment area, which may have experienced several IDLs as the 

climate fluctuated through the Older and Younger Drvas stadials (Appendices D5.1-D5.3). 

8.4 Glacial conditions and flow regimes 
Section 3.2 reviewed the general history of glacial karst research and section 3.3 the development of ideas 

about glacial karst in Scandinavia. The various glacial sequences that applied at the study area caves and 
karsts during the many glaciations that central Scandinavia has experienced were considered in some detail 

in sections 8.1-8.3 and Appendices D1 and D2. This section identifies 11 glacial conditions that cave sites 

could experience during a cycle from a glacial to an interglacial climate. Whilst describing these 

conditions, 14 separate flow regimes are derived that could apply at each local cave environment, as 

summarised in Table 8.1 (section 8.4.12). Sections 8.5-8.9 with Appendix D4 then discuss the effects of 

these flow regimes on the local karst hydrogeology, and derive the relevant timescales for the gestation 

and enlargement of karst conduits and cave passages. 

8.4.1 Cold-based icesheet 
The likelihood that much of the study area was frozen-based at the Last Glacial Maximum (LGM) was 

discussed in Appendix A3.2. Permafrost could also occur adjacent to valley glaciers during the onset 

stage, and perhaps also during the decay stage of each stadial, and underlie the narrower valley glaciers. 

Thus, caves situated in such situations could experience permafrost conditions once or twice at each 

stadial. Karst caves would then contain frozen water and trapped air in varying proportions. Caves situated 

high in valley sides adjacent to valley glaciers before the onset of local permafrost would have been 

subjected to a seasonal high energy erosional environment with severe freeze thaw and high spring melts, 

i. e. conditions more extreme than those of today. At transitional periods, internal cave environments could 

be seasonally varying. Kiemen and Hättestrand (1999) stated that ribbed moraines surrounding relict 

landscapes in "west-central Fennoscandia" indicate fracturing of frozen drift sheets during the transition 

from frozen to thawed conditions during deglaciation. 
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During the onset of glaciation, caves beneath a cold-based icesheet, but above the glaciation marine limit, 

might still contain air, plus old, frozen, meteoric water, plus injected glacial ice (as at Castleguard Cave 

in Canada: Ford, 1987), if they had only experienced permafrost conditions and were below the plastic 

behaviour limit (PBL). For caves below the glaciation marine limit, the ice may initially have consisted 

of frozen sea water. However, the temperature at the base of a long-lasting icesheet varied from place to 

place and time to time, dependent on cold-based and warm-based conditions, whilst remaining close to 

the pressure melting point (Johnston, 1987; Appendix A3.2). If the immediately overlying icesheet 

became warm-based at any time, then any underlying caves would flood completely with glacial melt, 

which would force out most of the trapped air, and, in time, replace any pre-existing water, although air, 

or possibly a near-vacuum (arising from the smaller volume occupied by meltwater in a closed system), 

could remain in ceiling pockets. The glacial meltwater would then freeze again on a return to permafrost 

conditions. Because the Weichselian glaciation experienced significant Bond cycle and Dansgaard- 

Oeschger cycle climate-warming oscillations (section 2.3.3), it seems likely that many caves then in 

existence in valley floor and other suitable topographic locations (where subglacial lakes were more 

likely to form) alternated between occupation by glacial ice and by glacial meltwater soon after 

glaciation, with little trapped air. Caves in locations that did not experience warm-based conditions may 

have contained both ice and air for long periods of time, until the onset of a deglaciation phase. 

It seems that all then-existing caves were potentially occupied by ice at some stage during glaciation, 

because the maximum distance of a cave passage from the overlying rock surface is always less than 

100m (section 5.3.7), which could be the thickness of the permafrosted rock (Appendix A3.4). Because 

the thickness of the icesheet at the LGM was much greater than the depth of the PBL, the underlying 

caves could not be integrated with any englacial RSthlisberger channels at the height of each glaciation. 

Neither could there be any air gaps between the base of the ice and the underlying rock. Thus, ice would 

be injected at high pressure some way into every available karst orifice, even without an interval of 

warm-based conditions. The flow regime applicable to caves in cold-based, permafrost, conditions is 

occupation by ice. It is assumed herein that the karst hydraulic condition at the base of an icesheet that is 

kept at the pressure melting point by glacial movement is similar to that at a cold-based icesheet. 

8.4.2 Warm-based icesheet 

The existences of subglacial lakes at the heart of extensive icesheets and of subglacial groundwaters at 

their peripheries were discussed in Appendices A3.3 and A3.4. Thus, perennial lakes of topographically 

varying size commonly form at the bases of full-cover polar icesheets above non-frozen bedrock, which 

have low hydraulic gradients and very slow circulatory movements. Phreatic inundation by melting of 

warm-based icesheets to form essentially static subglacial lakes during glacial maxima may apply to 

many karsts in the study area, especially those in valley floor locations. The lengths and frequencies of 

inundation are commonly unknown, although they may have persisted for many thousands of years. 
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Subglacial lakes only existed at very high pressures, with no air gaps, because they supported the weight 

of the floating icesheet. Thus, any cave passage inundated by a subglacial lake would have a high 

pressure exerted on its walls and internal deposits. It also seems possible that chains of subglacial lakes 

could form that might, or might not, be connected hydrologically along valley floors. 

No direct observations of conditions in a subglacial lake below a warm-based Scandinavian icesheet or 

glacier are possible, because none are known to exist. The presence of extremely fine clay particles that 

coat all the surfaces of some Norwegian caves (e. g. in Tjoarvekrajgge in northern Norway, and along a 

1cm roof notch in Luktindgrotta, Z6), may indicate that some, at least, of the submerging lakes were 

indeed static. These may include subglacial lakes. Other bodies of water that can exist subglacially 

during deglaciation are discussed separately. The applicable flow regime at a warm-based glacial 

maximum is subglacial lake. 

8.4.3 Coastal western slopes 
Towards the end of each glaciation, the steep edge of the icesheet receded eastwards at c. 70mä 1, 

initially across the rather flat bed of the Norwegian Sea, until it reached the western catchment area. Ice- 

dammed lakes were not able to form by the melting of the icesheet surface at low altitudes near the coast, 

because the land there was exposed by the direct melting and calving of the western margin of the 

icesheet at or above sea level, and the melted ice ran away into the sea. Three timings are relevant 

(Figure 8.6). 

At time 1, the ice margin reached the western side of a minor ridge. Any caves or fractures below the 

deglaciation marine limit (GS=C or D) were directly invaded by the sea, and an IDL could not form. The 

applicable flow regime is marine inundation. At time 2, the ice margin exposed the higher western slopes 

of the ridge (GS=G or K). Again, an IDL could not form because the meltwater ran down the slope into 

the sea. The applicable flow regime is slope flow. At time 3, the ice margin crossed the ridge to expose 

its eastern slope (GS=C, E, H or L). Here, an ice margin IDL (section 8.4.10) could form, which initially 

might be backward-flowing over a col down to the sea, dependent on topography, but which would 

eventually be replaced by marine incursion up to the deglaciation marine limit. However, a 5km-long 

east-draining valley could have sustained such an ephemeral ice margin IDL for only c. 70a, a period too 

short to enlarge phreatic conduits to explorable sizes. Hence, relict phreatic passages should not be found 

in those positions that could only have been submerged beneath coastal western slopes or beneath small 

ephemeral ice margin IDLs, but mainly vadose caves could perhaps develop there, under interglacial 

conditions. 
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The above hypothesis was tested by making the assumption that the ice-melting heights in the Western 

catchment area were 200m lower at each interval during deglaciation than predicted by the reconstructed 

Gronlie formula (section 8.1.4). The only dissolutional caves found in the cave database to have formed 

at a coastal western slope or at an ephemeral IDL situation (i. e. one that is not on the slope of a high peak 

or ridge that could `attract' both a nunatak IDL before the arrival of the ice margin and powerful 

deglacial seismicity) are the hybrid relict Football Pitch Cave B (Z1) and the `mainly vadose' 

resurgence cave Olafs Kilden (Z2). This is strong supporting evidence that nearly all the karst caves 

were either initiated or formed completely beneath deglacial ice-dammed lakes that were themselves 

initiated at the nunatak level. Because Olafs Kilden is located beside the 720m-deep Bindalsfjord (one 

of the deepest in Norway: section 2.2.1), its fractures were likely produced by ice marginal seismicity, 

with subsequent enlargement during the Holocene (Appendix D4.12). 
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Figure 8.6 Recession of the ice margin near the coast 

Higher ridges, as also shown in Figure 8.6, formed IDLs within the icesheet, as described in the 

following sections. Thus, there is a fairly complex relationship between altitude, longitude and 

topography that determines where in ZI, Z2 and Z9 of the Western catchment area IDLs could not form 

or only ephemeral ice margin IDLs were situated. 
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8.4.4 Nunatak IDL 

At the LGM, the icesheet probably covered all the mountains of the area and no IDLs existed, apart from 

small, shallow, melting-pools (supraglacial lakes) on the surface of the ice each summer. As the icesheet 

lowered during deglaciation, initially by ablation, individual peaks and ridges became exposed as 

nunataks. Their rocks were warmed by the sun in summer, causing the immediately-surrounding ice to, 

melt faster than the mass of ice in the icesheet. (The following discussions assume that the air 

temperature above the icesheet averaged >0°C each summer). Thus, very early in the deglaciaticns 

sequence, small, linear, and initially stagnant, lakes were created against the ridge walls, whilst being 

confined by the main icesheet on the other side, in glacial situation U. Each nunatak IDL (Lundgvist, 

1972, p32; LaRocque et al., 2003, p77) reached down to solid rock at its base, and potentially continued 

for some distance as a static Nye channel at the ice-rock contact to an SGR below the surface of the 

icesheet (Figure 8.7a). The lakes and their water levels lowered away from the summits as the icesheet 

surface lowered each summer. Any ice in a cave below a nunatak IDL melted as the lake lowered through 

the level of the cave, and the melted glacial ice gradually drained away as the cave emerged above the 

level of the IDL, with no significant phreatic flows of water passing through the cave. However, the IDLs 

probably froze again each winter, when severe freezing at the high altitude could cause extensive frost 

shattering, especially when the IDL level was coincident with a cave entrance. The draining of nunatak 

IDLs by englacial channels was unlikely, because the PBL (sections 3.2.4 and 8.1.8) was initially close to 

the surface, and the local near-horizontal surface of the icesheet provided few outlet opportunities. 

Because nunatak IDLs were essentially static, lowered annually and contained little sediment, they left 

little evidence of their existence after they lowered below the ridges, compared with the lower moraines 

deposited under IDLs at later stages (Brazier et al., 1998, p300). The applicable flow regimes are 

nunatak flow and occupation by ice. 

8.4.5 Westward-flowing IDL 

The evolution of a westward-flowing IDL from a nunatak IDL to a drained IDL and its relationship to 

underlying fracture systems and caves at each western glacial situation is described by reference to 

Figure 8.7. Although new winter snow melted upwards towards the summits during each summer (as 

now), the surface of the whole icesheet lowered annually by ablation and by melting to form surface 

flows, as deglaciation proceeded. From the reconstructed Gronlie formula (section 8.1.4), the lowering 

rate of the upper ice-melting height roughly increased from 30-60cma"' over the period 12000-900014Ca 

BP, for all isobases. Thus, more rock became exposed to the sun, and the nunatak IDLs became wider, 

longer and deeper, but with surfaces that followed the downward trend of the icesheet surface. 

The icesheet was commonly lower on the western sides of north-south-aligned ridges because of 

increased insolation, reduced winter precipitation, reduced accumulation, warming by the sea, warming 

of bedrock at the receding ice margin and less restricted glacial streaming. Thus, when the lowering 

surface of the icesheet caused the base of its eastern nunatak IDL to coincide with the highest local pass- 
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point along the ridge on its western side (Figure 8.7b and g), the eastern lake-level was stabilised by this 

outlet pass. Meltwater (supplemented with occasional jökulhlaups, Appendix D4.4) spilled continuously 

up-valley and `backward' over the col in summer, to pour down into the lower-level westward-flowing 

IDL. Sporadic overflows of western IDLs also reinforced the increased lowering of the icesheet on the 

western sides, and contributed to making the warmer western sides wetter, with lower plastic behaviour 

limits. It seems unlikely that reverse flow applied to many IDLs situated on the western side of the major 

ridges: these IDLs typically passed directly from nunatak to westward-flowing. 

The ice-dammed lakes were also commonly deeper on the western sides of the main mountain ridges, 

because their Nye channels were along rock floors also made warmer by the advancing sea and retreating 

ice margin, by receiving more heat from daily insolation, and by accepting the extra flows from their 

adjacent backward-flowing IDLs. The first summer outlet was achieved when an epidermic Röthlisberger 

channel above the PBL found a siphoned route to the surface, creating significant englacial flow through 

the IDL (Figure 8.7b and g). The flow tended to increase as melt-widening widened the englacial channel 

(Tweed and Russell, 1999). At the same time, down-valley glacial Nye channels slowly fed an enlarging 

high pressure subglacial reservoir at the foot of the IDL whilst the icesheet remained cold-based (hp- 

SGR: Figure 8.7; section 8.1.6) In winter, the ice-dammed lakes froze from the surface downwards, 

perhaps also freezing the water in any submerged caves, whilst subjecting their wall-rocks to increased 

stress and fracturing. 

The lowering western IDLs drained `forward' and `down-valley' as part of intermittent summer surficial, 

epidermic, or deeper, glacial drainage systems above the plastic behaviour limit of the ice, in glacial 

situations S, K and G. The water levels in the earlier (higher) westward-flowing IDLs fluctuated, perhaps 

hourly, dependent on precipitation, the ice-melting recharge rates, and the deeper subglacial temperature- 

controlled discharge capacity into subglacial reservoirs. Nye and Rdthlisberger channels sporadically fed 

water to the base of vertical moulins at crevasses, where it rose (perhaps as a fountain: Tweed and 

Russell, 1999) and overflowed the down-slope surface of the icesheet, which it tended to lower. In other 

conditions, excess water intermittently overflowed from the IDL on to the icesheet to the west via ice 

contact spillways. Fractures and cave passages situated directly below an active IDL, its subsequent Nye 

channel or its SGR eventually became incorporated directly into the glacial hydraulic regime. 

The western IDLs were commonly smaller in extent than the eastern IDLs, being contained more within 

the valleys, and persisted for less time because they could not convert into ice margin IDLs. Hence, 

fractures on E-W spurs that led from major western slopes were likely to be inundated for less time, 

explaining the rarity of caves with GS=D, G, K and S (sections 5.3.5 and 5.5.6). The extreme rarity of 

caves at GS=S (Table 5.28) may be because high-level western IDLs remained essentially static, giving 

few opportunities for phreatic enlargement or for a phreatic `kick start' for mainly vadose caves. 
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Figure 8.7 Evolution of a westward-flowing IDL 
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Two extreme examples of IDL evolution need to be analysed: the narrow IDL case (n), where the base of 

the IDL does not reach the PBL: Figure 8.7b-f, and the wide IDL case (w), where the IDL base is below 

the PBL: Figure 8.7g j. The wide IDL case became increasingly dominant as deglaciation proceeded, 

especially on the east side of ridges. In the narrow IDL case, if the base of the IDL or hp-SGR reached an 

inception fracture system, this could create a further small low pressure subglacial reservoir (lp-SGR) 

and low pressure SGR flow, where fluid was sucked in laminar flow through inception fractures. If post- 

breakthrough conduits were encountered, these soon enlarged to cause a deepening of the high pressure 

SGR. Assuming that lp-SGRs could not form below the PBL, they did not form in wide IDLs. Both 

narrow and wide IDLs provided englacial flows for fracture systems and caves above the PBL, and wide 
IDLs also provided slower circulatory flows below the PBL, as the hp-SGR deepened, and as some water 

returned towards the englacial outlets above the PBL. 

As deglaciation proceeded, the icesheet shrank into separate valley glaciers. When some westward- 

flowing IDLs lowered themselves down the valleys, they were sporadically held up by ice and moraine 

debris situated in narrower valley sections. These created temporarily-stable lake levels, typically located 

directly above the present permanent lakes. There were many such examples west of the MSW in the 

Northern catchment area and in the eastern limb of the Vefsn catchment area (Gronlie, 1975). The levels 

of these forward-flowing IDLs also commonly re-adjusted themselves at jökulhlaup events, when, 

especially at lower altitudes, underlying karst caves were inundated by powerful flows of water. With 

more land exposed above the IDLs, the proportion of flow from direct meteoric precipitation also 

increased, as did the load carried from glacial sediments. Thus, these sediments were deposited within 

and washed through any underlying caves, as well as sinking to the bases of the IDLs. 

The IDLs reduced in size to occupy the upper valleys above the shrinking valley glaciers, which, in 

Norway, eventually became receding tidewater glaciers near the deglaciation marine limit. Assuming 

these were always warm-based for some distance inland from the sea, two types can be distinguished: 

long (1), where there was no connection along the valley floor from the Nye channels and SGRs at the 

head of the glacier to the marine inundation at the glacier snout, and short (s), where a brackish SGW ran 

beneath the whole glacier at its warm base to drain the IDL. Because each type of tidewater glacier could 

interact with either a narrow or a wide IDL, four combinations were possible: In, lw, sn and sw. Each 

combination could also represent an active glacier (assumed to be thicker than the depth of the PBL) or a 

stagnant glacier (assumed not to exhibit plastic behaviour), but three of these combinations cannot exist 

from the definitions. Hence, the five possibilities are: active and stagnant long tidewater glaciers with no 

valley floor hydrological connections to narrow IDLs (partly cold-based: Figure 8.7e); active long 
"tidewater glaciers with no valley floor hydrological connections to wide IDLs (partly cold-based: Figure 

8.7j); and active and stagnant short tidewater warm-based glaciers with a brackish SGW along a valley 

floor that increasingly comprises meltwater upstream, which may lead to an IDL or to a drained IDL 

(Figure 8.7f). Appendix D5.3 indicates that a `short' tidewater glacier could be 10km long near the coast. 
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Some active and stagnant long tidewater glaciers probably had Röthlisberger flows above the PBL that 

discharged as waterfalls into the sea (Figure 8.7d, e, i and j). When the increasingly-inclined PBL 

descended below the sea level (elevated because of isostatic depression of the land) at glacial situations 

D and C, submarine Röthlisberger discharges were also possible (Figure 8.7e, f, i and j). Because the 

head of water in the westward-flowing IDLs might still rise above sea level at high stage, the outlets 

could discharge meltwater as considerable upwellings, just beyond the ends of the fjord glaciers. The 

flow regimes applicable to all westward-flowing IDLs are englacial flow, ice contact spillway flow, 

jükulhlaup flow and occupation by ice. Additionally, narrow IDLs supported low pressure SGR flow, and 

wide IDLs supported circulatory flow. 

8.4.6 Drained IDL 

If the active tidewater glacier did not collapse, but slowly melted away, then the ice deteriorated into 

stagnant `dead-ice' when the glacier thickness reduced to less than the PBL (c. 200m; Figure 8.7e and f). 

Large flows of icemelt were then captured via Nye channel meltwater SGWs, when SGRs coalesced 

along valley bottoms above sea level. Flow rates increased by melt-widening and mechanical tunnel 

enlargement (Tweed and Russell, 1999). The SGWs continued as brackish SGWs to the ends of the 

tidewater glaciers in Norway. The IDL became a drained IDL, being replaced by large air pressure SGRs 

(ap-SGRs) at places governed by the local topography (where lakes exist at present). The continuing 

drained IDL regime had a powerful meltwater SGW running through a large Nye `tunnel channel' under 

the base of the remnant tidewater glacier, into a continuing and flooded brackish SGW. There was 

commonly a continuous airway above the meltwater part of the SGW, with sporadic ap-SGRs along 

valley floors. These hidden internal SGRs increased in size enormously as their bases lowered down the 

valley floors and they may have contained significant air pockets below their ice ceilings. In places they 

later formed intraglacial lakes, which were surrounded by static ice, but directly exposed to the 

atmosphere. The surface of the lowest SGR coincided with the contemporary sea level, creating brackish 

and tidal conditions in any underlying cave system (Figure 8.7f). 

Wide IDLs were more likely to collapse catastrophically, because they were deeper (Figure 8.7j). In this 

event, a cold-based retaining ice barrier commonly gave way suddenly, perhaps under the warming 

influence of the advancing sea, to produce a final proglacial jökulhlaup or superflood (Rudoy, 2002). 

This could either drain the reservoir through one or more `tunnel channels', after which the tidewater 

glacier slowly melted as discussed above, or else the whole ice dam could float away when the 

hydrostatic head exceeded the over-burden pressure (Figure 8.7k; Walder and Costa, 1996; Tweed and 

Russell, 1999). The Tosenfjord tidewater glacier probably collapsed catastrophically, because, being 

aligned NE-SW, it was approached by the sea and the ice margin from low-lying land along its western 

edge, rather than melting inland along its length (Figures D3.5 and D3.6; Appendices D3.6 and D5.3). 

Those underlying caves that experienced a proglacial superflood were subjected to a very high, but short- 

lived, erosional regime, especially those with CL=V, which were in the direct line of the flood. 
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Thus, IDLs either drained gradually, via ice contact spillways, via meltwater SGWs, or via brackish 

SGWs (in Norway), or catastrophically, by a collapse of the ice dam. According to Lundqvist (1972), an 

IDL could not form again if there was a continuous supply of water to the lake basin. Subglacial 

waterways could reach the sea at the edge of the receding grounded ice shelf, according to the evidence 

of Follestad (1997) in northern Norway, and of Flinn (1967) at the Scottish coast. This raises the 

possibility that warm-based icesheets could create SGWs by pressurised internal melting, without 

connection to an IDL on the surface. 

The IDLs and SGRs themselves either eventually disappeared altogether, or remained as the present 

surface lakes. The only known karst system beneath a surface lake is the source of the resurgence cave 
Aunholet (Z2), beneath the `vanishing lake' Engjavatn (section 4.2.8). The existence of other 

permanently submerged caves remains a possibility. The applicable flow regimes are occupation by ice, 

plus meltwater subglacial waterway (above the deglaciation marine limit) and brackish subglacial 

waterway (below the deglaciation marine limit). 

8.4.7 Submarine 

Caves and fractures lying below the glaciation marine limit (GS=C, D, E, G and H) were inundated with 

sea water before they froze at the onset of glaciation, and so contained little trapped air. During 

deglaciation, when the ice margin approached a cave located on the west side of a ridge and below the 

deglaciation marine limit (GS=C and D; section 8.4.3), its internal cave waters became brackish because 

of tidal effects. Caves below the deglaciation marine limit on the east side of a ridge (GS=E) commonly 

first became flooded by glacial melt flowing along Nye channels at the base of the icesheet (section 

8.4.5; Figure 8.7e and j mirror images) before becoming completely inundated with sea water, perhaps 

for a second time, as the lower melting height of the tidewater glacier rose and the sea encroached up the 

valleys at the end of the Younger Dryas (section 8.1.4; Figure 8.7f and k mirror images). Neptune's 

Cave (Z2) is presented as such an example (Appendix D5.3). The continuing extent of the brackish 

nature of this water after the tidewater glacier melted depended on the fluvial regime in the valley, and 

the local topography. As isostatic uplift raised the caves with GS=C, D and E to their present altitudes of 

<167m, they were drained of sea water, and exposed to climatic conditions similar to those now 

operating. The period of inundation by sea water was determined by the cave's altitude, isobase and the 

local sea level curve. The applicable flow regimes are marine inundation and occupation by ice. 

To summarise the deglaciation of the Western catchment area in particular, many caves became part of 

powerful englacial hydraulic systems, which initially carried fairly light sediment loads, but were 

occasionally engulfed by jökulhlaup floods. At least those caves that were near the deglacial marine limit 

also became part of powerful subglacial waterways, whether above or below contemporary sea level, 

which carried heavy loads of glacial till. This partly explains the increase in fluvial sediments with lower 

glacial situation (Appendix B2.10). In both cases of gradual or sudden draining of the final IDL, the end 
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result was the complete marine inundation of caves below the deglaciation marine limit, and the drain 

of all the higher caves and fractures (Figure 8.7k). 

8.4.8 Backward-flowing IDL 

The initiation of a narrow backward-flowing IDL at glacial situation GS=T was described in section 

8.4.5. With continuing icesheet downwasting, especially on the western sides of ridges where it was 

lower, successively lower spillways were exposed, so that each backward-flowing IDL adjusted to lower, 

commonly western, outlets, whilst at the same time becoming larger. The pattern of lowering, expanding, 

deepening and merging backward-flowing IDLs is illustrated in Figures D2.1-D2.9 for the deglaciation 

of the whole study area and in Figures D3.1-D3.9 for the Tosenfjord-Fiplingdal area. Because of the 

depths reached, the `wide' IDL case soon became dominant, with the IDL bases below the PBL. 

Each re-adjustment typically occurred as a catastrophic jökulhlaup flood (perhaps accompanied by 

tectonic deformation: Dawson et al., 2002), which persisted for several minutes or hours, as a new 

temporarily-stable lake surface formed. Because ridges tend to follow geological structures, there is a 

general tendency for backward-flowing IDLs to be aligned with cave passages formed in stripe kürst. 

Within each lake (and any underlying cave), flow-switching could occur (e. g. from north to south or from 

south to north) at each successive lowering, dependent on the relative position of the next active col. 

It might be anticipated that there could also be transitional forward englacial flows at each level of a 

backward-flowing IDL, via Röthlisberger outlets above the PBL. These might lower the level of the IDL 

below the level of the col, and temporarily halt the up-valley reverse flow. During any such transitional 

stages, restrictions in the size of the IDL outlets by re-freezing, or increases in precipitation or glacial 

melt, would raise the level of the IDL again, until it partly reverted to reverse flow over the col. 

However, it seems unlikely that englacial channels drained the backward-flowing IDLs below the levels 

of the spillways along the ridges, from the evidence of jökulhlaups discussed in Appendix D3. Whilst the 

level of the icesheet remained above the level of the lowest col (GS=T), a backward-flowing IDL could 

also not overflow the icesheet itself along ice contact spillways, which would tend to keep the icesheet 

drier and more horizontal (giving less outlet possibilities) on the eastern sides of ridges, with a PBL 

nearer the surface. It is also possible that if the altitude difference between successive spillways was 

sufficiently large, the backward-flowing IDL could lower below the level of a previously-active spillway 

before the icesheet on the western side lowered enough to expose the next spillway. In this case, the 

backward-flowing IDL could become temporarily static. It is assumed that this rarely occurred, because 

of the common small altitude differences between spillways (Appendix D3). Because of the continuous 

nature and strength of the summer meltwater discharges, it might also be anticipated that reverse flow 

was greatest near the surface of the IDL, with circulatory flow more likely at depth in a wide IDL. 

However, this may not be the case, because the density inversion of water below 4°C means that slightly 
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warmer meteoric water and meltwater may sink into an IDL close to freezing. In Appendix D4.4 it is 

assumed that the reverse flow speed was 20cros-' at a depth of 240m. 

All caves situated east of, and below, the level of the highest local col that are also above the lowest local 

col (GS=T), and some others lower down, were submerged for varying periods of time by backward- 

flowing IDLs. They experienced phreatic meltwater flows (in sporadically-varying directions) from the 

time that a backward-flowing IDL arrived above them, until the time when the level of the lake fell below 

their own level, when they drained. This concept is demonstrated by the existence of north-facing 

scallops on Elgfjell. These indicate flow in the opposite direction to that of normal valley drainage 

(Appendix D3.3), which is only possible beneath a backward-flowing IDL. The applicable flow regimes 

are reverse flow, jökulhlaup flow, and occupation by ice. Low pressure SGR flow above the PBL of an 

early narrow backward-flowing IDL was also possible, and circulatory flow is uncertain. 

8.4.9 Eastward-flowing IDL 

After a backward-flowing IDL lowered below the level of the lowest pass, it could then only drain 

`forward' and `down-valley' in glacial situations L, H and E, in various conditions similar to those of a 

westward-flowing IDL (e. g. Figure 8.7e, f and j). These conditions may be visualised by creating a mirror 
image of Figure 8.7, but without the early recharge from a backward-flowing IDL. 

Eastward-flowing IDLs also stabilised their levels, or drained out completely, via ice contact spillways, 

sporadically into lower-level eastward-flowing IDLs, as they merged within the main body of the 

icesheet, or as they flowed out beside valley glaciers. Hence, once forward flow was fully entered, 
fluctuating levels could cause IDL englacial flow to be supplemented by ice contact spillway flow at high 

stage, controlling the maximum head of the englacial flow. The eastward-flowing IDLs remained trapped 

against a continuing, more active, icesheet for longer than the westward-flowing IDLs. They therefore 

commonly also remained full of meltwater for longer, although perhaps in a more static condition, 
because the lowering of their PBLs lagged behind those of IDLs flowing west. As discussed in section 

8.4.3, the possibility of a slope flow regime does not arise on the eastern sides of ridges, but in the 

Western catchment area, eastward-flowing IDLs could be ephemeral. 

From these points, it is clear that all inland fractures and caves that lie east of a major mountain range in 

the study area were inundated by a backward- and / or an eastward-flowing ice-dammed lake for a period 

of time during the late YD or early Holocene, as the IDLs progressively lowered themselves down the 

valleys during the spring, summer and autumn seasons of a deglaciation phase. 

In the Norwegian part of the study area, the water from eastward-flowing IDLs also eventually reached 

the sea, via valleys aligned S-N and via the fjords aligned E-W. It seems likely that persisting permafrost 

prevented SGRs from reaching the grounding lines of the glaciers at the inner ends of these fjords whilst 
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the ice thickness remained greater than the PBL of c. 100-200m. Commonly, individual eastward= 
flowing IDLs widened then narrowed as they evolved. Collectively, they also widened from west to east 

across the study area and as time progressed, as a consequence of the lowering of their altitudes and the 

increase in their melting rates. Thus, the largest eastward-flowing IDLs were created in Sweden, which 

flowed SE towards the Baltic (Appendix D2). The flow regimes applicable to eastward-flowing IDLs are 

ice contact spillway flow, englacial flow and occupation by ice. Wide IDLs also supported circulatory= 

flow. There were probably few narrow eastward-flowing IDLs, but those that existed could support low 

pressure SGR flow. They were not associated with many jökulhlaups, because eastward-flowing IDLs 

tended to become ice-margin IDLs. 

8.4.10 Ice margin IDL 
Ice margin IDLs are commonly special cases of eastward-flowing IDLs. In the Western catchment area 

they only formed at low altitudes as ephemeral ice margin IDLs within local east-draining valleys (Figure 

8.6). Tidewater glaciers formed the ice margin contact in the west-draining valleys. Farther east, and at 

higher altitudes, ice margin IDLs combined the effects of the eastward-flowing IDLs, formed by the 

lowering of the icesheet surface, with the effects of the eastward recession of the edge of the icesheet. 

They therefore had the potential to grow to larger sizes than other IDLs, and to inundate underlying karst 

caves for longer periods of time. Water flows were in the down-valley direction, towards the ice. In the 

Vefsn catchment area, large eastward-flowing IDLs became ice margin IDLs when the ice margin 

reached the valleys of Svenningdal and Eiter dal (Figure D3.6). Water escaped to the north via ice 

contact spillways between the hillslope and the ice, where the topography sloped down under the icesheet 

in topographic situations similar to those in southern Quebec described by LaRocque et al. (2003). ` 

However, the eastern limb of the Vefsn catchment area and most of the Northern catchment area drain 

westward and therefore could not form large IDLs at the ice contact. It was only when the ice margin 

passed the MSW into the Eastern catchment area that such IDLs commonly grew to very large sizes 

against the ice margin, as it retreated into Sweden. In turn, ice margin IDLs became drained IDLs 

(section 8.4.6) slowly or catastrophically, either adjacent to tidewater glaciers, as in Svenningdal and 

Vefsndal, or near dead-ice areas, as in Sweden. From the above, the flow regimes applicable to ice 

margin IDLs are ice contact spillway flow, englacial flow, circulatory low and occupation by ice. There 

was probably a maximum of one jökulhlaup for each IDL, if it finally drained catastrophically. 

8.4.11 Interglacial conditions 
The very variable annual conditions that have prevailed through the Holocene, as described in Appendix 

A4.1, and the distribution and character of the present caves (although not their final dimensions), as 

described in Chapter 5, are assumed to be fairly representative of the last few interglacials. Thus, a 

proportion of cave passages are `relict', being perennially air-filled. Others contain vadose streamways, 

mainly fed from allogenic sinks, which may lead to phreatic sections en route to lower resurgences. Other 

(as yet unexplored) cave passages may be perennially submerged beneath lakes and tarns. 
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The predominant flow regime is interglacial. Additionally, partial occupation by ice affects most caves 

(both vadose and phreatic) in winter, especially the injection of ice and snow at entrance areas, the partial 

freezing of streamways, and the internal formation of icicles. Caves below the glaciation marine limit 

(GS=C, D, E, G and H) experienced marine inundation until the sea froze or they were covered by ice at 

the start of previous glacials. Caves with GS=C, D and E experienced marine inundation until raised 

above sea level by isostatic elevation during an interglacial. 

8.4.12 Deglaciation conclusions 

Table 8.1 summarises which flow regimes apply to each glacial condition that a cave could experience. 

From the above discussion, it is clear that much of the land in the study area was flooded by glacial 

meltwater during deglaciation, so that probably all the studied caves then existing (i. e. at least the relict 

phreatic passages) experienced totally phreatic, dissolutional, conditions beneath backward-flowing and / 

or forward-flowing IDLs, before being drained to present conditions. Above the deglaciation marine 

limit, there are rough constancies in this flooding timescale of -80014Ca on western slopes and of 

-120014Ca on eastern slopes, as each of the caves experienced a pulse of melting as its local ice-dammed 

lake migrated down-valley, from the reconstructions in Appendices D2 and D3. The actual time taken for 

an IDL to pass any point is determined by the topography: a long linear ridge aligned N-S without 

connecting spurs would create a narrow, shallow, IDL that would quickly descend past any submerged 

karst feature. In the normal case, IDLs formed at the heads of side valleys widened and deepened because 

of additional heat flux from the upper valley walls. The time a cave remained submerged can commonly 

be estimated by dividing the presumed initial head of water above the cave by the ice-melting height 

lowering rate of c. 0.5mä' (section 8.1.4). This time is independent of the local hillslope. 

The SGR bases of wide IDLs probably soon reached along their valley bottoms, even if discharge was 

only via Röthlisberger channels situated above the PBL, <200m from the surface. However, all 

submerged caves situated both above and below the discharge altitude were likely to be incorporated into 

the IDL / glacier hydrological flow regime, to some extent. The later high deglacial flow rates of SGWs 

probably caused many of the existing caves to be scoured by waters charged with heavy loads of till, 

especially in Sweden, with stochastic mechanisms of frequent blocking and unblocking that varied for 

each individual cave system. The various IDLs froze downwards to varying depths during each winter of 

the deglaciation period, so that the water in each of the submerged caves was also potentially subjected 

to total freezing, at least when the IDL surfaces lowered to near the caves' altitudes. Caves inundated by 

sea water or brackish water experienced less freezing, because of the depressed freezing points. 

The general pattern for shallow caves (the majority of caves in the area) is that they drained and reverted 

to hydrological conditions similar to those of today as the surfaces of the ice-dammed lakes lowered 

below their levels. An IDL surface lowering rate of 0.5mä' should be too fast to leave evidence of the 

transition from phreatic to vadose flows. Thus, the two apparent relict vadose `steps' in the floors of both 
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`The Aven Route' in Balcony Cave (Z3; altitude 200m; Faulkner and Newton, 1995, Fig. 12) and `Fall 

Aven' in Etasjegrotta (Z4; altitude 300m; Figure B1.8) indicate a hiatus in the rate of melting betweh 

9600 and 950014Ca BP, from the reconstructed Grenlie formula (section 8.1.4). Such steps are theref ft 

diagnostic of phreatic to vadose transitions (in time) and of vadose to phreatic transitions (in spat 

during the deglaciation of caves with upside-down morphology. 

Deeper systems, such as Ytterlihullet (ZA), remained partially blocked at their resurgences by valley 

glaciers long after their sink entrances emerged above lake levels. These systems could therefore remain 

completely flooded for many further years, with meteoric water overflowing their sinks, especially in 

spring. Nevertheless, because no cave in the study area is deeper than 180m, when the valley glaciers 

receded, the opportunities for phreatic (Lauritzen, 1986a; section 3.3.2), then vadose, flows soon 

increased as integrated cave and glacier drainage paths developed above the glacier PBL or along Nye 

channels, until these deeper systems also reverted to present conditions. 

Table 8.1 Annlicabilitv of flow reuimes to olsicial conditions 
Glacial Cold Warm C N W D Sub- B E IM Inter- 

Condition based based IDL IDL IDL mar- IDL [DL IDL glacial 
FLOW ice ice ine 
REGIME sheet sheet 
Subglacial Yes 
lake 
Slope flow Yes 

Nunatak Yes 
now 
Reverse Yes 
now 
Jökulhlaup Yes many rare Final 
flow event 
Ice contact Yes Yes Yes 

s illway 
Englacial above above above 
flow PBL PBL PBL 
Ip-SGR above above above above 
flow PBL' PBL' PBL' PBL' 
Circulatory below ?2 at below below 
flow PBL2 depth PBL2 PBL2 
Meltwater above 
SG W DML 
Brackish below 
SGW DML 
Marine below below below 
inundation DML ML ML 

Interglacial Yes 

pation Yes * * * * * * * Partly be L 

Key: Ip-SGR Low pressure subglacial reservoir SU W Subglacial waterway 
C Coastal western slope N Nunatak W Westward-flowing D Drained 
B Backward-flowing E Eastward-flowing IM Ice margin PBL Plastic behaviour limit 
DML Deglaciation marine limit ML Marine limit (i. e. glacial or deglacial) 
'Narrow IDL, via inception fractures only. 2Wide IDL only. * Winter only, at IDL or sea surface. 
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8.5 Phreatic cave development 

In order to gain some understanding of the range of development histories of the study area caves, the 

three phases of dissolutional and erosional cave development (Dreybrodt, 1998, Fig. 2-10) need to be 

considered for each of the 13 liquid flow regimes derived in section 8.4, for the general case of 

combination caves that contain both relict and active passages (section 5.4.3). The three phases are: an 

inception-gestation phase, when laminar flow along inception fractures gradually leads to 

"breakthrough", as described by the Palmer / Dreybrodt model (section 3.1.13); a phreatic enlargement 

phase, when, after breakthrough, a more rapid enlargement occurs along the whole conduit in turbulent 

conditions; and a vadose entrenchment phase. 

The three phases may each apply to a variety of morphologies, dependent on the previous tectonic and 

karstic history, as appropriate. For the study area, these are: pre-breakthrough fractures; post- 

breakthrough fractures, conduits and phreatically-enlarged passages; and post-breakthrough vadose 

proto-passages and explorable vadose passages. In this context, the term post-breakthrough conduit refers 

to a phreatic route that is too small to explore. 

Before considering each of the above relationships in the glaciated setting of central Scandinavia, further 

discussion of phreatic karst dissolutional processes is required. It is clear from section 8.4 that phreatic 

inundation by (at least) ice-dammed lakes and subglacial reservoirs during deglaciation applied to most 

karsts in the study area, even including those that lay below the deglaciation marine limit. Hence, IDLs, 

SGRs and possibly subglacial lakes are strong candidates for providing environments in which the first 

two cave development phases could take place. These environments may, perhaps, be called 

nothephreatic, after the discussion by Osborne (2001 c). This section 8.5 therefore attempts to quantify 

theoretically the physics and chemistry of karst dissolution under glacial conditions for these phreatic 

development phases, so that the practical implications can be considered in section 8.6 and Appendix D4. 

Section 8.7 considers vadose development in interglacial conditions. 

8.5.1 Calcite dissolution in glacial conditions 

The physics and chemistry of the two phreatic cave development phases have been analysed to a 

considerable degree in the various papers that describe the Palmer / Dreybrodt model (sections 3.1.13- 

3.1.16). The breakthrough time from laminar to turbulent flow and the conduit enlargement rate 

thereafter are determined by many natural variables, of which calcite equilibrium solubility, dissolution 

rate and flow rate are particularly important. Without invoking the involvement of strong acids (for 

which there is no universal evidence for the study area), calcite equilibrium solubility is primarily 

governed by the initial concentration of CO2 in the inflowing water, and, to a lesser degree, by the 

temperature. The calcite dissolution rate is dependent on the contemporary aperture size, the temperature 

and the hydraulic ratio (section 3.1.14) for laminar flow, or dependent on the flow rate and the length of 

the conduit for turbulent flow. More importantly, the post-breakthrough dissolution rate is governed by 

Trevor Faulkner Page 229 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 8- Hydrogeological Model 

the degree of saturation of the inflowing water, reaching a maximum rate for unsaturated water Wit; 

contains no dissolved carbonate (Palmer, 1991, Eq. 6). The flow rate is determined by aperture S. 

conduit length (L), hydraulic gradient (HG: section 3.1.13), and also by the temperature, which contfols 

the fluid viscosity. As noted in section 3.1.13, values of HG greater than unity arise if an additional heW. 

is provided by a submerging lake such as an ice-dammed lake, but these can be difficult to determi le. 

Instead, flow rates and water speeds will commonly be estimated to determine the ranges of applicable. 

hydraulic conditions after breakthrough. Prior to breakthrough, flow rates and velocities increase 

exponentially with time and the use of hydraulic ratio is unavoidable. 

Before analysing each of the pre- and post-breakthrough flow regimes, there are two issues to address. 

Firstly, the published illustrations of the Palmer / Dreybrodt model commonly use rather high 

temperatures (10°C and above) and relatively high CO2 partial pressures (1-5% atm. ). That is, they rely 

heavily on organic CO2 to make dissolution fast enough to achieve breakthroughs in several IOKa for 

fractures longer than c. 100m that have low hydraulic gradients in closed phreatic conditions. However, 

in the phreatic conditions under a glacial submerging lake, there was no contemporary vegetation, and 

CO2 levels were at normal atmospheric partial pressures of 0.034% or lower, which caused calcite 

equilibrium solubility under closed conditions to reduce to the range 10-11mgL-1, even at 0°C (Palmer, 

1991, Fig. 7). Because short breakthrough times are strongly dependent on high calcite equilibritn`t 

solubility (Dreybrodt, 1990, Fig. 10), low temperature commonly reduces breakthrough time, whereas 

low PCO2 increases it (because the solution nears saturation earlier along the fracture, lengthening the 

time needed for the slower, higher-order, kinetics that act beyond the first-order penetration length). 

These low temperature and low PCO2 conditions, the competition between them, the density inversion 

below 4°C and the temperature inversion of calcite solubility below 0.1% PC02 (Palmer, 1991, Fig. 7) 

have rarely been modelled for either breakthrough or enlargement (Palmer, pers. comm., 2002; 

Dreybrodt, pers. comm., 2002). 

Secondly, the first published graphs of breakthrough times against hydraulic gradient and hydraulic ratio 

were restricted to the rather low hydraulic gradients and rather long fracture lengths that combine 

together to give breakthrough times in excess of 100a. Palmer (1991, Fig. 13) showed that double log 

plots of breakthrough time against hydraulic ratio for various settings of aperture, P 02 and temperature 

are families of straight lines from about 100a to beyond IMa. Below 100 years, the straight line plots 

turn into steep curves (Dreybrodt, 1992, Fig. 5). Dreybrodt (1996) provided formulae to show the "small- 

scale karstification" relationship between aperture width and hydraulic ratio at which breakthrough at 

hydraulic structures occurs within 100 years, using first- and higher-order kinetics. However, these were 

set at 10°C and 5% PCO2 and the `competition' between low PC02 and low temperature was not explored at 

these large hydraulic ratios. 
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The extent to which the above two issues are relevant is discussed in sections 8.5.2-8.5.5 and in the 

analysis of each flow regime in Appendix D4. The study area caves tend to be short, with a mean path 

length of well under 100m, and so may commonly be candidates for rapid breakthrough and subsequent 

rapid phreatic enlargement, despite low Pc02 in glacial and deglacial conditions. 

8.5.2 Enlargement under phreatic conditions 

Palmer (1981; 1984a; 1991: Eq. 6 and Fig. 12a and b; 2000b) derived graphs to show how the calcite 

dissolution rate (illustrated as wall retreat rate) varies with tube radius and length, flow rate, and 

hydraulic ratio, for laminar flow closed conditions with zero initial concentration. The rate always 

reaches a theoretical maximum value that is not directly dependent on the equilibrium saturation 

concentration (perhaps surprisingly) and is also independent of the other physical variables, providing 

that the tube radius, hydraulic ratio and flow rate are sufficiently large, or that the tube length is 

sufficiently short. This value is 31.56k/p cma', where p is the density of limestone (c. 2.7gcm'3 for 

marble) and k is the lowest-order reaction coefficient, which varies with temperature and PCO2. For a 

system at 10°C with PCO2= 1%, k=c. O. O l mg-cmL''s', giving a maximum wall retreat rate of c. l mma' . 

The maximum is reached when the solution remains considerably unsaturated at the exit point 

(commonly below a limiting saturation ratio of 60-70% that is determined by the temperature and Pcoz), 

and occurs if Q/rL or Q/bL exceeds 0.001ems" (where Qcm3s"' is the flow rate along a conduit of length 

L cm, r cm is the radius of a cylindrical tube and b cm is the breadth of a planar fissure with a narrow 

aperture of w cm). Hence, the maximum dissolution rate applies whenever Q>rL/1000 or 

Q>bL/1000cm3s'. For the present study, it is more convenient to estimate the mean velocity through a 

conduit or fissure beneath a submerging lake than the flow rate, for which a knowledge of the applicable 

hydraulic gradient is required. Hence, noting that Q=m-2V for a cylindrical tube and Q= bwV for a planar 

fissure (where V cros is the mean velocity), the maximum rate occurs when 10007rVr>L cm or when 

1000Vw>L cm. If the relationship is not true, slower, higher-order dissolution kinetics apply beyond the 

first-order penetration length until V increases sufficiently at the slowly enlarging exit for 

"breakthrough" (Dreybrodt, 1990) to occur to fast, first-order, kinetics, commonly accompanied by a 

transition to turbulent flow with the same maximum wall retreat rate. The dissolution rate is similarly 

reduced if the recharge contains enough dissolved calcite to cause the saturation ratio limit to be 

exceeded before the exit. 

These conditions apply to many practical situations concerning post-breakthrough conduits, fissures and 

passages in the study area (where the recharge commonly contains little dissolved calcite). Figure 8.8 

illustrates the minimum mean velocity, flow rate and hydraulic ratio required to maintain a maximum 

wall retreat rate for a tube of a specified radius or for a planar fissure of a specified aperture at various 

conduit lengths (calculated in centimetres) at 10°C with PC0Z = 1%, assuming zero initial dissolved load. 

The breadth (b) of a fissure is set to 100w cm, so that dissolution at its ends can be ignored. 
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The velocity and flow rate graphs are plotted as logVmin= log(L/10007r)-logr = c. logL-logr-3.5 and 

logVmin = log(L/ 1000)-logw = logL-logw-3 and as logQmi� = log(L/ 1000)+logr = logL+logr-3 and logQmin 

= log(L/1000)+logb = logL+log(100w)-3 = logL+logw-1. It is deduced from Palmer (1991, Fig. 12a and 
b) that for both tubes and fissures, logHRin= -7-3log(r or w) cm"' = -5-3log(r or w) m''. Hydraulic 

conductivities for laminar flow are K=r2pg/8p cms' for a tube and K=w2pg/12p cros' for a fissure, where 

g=98lcros 2 is the gravitational acceleration and p=0.01307 gm cm "'s"' at 10°C (Ford and Williams, 1989, 

p133) is the dynamic viscosity. 

The graphs show that four extreme tube dimensions of (a) short (1m) and wide (r=1000cm); (b) long 

(1000m) and wide (r=1000cm); (c) short (lm) and narrow (r=O. Olcm) and (d) long (1000m) and narrow 

(r-O. Olcm) require mean flow velocities of 10-4-5,10'15,100.5 and 103-5cros'' to maintain maximum 

dissolution. The corresponding fissure velocities are 10'4,10'1,10' and 104cros''. These velocities also 

apply when breakthrough occurs at tubes or fractures enlarged to the indicated radii or widths, after a 

gestation period during which their exit apertures grew by up to three orders of magnitude (Dreybrodt, 

1996, Fig. 9). Because there are no applicable thresholds in the calcite dissolution of tubes and fractures 

(section 3.1.14), if conduits are short enough, then `breakthrough' from higher- to first-order dissolution 

occurs at very wide apertures, which, in the extreme, can continue to enlarge at maximum rates in almost 

static water (if unsaturated), but this probably does not apply within the study area (Appendix D4.1). 

Faulkner (2004) considered the relationship between scallops and dissolution rate, concluding that any 

observable scallop in the wall of a phreatic passage commonly formed when flow was turbulent, the 

solution remained below the limiting saturation ratio and the limestone in the wall was dissolving at the 

maximum rate possible, as was limestone in many passages without scallops and in many conduits too 

small to be entered or even to be observed. 

8.5.3 Enlargement at very low temperatures and CO2 partial pressures 
The above discussion mainly concerns dissolution which, in the context of the study area, is at high 

values of temperature and PC02. Values of the reaction coefficient, k, for natural limestones provided by 

Palmer (1991, Table 1) only go down to 5°C with PCO2 = 0.3%. These values are plotted as a double log 

chart in Figure 8.9, and extrapolated to explore the k behaviour at 0°C, with P O2 down to 0.003%. This 

extrapolation suggests that at 0°C and at normal atmospheric levels of PCO2 = c. 0.03%, k=0.0035, 

whereas at PcO2 = 0.003%, k=0.0030mg-cmL"'s"'. These values give maximum wall retreat rates of 0.35 

and 0.30mma', respectively, which could therefore be used as a basis for considering the phreatic 

enlargement rates of many passages in glacial waters without carbonic acid. They have not yet been 

verified theoretically or by experiment, although they are reasonable assumptions (Palmer, pers. comm, 

2002). It is also assumed herein that the dimension and velocity relationships at 10°C with Pc02 = 1% 

plotted in Figure 8.8 apply at the glacial values, because the basic shapes of the wall retreat graphs are 

independent of k (Palmer, 1991). 
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Figure 8.9 Variation of reaction coefficient (k) with temperature and Pco: 

The idea that calcite would continue to dissolve in aqueous solutions containing no CO2 at a relatively, 
high rate was proposed by Plummer, Wigley and Parkhurst (1978). Using synthetic calcite, they 

measured this rate as 2x 10-7mmoles CM-2S-1 at 25°C (p 190, Fig. 4; p 196, Fig. 7) and 1x 10"'mmoles cm 2s'' 

at 5°C (p193, Fig. 5 and p 196, Fig. 7). These roughly give wall retreat rates of 2 and I mma'. (These 

relatively high values arise because synthetic calcite dissolves with higher reaction rates than natural 

limestones, which are `poisoned' by foreign ions: section 3.1.15). For high flow rates and low COz 

concentrations, the dissolution rate is only dependent on the term k1 in the PWP equation. This is 

temperature dependent, but from the equation given by Plummer, Wigley and Parkhurst (1978, p199), it 

varies little between 5°C and 0°C, and thus the wall retreat rate for pure calcite in purely aqueous 

solutions with high throughput at 0°C can also be taken to be about I mma 1. 

The maximum rates at which natural limestones dissolve in phreatic, turbulent, flow is difficult to 

determine theoretically, because the conditions vary from experiment to experiment. Sjoberg and Rickard 

(1984, Table 1) obtained dissolution rates for a rotating Carrara marble disc up to 4x IO 7mmoles CM-2 s"I 

at 1 °C, in an alkaline solution. A rotating disk laboratory experiment, requested by this author, showed 

that Jura limestone achieved an equivalent wall retreat rate of 6mm al at 10°C and PCO2 = 0.1%, when the 

saturation was below 20% (Dreybrodt, pers. comm., 2002). However, a laminar boundary layer along the 

surface of the conduit may reduce the dissolution rate by orders of magnitude (e. g. Dreybrodt, 1988, 

p 174). The boundary layer thickness reduces with flow rate, and with projections, which themselves 

increase the local speed of flow. Thus, the less pure marbles of much of the study area should allow 

passage enlargement rates to be higher than for other natural limestones, because flakes of mica schist 

(and other non-carbonate minerals) project into the flow and just float away downstream as the calcite 

dissolves, providing an extra erosional component to the wall retreat rate. Additionally, in very turbulent 

conditions, lumps of calcite are knocked from projections by suspended loads, to which they are 

temporarily added, whilst continuing to dissolve downstream in the unsaturated waters. 
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Another approach to consider is the practical measurement of present dissolution rates in Caledonide 

phreatic passages. Lauritzen (1986c) estimated rates in the partially closed phreatic Glomvatn 

Underground Outlet in northern Norway by three methods: the increase in hardness along the flowpath; 

micro-erosion meter measurements; and weight loss of marble tablets. The mean initial Pc02 was not 

stated, but was probably fairly high, because of local vegetation. The mean annual temperature was 

assumed to be 2°C (Lauritzen et al., 1985). From the hardness increase, the dissolution rate varied from 

10-10-6mmoles cm's-' (equivalent to a wall retreat rate of 0.1-10mma'), as the flow rate varied from 

1-I Om3s', the maximum occurring during a flood in very turbulent conditions. (The flow velocity varied 

from 5-50cros', with an annual mean of 12.5cros': Appendix D4.4). Most measurements were in the 

range 1-7x10"7mmoles cm"2s'. The other two methods indicated rates at the lower end of the total range, 

but were thought to be under-estimates. Thus, a mean annual wall retreat rate of 1 mmä' appears to be a 

reasonable estimate for this passage. 

A final method to estimate maximum wall retreat rates is to consider sump passages within the set of 

mainly vadose caves analysed in this thesis. Because it is argued in section 9.2.4 that these caves 

enlarged wholly within the known timescale of the Holocene, estimates of the diameters of the 

submerged passages in such caves should indicate the rates at which study area caves can enlarge during 

interglacial conditions. This method is used in Appendix D4.13, to show that Holocene sump wall retreat 

rates are commonly in the range 0.05-O. 1 Omma'. Much of this enlargement may be concentrated during 

the roughly one month period of the annual spring melt (when the water temperature is also close to (PC). 

The above estimates of phreatic wall retreat rates from 0.05-1. Omma' are used in Appendix D4 to 

quantify enlargements that are possible during each glacial condition for post-breakthrough conduits. In 

most cases, it is assumed that the enlargement of a conduit does not affect the hydrology of its 

submerging lake. During the whole timescale from 11000-900014Ca BP, each radiocarbon year was equal 

to 1.4 cal. a on average, although the average varied from 0.5-2.0 cal. a over shorter intervals (Stuiver et 

al., 1998, Figs. A7-A9), thereby providing more time for enlargement than is immediately apparent. 

8.5.4 Previous analysis of short breakthrough times 

Breakthrough times (section 3.1.14) can be represented by the product of geometrical, hydraulic and 

chemical (primarily dependence on PCO2) factors (e. g. Dreybrodt, 1990). Figure 8.10 is a double log chart 

that shows the relationship between breakthrough time and hydraulic ratio for closed planar fissures at 

10°C with initial PCO2 = 1% and zero input concentration with initial aperture widths (wo) from 0.001- 

1.0cm. It is based on Palmer (1991, Fig. 13), which did not attempt to represent the parts of the aperture 

graphs that become non-linear below breakthrough times of about 100a. However, it is easy to deduce the 

hydraulic ratio values for each aperture width that give extremely short breakthrough times, because 

these are the same as the minimum HR values that give maximum wall retreat rates (Figure 8.8). It is 

assumed that these minimum breakthrough times approach the minimum HRs asymptotically at 10-3a (c. 
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9 hours) for apertures with widths down to 0.001 cm, as indicated on Figure 8.10 with interpolations 

between these limiting hydraulic ratio values and the linear parts of the graphs. The forms of these curves 

agree with those presented by Dreybrodt (1992, Fig. 5), who considered the risk of new flow routes 

developing around reservoir dams on karst (section 3.1.14). That work illustrated the behaviour of 

individual steep, short, fractures and showed that breakthrough times are reduced to below 100a if 

aperture sizes are increased sufficiently. Very short breakthrough times are hardly influenced by any 

variations in the value of the higher-order kinetic constant (Dreybrodt, 1992, Fig. 7), and short fractures 

that are less than four times the penetration length quickly achieve breakthrough to turbulent flow 

without utilising higher-order kinetics, as do fractures with unsaturated inflows at high hydraulic ratios 

(section 3.1.14). 
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Figure 8.10 Breakthrough time and hydraulic ratio for planar fissures 

Figure 8.10 also shows the reduction and increase in breakthrough time with reduced temperature and 

reduced PCO2 given by Palmer (1991, Fig. 13), with values that partly emulate glacial conditions. The 

breakthrough time is not greatly increased by reduced PC02 because, as noted by Dreybrodt (pers. comm., 

2002), CO2 is rapidly consumed in pre-breakthough conditions, so that dissolution by water not 
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containing CO2 is not very different from dissolution by water initially containing higher levels of C02- 

However, breakthrough times are significantly reduced at lower temperatures because first-order reaction 

rates are reduced and calcite equilibrium solubility is increased, both effects increasing the first-order 

peneatration length along the fracture. This author's extrapolation of breakthrough times at 0°C are 

shown with a dotted line in Figure 8.10. As breakthrough times reduce towards just one year, they appear 

to become much more independent of the calcite equilibrium solubility, although they still depend on 

aperture, hydraulic ratio and the first-order reaction rate (Dreybrodt, 1992, Fig. 5). This implies that at 

very large hydraulic ratios, breakthrough time becomes even more dependent on temperature than on 

Pte, confirming its reduction in glacial conditions. It is thus concluded that breakthrough is always 

faster in glacial environments if other conditions are unchanged, and the use of Figure 8.10 in Appendix 

D4 gives hydraulic ratios that are always higher than actually needed to achieve breakthroughs in the 

times indicated. 

8.5.5 Breakthrough in Caledonide metacarbonates 

It is clear from section 8.5.4 that there is now considerable knowledge about breakthrough times under a 

wide range of karstic situations, including those applicable to potential karst aquifers situated beneath 

dams and reservoirs with significant hydraulic heads. These studies provide analogues for describing 

some of the conditions beneath subglacial lakes, ice-dammed lakes and subglacial reservoirs. Section 

3.1.15 noted that inhibition by aluminosilicates further reduces breakthrough time by introducing 11`n 

order kinetics. This is particularly appropriate in the Caledonides, because of the abundance of mica 

schist both in adjacent country rocks and within the metalimestones. Another consideration is that some 

inception surfaces are along contacts between metalimestone and metadolostones or HMC (Appendix 

A2.7), thereby promoting inception by additional chemical reactions (section 3.1.5). Although mixing 

corrosion is unimportant for `normal' breakthrough in unsaturated waters (section 3.1.14), it could 

possibly occur at the exit from a fracture into an IDL, where nearly-saturated water mixes with fresh 

water in the lake. This would also tend to provide even earlier breakthrough, with the breakthrough point 

being pushed backwards into the fracture, creating an exit cone with similarities to the entrance cone. All 

these factors further reduce breakthrough time in glacial settings (section 8.5.4) for the Caledonide 

marbles. Section 3.1.14 showed that short breakthrough times also cause more complex cave patterns to 

develop and it is therefore possible that the most complex and multi-tiered caves of the study area were 

formed by the synchronous enlargement of parallel passages that had reached breakthrough very quickly 

after suitable hydraulic ratios were achieved (e. g. Etasjegrotta, Z4; Figure B1.8). 

Chapter 6 reviewed the evidence for the creation of tectonic inception fractures within the 

metacarbonates of the study area, primarily from tectonic processes associated with the deglaciation 

phase of each glacial cycle. It is proposed here that, in the general case, some interconnected sets of 

fractures within the marble were formed beneath active ice-dammed lakes (for example), so that large 

aperture sizes in combination with high hydraulic ratios enabled flow through them to be immediately 
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turbulent after melting, or after their seismic creation. Such fractures have HRs to the right of the 

appropriate asymptotic values in Fig. 8.10. Thus, these fracture sets achieved `tectonic breakthrough' 

without the need for first- and / or higher-order dissolution kinetics. Once created, they immediately 

embarked on the phreatic enlargement phase at the maximum dissolution rate and, given time and 

continuing recharge, grew into explorable cave passages. 

At greater depths, and even within the more highly-fractured near-surface body of the metalimestone, 

there were other flooded fracture systems that, in combination with their local hydraulic ratio, were too 

small for immediate turbulent flow. The slow, higher-order, dissolution kinetics regime under laminar 

flow applied to these pre-breakthrough fractures, but some combinations of these fracture widths and 

hydraulic ratios were sufficiently large for breakthrough to occur within the time that they lay beneath an 

active submerging lake, as illustrated in Figure 8.10. Such fractures then started to enlarge at the 

maximum rate during the time that they remained in phreatic conditions. However, there were also other 

combinations of smaller fractures and hydraulic ratios that could never achieve breakthrough in the time 

available in each glacial cycle. These fractures enlarged slightly during each deglaciation and might have 

reached breakthrough after several glacial cycles (and perhaps after enlargement by more tectonic 

activity), or they might instead have been eroded from the landscape without becoming endokarstic. 

The above argument is supported by the many reports of non-carbonate crystalline `hard rocks' that act 

as significant near-surface aquifers at a local scale (section 3.1.18). They commonly achieve this 

capability from the tectonic creation of many interconnected short, planar, fractures. The tectonic 

processes involved are many and varied, both seismic and aseismic, and may include surface-erosion 

strain relief, regional horizontal strain arising from plate tectonic forces, and in high latitudes, isostatic 

uplift after deglaciation. 

Table 8.2 summarises some flow parameters associated with fractured hard rock aquifers from the 

references discussed in section 3.1.18. From this table, the hydraulic conductivities of complete hard rock 

aquifers lie in the range 1-200x10-4cros'. The hard rock flow rates may arise from several fracture zones 

within the same borehole, but large proportions of these flows are probably accounted for by a few large 

exit fractures. The hydraulic conductivities of these individual fractures must be higher than that of the 

rock matrix by several orders of magnitude, giving fracture widths up to the centimetre scale. Because 

the flow rates lie commonly in the range 5x10°-5x103cm3s'', they could represent lengths up to 100m or 

even 1000m that would be beyond the breakthrough point if in limestone (Figure 8.8). Such fracture 

lengths seem feasible, because a discharge rate of 5x103cm3s'' could arise from an annual infiltration of 

1m at a catchment area measuring 400m x 400m, i. e. one with a similar length scale. There are no reports 

suggestive of dissolution in any of the aquifers listed, but as several are developed in silicate rocks, the 

possibility of some dissolution cannot be excluded. However, it is clear that tectonic fractures provide the 

primary flow routes. 
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, r-l. 1 4 'f. Tilnm norimpterc in frirtnraiI rrvat911ina rnrka 

Site Lithology Max. Max. Max. Reference 
(All non- Hydraulic fracture natural 
carbonate) conductivity aperture flow 

cros-' x10-4 * mm Ls' 

Wells and boreholes 
Mirror Lake, NH, Granite 0.7-20 Paillet et al. (1987) 
USA 
Oracle, Arizona Granite Paillet et al. (1987) 

NE Appalachians Metamorphic 16.5 Randall et al. (1988) 

Scandinavian shield Metamorphic I Boulton et al. 1996 

Swedish Baltic coast Metamorphic Open fissures at Caristen and StrAhle 
150m depth (2001) 

Uganda Granite, schist 100 Howard et al. (1992) 

etc. 
S. Norway Granite, gneiss 5.5 Henriksen (1995) 

etc. 
S. Norway Granite, gneiss 0.4 Rohr-Torp (1994) 

etc. (Mean) 

India Granite 500 Mar6chal et al. (2004) 
World wide review Precambrian 0.005- Gustafson and Krasny 

shields 5 at 5m (1994); Krasny (2002) 
Norway and Sweden Metamorphic 10 Banks et al. 1996 

Georgetown Island, Metamorphic 4.6 Mabee (1999) 
Maine 
Mirror Lake, NH Schist 200 Shapiro 2001 

Pinardville, NH 18.9 Drew et al. 2001 
Mine laboratories 
Stripa iron-ore mine, Quartz x 10" at x 10' at Witherspoon et al. (1981); 
Sweden monzonite 340m depth -340m Dverstorp and Andersson 

(1989) 

Fanay-Augeres Granite Long and Billaux (1987); 
uranium mine, France 320m depth Cacas et a!. (1990a, 

1990b) 
Underground Hard Metamorphic 10 Tsang et al. (1996) 
Rock Laboratory, Gustafson and Krasny 
)Ls V6, Sweden 1994 

* From transmissivity of whole'aquiter' or borehole, measured over several metres at least 

Because metalimestones are also capable of brittle fracture, and as they are subjected to the same tectonic 

events as the other crystalline `hard rocks', it follows that they are also likely to carry similar fracture 

systems. Thus, after tectonic activity, marble aquifers should also exhibit similar hydraulic flow rates to 

those in other crystalline rocks, and some of these will be above the threshold needed for breakthrough 

conditions in various conduit geometries, as looks likely in the Texas limestones studied by Marrett et al. 

(1999; section 3.1.17), and as realised for the (sedimentary) epikarst by Klimchouk (2000a; section 

3.1.8). This argument applies to interglacial conditions, when the ranges of hydraulic ratios in 

metacarbonate rocks should approximate to those in other crystalline rocks. Large hydraulic ratios also 

occurred potentially in some conditions during deglacial inundation beneath submerging lakes, so that 

many fractures in metalimestones could then also exhibit tectonic breakthrough and immediately enlarge 

at maximum possible rates. 
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8.6 Analysis of breakthrough and enlargement opportunities 
The hypothesis presented in section 8.5 seems so convincing that to consider further the inception- 

gestation and the enlargement phases for submerged metalimestones, it is probably not necessary to 

understand completely the physics and chemistry of calcite dissolution under deglacial conditions. 

Figures 8.8 and 8.10 are therefore used in Appendix D4 to explore a) the extent that gestation along 

fractures in metalimestones below the various liquid flow regimes could reach the breakthrough point 

during the time available, and b) the enlargement of post-breakthrough fractures into explorable cave 

passages in the same conditions and timescales. Because ice-dammed lakes varied in depth up to c. 

800m, breakthrough and enlargement occurred at fractures and conduits at most possible cave locations. 

8.6.1 Conclusions on breakthrough conditions 
The analysis of breakthrough opportunities in Appendix D4 is summarised in Table 8.3. This shows that 

in the central Scandinavian Caledonides, if breakthrough from laminar to turbulent conditions occurred 

under the effect of fourth-order dissolutional kinetics, the gestation phase could be completed for various 

combinations of initial fracture aperture widths and lengths in many differing deglacial flow regimes. In 

all these regimes, the fractures were submerged beneath ice-dammed lakes, commonly under depths of 

water much greater than the vertical range of the fracture system. Although a fracture system commonly 

experienced a restricted succession of flow regimes from the full set of possibilities as its IDL descended 

to its level (dependent on its glacial situation and cave location), each such regime provided an additive 

contribution to the gestation phase. Breakthrough could also be reached during interglacial conditions, 

not under submerging lakes, for various combinations of aperture widths, lengths and vertical ranges. 

The standard Palmer / Dreybrodt model was used for glacial conditions, on the assumption that the effect 

of very low temperature in reducing breakthrough time dominates (especially at high hydraulic gradients) 

over the effect of very low CO2 concentration, which tends to increase it. Breakthrough times may 

therefore be reduced by up to an order of magnitude from those indicated in Figure 8.10, dependent on 

the accuracy of this assumption. Other possible reductions in breakthrough times caused by uneven 

fractures or by the introduction of more aggressive water along an enlarging fracture from other, smaller, 

fractures (section 3.1.14) were not considered. On the other hand, no allowance was made for delays 

caused by deglacial winter freezing (which would, however, promote fracture widening). 

From Table 8.3, there appears to be a very rough inverse relationship between the duration of a glacial 

flow regime and its flow velocity, providing competition among the hydraulic conditions favourable to 

breakthrough. It appears that, for cave systems of all lengths in central Scandinavia, all those with initial 

fracture aperture widths of 1 cm or more could reach breakthrough to turbulent flow and dissolutional 

enlargement at maximum ambient rates within the duration of most flow regimes. Fractures with initial 

apertures of 0.1cm that are shorter than about 600m had time to reach breakthrough under englacial, low 

pressure SGR, meltwater subglacial waterway and interglacial flow regimes. Those fractures with 

smaller initial apertures were much more restricted in the combinations of aperture widths and lengths 
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(and vertical ranges for interglacial flow) that could reach breakthrough. During interglacial periods, the 

smaller the initial aperture size, then the closer must the fracture system lie to a valley wall (i. e. in cave 

locations S, R, and W) to have a hydraulic gradient sufficiently large for breakthrough to be reached in 

the time available. Because the deglacial and interglacial hydraulic conditions are so different, it is quite 

possible that fractures that achieved breakthrough during either regime could revert to pre-breakthrough 

conditions during the other succeeding regime. 

'rel. lo 2 '2 Cave develonment nhaaea und flow reaimeee 

DUR- FLOW INCEPTION / PHREATIC VADOSE 
ATION VEL- GESTATION TO ENLARGEMENT ENTRENCH- 

OCITY BREAKTHROUGH PHASE: MENT 
FLOW &HEAD for various initial total widening and wall PHASE 

REGIME '4Ca cros', in apertures and lengths retreat rate (mm cal. a') 

Subglacial 10000? 0.03 Not likely Not likely Not applicable 
lake - 
Slope flow 70 surface No fractures No caves No caves 

flow 
Nunatak <200 -5? Not likely <0.2m Not applicable 
now 0.35mmä l 

Reverse 650 20max 0.25cm: <250m 0.6-1.8m. Not applicable 
flow 0.1m 0.1cm: <l00m 0.35-lmma ? 

Jökulhlaup hours < 3x10 Time too short Contributes, by Not applicable 
now mechanical erosion 
Ice contact inter- --20? Insignificant Concurrent with other Not applicable 

spillway mittent 0.1m flow regime 
's Englacial 400 -50-60 0.1cm: <600m 1.1m. Not applicable 

now 5-10m 0.01cm: <17m -1.0mma ? 
0.001cm: <3m 

Lp-SGR <200 ? Special cases Not applicable Not applicable 
flow <200m 
Circulatory <600 «1-10? 3cm: <1000m 0.6m. Not applicable 
now 0.2cm: <100m -0.35mmä'? 
Meltwater <300 100 0.2cm: <I000m 0.8m. Could apply at 
subglacial 10-100m 0.01cm: <100m -1.0mma low stage, but of 
waterway short duration. 
Brackish <300 <100 Less likely than in a 0-0.2m. Not applicable 

subglacial to tidal meltwater subglacial 0-I. 0mmä' 

waterwa waterway Rate varied with salinity 
Marine 0- tidal Unlikely Unlikely (Entrance 
inundation 10000 modification) 
Interglacial 10000 0- 100? 0.1cm: Ikm, VR=Sm Commonly 1-2m 1-5m floor- 

Cave VR 0.01 cm: 200mVR=40m 0.05-0.1mma during lowering. 
0.001cm: 10m, VR=10m spring melt in active 2-12m w'fall 

sumps only recession 
Occupation Perennial N/A Enlargement of Roof and wall collapse, Roof and wall 
by ice / semi- inception fractures and shattering at relict shattering at 

annual entrances entrances 

All inception fractures in the metalimestones were produced by processes that may be loosely considered 

to be tectonic (Chapter 6). Where such interconnected fractures had those combinations of large aperture 

sizes, short path lengths and / or large vertical ranges that immediately supported turbulent flow, the 

laminar, gestation, phase was bypassed: tectonic breakthrough. Hence, the possible conditions that 

facilitated breakthrough to turbulent flow and fast, first-order, kinetics were varied and complex. In order 
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to deduce which set of conditions applied to any one karst system (especially the minimum initial size of 

the inception fractures), it is necessary to consider all the evidence about the development of the system 

(including its internal connections and any intermediate entrances) during the evolution of its local 

landscape, and to consider the various glacial and tectonic processes to which both the landscape and the 

cave system were subjected. It is also normally necessary to work backwards in time. For example, 

although it may be possible for an earlier fracture system of a known mainly vadose cave to have just 

reached breakthrough within a Holocene timeframe, the gestation phase must have been completed 

earlier than this, to allow time for its subsequent enlargement into an explorable cave. 

Despite all the detailed analyses of chemical inception possibilities in narrow fractures in Appendix D4, 

the argument presented in Appendix D4.13 to explain the enlargement of sumps in mainly vadose and 

combination caves strongly suggests that most explorable caves derive from fractures created from 

tectonic inception, because otherwise the time taken to achieve breakthrough by chemical inception 

would commonly prevent enlargement to the extent discussed. It is therefore assumed that early deglacial 

seismicity commonly created fractures with aperture widths a significant fraction of a centimetre, which 

allowed enlargement of long conduits at maximum rates, either immediately in relict and combination 

caves beneath active ice-dammed lakes, or subsequently in mainly vadose caves after the establishment 

of interglacial flow routes. 

8.6.2 Conclusions on enlargement conditions 

Appendix D4 shows that in both glacial and interglacial environments, most phreatic enlargement (also 

summarised in Table 8.3), where and when it occurs, takes place at rates that are maximal for the 

prevailing temperature and PC02 conditions. This is because in all these situations calcite concentrations 

remained well below saturation levels, allowing dissolution at maximum rates, as proposed by Palmer 

(1991). It follows that the diameters of phreatic passages can commonly be used to represent the 

timescales of enlargement. However, these enlargements took place under successive flow regimes, with 

observable scallops probably representing the final high-stage flow velocity. From previous discussion, it 

appears that scallops in relict phreatic passages fall into at least three size groups, with lengths of 20,8 

and 4cm for backward and ice contact spillway, englacial and subglacial waterway flows. This idea has 

not been studied rigorously, and may need to be extended to a fourth grouping to include interglacial 

(e. g. Holocene) sump passages. 

Appendix D4.13 shows that all the active sump passages in the study area could have grown to their 

present sizes during the Weichselian deglaciation (beneath active ice-dammed lakes) and during the 

succeeding Holocene interglacial (under present flow conditions). This includes caves in valley floor 

cave locations (e. g. the caves along the lower Jordbruelv, Z4). It could be surmised that such caves were 

also submerged beneath subglacial lakes, at glacial maxima. However, presently sumped passages in 

valley floor locations are not large enough to have been significantly enlarged under warm-based 
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icesheets. Similarly, from Table 5.27, although relict caves with CL=F do have the largest mean cross- 

section (4.2m2), this is only 30% larger than the overall mean (3.1 m2), hardly larger than that for caves 

with CL=R (4.0m2), and is caused by cave entrances with CL=F being preferentially enlarged by marine 

action (section 8.8). The reason for the unremarkable sizes of valley floor relict cave passages must be 

that either these passages did not exist (even as post-breakthrough conduits) prior to the Weichselian 

deglaciation, or that subglacial dissolution was insignificant, even over timescales of several millennia. 

The study area combination cave with the largest passage size, Gäsvasstindhola (Z4), has a maximum 

radius of c. 5m. For it to have grown to this dimension at the maximum 0.3mma l rate estimated for the 

temperature and PC02 conditions of a LGM subglacial lake (section 8.5.3) would have taken c. l 7ka in an 

unsaturated hydraulic regime, which is extremely unlikely (Appendix D4.1). Furthermore, from its 

altitude of 778m and its CL=R location, it is very unlikely to have been covered by a subglacial lake at 

all. Consequently, the evidence presented here, and argued on hydrochemical and other grounds in 

Appendix D4.1, that the phreatic passages in central Scandinavia did not enlarge beneath subglacial 

lakes, is overwhelming. 

During deglaciation, enlargement beneath nunatak ice-dammed lakes at GS=U did not affect many caves, 

and could not be significant in the time available, because of a maximum wall retreat rate of only 

0.35mma'. However, enlargements beneath both active and drained IDLs, which may have had flow 

velocities from 10-100cros' that were sustained for eight months per year, were extremely significant. 

With the addition of mechanical erosion, some wall retreat rates were probably in the range 0.5-I. Omma 

', despite the continuing low PCO2 levels. Table 8.3 shows the likely maximum duration of each flow 

regime at any one cave, although the timescales and estimated enlargements shown cannot simply be 

summed. However, an absolute maximum passage widening can be estimated from the total time of 

submersion beneath an active IDL until the final draining of the cave, by assuming a wall retreat rate of 

I mma' for the whole period. The caves along the lower Jordbruelv were submerged by an SGR from c. 

10850 until c. 945014Ca BP (Figures D3.1-D3.9), an interval of c. 2200 cal. a (Stuiver et al., 1998, Figs. 

A7-A9). Thus, they could have grown to diameters up to 4.4m during deglaciation. Hence, although this 

submersion interval is fairly exceptional, dissolution beneath lDLs explains the existence of most of the 

relict caves and relict passages in the study area. 

The dimensions of all sumps in mainly vadose caves can be explained by dissolution during the time of 

the spring melt, entirely within the Holocene interglacial. This dissolution occurs at a maximum rate, but 

commonly only for one month per year, reducing wall retreat rates to 0.05-0.15mma' (Appendix D4.13). 

Active sumps in combination caves with very large catchment areas may enlarge at rates <0.25mma'. 

A consequence for most of the active sumps in the area is that they have reached minimum sizes that are 

determined by roughly the same periods of enlargement (>I0000 cal. a during the Holocene for mainly 

vadose caves, plus up to 2200 cal. a beneath active IDLs for combination caves) across a wide range of 
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geographical and altitudinal locations. Because the phreatic passages appear to have developed roughly- 

circular profiles from flow along the widest parts of the inception fractures, there should be very few 

tight sumps! Indeed few are known from the limited amount of diving, and the minimum diameters of 

most sumps appear to be 1m for mainly vadose caves, and 2m for combination caves, except where 

heights are reduced by sediment. However, because the XS/CA ratio of MV caves reduces at higher 

glacial situations (Table 5.28), sumps above the tree line may be somewhat smaller. 

A similar consequence applies to relict (phreatic) passages in relict and combination caves. Most of these 

enlarged before the start of the Holocene, and were therefore submerged beneath IDLs for up to 2200 cal. 

a. From the above inference, the enlargement of sump passages during deglaciation was a minimum of 

I m, and this should also apply to those passages that drained at the start of the Holocene. Thus, there 

should also be very few tight relict phreatic passages! This explains the general ease of exploration of 

the caves in the study area, which contain very few `squeezes' in dry passages, except where there is 

sediment infill. Indeed, the mean cross-section of all the (phreatic) relict caves of 3.1 m2 (giving a mean 

radius of c. 1.0m) is rather consistent across the whole study area. 

The comparative rarity of tight sumps and small relict passages strongly confirms that nearly all cave 

passages enlarged from fractures that achieved (tectonic) breakthrough prior to their submersion below 

deglacial IDLs or at least prior to the start of the Holocene for MV caves. The low proportions of smaller 

sumps or passages are assumed to arise from the small number of fractures that only achieved 

breakthrough within the period of IDL inundation or within the Holocene. These conduits subsequently 

enlarged at the maximum annual rate, but for a shorter time. The cross-sectional areas of most phreatic 

passages should therefore form a statistical distribution that can be represented by a truly numerical 

mean. This distribution is not independent of scale, and hence the diameters and cross-sections of 

phreatic passages are NOT fractal quantities. Attributes based on length may also not be fractal, as mean 

lengths are quite consistent across the zones and various cave classes. This raises the possibility that 

mean explorable length may be related to mean diameter. 

Table 5.28 does not appear to show that mean relict cave cross-sections increase at higher glacial 

situations. This null finding suggests that not many relict caves were in existence when IDLs formed 

during interstadial transitions, or else that such interstadial IDLs did not form or did not last very long. 

The enlargements of phreatic passages with diameters >c. 4m are discussed in section 8.6.3. 

Although mainly vadose caves are well-scattered amongst caves of the other two hydrological classes in 

most zones (section 5.8.9), some valleys and areas seem to have high proportions of mainly vadose caves. 

These include Saeterfjell (Z2, near Bordvik), Reppen (Z2), Stordal (Z2, which has almost no caves), 

Hestfjell (Z2, near Svartvatn), Visten (Z3), Vargskar (Z5, east of Blifjell), Herringbotn (Z6), Fiplingdal 

(Z7), Slekskar (Z7, near Store Majavatn), Bleikvassli (ZA) and Övre Ältsvattnet (KU). These are all in 
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glacial situations above marine limits, except for two in the Western catchment area. The likely 

explanation is that caves in these valleys were submerged beneath IDLs that remained static for much of 

their existence (with few outlet possibilities) and / or their active IDLs were rather short-lived. In both 

cases, the potential to enlarge conduits phreatically was restricted, so that these caves primarily 

developed under vadose conditions in the Holocene. 

8.6.3 Large passages and chambers 

Significantly larger passages occur primarily in combination caves. There are none in mainly vadose 

caves. Section 8.6.2 concluded that relict caves, and relict passages in combination caves, commonly had 

sufficient time to enlarge to present dimensions whilst beneath ice-dammed lakes during the Weichselian 

deglaciation. Appendix D4.13 concludes that probably nearly all presently-active sump passages 

enlarged during deglaciation and the subsequent Holocene interglacial. This section considers the 

enlargement of large passages with diameters that are too great (i. e. more than c. 4m) to have reached this 

size during the passing of a submerging IDL, and yet appear to exist in geomorphological locations that 

preclude them from remaining submerged during the Holocene. 

A study of cave surveys showed that some 15 caves have internal passages or chambers with cross- 

sections in the range 16-50m2 (i. e., with `equivalent-square' widths of 4-7m). Chambers near waterfalls 

and entrance chambers are excluded from this total, because they could be partly enlarged by increased 

dissolution, or by marine or ice-wedging activities. Commonly, passages with cross-sections of 16-20m2 

are presently relict, retain a predominantly phreatic profile, and their floors are not littered with collapsed 

angular blocks of limestone, although they may support various types of stream-borne sediments. Larger 

passages tend to have more rectangular or irregular profiles, and are, almost universally, littered with 

limestone that is presumed to have fallen from roofs and walls during unloading and deglacial 

earthquakes (section 6.3.3). Some of these passages also carry streams that may have weathered the 

collapsed blocks. In the combination caves Ressägagrotta (ZA), Grenndalsgrotta (ZA), Östra 

Jordbäcksgrottan (ZC) and Landbrua (KL), the streams are large or vigorous in summer, and appear to 

be contributing to passage enlargement across the whole width of the passage, in at least one part of the 

cave. In other cases, the streams appear to be sluggish misfits that may have had little influence on 

passage dimensions, as in: Elk Hall, Sirijordgrotta (Z4); Megachamber, Geitklauvgrotta (Z5); and 

Kvannlihola (Z7). The other large passages are presently relict: Square Chamber, Bulandsdalgrotta 

(Z2); Union Passage and Trunk Passage in Toerfjellhola (Z3); Gisvasstindhola (Z4); 

Sarvenvirtoehullet (Z4); Elgfjellhola (Z4); and Kloftholet (ZC). Two relict caves also have fairly large 

cross-sections: Saeterbekkgrotta (Z5) and Fossil Cave (Z7). 

There appear to be three main possibilities to explain the large size of the above caves. Firstly, those 

passages that carry large streams may, indeed, have enlarged under Holocene vadose chemical and 

mechanical erosion. Three of the four places mentioned above have passage heights that only rise to a 
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maximum of 5m. From forthcoming discussion in section 8.7, at least 4m of this could be accounted for 

by Holocene vadose erosion, with the remainder arising from phreatic dissolution beneath an IDL. The 

enlargement of the mainly phreatic Ressägagrotta was probably initiated under an IDL, and continued 

under phreatic and then deep vadose conditions in the Holocene. 

Secondly, the present relict passages, or those with misfit streams, may have remained submerged and 

experienced phreatic dissolution during a significant part of the Holocene. This could occur if an 

allogenic stream input provided sufficient flow via a high-level outlet to retain phreatic conditions, whilst 

a lower-level outlet to the cave remained blocked (perhaps by till), or had not yet grown to a size that 

could drain the cave. A variant of this mechanism is that, as the bed of the lowest-level outlet channel 

would have been 3-4m higher at the start of the Holocene (from the evidence of Lauritzen, 1980, as 

discussed in section 8.7), it could have initially functioned as a small-scale Vauclusian rising, 

maintaining water levels up to 4m higher than at present, until erosion of its floor gradually caused the 

outlet passage to revert to vadose conditions. The present existence of several sumped resurgences 

illustrates this as a continuing mechanism. It may explain the enlargement of Square Chamber in 

Bulandsdalgrotta, which appears to have developed only during and after deglaciation. It also follows 

that the water levels in all sumps then existing were at least 3-4m higher immediately after deglaciation 

than they are now. This is a significant proportion of the mean vertical ranges of both mainly vadose 

caves (3.9m) and combination caves (14.5m) and shows that most caves that are MV at present started 

the Holocene as fractures and conduits in phreatic conditions. 

The third possibility is that part of the enlargement of large passages occurred prior to the Weichselian 

deglaciation, i. e. beneath IDLs that existed during transitions between Weichselian stadials and 

interstadials, during the onset of the Weichselian glaciation, during the Saalian deglaciation and / or 

during long phreatic conditions in the Eemian, or an even earlier interglacial. These mechanisms seem 

much more likely than the possibility that relict phreatic passages in valley floor positions were enlarged 

subglacially (which was comprehensively rejected in section 8.6.2). The fact that some of the large 

passages were already enlarged before they became drained at the start of the Holocene is proved by the 

occurrence of unweathered slabs of limestone on their floors, which fell there when subjected to high- 

energy seismic shocks when the ice margin passed overhead during deglaciation. The presence of clay 

(presumably deposited in subglacial lake conditions) on fallen blocks shows that the containing passage 

existed during post-Saalian seismicity. 

From the above arguments, it seems most likely that the oldest remaining passages in Toerfjellhola, 

Gasvasstindhola, Sarvenvärtoehullet, Elgfjellhola and Geitklauvgrotta enlarged during the Saalian 

deglaciation and the Eemian interstadial, and the oldest remaining passages in Sirijordgrotta, 

Gevirgrotta and Kvannlihola date from at least the Holstein interglacial. 

Trevor Faulkner Page 246 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 8- Hydrogeological Model 

8.7 Vadose entrenchment 
The inception / gestation and phreatic enlargement phases of cave development during interglacials were 

summarised in sections 8.6.1 and 8.6.2. The third phase, vadose entrenchment, could only take place 

during interglacial (and possibly interstadial) flow regimes. During the transition from the final episode 

of deglaciation to the disappearance of the ice, powerful vadose flows could also occur along meltwater 

subglacial waterways, but only for <420 cal. a (Appendix D4.10). However, the erosional effects of this 

regime may be indistinguishable from those of the ensuing interglacial meteoric water flow regime, 

which is also supplemented by powerful flows during spring melt, although parts of Bulandsdalgrotta 

(Z2) appear to have a `double' vadose profile. Hydraulic gradients changed rapidly and dramatically after 

deglaciation, promoting inception / gestation and the growth of mainly vadose passages below the level 

of existing passages. Also, because of the common large extent of glacial valley lowering and widening, 

the hydrogeology at each cave location also changed significantly at each glacial cycle, again promoting 

cave development at new, lower, levels. Spring melts increase hydraulic gradients, so that flow can 

become temporarily phreatic in places, creating anastomoses and floodwater bypasses (section 3.1.16). 

Vadose entrenchment is amenable to practical measurement (Appendix A2.6: Table A2.5). Cave surveys 

were studied by this author to measure the vertical extent of vadose entrenchment below any upper 

phreatic level in the study area caves, as reported below. These measurements were not taken near 

waterfalls or at other chambers along streamways unless stated otherwise, because corrosion by 

waterfalls is much more extensive than along stream passages (section 3.1.16). 

8.7.1 Entrenchment in mainly vadose caves 

Mainly vadose caves have been surveyed less completely than combination caves because of their `more 

trivial' nature, and the difficulties of exploration in the predominantly wet conditions. Hence, few section 

surveys are available. Nevertheless, it is clear that their passage heights are commonly less than 2m, and 

rarely reach 3m (as they do in Col Cave, Z5), despite mainly vadose caves having slightly larger mean 

catchment areas (4.7km) than combination caves (4.6km2). These heights are well within the 3-4m 

expected from the measurements of Lauritzen (1980, above), if erosion at current rates had persisted for 

1 Oka, throughout the Holocene. The probable explanation for their rather limited vertical extent is that 

the first period of enlargement after breakthrough was phreatic, with a wall retreat rate of only c. 0.05- 

O. lOmma' (Appendix D4.13), giving an initial height increase in the smaller range 0.1-0.2mma . The 

deepest waterfall in a mainly vadose cave is probably only 5m deep (Saeterfjellhullet, Z2). 

8.7.2 Entrenchment in combination caves 

The largest known extent of vadose entrenchment in a combination cave occurs in Kloftholet (ZC), 

which has a vadose canyon up to 10m in height. The mean height of the lower streamway in 

Ytterlihullet (ZA) may exceed this, but its survey is not very precise. In Oyfjellgrotta (Z5), both the 

active streamway and the `Upper Galleries' (which are presumed to contain relict vadose entrenchments 

Trevor Faulkner Page 247 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Chapter 8- Hydrogeological Model 

of phreatic passages, from the sketch provided by Lauritzen, 1983, Fig. 2.1) appear to have entrenched to 

total depths below their roofs of 7m. Kvannlihola (Z7) has a maximum entrenchment of 6m. There are 

13 examples of caves where entrenchment reaches 5m. The remainder are less than this. 

The explanation for deeper entrenchment along streamways in combination caves than expected from the 

Lauritzen (1980) measurements is probably that these passages existed in an initially phreatic form 

before the start of the Holocene, having enlarged towards 2m diameter beneath ice-dammed lakes 

(section 8.6.2). After draining and an immediate change to vadose conditions, the melt from remnant 

glaciers, which also sporadically ran through caves under meltwater subglacial waterways, maintained 

higher flow rates for more months per year than observed at present. Thus, the initial entrenchment rate 

was higher than that observed from current measurements. The Kloftholet canyon was observed by the 

author to carry a flow of about 2M3 s-1 during late July, 1997, from a catchment area of c. 10.2 km2. Thus, 

this may be an example of caves that sustain high flow rates for longer periods of time than is normal. 

The 7m total depth of the relict Upper Galleries in oyfjellgrotta is suggestive that the maximum extent 

of vadose entrenchment in the Eemian interglacial could have been comparable to that already achieved 

in the Holocene, and that the present active streamway did not exist before the Weichselian deglaciation 

(or else its height could have reached c. 14m). Direct study and an accurate cave survey section are 

required to confirm these conclusions. In Ytterlihullet, both the abandoned inlet passage of probable 

Eemian age and the (Holocene age) upper stream passage have entrenchments of c. 4m. These two 

passages meet at `The Duck', so that the greater vertical extent of the lower streamway is likely the result 

of vadose flows during both the Eemian and the Holocene, coupled with paragenetic enlargement during 

the Weichselian deglaciation. Relict vadose passages in other caves rarely reach heights of 5m. They are 

commonly early Holocene streamways that were later bypassed by lower-level post-breakthrough 

conduits. An upper-level relict vadose passage in Gronndalsgrotta (ZA; Figure B1.15), 5m in height, 

may represent an Eemian flow route. 

The deepest internal waterfalls are 15m (near the end of Ytterlihullet), l2m (Tumbledown Pot, Z7 and 

Sotsbäcksgrottan, KU), 10m (Üvre Bjurälvsgrottan, KL) and 9m (fyfjellgrotta). Because of the 

greater corrosion at waterfalls (section 3.1.16), all except the first are comparable with the maximum 

entrenchment in vadose passages observed above, and probably formed mostly in the Holocene. The 15m 

waterfall in Ytterlihullet probably started its development in the Eemian, as suggested above. 

8.7.3 Headward erosion of waterfalls 
Another method to confirm that nearly all active stream passages developed primarily during the 

Holocene is to measure the amount of headward erosion at waterfalls. According to White (1990, p 170), 

these move upstream at a maximum rate of c. I. 2mma 1, because the face of the waterfall remains 

covered by a thin film of aggressive water. This condition may apply throughout most of the year in the 
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study area streamways away from entrance areas (which freeze in winter). Hence, waterfalls that were 

active for all 10ka of the Holocene have potentially eroded backwards for distances up to I2m. Such 

headward recession was measured from cave surveys and survey sections where possible, by comparing 

the roof and floor profiles for cases where it is clear that the waterfall erosion is not impeded by an 

insoluble barrier. The results showed that headward erosion in combination caves has commonly 

occurred over distances from 2-10m, with, exceptionally, larger recessions. Thus, part of the lower 

streamway in Sirijordgrotta (Z4) displays headward erosion of 10m, as do streamways in Elgfjellhola 

(Z4) and Sotsbäcksgrottan (KU), and waterfalls in Roaring Cave (Z5) and Storskogbekkhullet (ZA). 

Tourist Cave (Z2) shows II m; Hornet Pot (Z2) and, possibly, steep cascades in Gevirgrotta (Z4) show 

12m; Ytterlihullet (ZA) shows 14m in several places; and Toerfjellhola (Z3) possibly shows 15m of 

headward erosion in one place, with a definite minimum of 5m. It was not possible to estimate headward 

erosion in mainly vadose caves. 

Waterfalls that display significantly <10m recession probably indicate that their passages only achieved 

vadose conditions some time after the start of the Holocene. Those that have receded significantly >1 Om 

may indicate that some of the vadose erosion occurred prior to the Holocene, during an interglacial 

whose imprint was not removed by paragenetic dissolution beneath a subsequent IDL. This provides 

supporting evidence that Ytterlihullet, for example, was active during the Eemian. Green Valley Cave 

(Z4) and Gevirgrotta (Z4) display headward erosions of 8m and 3m at dry waterfalls in relict vadose 

passages. In neither of these cases is it clear whether the waterfalls were active in an earlier interglacial, 

or were abandoned during the Holocene. Caves at high altitudes and near the coast reverted to vadose 

conditions early in the degiaciation sequence. Thus, the periods of both vadose floor-lowering and 

waterfall recession reduced eastwards across the region by as much as 200014Ca. 

8.7.4 Vadose entrenchment during previous interglacials 

The rarities of relict vadose passages and of paragenesis above vadose passage elements are noted in 

Appendices B2.7 and B2.8. These may arise because recharge was less powerful in earlier interglacials. 

The Eemian and Holsteinian were warmer than the Holocene, with no remnant glaciers and higher levels 

of forestation (section 2.3.2 and Figure 2.4). Thus, reduced winter precipitation and increased 

evapotranspiration commonly reduced summer flow rates and durations. Additionally, the stable 

conditions and relatively high temperatures appear to have lasted for less time during the three previous 

interglacials. Prior to the Mid Brunhes Event at 430ka, Antarctic interglacials were cooler than during the 

Holocene (section 2.3.2). If this also applied to the northern hemisphere, periods of summer fluvial 

activity would be reduced, also reducing vadose development. Thus, the Holocene could represent the 

optimum conditions for interglacial vadose development during all the I00ka glacial cycles since the Mid 

Pleistocene Revolution. These factors, coupled with the production of lower fracture densities at the ends 

of each earlier glacial (section 7.3), mean that the development of vadose passages probably becomes 

less and less important backwards in time throughout the history of the caves in the study area. 
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8.8 Formation and modification of caves under marine influence 

The deglaciation and other marine limits were discussed in sections 8.1.2 and 8.1.3. This section 

considers the relationship between the sea and the formation and modification of caves in both carbonate 

and non-carbonate rocks. The order in which some relevant karst caves in glacial situations GS=C, D, E, 

G or H were submerged by the sea during the Weichselian deglaciation is presented in Table 8.4, 

together with estimates of emergence timescales from the sea level curves in Figure 8.1b. 

8.8.1 Formation of sea caves and littoral caves in limestone 

A few karst caves lie along the coastal strandflat, commonly at altitudes below c. 25m. These are 

identified as `coastal caves' in the North Central Norway Cave Database (with CL=C and GS=C). Many 

of these short caves show little karstic dissolution, but appear to be littoral caves formed by previous 

wave action with no continuing passage. They include three of the four relict Bronnoysund Football 

Pitch Caves (ZI), Vistnesoddgrotta (Z2) and possibly Tarmaunbotngrottene (Z2). Their low 

elevations mean that they were under >100m of sea water at the start of the Holocene; hence, they were 

not much affected by wedging by YD sea ice. Instead, they were exposed near sea level for >1000a 

during a late phase of the Holocene isostatic rebound. The above-mentioned caves face NE or NW, 

suggesting that their formation was facilitated by the presence of late Holocene winter sea ice. At least 

two caves at CL=C appear to be karst caves modified by marine action: Bronnoysund Football Pitch 

Cave B (CT=Hybrid) shows clear signs of the surface erosion of a phreatic tubular passage and 

Langfjordgrotta (Z2) is a resurgence cave partly explored by diving that has a relatively large entrance. 

(Cave types are only classified as Hybrid if an enlarged entrance is a significant feature of the whole 

cave). These caves were presumably already enlarged phreatically as part of subglacial waterways during 

the Weichselian deglaciation (e. g. Appendix D4.10). The probable lack of limestone dissolution by sea 

water is discussed in Appendix D4.12. 

The previous presence of the sea at both coastal and marine-influenced karst caves is sporadically 
demonstrated by the occurrence of holes bored by marine molluscs in the walls and ceilings of entrance 

areas (Photo D4.2), although this phenomenon has not been checked exhaustively at relevant caves. More 

rarely, marine deposits are also found inside caves (Appendix D5.3). 

8.8.2 Enlargement of cave entrances that are below the deglaciation marine limit 

Caves in the North Central Norway Cave Database with GS=D and E lie below the deglaciation marine 

limit and above the strandflat. They were inundated by the sea at the end of the Younger Dryas, before 

being raised to their present altitudes of 30-167m by isostatic uplift. Many exhibit wide, relatively low, 

sub-horizontal, tapering, rocky entrances that seem disproportionately large when compared with the 

dimensions of internal passages (Table 8.4). This group of caves includes: Hubruhola, Green Gorge 

Cave and Marble Arch (both at Klausmark), Klausmarkgrotta, Klausmark Resurgence Cave, 

Aunholet, Skknvikgrotta, Tourist Cave, Svartdalgrotta (lower entrance), Evening Cave (H5) and 

Hate Cave (H8) (both at Hestfjell), Laveste Langskjellighattengrotta, Jenshola, Molnvatngrotta 
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(Forest Entrance), several caves at the Arch Cave complex, Aunhattenhule 1-3, Nedre Landegrotta 

and Kalkdalgrotta (all in Z2); Risehula 1 and 2 (Z3); Mollebekkgrotta 1 and 2 (Z5); 

Girdsfjellgrotta (Z6); plus Remnant Cave and, possibly, Fjellbrygga (ZA). Beyond the entrance areas, 

most of these caves contain obviously dissolutional karstic passages. Many function, or have functioned, 

as resurgences. The near-equivalence of the altitude of the phreatically-formed stream passage in 

Svartdalgrotta (Z2) with the deglaciation marine limit is probably coincidental. 

Only relict and combination caves appear to have entrances enlarged by marine action, although some 

similar caves that are below the deglaciation marine limit do not have significantly enlarged entrances, 

including Neptune's Cave, Barnacle Cave and Draugenshullet (Z2). The reason may be that the 

entrances are shafts or they were in protected locations or they did not form until after elevation above 

the sea. Attached barnacles in these three caves (section 9.6.4) prove that at least their internal passages 

existed prior to emergence. The direct evidence of entrance enlargement from individual caves agrees 

with the greater mean cross-sections of caves with relict phreatic passages if they lie below the 

deglaciation marine limit (section 5.5.6) and shows that such caves were already in existence before 

marine inundation at the start of the Holocene, as do non-laminated deposits of coarse dry sand reported 

only below the deglacial marine limit in Z2, in the relict phreatic passages of Aunhattenhullet 2 (GS=D) 

and of Sevikgrotta, Nordlysgrotta, Marimyntgrotta and Neptune's Cave (GS=E), suggesting marine 

ingress into cave entrances that mainly face east, when they coincided with beach levels. 

Marine cave entrances at altitudes above 80m experienced a very rapid elevation through sea level in the 

preboreal, so that they typically rose I Om in only c. I00a (Figure 8.1 b). Lower entrances rose above sea 

level later, and rose more slowly during emergence. In contrast to the lower littoral caves discussed in 

section 8.8.1, the only definite littoral cave recorded in limestone above the strandflat is the single 

chamber Bordvikgrotta (Z2), at an altitude of 40m. Several features at the Arch Cave complex (Z2), at 

the relatively low altitude of 60m, may also be littoral caves. It thus appears that, at altitudes higher than 

40-60m, the uplift was so fast that there was insufficient time for the sea and ice to form new, presently 

inland, littoral caves in limestone before they were elevated above wave height. 

The extent of the enlargement of pre-existing entrances has a weak relationship with altitude and the 

duration of submersion. Thus, five entrances to relict and combination caves not obviously enlarged were 

submerged for a maximum of c. 150 years (although others are exceptions) and enlarged entrances were 

commonly submerged for many hundreds or thousands of years. Thus, it seems that pre-existing cave 

entrances were more likely to be enlarged by wave action supplemented by wedging by winter sea ice if 

they passed slowly through the tidal range after long submersion, probably contemporaneously with the 

production of elevated marine terraces (e. g. Andersen et al., 1982, p44). Large sea caves also formed in 

non-carbonate rocks above the strandflat (e. g. Sjöberg, 1988). Marmorholet (Z9), in predominantly non- 

carbonate rocks (despite its internal calcite deposits), is probably a short sea cave created during 

deglaciation. 
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Table 8.4 Marine inundation of metacarbonate caves during the Weichselian deglaciation 
Time 

of 
inun. 
"Ca 
BP 

Z, GS Local 
YD 
iso- 
base 

m 

Cave(s) Alt. 

m 

Time of 
final 

eurer- 
gence 

14Ca BP 

Appr. 
time 
sub- 

merged 
"Ca 

Ent. 
faces 

Notes 1. MV: mainly vadose cave, 
2. Enlarged entrances (RE if not 

stated) are suggestive of wave, action 
3. Sea / littoral caves are 

commonly non-dissolutional 

12000 Z9 E 90 Marmorholet 113 11500 500 N Sea cave, formed in non-carbonate 
10700 Z2 E 100 Sevikgrotta 64 9000 1700 SW Slightly enlarged relict entrance. Sand. 

10700 Zl C 110 Football pitch caves 25 4800 5900 NE I of 4 is a dissolutional hybrid 
10700 Z2 C 110 Vistnesoddgrotta 10 2000 8700 NE Short littoral cave 
10700 , Z2 H/E 130 Klausmark caves 120-160 10000 0-700 S, E, E, S 4 enlarged entrances, one at 160tH 
10300 Z2 E 120 Hubruhola 119 10000 300 N Enlarged entrance 
10300 Z2 E 120 Langkilagrotta 40 6800 3500 
10300 Z2 D 135 Aunholet 60 8300 2000 N Enlarged entrance 
10300 Z2 E 140 Holfisen caves HO1-5 110-135 10000 300 (shafts) Not enlarged: all MV 
10300 Z2 E 140 Bordvikgrotta 40 6500 3800 NW Single chamber littoral cave 
10300 Z2 E 140 Nordlysgrotta 155 10200 100 NE Sand banks below entrance pitch 
10300 Z2 E 140 Marimyntgrotta 155 10200 100 SW Relict entrance. Sand 
10300 Z2 E 140 Sk9nvikgrotta 77 9000 1300 S Enlarged entrance 
10210 Z2 E 145 Tourist Cave 150 10010 200 N Enlarged sink entrance 
10210 Z2 H/E 145 Svartdalgrotta 180-127 9700 510 NE Enlarged lower entrance only 
10210 Z2 E 145 Neptune's Cave 126 9260 950 E+shafts Not enlarged. Barnacles. Sand 
10210 Z2 E 145 Barnacle Cave 142, 9900 310 N Not enlarged. Barnacles 

10210 Z2 E 145 Draugenshullet 137 9600 610 N Not enlarged. Barnacles 
10210 Z2 E 145 Hestfjell H 1-4, H6 90-115 9500 710 NW Not enlarged: all MV 
10210 Z2 E 145 Hestfjell caves H5, H8 10,135 110,135- 9700 510 NW Enlarged sink entrances. 
10100 Z2 C 155 Tarmaunbotngr. 1-3 5-20 1000 9100 NW Tectonic and littoral caves 
10100 Z2 D 1551 L. Langskjellighattengr. 167, 10000 100 W Entrances possibly enlarged 
10100 Z2 C 155 Langfjordgrotta 10 1500 8600 NW Coastal karst sumped resurgence cave 
10100 Z2 D 160 Jenshola 145 9800 300 NW Entrance possibly enlarged. Not MV? 
10050 Z3 C 140 Trond'ordhula 5 1000 9050 S Coastal resurgence cave. MV 

10050 Z3 D 140 Risehula I and 2 50,53 7800 2250 S Enlarged relict entrances. 
10050 Z2 E 155 Arch Caves R6-R16 60-70 7500 2550 vary Enlarged ents., except 3 MV caves 
10050 Z2 E 155 Melnvatngrotta 140 9800 250 SW Enlarged relict Forest Entrance 
10050 Z2 C/E 155 5 caves at Saus 21-63 4000 6050 3 are MV. Not enlarged 
10050 Z2 D 160 Aunhattenhule 1-4 105-135 9500, 550 NW Enlarged relict ents. to AI-A3. Sand 

9900 Z6 E 140 Sildgarngrotta 120 9800 100 
9900 Z6 E 140 SplintAgrotta 135 9900 0 E Not enlarged resurgence entrance 
9900 Z6 D 140 Kumragrotta 62 8500 1400 Truncation of entrances 
9900 Z2 E 170 Svartdalsholet 160, 9850 50 NW+SE Sea just reached this cave. Not enlarged? 
9900 Z2 E 1701 0. & N. Landegrotta 80,95 8600, 1300 S Enlarged entrance to lower cave 
9800 Z5 H 140 Bollhauggrotta 150 10100 -300 W Enlarged sink entrance, but GS=H 
9800 Z6 D 140 Hestdalgrotta 100 9500 300 
9800 Z6 D 140 Through Cave 100 9500 300 
9800 Z2 D 170 Kalkdalgrotta 50 7000 2800 NE Slightly enlarged relict entrance 
9600 Z6 D 140 Gjeitvikgrotta 70 8900 700 W Not enlarged 
9600 Z6 E 140 Bemtvikgrotta 40 7200 2400 
9550 Z6 E 140 Hegligrotta 100 9400 150 S Not enlarged 
9500 Z6 E 150 GArdsfjellgrotta 56 7800 1700 E Enlarged relict entrance 
9300 Z4 H 150 0yaskjeleren et a!. 100 9500 -200 NW Enlarged main relict entrance (GS=H) 
9300 Z5 H 150 Oyfjellgrotta 180-140 9900 . 600 SE Enlarged lower relict ent. (GS=H). Send 
9300 Z5 E 1701 N. Laksfors Rising 55 7200 2100 E Not enlarged sump entrance (=MV) 
9300 Z5 E 170 Mellebekkgrotta 1-3 90-79 8600 700 NW, W Enlarged entrances at MI and M2 
9300 Z5 H 170 Geitklauvgrotta 148 9800 -500 S Unroofed cave outside, but GS=H 
9300 Z5 H 170 Lilleelvgrotta 150, 9800 -500 N Enlarged entrance, but GS=H 
9300 ZA E 170 Remnant Cave 93 9000 300 E Cave wall removed 
9300 ZA D 170 Fjellbrygga 110 9300 0 NW Sea just reached huge 20m long arch 
9300 Z6 E 180 Farewell Cave 130 9300 0 Sea just reached cave 
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The orientations of the enlarged entrances are widely distributed, but the higher percentage (48%) facing 

NW, N or NE (and hence experiencing more sea ice) compared to 28% facing SW, S or SE may be 

significant. Some occur in narrow tributary valleys, where ice wedging was especially effective. The 

majority of these enlarged entrances face the open sea to the west, and the percentage on western slopes 

(GS=D rather than E) is 33%, which is much greater than the 20% of all relict and combination caves 

that have GS=D rather than E. Overall, the preferred orientation for the deglacial marine enlargement of 

pre-existing cave entrances is northwest. 

No cave that is clearly mainly vadose appears to have an enlarged entrance (Table 1: the status of 

Jenshola, Z2, is uncertain on both counts). Thus, it is likely that MV caves that lie below the 

deglaciation marine limit with GS=D and E (and, by extension, those above it) did not exist in their 

present form at the time of their elevation above sea level (see also sections 9.2.4 and 9.6.5). This 

observation is partly supported by the absence of reports of sand deposits in such caves. It is concluded 

that the `mainly vadose' caves primarily developed within the Holocene. 

8.8.3. Enlargement of cave entrances that are above the deglaciation marine limit 

Table 8.4 lists five caves that are anomalous in a deglaciation context. From their locations, YD isobases 

and the time of passing of the ice margin, it appears that the entrances to Bolihauggrotta (Z5), 

OyAskjeleren (Z4; Photo 8.2), oyfjellgrotta (plus Side Chamber and Torrgrotta, ), Lilleelvgrotta and 

Geitklauvgrotta (Z5) were already too high to be reached by the sea when they were deglaciated. The 

first four caves have entrances that appear enlarged by marine action, to the same criteria. The entrance 

to Geitklauvgrotta (which is upstream to Lilleelvgrotta) is not at all enlarged internally, being a 

phreatic passage some Im high by 2m wide. However, there appears to be an unroofed section of cave 

between this entrance and the end of the upstream ovre Geitklauvgrotta (Photo 7.4). The thin roof may 

have been removed by glacial movement or by the action of the sea and sea ice, or by a combination. If 

marine action has modified these caves, and it is difficult to envisage any other agency to account for the 

enlarged entrances to Oyiskjeleren and Oyfjellgrotta, then it seems very likely that this occurred when 

the marine limit was higher than the last deglaciation marine limit. This leads to the possibility that these 

cave entrances were enlarged during the onset of one or more glaciation phases or during a Mid 

Weichselian interstadial, and were well-enough protected during subsequent glaciation for the enlarged 

parts of the entrances to have survived. The five cave entrance floors are at altitudes from 100-150m at 

YD isobases from 140-170m and are well below a possible maximum Weichselian marine limit 

discussed in section 8.1.3. In contrast to the enlarged entrances below the deglaciation marine limit, all 

five above the limit are in the eastern glacial situation (GS=H) rather than in the western (GS=G), 

although the Bollhauggrotta and ßyaskjeleren entrances face west. This may not be significant with a 

small sample, because 74% of the applicable relict and combination caves are at GS=H rather than G. 
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There are no other apparently marine-enlarged cave entrance floors above 167m altitude, so that this 

absence of similarly-styled entrances above the maximum Weichselian marine limit provides supporting 

evidence for entrance enlargement of phreatic passages below marine limits by sea ice and wave action, 

although section 8.9.4 discusses entrances that were slightly enlarged by the presence of ice-dammed 

lakes. Because there is no reported evidence of the etching of entrance walls by condensation corrosion, as 

discussed in section 3.1.9, and that slow process could only have been active during interglacials, it is 

concluded that that mechanism could not play a significant role in passage enlargement. 

Cave entrances modified during the onset of glaciation were enlarged at a time of rising sea level, in 

contrast to those enlarged during the falling sea level of a deglaciation phase. When a sea level that is 

falling encounters a cave entrance, that part of the entrance that remains submerged is protected. Hence, 

the vertical scale of enlargement is related to the tidal range and wave height: --5-10m (Figure 8.1 la). In 

fact, the entrances enlarged during deglaciation listed in Table 8.4 are rarely >5m high (although they may 

extend to a width of 10-20m). However, when a rising sea level encounters a cave entrance, a vulnerable 

roof may remain under attack from the time that the wave height reaches it, until the time when the sea 

either freezes at its maximum level, or starts to fall relative to the land at a glaciation marine limit (Figure 

8.11b). Although the roof collapse rate may be overtaken by the rising sea level and the local isostatic 

depression rate (possibly 0.5mä' at the onset of glaciation at the coast, section 8.1.1: Figure 8.1b), there is 

clearly potential for cave entrances to be enlarged vertically by marine action much more during a 

glaciation phase than during a deglaciation phase. Caves at GS=H are commonly longer, deeper, and 

more voluminous than other caves (section 5.5.6: Table 5.28). One reason may be that their inception 

fractures were enlarged by winter freezing as the rising sea level passed through their elevation at the end 

of the Eemian and during Weichselian interstadials. 

The only karst cave in the whole study area that has an entrance taller than that of the exceptionally tall 

inland Gronndalsgrotta (ZA, 16m) is Oyfjellgrotta, whose lower (main) entrance is up to 30m high and 

c. 15m wide (Figure B 1.10). This evidence supports the upward stoping of cave entrances by marine and 

winter ice activity as a mechanism for entrance enlargement during a glaciation phase. The marine 

invasion of oyfjellgrotta is also supported by a statement by Smart (1984b, p173): "exotic boulders of 
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(up to 6m) size have been carried in and effectively blocked the system", and by his mention of sand- 

sized sediments. Sand deposits in Sirijordgrotta (Z4; Valen et al., 1997; entrances not enlarged and not 

listed in Table 1) and oyfjellgrotta, both at GS=H (eastern slopes below the glaciation marine limit), 

may have been brought in by the sea at the onset of glaciation, although fluvial or glacio-fluvial 

deposition remain as possibilities. Above the marine limits, only Cliff Cave / Invasjonsgrotta (Z4; 

laminated deposits of fine sand: Appendix D5.5), Sotsblicksgrottan (KU) and Korallgrottan (KL), all 

at GS=L (eastern slopes) appear to have large sand deposits, which were presumably deposited beneath 

active IDLs. These findings provide further confirmation that all these caves existed prior to the 

Holocene. 
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The deglaciation marine limit at Oyfjellgrotta was c. 125m, reached at its 150m YD isobase soon after 

the sea encroached south of Mosjeen at 9300 14Ca BP (Appendix D2.7). This is some 45m below the 

170m level of its main entrance roof, confirming that the enlargement above its floor at 140m must have 

occurred prior to the final deglaciation. This extra minimum 45m of maximum marine limit is well within 

the extra 120m discussed earlier so that it seems likely that the interstadial or Early Weichselian sea rise 

overtook the upward stoping of the ßyfellgrotta entrance, so that the whole cave became submerged. 
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The upward stoping mechanism also explains the existence of the very large sea caves in non-carbonate 

rocks along the Nordland coast that are positioned above local deglaciation marine limits (Sjöberg, 1988, 

Table 2). For example, Torghatt-hullet and Monshola (Z1, at YD isobases of 115m and 120m) are 

shown as having entrance floors at 138m and 147m, and roof altitudes as high as 160m. At c. 11500 and 

1070014Ca BP, when the YD ice margin passed them, the sea level was at an elevation of c. 135m for 

each of these caves (Figure 8.1 b). Because this level is below the entrance level of each cave, and 25m 

below roof levels, it seems unlikely that wave action could have formed them during the final 

Weichselian deglaciation. On the other hand, if they formed or enlarged during the onset of the 

Weichselian glaciation, or during the various interstadials, their maximum roof heights of 160m could 

define the minimum glaciation or interstadial marine limit applicable to their isobase. Subsequently, such 

sea caves above the deglaciation marine limit may have changed little in size, being protected by their 

west-facing aspect beneath a west-moving icesheet. Torghatt-hullet could also have been partly 

enlarged by deglacial meltwater flows at the end of the Weichselian, because it is a through-cave. 

By comparing the height of the local deglaciation marine limit with the cave roof altitudes given by 

Sjöberg (1988, Table 2), his list of 33 caves can be divided into three classes: those formed only during 

deglaciation, those formed during glaciation and / or during interstadials, and those similarly formed but 

subsequently enlarged during deglaciation. For the second two classes, the difference between the roof 

height and the deglaciation marine limit ranges up to 70m, suggesting that an earlier marine limit could 

have been some 70m higher than the deglaciation marine limit for these coastal caves, which is within the 

extra 120m discussed in section 8.1.3. It seems likely that this explanation for the formation of sea caves 

in the study area also applies to the sea caves in northern Norway (e. g. Moller, 1985) and in southern 

Norway (Appendix A5.1). 

Section 8.1.3 suggested that the relative elevations of both marine limits probably fell slightly with 

successive glaciations. Thus, could there be other karst caves above the maximum Weichselian marine 

limit whose entrances were modified by the sea during pre-Weichselian glaciations? This seems possible, 

although such entrance areas would be the first parts of a cave to be removed by subsequent glacial 

erosion: even if most of a cave survives, its modified entrance may not. Further, the rarity of entrances at 

altitudes above deglaciation marine limits that were clearly modified by the sea prior to the Weichselian 

deglaciation suggests that such modified entrance areas cannot survive long periods of glacial erosion, or 

that such modification becomes indistinguishable from the effects of other processes, or that the caves 

without enlarged entrances did not exist in their present form at that time. Additionally, the elevation of 

marine limits backwards in time probably only amounted to 5-10m per glaciation. This would make the 

marine limits of successive glacials indistinguishable. (See also sections 9.2.3,9.2.4,9.6.1 and 9.8). 

The main conclusions from this section 8.8 are that at relatively low attitudes below the deglacial marine 

limit, when there was late and slow emergence above a falling sea level during deglaciation: `new' 

littoral caves could form in limestone (and probably in other rocks), giving a late Holocene genesis; 
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existing karst phreatic entrances could enlarge, with heights <5m, suggesting origins prior to the 

Holocene; and the absence of enlarged entrances to `mainly vadose' caves suggests that few existed prior 

to the Holocene. At higher altitudes between the deglacial and glacial marine limit, when there was late 

and slow submergence below a rising sea level during glaciation: very large sea caves could form in non- 

carbonate rocks (and probably in limestone, but none are known); and existing karst phreatic entrances 

could enlarge greatly, with heights <30m, suggesting origins prior to the end of the Eemian interglacial. 

This study has used published data about marine limits and YD isobases to review influences on 

speleogenesis and entrance modification. It may also be possible to invert this process and estimate 

maximum and deglaciation marine limits and relevant isobases more accurately, by a more complete 

study of both sea cave entrance environments and modified karst cave entrances. 

8.9 The effects of ice 

Previous sections analysed the effects that meltwater, meteoric water and sea water have on fractures, 

conduits and passages. However, many caves remain under the influence of frozen water for most of a 

glacial cycle. This section discusses the various endokarstic effects of ice at each stage of glaciation. 

8.9.1 Perennial occupation by ice. 

As discussed in sections 8.4.1 and 8.4.2, it is likely that air was driven out of many subglacial cave 

passages for most of a period of glaciation, especially those below the glacial marine limit and those in 

valley floor locations. If the icesheet experienced a warm base followed by cold-based permafrost, then 

these caves became fully occupied by ice. Thus, the three conditions of occupation by frozen sea water, 

occupation by frozen fresh water and partial occupation by ice and air variously applied to the caves, for 

periods of time perhaps measured in millennia. Flooded inception fractures were subjected to an 

expansionary force whenever the contained water froze, causing a widening and lengthening of each 

fracture, thereby promoting later tectonic and dissolutional breakthroughs. Any weaknesses in the 

surfaces of all passages in any existing submerged caves were exploited by the freezing mechanism, 

potentially leading to roof falls and the spalling of cave walls when the water subsequently melted, or 

when the cave was drained. Any caves that were never flooded, only becoming partially occupied by the 

extrusion of glacial ice into entrance areas, were probably little affected, as it is assumed that the bedrock 

stresses induced by temperature cycling were of smaller magnitude than occurs annually during 

interglacials. The perennial occupation of caves by ice does not occur during interglacials, and 

consequently has no effect on the vadose entrenchment phase. 

8.9.2 Semi-annual occupation by ice. 

Ice-dammed lakes descended from the heads of valleys during each deglaciation (Appendices D2 and 
D3). Any ice in fractures and conduit systems melted when the IDL bases reached their levels and this 

water potentially froze again each winter. It is not known to what depth IDLs froze, and therefore 
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whether all the water froze in any one cave at any one time (section 8.9.4), although IDLs at higher 

altitudes might freeze to greater depths because of lower air temperature at higher altitudes and because 

of their earlier formation whilst more land remained covered by ice. At the very least, every cave, conduit 

and fracture system experienced an annual pulse of freezing that started when the water level above the 

cave reduced to a particular height, and continued until the cave slowly emerged above the level of the 

IDL. A similar scenario can be envisaged for the internal freezing of sea water, for those caves below the 

deglaciation marine limit, as isostatic uplift slowly brought them above sea level during interglacials. The 

effects of the annual freezing of submerging water were similar to those described in section 8.9.1 for the 

freezing of the sea and subglacial lakes, but greatly magnified because of the much higher frequency. The 

freezing of IDLs also affected all caves or fracture systems because, as section 8.4 showed, all karat 

caves or their inception fractures were submerged beneath ice-dammed lakes during deglaciation. 

After the caves were drained during interglacials, the complete occupation of most caves by winter ice 

was not possible, but surficial inception fractures must be subjected to annual expansion. Observations 

show that streamways now freeze annually from their entrances inwards, including sumps. Thus, the 

upstream and downstream ends of sump passages that are near the surface experience the same effects 

from semi-annual ice occupation as did caves near the surface of ice-dammed lakes. Otherwise, the air- 

filled entrance areas of caves, including those undergoing vadose entrenchment, are subjected to frost 

shattering when the air temperature cycles through 0°C. The winter build-up of ice at resurgence 

entrances can also create aggressive phreatic conditions during the following spring melt, perhaps 

exemplified by anastomoses on the roof of the entrance to Anastomosegrotta (Z4; Faulkner and 

Newton, 1990: photo, p109). Internally, draughts can also cause caves to fill with ice, creating 

spectacular icicles (Photo: endpiece). However, this internal formation of ice probably has a limited 

effect on passage morphologies. 

8.9.3 Glacial movement and caves 

The impact of glacial movement on existing caves has rarely been studied. The movement of solid ice 

into cave entrances as part of external glacial flow has, so far, only been directly observed at Castleguard 

Cave in Canada (Ford and Williams, 1989, p354). Such ice may bring in injecta of glacial debris, 

including clastic materials, as seen at the IOm-long, surfcial, Injection Cave (4B5, Z4; Photo D1.19). If 

a cave is close to the surface, the ice movement may also cause the geometry of the cave to change. Thus, 

walls and roofs may move relative to the floor, as seen in the same cave. However, without considerable 

study, this movement may be indistinguishable from that caused by tectonics associated with later uplift. 

A cave may also have its roof or a wall removed, as illustrated in Photos 7.4-7.8. Pre-existing speleothem 

deposits may also be detached, to be removed completely by subsequent deglacial flows. 
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8.9.4 The enlargement of cave entrances by IDLs 

Sections 8.8.2 and 8.8.3 discussed the enlargement of cave entrances as they rose or fell through the local 

contemporary sea level. It seems likely, therefore, that pre-existing entrances could also be enlarged as 

the levels of ice-dammed lakes lowered past them during deglaciation, or rose past them at the onset of 

glaciation. Although IDLs did not generate the power associated with marine waves and tidal movement, 

they experienced more melting / freezing cycles each year that could cause considerable frost damage, 

particularly when the surface of the IDL was coincident with a cave opening. Such entrance enlargements 

may be distinguishable from those caused by the sea, for affected caves at altitudes higher than the 

deglacial marine limit of c. 125-150m and the glacial marine limit assumed to be at c. 245-270m. 

The cave surveys and cave survey sections show that the following caves have sub-horizontal entrances 

larger than internal passages: Valleyside Cave, Two Bridges Cave, Bear Cave, Overflow Cave and 

Reppelvgrotta (Z2); Lijroe Sink Doline, Läjroegrotta, Cold Wind Cave and Diºaranjueniehola (Z3); 

Green Valley Cave, Gevirgrotta, Buktgrotta, Warm Cave, Ovre Sarvejaellagrotta, Etasjegrotta, 

Road Cave and Bjorkäsgrotta (Z4); Brubakkgrotta (Helveteshullet) and Bätskargrotta (Z7); 

Grenndalsgrotta (ZA); Baaagrotta (ZC); Stor Grubblandsgrotta, Hjortetakgrotta, Martinusgrotta 

and several caves at Övre Ältsvattnet (KU). These caves lie at altitudes from 240-900m. Entrances at 

shafts and collapse dolines were not reviewed. Roughly half the cave entrances are relict in late summer. 

All have been widened somewhat compared to continuing passages. Some have also been enlarged 

vertically, whereas others have not. A reduced vertical enlargement compared to those entrances enlarged 

by marine action is to be expected, because there is no tidal range in an IDL. All these entrances have 

collapse material on their floors, but the tapering inwards observed in marine-enlarged entrances (section 

8.8.2) is commonly absent: the walls, and the roofs and floors, tend to remain parallel to each other. Only 

in The Big Sink (Z6) and Baaagrotta (ZC), two active sink caves well above the marine limits that also 

have enlarged entrances, do the walls tend to taper inwards. The collapse material may have arisen after 

enlargement, from a combination of enhanced frost shattering and seismic shocks. 

As with the marine-enlarged entrances, none of these caves is in the mainly vadose hydrological class. 

This supports the idea that these entrance enlargements are associated with IDLs, because the IDLs had 

all been drained before the MV caves enlarged to present sizes. The enlargement of relict and 

combination cave entrances by the freezing and melting of the surface water in an IDL may be the last act 

after the flow through the IDL formed the continuing passages. However, it is not a universal 

phenomenon, because many entrances show no sign of enlargement, even when they would have been 

submerged beneath the same IDL as those that do. 

Inland cave entrances taller than c. 5m are commonly absent. The only example is the I6m-high 

resurgence entrance of Gronndalsgrotta (ZA, 600m altitude; Photo D1.38). This entrance is not 

widened, and contains much clastic material from a collapse doline shaft to the surface situated l6m 
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inside the cave (Figure B1.15). However, the roof continues to be IOm high beyond this shaft. It is 

therefore a candidate for being enlarged by a rising IDL, perhaps at the onset of the Weichselian 

glaciation. An alternative, or additional, mechanism is that vadose entrenchment during the Eemian and 

the Holocene of an initially Vauclusian exit produced this vertical enlargement (section 9.2.4). The 

common absence of tall cave entrances may indicate that IDLs did not in fact form significantly at the 

onset of glaciation as otherwise the roofs of more entrances could have been eroded upwards. 

Because IDLs lower at a similar rate to that of the constraining icesheet surface, i. e. at c. 0.5mä' at the 

start of the Holocene (from the reconstructed Gronlie formula: section 8.1.4), it would only take about 

four years for the surface of an IDL to descend past a 2m-high cave entrance. This seems too short a time 

to cause significant widening by freeze-thaw and dissolutional mechanisms if IDLs only froze near the 

surface, suggesting that IDLs annually froze downwards for several metres, despite evidence from 

present glaciers that moulins contain meltwater below short frozen surface layers throughout the winter 

(Jacques Schroeder, pers. comm., 2002). This evidence, and the suggestion that higher IDLs froze deeper 

(section 8.9.2) is supported by the biased distribution of the 25 caves mentioned above towards the 

higher western glacial situations, because their percentage occurrences compared with the distribution of 

all caves are: G 8% (3%); H 0% (7%); K 24% (15%); L 60% (47%); S 4% (1%); and T 4% (13%). 

(Western GS are underlined). A disproportionately large number (8) lie in the 500-600m altitude range, 

although eight (including two caves at GS=G) also have altitudes from 240-300m that may have been 

partially enlarged by a rising sea level at the onset of glaciation if the glaciation marine limit has been set 

too low. The western favouring is likely assisted by increased temperature cycling on western slopes 

compared with the eastern slopes that remained more in shadow in the afternoon. Hence, to summarise 

the phenomenon of enlarged cave entrances, marine enlargement is favoured towards the end of the 

Holocene at low altitudes at caves facing west, whereas enlargement by IDLs is favoured early during 

deglaciation at high altitudes at caves that also face west, and there is a band from 300-500m altitude 

where relatively few caves have enlarged entrances. 

This completes the overview of the various hydrogeological processes that influenced the development of 

Caledonide endokarst. Chapter 9 examines how these processes and surface erosion determined the 

internal morphological evolution of the karst systems in space and time. 
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CHAPTER 9 THE INTERNAL MODEL 

As discussed in section 5.8.13, Chapter 5 essentially presented the static internal model of cave 

development. From a knowledge of the three main external cave attributes of karst type, glacial situation 

and cave location it is possible to model and predict the main internal cave attributes, including length, 

vertical range and volume, and the occurrence frequencies of various cave `objects', such as chambers 

and shafts, for the average cave of each cave type of the three hydrological cave classes. This model is 

broadly the same across all the `inner' zones and nappes of the whole study area. Internally, the prime 

influence on the morphology of individual passages is the karst type, and the presence of aquicludes. 

Chapters 6-8 analysed how the various tectonic and glacial processes that affected the area during the 

Quaternary and earlier combined together to provide inception fractures that were enlarged into both 

previously-existing and presently-remaining cave passages by calcite dissolution. The aim of this Chapter 

is to consider how, and in what sequence, the various internal cave passage elements were constructed. A 

single dynamic model of internal development for caves in vertical stripe karst is presented, followed by 

consideration of variations caused by the influence of karst type. The tectonic, external, hydrogeological 

and internal models are then considered together, to deduce the timescale constraints on central 

Scandinavian cave development. 

9.1 Deductions from cave types 

Section 5.7.1 compared the cave types representative of the study area with those of Palmer (1991). The 

elimination of hypogenic cave origins is compatible with the finding that the caves are in close contact 

with the surface: they are all epigean, they can perhaps even be regarded as epikarstic (to a broad 

definition) and they developed synchronously with their landscape (section 3.1.16). Elimination of 

porous soluble rock and intergranular porosity models is compatible with the known negligible porosity 

of metalimestones (Appendix A2.2). Whereas Palmer's "bedding partings", gradually sinking streams 

and diffuse recharge through sandstones are not directly relevant to the study area, these settings are 

suggestive of suitable environments in which cave inception and development could have occurred. 

Thus, instead of being along bedding partings, cave development was along inception surfaces created by 

sub-horizontal fractures and joints in all possible karst types (many examples) or by sub-horizontal 

aquicludes (e. g. Ytterlihullet, ZA). Similarly, although there are few examples of gradually sinking 

streams or diffuse recharge through a caprock in the study area, direct synchronous recharge into the 

karst at several places beneath ice-dammed lakes in phreatic conditions promoted the development of 

rectilinear and complex passage arrangements, with synchronous dissolution and enlargement of all 

submerged passages at all levels (many examples). There is only one example of a (relict) cave in 

horizontal metalimestone below a thin mica schist cap, with dolines: Akersvanngrotta (ZB; Figure 

B1.17). This is an example of what Palmer called an interstratal, rectilinear, maze. It probably developed 

by diffuse recharge through the mica schist when the Stor Akersvatn level was held up by ice-damming 

(Appendices D2.3 and D2.6). 
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Palmer used Onesquethaw Cave (NY, USA) as an example of an epigenic dendritic cave formed- in 

roughly horizontal limestones. Its plan and extended profile are similar to those of Toerfjellhola (Z3; 

Figure BI. 3), which has formed in vertical metamorphic stripe karst, although the Toerfjellhola profile 

does not require a vertical exaggeration. This supports the conclusion that caves in vertical stripe karst 

with orthogonal joint systems commonly have morphologies that appear to be similar to those in 

horizontal sedimentary limestones. For example, where horizontal joint openings predominate over 

vertical fractures, passages are sinuous rather than straight, as discussed in section 5.7.1 for horizontally- 

bedded sedimentary limestones. Palmer (1991) also identified the place where the development of 

Onesquethaw Cave changed from vadose to phreatic. However, from the discussion in sections 9.2.2- 

9.2.4, it is argued herein that Toerfjellhola developed phreatically prior to vadose entrenchment, giving 

it `upside-down' morphology in common with other combination caves, but in contrast to the 

morphology of many classically-described cave systems in sedimentary limestones. 

Morphological comparisons with caves in vertical sedimentary limestones may also be useful, but there 

are few identifying references in the literature. Osborne (1999; sections 3.1.12 and Appendix B2.8) 

discussed inception `horizons' in such a setting, noting the importance of lensoid shapes, and tiered 

passages. However, the "halls and narrows" deduced to be partly-formed by rising artesian or 

hydrothermal waters (Osborne, 2001 c) have no comparable morphological analogues in the study area. 

9.2 Caves in vertical stripe karat (VSK) 

Monoclinal vertical stripe karst provides the most fundamental structural setting for the morphology of 

study area caves, from which morphologies in other settings can be derived. 

9.2.1 Etasjegrotta, the ultimate example 
Etasjegrotta (Z4; Figure B1.8; section 5.7.3) is chosen as the best example of a combination cave 

formed in monoclinal VSK. Its passages total over Ikm in length, but the horizontal extent of the cave 

from its entrance area to the downstream sump is only some 170m, because the length is distributed 

across tiered passage elements on about 20 different levels. These have a mean vertical separation of c. 

2m, and a minimum separation of only c. 30cm. The cave survey section shows that the upper passages 

consist of shallow single phreatic loops, commonly with rectangular cross-sections bounded by vertical 

aquicludes. They are connected by several chambers and by many vertical shafts with a mean horizontal 

separation of c. 7m, and they sporadically have blocked connections to the surface. The stream flows 

from the entrance area at the lowest levels of the system, commonly along immature vadose passage 

elements and vadose-entrenched relict phreatic levels at its upstream end, towards permanently 

submerged phreatic passages. Because of its complexity and angled, along-strike, relict phreatic `ramp' 

passages, the cave is assigned cave type h. The stream resurges at the Main Rising, c. 500m south along 

the strike from the sump, at a large, completely submerged, passage that was dived upstream for 340m at 

a maximum depth of 20m (Whybro, 1988; Figure B1.9). Relict phreatic passages in Invasjonsgrotta lie 

Trevor Faulkner Page 262 June 2005 



Cave Inception and Development in Metacarbonate Rocks: Chapter 9- Internal Model 

above the downstream end of this sump, and have both open and blocked connections to the surface. 

Thus, the Etasjegrotta system contains most of the internal morphological elements that are 

representative of combination caves in VSK, and is typical within the study area as it apparently does not 

contain paragenetic dissolution above a vadose passage. Most other caves in VSK are expected to have 

cave development sequences that are subsets of those of Etasjegrotta. 

9.2.2 The internal model of a cave in VSK 

Figure 9.1h represents the vertical section of a complex cave formed in VSK, loosely based on the 

present Etasjegrotta-Rockbridge system (Z4). A series of relict phreatic passages, whose individual 

profiles comprise a single phreatic loop, overlie a mainly vadose streamway. The absence of passages 

containing multiple phreatic loops was noted in section 5.7.2. Relict vadose passages are very rare, but 

where they do occur, they commonly form a dry (and possible flood-overflow) entrance to the system, 

almost universally at the upstream end of the cave. The present surface stream commonly sinks into 

immature conduits upstream of the entrance. Etasjegrotta is rather exceptional, because it appears to 

contain a vadose-modified shaft, Fall Aven, near its lower end (section 8.4.12). 

The two distinct passage morphologies are strongly suggestive of a very simple two-phase cave 

enlargement history: firstly phreatic, and secondly, predominantly vadose. Whereas some vadose 

developments may also suggest a sequence of events (for example, if the original stream-route has been 

captured via lower-level immature fractures and conduits), a key question concerns the phreatic 

enlargements. Were the tiered passages enlarged simultaneously, or did they enlarge successively, level 

by level in a top-down sequence, perhaps controlled by external `base levels' or geological aquicludes? 

The frequency and small mean separation of phreatic passage tiers (2-13m; Table 6.2) eliminates the 

possibility of any external, base-level, control, supported by the absence of any known relationship 

between passage elevations and regional topography, as noted by Hellden (1975) for Sotsbäckgrottan 

(KU, Appendix B1.13), and as reported herein (section 5.8.3). Within VSK, the aquicludes commonly 

align with the foliation, so that horizontal sills are extremely rare, thus eliminating the possibility of sub- 

horizontal geological control. Hence, the phreatic levels did not enlarge in a strict top-down sequence, 

with an air surface above the next active level. Instead, they commonly enlarged simultaneously, but not 

necessarily at the same rates, as part of one submerged phreatic network per cave or group of caves. Less 

commonly, an upper group of phreatic levels enlarged before a lower group of fractures was formed, or 

achieved breakthrough dimensions, and then, in a different timescale, both groups enlarged together. 

9.2.3 The timing of cave development 

Section 8.6.2 considered the enlargement of phreatic passages from knowledge of wall retreat rates and 

passage dimensions. This section discusses supporting evidence for the conclusions reached. There seem 

to be only three possible timings for a conduit system to be totally water filled: a) during early cave 
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development under present and previous interglacial conditions; b) during flooding by large-sc le 

interglacial spring melts; and c) during the various subglacial and IDL conditions. 

Considering a), and assuming that the maximum length of an interstadial or interglacial is l0ka, a 

phreatic passage could theoretically enlarge to a diameter of 20m, at a maximum wall retreat rate of 

I mma', i. e. greater than the largest size known, providing that the recharge rate could maintain flowing 

phreatic unsaturated conditions throughout the year. However, if the mainly phreatic relict caves and the 

combination caves in the study area did develop to their present sizes during the Holocene and / or earlier 

interglacials, then there would surely be a relationship between their catchment areas and their cave 

volumes and mean cross-sections, which does not occur (section 5.8.9). Even if the catchment areas 

differed slightly during previous interglacials, it is implausible that they could change in such a way as to 

remove such a relationship. Additionally, because enlarging caves fed from a roughly constant annual 

recharge eventually drain in their upper levels (Palmer, 1991), there would be consistent vadose 

entrenchment along all the relict phreatic passages, rather than just along the lowest-level phreatic 

passages. The almost universal absence of upper-level vadose entrenchment away from entrance areas 

(Appendix B2.7), the consequent rarity of phreatic to vadose transition zones (section 8.4.12), and the 

very existence of the phreatic relict caves with an almost total absence of vadose relict caves, rule out the 

possibility of a gradual transition from phreatic to vadose conditions, and deny possibility a). 

Considering b), although there are undoubtedly frequent (perhaps annual) occasions when some 

individual caves are completely submerged, and such floods are highly aggressive (Appendix B2.2), it is 

inconceivable that such floods caused the primary enlargement of any of the relict or combination caves. 

Indeed, there are many phreatic relict passages and whole caves in `topographically impossible' cave 

locations that could not possibly be submerged under present conditions, and probably not during 

previous recent interglacials. 

The only natural conclusion is that the phreatic passage networks primarily enlarged to their present sizes 

at time c), before they were drained and experienced interglacial conditions similar to the present. 

Consequently, the vadose entrenchment phase of the active combination and mainly vadose caves was 

almost universally restricted to the Holocene. Other evidence for the Holocene timescale for the 

enlargement of the mainly vadose caves was discussed in section 5.8.9. Phreatic modification or 

paragenetic enlargement of a pre-existing vadose passage may be regarded as a morphological diagnostic 

for a cave that has experienced at least two glacial cycles. Although modified passages developed under 

previously vadose conditions may not be easily recognisable in VSK with vertical aquicludes, the 

common absence of such evidence is at least indicative that any such modified vadose flow-routes were 

either extremely short-lived during a previous interstadial or interglacial (such as the Eemian, which is 

unlikely), or else that such passages, and therefore the whole cave above them, were eroded away during 

the Weichselian stadials. Relict vadose passages would also be eroded away by glacial movement prior to 
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relict phreatic passages, because they were closer to the upstream cave entrances. Hence, the remaining 

parts of the present combination caves have only existed for a single glacial cycle in the large majority of 

cases (a concept discussed in section 7.3). The (phreatic) relict caves are also commonly more epigean 

than the combination caves, as they only extend to a maximum depth of 40m below the surface (Table 

5.20), hinting that most of them also only survived for one glacial cycle. 

9.2.4 The top-down, middle-outwards, model (TDMO) 

A dynamic internal cave development model is derived by bringing together the ideas presented in 

Chapters 5-9, to show how a combination cave in VSK could have developed to its present form (Figure 

9.1h) via stages illustrated in Figures 9.1a-g, and could develop to a future form, Figure 9.1i. 

Initially, consider a shallow valley along the strike of unfractured, non-cavernous, vertically-foliated 

metamorphic limestone that was stripped to bare rock by glaciation. The metalimestone contained no 

open joints, `bedding planes' or inception horizons, and no primary, secondary or tertiary porosity, and 

therefore did not support an internal `watertable'. Early Quaternary glaciations did not produce large 

seismic shocks (section 7.3), so that only small fractures were penetrated when submerged beneath the 

local ice-dammed lake during deglaciation. After deglaciation, any stream that entered the upper end of 

the valley flowed along the surface of the limestone. Hence, during both early deglacial and early 

interglacial periods, only the most superficial and short fractures achieved tectonic or chemical 

breakthrough, and there was little karstification. 

During the sequence of later Quaternary glaciations, the valley deepened, deglacial earthquakes became 

greater in frequency and magnitude, and some significant systems of orthogonal horizontal and vertical 

fractures achieved breakthrough, either directly from pressure relief, seismic shocks and slow tectonic 

movements, or by supplementary chemical dissolution beneath an IDL (Figure 9.1a). The largest 

fractures were created down to a depth determined by the strength of the seismic activity, following the 

`one-eighth' relationship derived in Chapter 7. Below this depth, the fractures were too small to influence 

karstifcation in relevant timescales. A study of cave surveys (section 6.5.4) showed that the vertical and 

horizontal separations of passages and shafts are very variable, with no discernible trends related to 

depth, within the vertical range of each cave. Some of the fractures enlarged into phreatic conduits and 

explorable cave passages whilst still submerged by their first IDL, or by the IDL of a subsequent 

deglaciation (Figure 9.1 b). Conduits could also enlarge through narrow ridges of limestone, as at the 

Klausmark System (Faulkner and Newton, 1995, Figs. 4 and 5), with entrances on the west, east and top 

of a N-S ridge. During the interglacial following the deglaciation, the cave drained partially, with vadose 

entrenchment below higher-level phreatic passages that remained relict (Figure 9.1 c). The next glaciation 

lowered the surface of the valley, stripping it bare of small exokarstic features, and may have removed 

most of the cave passages (Figure 9.1 d). If all traces of the cave were removed by the next glaciation, 

only a single-cycle combination cave had been created. 
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The above sequence of events could have been repeated many times at each karst location. In the general 

case for large combination caves, the previous orthogonal network of fractures was reinforced and 

deepened by the surge of tectonic activity that accompanied deglaciation and isostatic rebound after a 

significant number of glacial cycles, so that significant new vertical and horizontal post-breakthrough 
fractures were created each side of and below the level of any existing cave passages, to new depths that 

obeyed the contemporary one-eighth relationship (Figure 9.1 e). Some of these fractures enlarged to form.. 

tiered phreatic conduits and explorable passages by dissolution under a lowering IDL, as discussed it 

Chapter 8, whereas other, smaller, fractures just reached breakthrough dimensions (Figure 9.1 f). 

The cave was drained early in the succeeding interglacial, except that those passages below the level of 

the outlet remained submerged, commonly creating a long and active series of sumps behind it 

Vauclusian rising (Figure 9.1 g). Statistically, sumps occur with a higher frequency near the resurgent 

end of a cave, both in the study area and anywhere in the world, because this is the lower end, where 

water tends to collect under the influence of gravity. The allogenic stream in the valley commonly sank 

into the cave as a waterfall at the first shaft, to begin the vadose entrenchment of the upstream phreatil 

passages. The higher parts of the cave were abandoned as relict entrances, relict passages and `through 

caves', with few, if any, static sumps. Some of the surface flow was captured by fractures upstream of 

the sink entrance, and some water was diverted away from the sumps and the rising via undertlow 

seepages along fractures at small springs lower down the valley (section 7.2.1). 

During the interglacial, surface lowering of the valley upstream of the sink (to create a blind valley) and 

downstream of the rising (to create a pocket valley) was significant in comparison to the vertical range of 

the cave system (Figure 9.1 h). The actual sink could also migrate upstream by headward capture via 

enlarged fractures, to leave behind relict vadose shafts and short sections of relict upstream vadose 

passages, in a manner similar to that described by Osborne (1999, Fig. 7). Vadose-enlarged phreatic 

passages near sink entrances have larger cross-sections than `downstream' relict phreatic passages, as at 

Etasjegrotta (Z4). Rather exceptionally, modem vadose streams may also invade upper relict passages 

well-away from their upstream ends, as at Invasjonsgrotta (Z4), where a small stream has cut a vadose 

canyon some 2-3m high into the roof of a relict tube situated above the Etasjegrotta to Vatnhullet 

phreas (Figure B1.9). 

Above the typical cave, the continuing dry valley experienced very little erosion, except for the creation 

of solution dolines, where water from snow patches trickled into vertical fissures. In time, these could 

enlarge into collapse dolines that connected to underlying passage roofs (Figure 9.1 i). When the floor of 

the pocket valley encountered seepage from behind the Vauclusian rising, the fracture enlarged to lower 

the level of the flooded networks at the base of the cave and drain the rising. Because there is a complete 

absence of underflow springs below present flooded and open resurgence entrances (at least under 

normal flow conditions), it is assumed that this capturing process was relatively rapid, in agreement with 
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the shortness of the hydrological paths. The bypassing fractures themselves enlarged into sub-horizontal 

conduits, sumps and resurgence passages, as at the Main Rising termination of the Etasjegrotta system 

that has bypassed a previous Vauclusian rising at Vatnhullet (Figure B 1.9). If there was no suitable sub- 

horizontal fracture to provide a bypass route, the Vauclusian rising eventually reduced to an open passage 

by entrenchment, as would happen in Figure 9.1 c (Photo 9.1). Figure 9.1 h explains why relict shafts tend 

to form at system extremities (sections 4.4.3 and Appendix D4.1). This is where the Holocene vadose 

entrenchments promote upstream and downstream cave development, in contrast to the central parts that 

commonly remain undisturbed during interglacials. 

Photo 9.1 J shart, rrugroua (nr I 

This cave functions as a resurgence for the epigean, and primarily flooded, system in Skindfjelddal. 
The entrance was a Vauclusian rising immediately after deglaciation, before Holocene entrenchment. 
The cave has formed in a ridge of dark, low metamorphic grade, low angle karst in the Upper Keli nappes. 

Within the cave, considerable vadose modification of previously phreatic passages was achieved by the 

interglacial allogenic stream. Upstream passages were enlarged by waterfalls that rapidly eroded 

backwards. Downstream, previously phreatic passage profiles were commonly smoothed by turbulent 

flows that created `keyhole' -shaped meanders, and the drained phreatic outlets to Vauclusian risings 

were left as relict ramp passages. The streamway itself became more `mainly vadose' in character, with 

less flow along sumps. A long interglacial (such as the Holocene) provided sufficient time for 

considerable lowering of streamway floors, both on the surface and inside the caves (up to 7m in some 

combination caves: section 8.7.2). Thus, the common conclusion of interglacial cave development is a 

combination cave with a large continuous wholly-vadose streamway with no sumps remaining between 

the sink and the resurgence, beneath relict phreatic passages and beneath upstream relict vadose shafts 

and downstream relict phreatic ramps (Figure 9.1i). Outside the cave, a significant pocket valley is 
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commonly created by erosion by the resurging water. Jegerhullet (Z4, upstream of Etasjegrottit) 

provides a splendid example of all these features. 

According to Dreybrodt (1998, p42; section 3.1.16), the "breakthrough length" of the fractures 

determines the style of caves formed: intensive karstification with many small caves arises if the fracture 

lengths are small, but fewer, longer, caves develop if the lengths are large. Clearly, caves have formed in 

the study area across the whole range of these styles, up to path lengths of c. 3.5km. In narrow stripe 

karsts, the 2D models of calcite dissolution (e. g. Dreybrodt, 1990) should be adequately representative. 

The common resulting morphology for the longer caves has tiered, symmetrical, rather shallow, phreatic 

loops with interconnecting vertical shafts and several entrances at both `upstream' and `downstream' 

ends of the cave. The symmetry of the phreatic loops is modified by the surface slope above the cave, so 

that the `down-valley' ends of the loops are universally somewhat lower than the `up-valley' ends. In 

shallow, strike-aligned, valleys in VSK, water can never find deep outlet points. Only when the outcrop 

is orthogonal to a deep valley can there be a deep outlet, and then the outlet can only be to the maximum 

depth allowed by the one-eighth relationship (e. g. 50m below the valley shoulder for VSK in the study 

area). 

The common lack of high-level abandoned or phreatically-modified vadose passages indicates that most 

(but not all) caves in the study area were single-cycle caves, only developing to their present size during 

the final glacial cycle. Relict caves did not develop into combination caves because the topographic 

locations of their entrances precluded invasion by allogenic recharge. It is possible that the highest levels 

of Etasjegrotta (Ovre Etasjegrotta; Figure B1.8) developed in a previous glacial cycle, but remained 

relict in the following interglacial. 

From this discussion, cave development followed a top-down sequence as passages migrated downwards 

through the sub-surface tectonic fractures, which were enlarged to form phreatic, then vadose, passages 

through various glacial cycles. Middle-outwards extensions developed at each end of an active cave 

during interglacials, to complete a general top-down, middle-outwards (TDMO) cave development 

model. This may be compared with Alpine studies, where Bini (2001) implicitly described a tectonically- 

driven top-down sequence, and Häuselmann (2002, p36) observed that "in contrast to the laws of 

stratigraphy, the youngest cave phases are usually found in depth and the oldest are at the top". 

Removal by glacial and subaerial erosion followed behind, with caves commonly shortened at each end 

by glaciation prior to any total removal, giving a top-down, extremities-inward, process for cave 

destruction. 

Mainly vadose caves developed during interglacials from those more superficial fractures that achieved 

late breakthrough when under an IDL, or only reached breakthrough during the interglacial itself, 

assisted by enlargement by annual freeze-thaw cycles. These fractures resembled the system shown in 
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Figure 9.1 a. In interglacial conditions, phreatic cave enlargement was limited by the annual recharge rate, 

so that conduits and passages remained submerged until they enlarged sufficiently to be partially drained. 

Thereafter, their development became mainly vadose, and continued as described above for combination 

caves, but without an extensive higher level network of relict phreatic passages. This explains the 

formation of the set of presently-active, mainly vadose caves (section 5.4.2), which, in the study area, 

only exploit fractures less than 20m from the surface. As these caves have developed entirely within the 

Holocene interglacial, they are considered to be half cycle caves. Good examples of mainly vadose caves 

occur at Vargskar (Z5), where there is very high allogenic recharge from permanent snowfields on 

Blifjell into many active stream caves (e. g. Drowning Cave, Table 5.22), and these show that a 

primarily vadose development of significant passages can occur within an interglacial. Although mainly 

vadose caves continued to develop in this latest interglacial, they may also represent the earliest type of 

cave formed in the Scandinavian Caledonides, after the onset of the Mio-Plio-Pleistocene glaciations 

that started to generate the first superficial fracture sets. 

It is assumed that during interstadials the ice primarily melted where it was in contact with the sea 

(section 8.1.1). Caves below the relevant marine limit were immediately flooded by sea water, which had 

little dissolutional influence on cave development (Appendix D4.12). With only minor lowering of the 

inland icesheet by ablation and melting, only caves at high altitudes could have been submerged beneath 

interstadial IDLs. Thus, cave internal morphologies were commonly not modified during interstadials, 

although passage diameters could enlarge. 

9.3 Caves in angled stripe karat 

As proposed in section 5.7.3, Gevirgrotta (Z4; Figure B I. 7) is a good example for combination caves 

formed in monoclinal angled stripe karst (ASK). From its survey section, it mainly consists of relict 

single phreatic passage loops at five levels, some being invaded and interconnected by a presently-active 

vadose streamway that is meandering and steeply descending in its lower part. Thus, although its cave 

plan is more complex than commonly applies to caves in VSK (because the morphology is guided by the 

ASK dip of 70-80°W), Gevirgrotta also appears to demonstrate a multi-phase development history, with 

both phreatic and vadose episodes. 

Gevirgrotta and oyfjellgrotta (Z5, also formed in ASK) appear to be unique in the study area, because 

they both contain relict vadose (RV) passages and relict vadose entrenchment along the down-valley ends 

of phreatic loops. This is a rarity discussed in Appendix B2.7 and section 9.2.2 that suggests 

entrenchment during the Eemian interglacial. Gevirgrotta's RV elements are the `muddy pit' and the 

entrenchments in `Tooms Revenge' and in `Upper Inlet Passage'. oy£ellgrotta appears to have large 

relict passages with very significant vadose deepening along its `Upper Galleries', according to its cross- 

sections (Figure B1.10). The approximate 150-180m altitude of these entrenchments in ßyfjellgrotta 

may coincide with the ice-melting height at the local isobase at which a suggested deglacial hiatus 
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occurred between 9600 and 950014Ca BP (section 8.4.12), before the arrival of the ice margin at 9300 

(Table 8.4), so that the lowest part of the entrenchment may have occurred early in the Holocene. 

Those parts of Gevirgrotta and oyfjellgrotta that remain from previous glacial erosion probably follow 

the same TDMO sequence of development, within two glacial cycles. The commentary on the TDMO 

model in section 9.2.4 is therefore generally applicable to caves in both VSK and ASK, and, thus to most 

caves in the study area. However, the great majority of combination caves have much simpler cave types 

and morphologies than those of the type-examples. In the simplest single-cycle caves, a single phreatic 

tube enlarged under an ice-dammed lake, before being drained to a relict cave, or before being invaded 

and modified to a combination cave under mainly vadose conditions by an allogenic stream during the 

Holocene. 

9.4 Caves in low angle karst 

As also discussed in section 5.7.3, caves in low angle karsts (LAK) display a variety of complex forms, 

so that no one cave is representative. The longest and deepest of these caves are listed in Tables 5.16 and 

5.17: Sotsbäcksgrottan (KU, Figure B 1.21), Grenndalsgrotta (ZA, Figure B 1.15), Akersvanngrotta 

(ZB, Figure B 1.17), Svartdalgrotta (Z2, Figure B 1.1), and Ytterlihullet (ZA, Figure B 1.16). Their cave 

survey sections show that, apart from Akersvanngrotta and Ytterlihullet, they all comprise a series of 

primarily relict and probably phreatic passages above a partly graded and active vadose streamway. 

Svartdalgrotta also displays a previously-Vauclusian rising at its relict lower entrance that has now 

been drained by immature lower conduits leading to its small resurgence. The relict Akersvanngrotta 

was formed entirely phreatically beneath a sub-horizontal mica schist roof, and appears to have been 

rapidly drained when its local ice-dammed lake fell to the level of the present Akersvatnet, and thus did 

not experience any allogenic invasion and vadose development. Ytterlibullet is perhaps unique in 

comprising just two main `inlet' passages that both appear to be phreatically initiated prior to significant 

vadose entrenchment, without exhibiting many tiers of passages. This is because cave development has 

been constrained to lie within two layer-parallel aquicludes that commonly provide roof and floor 

barriers. Thus, caves in LAK also commonly appear to follow a `TDMO' sequence of passage 

development. Akersvanngrotta and Ytterlibullet display this in the simplest form: a single level that 

has probably extended from one end of the system to the other since inception. 

9.5 Caves in complexly folded karst 

Because only three caves in the study area are recorded in complexly folded karst (CFK; section 5.3.1), 

and these all differ in form, no common model can be proposed with confidence. Kvitfjellgrotta (Z4), 

although only c. 200m long and 22m deep, has a complex series of relict upper-level phreatic passages 

above a tall meandering stream passage with sump sections (not shown). It lies at a valley shoulder 

position (CL=S), and its present stream resurges from mainly phreatically-formed tubes high on the side 

of a deep, glaciated, valley (Photo C2.4). Its (relict) entrance is at the highest point in the cave, about 

Trevor Faulkner Page 272 June 2005 



Cave Inception and Development in Metacarbonate Rocks: Chapter 9- Internal Model 

halfway along its plan length, and thus the cave also fits the TDMO model. No survey has been published 

for Nedre Helveteshullet (Z7), and so no conclusions can be drawn about its formation. The third cave 

in CFK, Labyrintgrottan (ZC, Figure B1.19), comprises mainly relict and inter-linked phreatic 

passages, with still-active phreatic passages along its stream route that are being explored by diving. 

Although a cave survey section has not been published, and the author has not visited the whole cave, 

there appears to be a complete absence of both active and relict vadose passages. The extent that the cave 

contains levels of relict phreatic passages is difficult to determine. It has a relatively small vertical range 

of 20m, and several relict entrances. The absence of an (at least) partly vadose streamway in a long (over 

2600m) `active' cave seems to be unique for the area, and suggests that there has been little lowering of 

the floor of the small valley below its sump resurgence in the time since the local IDL lowered to the 

level of the lake Över-Uman. The submerged character of much of the present Labyrintgrottan stream 

is probably not a function of its CFK classification: because the cave runs parallel to the strike of the 

folds, they behave as angled stripe karst for many individual passage elements. Although CFK is rare in 

the study area, there are at least two long and deep caves in such karst in northern Norway. They appear 

to violate the TDMO model (Appendix D6.1.1) and they also appear to have more complex internal 

morphologies than caves formed in homoclinal outcrops, as do Kvitfjellgrotta (above) and 

Labyrintgrottan (Figure B 1.19). 

9.6 Minimum timescale constraints from marine and IDL entrance enlargement 

The enlargements of cave entrances that lie below the glaciation and deglaciation marine limits by 

marine activity as the sea level rose or fell past the entrance positions were described in sections 8.8.2 

and 8.8.3. Such enlargements place constraints on the latest possible times of cave inception and 

development for caves in the lower glacial situations (GS=C, D, E, G or H), although the enlargement of 

entrances by IDLs at higher situations provides less timescale constraint. 

9.6.1 Saalian or earlier development 

Sections 8.8.3 considered the theoretical possibility that some old, remnant, cave passages above the 

Weichselian glaciation marine limit may have been modified by wave action during the onset of the 

Saalian or an earlier glaciation, but concluded that such modified entrances would be difficult to 

diagnose. Therefore, it is assumed that time constraints on cave development above GS=G or H cannot 

be deduced from the marine enlargement of entrances. 

9.6.2 Eemian or earlier development 

If we accept that a rising sea level enlarged an existing entrance to ßyfjellgrotta (Z5; GS=H; Figure 

81.10; section 8.8.3), it follows that its ramping, phreatic, main entrance passage was likely in existence 

by the end of the Eemian interglacial. Hence, this entrance passage, together with many other relict 

phreatic passages in the same cave, probably developed to cave dimensions beneath an IDL during the 

Saalian deglaciation or glaciation, or even earlier. These phreatic passages could then have been further 
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enlarged, and perhaps new ones developed, beneath IDLs during the Weichselian glaciation and 

deglaciation. The developments of the vadose passages in Oyfjellgrotta are discussed in sections 8.7.2 

and 9.3. 

9.6.3 Weichselian interstadial or earlier development 

None of the other four cave entrances with GS=H (Table 8.4 and section 8.8.3) that are candidates for 

marine enlargement prior to the final deglaciation are sufficiently tall to have required a ri sing sea level 

to create them. Indeed, as they are each only 2-3m high, it is only their altitudes above their local 

deglaciation marine limits that distinguishes them from the enlarged entrances with GS=D or E. Hence, 

these entrances could have been enlarged as late as during a Weichselian interstadial, when (or if) the sea 

melted and then froze again, perhaps without much change in isostasy or sea level. In this case, all that 

can be inferred is that the (mainly phreatic) entrance passages to Bollhauggrotta (Z5), oyiskjelerea 

(Z4), Lillelvgrotta (Z5) and Geitklauvgrotta (Z5) were all in existence some time before the 

Weichselian deglacial IDLs formed. Tectonically-moved blocks in the Bollhauggrotta entrance provide 

supporting evidence that this cave existed prior to Weichselian deglacial seismicity. The phreatic parts of 

these caves were thus significantly developed under older ice-dammed lakes formed at the beginning or 

end of Weichselian interstadials, or perhaps during Saalian events. If they did originate during the 

Saalian or earlier, the epigean nature of all these caves that lie close to the surface indicates that they may 

be the surviving lower levels of older caves subjected to considerable synchronous removal of the 

overlying limestone. 

9.6.4 Development during final deglaciation or earlier 

Table 8.4 lists many of the caves that were inundated by sea water during the final Weichselian 

deglaciation, i. e. those with GS=C, D or E. Those relict and combination caves with marine-enlarged 

entrances must have had entrance passages in place prior to the passing of the ice margin and the cave's 

submersion. The relict phreatic passages in such caves were therefore developed to present dimensions 

under the final Weichselian deglaciation ice-dammed lakes, or earlier. As expected from the description 

of the TDMO standard cave development model (section 9.2.4), there are no marine-enlarged vadose 

entrances, as, obviously, vadose conditions only came into existence during the Holocene, or only after a 

cave emerged above sea level. Because there are also no known relict vadose entrance passages dating 

from the Eemian, there are also no known examples of marine-enlarged Eemian vadose entrances. 

A lack of obvious marine modification of an entrance cannot be used alone to infer that the passage 

development post-dates the post-glacial marine inundation. For example, Neptune's Cave (Z2) contains 

barnacles on the walls of its relict phreatic passages that are dated to 9900±11014Ca BP (Table A5.1; 

Appendix D5.3). This proves that the passage was fully developed prior to submersion, yet none of the 

four cave entrances show marine enlargement. This may be because three entrances are shaft tops, and 

the small resurgence entrance (protected by a boulder ruckle) formed after emergence above sea level. 
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Also, some other unmodified cave entrance altitudes listed in Table 8.4 are so close to the deglaciation 

marine limit that there was insufficient time for marine enlargement before these caves rose above sea 

level. 

Section 8.9.4 considered the enlargement of cave entrances above marine limits by dissolution and freeze- 

thaw cycles as ice-dammed lakes lowered or rose past them, and gave many examples over a large range 

of altitudes. However, an entrance enlarged by a descending IDL does not provide an additional timescale 

constraint, because the entrance passage probably developed to its internal size beneath the same IDL. A 

tall entrance, enlarged by a rising IDL, would indicate an entrance passage that was already formed before 

the onset of glaciation, but there are no confirmed examples of this. 

9.6.5 Development after fmal deglaciation 

Section 9.2.4 deduced that all mainly vadose caves developed to present dimensions during the Holocene 

interglacial. Several MV caves at GS=C, D or E are listed in Table 8.4, including the Hol 
. sen and lower 

Hestfjell caves (Z2), and none has a confirmed enlarged entrance, thus not contradicting the timescale of 

development after emergence above the sea. Other enlarged entrance passages have active vadose 

entrenchment of an originally phreatic tube, commonly, but not always, displaying a `keyhole' cross- 

section (e. g. Green Gorge Cave, Klausmark, Z2; Photo 9.2). These suggest that after the marine 

enlargement of the phreatic part of the entrance, the subsequent vadose development has only occurred 

during the Holocene. 

Photo 9.2 Entrance to Green Gorge Cave (Z2) 
An originally-phreatic entrance was enlarged by wave action 
before being entrenched during the Holocene. Photo by P. Hann. 
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Section 5.5.5 deduced that the active vadose parts of resurgence caves situated at knick points above 

surface waterfalls (with sink entrances commonly at CL=S) probably developed entirely within the 

Holocene. If the vadose streamway had originated in the Eemian, then Holocene flow would likely be 

along a deeper set of fractures, leaving a relict vadose passage above, of which none are known. 

9.6.6 Extension to caves above the marine limits 

The above sections mainly considered caves that lie below the glaciation and deglaciation marine limits. 

Although caves of all hydrological classes exist in nearly all glacial situations (section 5.5.6), it is only 

those at lower altitudes that can provide timescale constraints from the marine enlargement of entrances. 

It is however logical to extend the range of development sequences and timescales to caves that lie above 

the marine limits as well. Thus, it is concluded that in all relict and combination caves at all altitudes, 

those phreatic passages that are now relict were fully developed prior to the end of the final deglaciation, 

and that all mainly vadose caves and the active streamways in the combination caves were only 

developed to present dimensions after the final deglaciation. The extreme rarity of speleothems in mainly 

vadose caves and other active stream passages (Appendix B2.9) is therefore explained by the short time 

available for their growth, coupled with dissolution and mechanical destruction during Holocene floods. 

9.7 Truncated and half-loop caves 

The previous section showed that the TDMO model of cave development can be overlaid with the 

enlargement of entrances for caves in glacial situations that lie below the marine limits. This section 

explores the influence that other external cave attributes have on internal cave morphology, especially 

the apparent truncation of phreatic loops. 

Table 9.1 lists caves whose survey sections exemplify many elements of the TDMO model. As expected, 

these caves are predominantly the more complex cave types, especially type h, and they consist of both 

relict and combination caves. The list includes examples with R=0 and 1, and with T0 and 1, and 

includes all main karst types. The caves occur in all well-populated glacial situations. All cave locations 

are represented (except CL=C), as are all slope relationships and orientations (except OR=N). This wide 

spread of external attributes confirms that the full TDMO model applies to combination caves throughout 

the study area, and subsets of it also apply to relict caves and to mainly vadose caves. 

Few cave passages contain multiple phreatic loops (section 5.7.2) and the cave survey sections reveal that 

many caves do not consist of fully-symmetrical single phreatic loops, but contain instead a tiered series 

of `half loops', or other `incomplete' loops. The last column in Table 9.1 provides information on the 

extent of exploration, the apparent extent of truncation and the open or closed nature of the termination. 

Only those phreatic loops identified as `A' are surveyed as fairly-symmetrical complete loops. In four 

cases exploration is probably incomplete in an `up-valley' direction (`B'), whereas in seven cases 

exploration appears incomplete `down-valley' ('C'). This larger number may arise because down-valley 
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relict phreatic passages tend to be somewhat smaller than up-valley passages, which can gain size with 

vadose entrenchment (section 9.2.4). For cases B and C, there may be no truncation of the identified 

passages, although other passages in the same cave may be truncated. 

qr-161.0 1' mnlea of the TDMO model 

CAVE Z R GS CL KT SR OR CT VR m Notes 

Klausmark System Z2 1 E/H R A N P h 50 F(O) 
Two Bridges Cave Z2 1 

r 

K W A D P h 36 B F(O+C) RC 
Tourist Cave Z2 0 E G A N P 20 A RV? Shallow loo s 
Svartdalgrotta Z2 1 n E/H S L D P h 53 CFO RV? 

Neptune's Cave Z2 1 0 E W A D P h 33 A F(O) Steep loops 
Balcony Cave Z3 0 0 H W A D P f 18 AFC RC Shallow loo s 
Tce eilhola Z3 0 0 K R V N A h 101 F(C) RV? 

isk eleren Z4 0 0 H S V N P f 15 B F(O) RC Shallow loops s 
Siri'ord rotte Z4 0 0 H G V N P h 78 F(O) RJ 3 outlet levels 
H1 rotta Z4 0 0 L G A U P h 20 A RV? 

Green Valley Cave Z4 0 0 T S V N 0 e 8 AB RV Shallow loo s 
Kvitfell rotte Z4 0 0 L S C N 0 h 22 F (0+Q 
Pustehola Z4 0 0 L W A U P h 28 C Mainly relict Steep loops 
Gevirgrotta Z4 0 0 L R A N P h 27 A RV Shallow loops 

3 outlet levels 

GAsvasstindhola Z4 0 0 T R V N P d 13 F(O) 
Serve aella rottene Z4 0 0 L W A U P h 55 A RJ RC + vadose trench 
J erhullet Z4 0 0 L F A N P h 34 C F(C) R RV 
Etas rotte Z4 0 0 L F V N P h 42 AC Shallow loops 
ß ell rotte Z5 0 0 H W A D P h 105 F(O) RJ Large RV? 
Mellebe rottene ZS 0 0 E G AN N P 20 CFO V. Shallow loops 
Gelt klauv rotta Z5 0 0 H G V N P h 16 E (C V. Shallow loo s 
Trench Pot Z5 0 0 L W A U P b 25 F(O) RJ RV 
Blil ell rotte Z5 0 0 T R V N P h 31 F(C) RJ Shallow loops 
H li rotta Z6 0 0 E S A D P f 33 F(C Steep loops 
Grenndals rotte ZA 0 0 K S L U P 70 CEO+C RV 

Sotsbkcks rotten KU 0 1 L P L N A h 110 C E(C) 

Koral rotten KL 0 1 L F A N P h 144 B F(O) 

Key 
A Contains symmetrical phreatic loop(s) 
B Possibly has unexplored ̀up-valley' phreatic loop continuations 
C Possibly has unexplored `down-valley' phreatic loop continuations 
D Phreatic loop(s) are truncated up-valley 
E Phreatic loop(s) are truncated in the middle 
F Phreatic loop(s) are truncated down-valley 
(0) Truncation at an open entrance, or where daylight is visible, or where there is a strong draught 

(C) Truncated passage is closed by a boulder choke or sediment fill 
RJ Rejuvenation during Holocene interglacial 

RC Relict Cave (all other caves are combination caves) 
RV Contains relict vadose passage 

Truncation of phreatic loops occurs primarily at the down-valley and rising ends of the caves, although 

there are three cases of truncation near the middle. In no case does a major truncation occur at the up- 

valley and descending end of a cave, although some shortening of upper (and lower) entrance passages 

by glacial ice is suspected, e. g. at Pustehola (Elgfjell, Z4). The best example of a half-loop cave is 

Toerfielihola (Z3; Figure B1.3). This has six tiered phreatic passages at the down-valley end of the cave 

(including the lowest, sump, level) that are all choked near the start of their rising limbs. These passage 
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terminations lie up to 50m directly beneath a dry valley floor that is littered with scree and huge talus 

slopes (Appendix D3.3; Photo D3.5). 

In both cases of a presently-open and a presently-closed incomplete phreatic loop, it might be considered 

feasible that truncation could have been produced by large-scale glacial valley deepening or widening, 

after formation of the passage. Open entrances that emerge at a steep slope (as is commonly the case), of 

that were enlarged by marine activity, might survive without a significant blockage. However, another 

possibility is that such phreatic passages only developed as incomplete half-loops, when the cave 

hydrology was integrated with that of an ice-dammed lake and the remnant icesheet, as discussed in 

section 8.6 and illustrated in Figures 9. la, b, e and f. For both possibilities, any continuing `passages' are 

now `virtual', having been removed: glacial truncation removing the limestone containing rising limbs of 

passages, and the falling limbs of any Röthlisberger conduits disappearing with the melting away of the 

ice sheet. 

In the case of Toerfjellbola, at least, the possibility that complete phreatic loops developed before being 

removed by glacial erosion seems very unlikely on two counts. Firstly, there is no indication that the 

limestone outcrop continued in the required direction, and secondly, if the valley floor was much higher 

than at present, then the lowest level passage formed at a distance greater than 50m from the surface, 

which would be exceptional for caves in VSK, and would violate the one-eighth relationship. Thus, 

considering also the discussion about the large Tverrfjell IDL in Appendix D3, it seems likely that the 

phreatic half-loop passages developed to their present sizes under one or more westward-flowing IDLS. 

Similar arguments also apply to those other caves in Table 9.1 that have incomplete phreatic loops. For 

example, Kvitfjellgrotta (Z4) is located at CL=S above a waterfall, 200m above an orthogonal valley 

floor (Photo C2.4). It would surely have been eroded away synchronously with valley deepening if it 

existed before the valley was formed. Hence, the degree of symmetry of phreatic loops in the study area 

caves is approximately inversely-related to the slope of the surface above the cave, at the time of passage 

enlargement. This constraint does not follow directly from the one-eighth relationship, because it is 

possible to envisage almost symmetrical phreatic loops that could be both steeply inclined at each end 

and yet bound within a fixed distance to a steep external surface slope. These do not occur, because the 

direct fracture length from the base of each loop to a steeply sloping surface is always less than the path 

length of a steeply rising set of fractures up to the surface, and breakthrough and enlargement occur at 

the shorter inception fracture first. 

The common lack of vadose entrenchment of the down-valley ends of phreatic loop passages (section 

9.2.4) also confirms that a sudden collapse in the level of the IDL was the normal outcome, rather than a 

gradual lowering, which would have permitted vadose flows through each tiered passage in sequence. 

This reasoning supports the idea that the large talus slopes that block the rising passage limbs in 
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Toerfjellhola (Photo D3.5) were carried there by the jökulhlaups from the backward-flowing IDL east of 
Jordhulefjell (Appendix D3.3), and that they did not simply arise from glacial erosion. 

Symmetrical and asymmetrical loops can each occur in any karst type, with any slope relationship, any 

orientation, and in any cave location. (However, the few loops truncated in the middle only occur with 

CL=P, G or S). This is not surprising, because the cave location is assigned to the location of the highest 

cave entrance, at the up-valley end. In the case of the longer, more complex, caves, the topography at the 

down-valley end of the cave can be quite different. Indeed, the caves in Table 9.1 with asymmetrical 

phreatic loops ('F') all have down-valley ends at CL=W or F, which commonly differ from the cave 

locations at the upper ends of the caves. On the other hand, the caves with symmetrical loops ('A') tend 

to have both ends in similar cave locations. 

These observations expand the hypothesis in section 7.1, that the (external) evolution of an epigean 

central Scandinavian cave is integrated with the geomorphological evolution of its locality. It is now 

clear that the pre-existing local topography exerts a great influence on the development of the internal 

cave morphology as well. Thus, in order to understand the internal cave development processes, 

including the symmetry of phreatic loops, it is necessary to consider each cave and its local 

geomorphology individually. 

9.8 Multi-cycle caves 
Section 9.2.4 deduced that most caves in the study area developed to their present size only during the 

last glacial cycle: single-cycle caves. That is, inception fractures created during seismic activity at the 

Weichselian deglaciation (possibly reinforcing those produced during the Saalian and earlier 

deglaciations) were mainly enlarged under IDLs during the Weichselian deglaciation, to create the 

present relict phreatic passages of the relict and combination caves. This development was followed by 

vadose entrenchment of the lowest phreatic passages in combination caves during the Holocene, and the 

vadose exploitation of other, low-level, fractures throughout the Holocene in both combination caves and 

mainly vadose caves. This section considers possible examples of present caves that still contain 

passages that were developed to explorable sizes during the Saalian deglaciation and Eemian interglacial 

or earlier: multi-cycle caves. 

9.8.1 Diagnostics for multi-cycle caves 

As discussed earlier in this thesis, there are several possible attributes of the caves that may be used to 

determine constraints on development timescales. The most obvious is the direct dating of internal cave 

chemical, clastic, marine and animal deposits, as a passage must be in existence prior to such material 

being deposited. This method has been applied in a few study area caves (Appendices A5 and B2.9- 

B2.12), but the extreme rarity of substantial stalagmitic material has limited its usefulness. Similarly, 

evidence of dissolution of pre-existing speleothem could indicate a return to phreatic conditions after an 
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interglacial or interstadial growth phase, but few such reports are known. Indeed, the rarity of large 

speleothems and flowstones (Appendix B2.9) is itself indicative of the immaturity of most of the caves, 

as large speleothems take time to grow, and only large speleothems could have survived the large 

deglacial floods at the end of the Weichselian and earlier glaciations. Thus, the great majority of small 

stalagmites and stalactites (that commonly reach only 30cm in length) grew entirely during the Holocene. 

Other diagnostic indicators are geomorphological, which may be interpreted to provide evidence of the 

sequence of cave development. Thus, large relict vadose (RV) passages could indicate their development 

during the Eemian (or an earlier) interglacial, especially if clearly accompanied by subsequent phreatic, 

paragenetic, or vadose enlargement. The best example in the study area may be the Upper Galleries in 

ßyfjellgrotta (Z5), but these have not been studied by the author. Discordant upper vadose levels or 

hanging potholes (section 3.2.1) above active streamways would suggest entrenchment in an earlier 

interglacial, as occurs at Sirijordgrotta (Z4; Appendix B2.7; Photo B2.1). However, the absence of large 

RV passages does not deny the possibility that phreatic passages enlarged during the Saalian (or an 

earlier) deglaciation, as such caves may have remained relict during some succeeding interglacials. 

Paragenetic enlargement of roof-tubes in phreatic passages is more difficult to interpret in terms of whole 

glacial cycles. Entrance passage truncation at either end of a cave may be related to the glacial erosion of 

the surface, if this is known or can be deduced. As considered in section 8.8.3, the enlargement of cave 

entrances that lie above the deglaciation marine limit must indicate Mid or pre-Weichselian passage 

formation, especially if the entrance is extremely tall. Isacsson (1999) pointed out that varved clay on 

fallen blocks indicates a glaciation subsequent to deglacial seismicity. Finally, the dimensions of a cave 

may be diagnostic of age. For example, the larger is the cross-section of a phreatic passage, then the 

longer it took to form by dissolution in unsaturated conditions. It follows that older, higher, phreatic 

passages, which experienced dissolution beneath more deglacial IDLs than younger, lower, passages in a 

cave, should be larger, if they had not subsequently become sealed at one end. Thus, in multi-cycle caves, 

phreatic passage diameters should commonly increase upwards (section 7.3). Deep caves may exploit 

tectonic inception fractures created by several deglacial seismic events. Long and deep caves of great 

complexity may have experienced more development episodes, and therefore be older, than simpler 

caves. However, as discussed for the TDMO model, tiered passages may develop synchronously, and 

thus create complex caves even during a single glacial cycle. 

9.8.2 Multi-cycle candidates 
Table 9.2 lists study area caves that are potential candidates as multi-cycle caves, by utilising the various 

diagnostic strands of evidence discussed in section 9.8.1. Detailed studies would be required at each 

individual cave before firmer conclusions could be reached. Two Bridges Cave (Z2), Sarvejaellagrotta 

(Z4) and f yiiskjeleren (Z5) are relict caves. All the others are combination caves. 
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Table 91 Multi-cycle candidates 
CAVE ZI RI T G C C VR Evidence `Age' 

S L T m 
101111 

Klausmark Z2 1 0 E R h 50 - Re-dissolved ̀Twiglet' speleothems? Sealed Saalian 
System H `Twiggy Passage' may predate lower levels and degi. 

* upstream cave 
Two Bridges Z2 11 01 K h 36 Cross-sections increase upwards Saalian 
Cave de 1. 
Tourist Cave Z2 11 01 E G g 20 Possible RV passage beyond streamway Saalian 

del. 
eptune's Z2 1 0 E h 33 Cross-sections increase upwards Saalian 

Cave del. 
Toerfjellhola Z3 0 0 K R h 101 Union and other Passages may be partly RV. Pre- 

Lower Entrance passages may predate most of Elsterian 
cave. Some cross-sections increase upwards. ? 
(Appendix D5.2) 

Oyiskjeleren Z4 0 0 H S f 15 Marine enlargement of phreatic entrance at end of Saalian 
Eemian de I. 

Sirijord- Z4 0 0 H G h 78 Arctic Passage probably led to Holstein Elsterian 
grotty interglacial outlet. XS increase upwards. degl. 

Stalagmite date c. 128ka BP (Lauritzen and Saalian 
St. Pierre, 1982). Main Entrance = Eemian outlet del. 

Eiteridal Z4 0 0 H G b 4 Entrance at similar altitude to Sirijordgrotta Main Saalian 
Res. Cave Entrance: probably also active in Eemian de i. 
HApgrotta Z4 0 0 L G h 20 Possible rejuvenation below older `Safe Saalian 

Entrance'. Cross-section increases upwards. del. 

Brown Stains Z4 0 0 L g 34 Cross-sections increase upwards Saalian 
Cave del. 
Sarvenvirtoe Z4 0 0 L R g 24 Cross-sections increase upwards Saalian 
bullet del. 
Gevirgrotta Z4 0 0 L R h 27 RV passages at 2 levels (section 9.3): Elsterian 

1. Upper Inlet Passage. degl. 
2. Tooms Revenge. Also, 12m headward erosion Saalian 
of steep cascades in Holocene. del. 

GAsvasstind- Z4 0 0 T R d 13 1Om passage diameter of relict phreatic passage, Saalian 
kola with breakdown. Dissolution beneath multiple degl.? 

IDLs, perh s during interstadials? 
arvejaella- Z4 0 0 L h 55 Possible valley lowering below previous `Joint Saalian 

rotten Entrance' resurgence. del. 
Jegerhullet Z4 0 0 L F h 34 Possible valley lowering below presumed Saalian 

'Angel's Walk' resurgence, de 1. 
Etasjegrotta Z4 0 0 L F h 42 XS do not increase upwards. (Appendix D5.5) Weichsel 
system de I.? 
Rockbridge Z4 0 0 L F f 27 Invasjonsgrotta is primarily relict, but probable Saalian 
System Eemian flow route of the Jordbruely (Appendix degl. 

D5.5) 
Anastomose- Z4 0 0 L F e 20 High level route may be Eemian flow route Saalian 

rotte de l.? 
ßyfjellgrotta Z5 0 0 H h 105 Marine enlargement upwards of phreatic entrance Elsterian 

at end of Eemian. Large RV `Upper Galleries' degi. 

were therefore entrenched one cycle earlier, 
during Holstein interglacial. 

Geitklauv- Z5 0 0 H G h 16 Truncation of `Wasp Nest Passage' by valley Saalian 
grotty widening. Two stages of phreatic enlargement at degl. 

Split Arch (Photo D1.29). Eemian marine 
enlargement of Lilleelvgrotta. Large diameters. 

Blifjellgrotta Z5 0 0 1 T R h 31 Possible valley lowering below relict `Bold Step Saalian 
1 1 Chamber' resurgence. de 1. 

Ytterlibullet ZA 0 0 S S d 180 RV `Inlet Passage'. I Om entrenchment and 14m Saalian 
headward erosion of waterfalls in Lower Stream degl. 
Passa e. 
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Grenndals- 
rotta 

ZA 0 0 K S g 70 RV `Over etasjen'. Large diameter. Stalagmite 
date 148-91 ka BP (Lauritzen & Gascoyne, 1980). 

Saalfan 
de 1. 

Sotsbäck- KU 0 1 L P h 110 Surface lowering below 3 separate but presumed Saalfan 
rottan contemporaneous relict resurgences. de 1. 

Korall- KL 0 1 L F h 144 Flowstone dated between 127-140ka BP Elsterian 
grottan (Sundqvist, 2002). Presumed Eemian rising at degl. 

Ingangsdolinen. Cross-sections increase upwards. 
Varved clay on some fallen blocks among clean 
blocks (Isacsson, 1999), who thought that the cave 
reached its present size c. I Ma BP. 

Enlarged entrance(s) indicate at least pre-Holocene enlargement of phreatic passages. 

The occurrence frequencies of caves in this list are much higher for CL=R and S, and lower for CL=F 

and P, than for the full set of caves. This bias probably follows the tendency of type h caves (section 

5.3.4) and the 12 longest and the 12 deepest caves (section 5.3.6) to occur preferentially in steeper 

topography. This is where seismic shocks were amplified (section 6.5.3) and where interglacial hydraulic 

gradients are comparable with those investigated in quarries with rapidly-forming dolines (Gunn and 

Gagen, 1987; section 3.1.14). It is also concluded that glacial erosion was highest in valley bottoms, so 

that multi-cycle caves were less likely to remain there. Indeed, it is the half-cycle mainly vadose caves 

that are concentrated at CL=F (Table 5.27). Additionally, downward and outward glacial erosion at 

ridges and valley shoulders appears to have been small enough to permit the survival of at least some of 

their pre-existing passages. Taking the assumed valley floor lowerings at Sirijordgrotta (Z4) of 40m and 

30m in the Saalian and Weichselian glaciations as being typical for large N-S aligned glacial valleys in 

the study area (section 7.1), it is assumed that valley wall retreat rates per glaciation decreased upwards 

from these maximum values. 

The `Age' column in Table 9.2 indicates a minimum age for the first deglacial enlargement of the oldest 

surviving passages. These are commonly centrally-situated relict phreatic passages closest to the surface. 

Their first tectonic fractures may have been created at a deglaciation previous to the period indicated. All 

these caves probably connected previously to even older passages that were at higher levels relative to 

basement rocks, but which were since eroded away. However, the majority of the enlargement of most 

remaining relict passages probably occurred under IDLs during the Weichselian deglaciation. Most 

active passages achieved most of their enlargement during the Holocene. Despite the dimensions and 

complexity of Labyrintgrottan (ZC), there is presently insufficient evidence to confirm that its existing 

passages developed prior to the Weichselian. The CT column in Table 9.2 shows that the multi-cycle 

candidates comprise the more complex cave types (d-h), which commonly form the longer caves. There 

may therefore be a rough proportionality between the length of a cave and its age. 

Trevor Faulkner Page 282 June 2005 



Cave Inception and Development in Metacarbonate Rocks: Chapter 9- Internal Model 

9.9 The dynamic internal cave development model 

This Chapter has now described the dynamic TDMO model of internal cave development. This shows 

that, in the most complete cases, karst caves primarily developed downwards by enlarging inception 

fractures during alternate periods of sub-IDL phreatic development and interglacial primarily vadose 

development. The basic principle of the model applies to dissolutional caves in all metamorphic karst 

types, in all glacial situations, and in all cave locations, everywhere in the study area, for all time since 

the onset of the late Tertiary glaciations. There is no evidence that any remaining cave passages 

developed in the Tertiary and were later truncated by Pleistocene glaciations. Reasonable estimates can 

be made that allow the development of the local topography and the internal structure of a cave to be 

deduced, and fitted within the timescales of at least the last few glacial cycles. It should not now be 

necessary to await the dating of internal sediments, if available. Instead, such fortuitous datings can be 

considered as a check on the scheme derived, rather than as a start-point. 

Each cave is involved in a `race' to develop deeper, before surface erosion (mainly) during glaciation 

removes its upper levels. The `half-cycle' mainly vadose caves started this race sometime during the 

Holocene. They may be the last of a generation of palaeocaves in the sky that once existed at higher 

levels in the same limestone outcrops, but which lost the `race', having been eroded away before the end 

of the Weichselian glaciation. Most of the relict (phreatic) and combination (phreatic and vadose) caves 

of the area have survived so far for just a `single-cycle', with their uppermost relict phreatic passages 

enlarging to their present size during the Weichselian glaciation and deglaciation. Again, there may be 

lost generations of palaeocaves that were once situated above them. The rarity of significant karst cave 

passages that survived from the Eemian interglacial is in agreement with the extreme rarity of karrt caves 

in the GS=G or H glacial situations that have very tall entrances, as only ßyrjjellgrotta (Z5) is known. In 

just a few cases, as postulated in Table 9.2, some present caves can be shown to have survived for more 

than a single glacial cycle, but in only four cases is it likely that the oldest existing passages experienced 

three major deglaciations. This is in contrast to some caves farther north in Norway, which contain 

passages that may be over 1Ma old, from stalagmite dating (Appendix A5.3). The probable explanation 

for the relatively younger age of the oldest passages in the study area is twofold. The area occupies a 

saddle position between the higher mountains of northern and southern Norway (section 2.3.3). The 

relief is less dramatic, and hence inception fractures and enlarged cave passages penetrate less deeply, 

based on the one-eighth relationship. However, the area is also subject to higher glacial erosion, and thus 

the older pre-existing passages have been removed, both absolutely and proportionately, to greater depths 

than farther north, restricting the age range. 

Although it is hypothesised that the TDMO model of development applied throughout the Mio-Plio- 

Pleistocene glaciations, because the Holocene is apparently the longest-lasting of the most recent five 

interglacials (Figure 2.4), and may indeed be the longest-lasting interglacial since the Mid Pleistocene 

Revolution, the extent of vadose entrenchment in previous interglacials must have been less than is 
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witnessed in the present active caves. This may go a long way to explain the rarity of large relict vadcse 

passages in the upper levels of the explored caves. It probably also means that the occurrence of, and all 

the dimensions of, the present caves are greater than for any previous Quaternary interglacial. _2An 

additional consideration is that, according to the one-eighth relationship, the depth of inception fractum 

has increased with the repeated deepening of each glaciated valley (section 7.3), again leading to the 

conclusion that the present set of caves is deeper, on average, than during any earlier interglacial. Tbus, 

the present caves are larger in every way than those that could be visited in previous interglacials, and 

may consist of proportionately more vadose enlargement than has occurred at any time since the Mid 

Pleistocene Revolution. 

In the warmer climates before the advent of the late Tertiary glaciations, speleogenesis beneath ice- 

dammed lakes was not possible, and so the karst caves of Scandinavia were then all mainly vadose in 

character. Seismic and non-seismic tectonics was not driven by rapid postglacial uplifts, but by more 

deep-seated and long term processes. Inception fractures probably penetrated less deeply. On the other 

hand, the evolution of karst caves would have been in tune with the reduced erosion of a more and 

landscape, but over much longer periods of time. The result may have been that dendritic mainly vadose 

caves of cave types a, b, c, and d developed as relatively superficial narrow canyons with sporadic 

phreatic sections, which were able to entrench below the fracture depth where the topography was 

favourable. In time, steady-state conditions may have been reached, where the rate of entrenchment kept 

pace with the rate of surface lowering, so that streamways became deep unroofed grykes in their upper 

parts. 

Five important study area karst systems are analysed with respect to the four models of cave development 

in Appendix D5. These studies show that a single set of inter-related processes can be used to explain 

cave existence in the central Scandinavian Caledonides. The strength of the explanation is confirmed 

because a history of cave development consistent with the gathered evidence is derived in each case, 

without needing to go beyond the proposed concepts. Chapter 10 illustrates how the same models, with 

some local extensions, explain karst development in the other Caledonide terranes. 
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CHAPTER 10 THE CALEDONIDE MODEL 

Chapters 5-9 established the various models that describe the inception, development and removal of 

caves in the previously-glaciated metalimestones of central Scandinavia. This Chapter explores the extent 

to which these models also apply to karsts within the other glaciated terranes of the Caledonides (Figure 

A1.1). It is beyond the scope of this thesis to examine these regions to the same level of detail as 

undertaken in the main study area. They are therefore discussed more briefly in Appendix D6, by 

considering specific examples known to the author, by sampling on a selective basis, and by literature 

review. The aim is to establish if there is a prima facie case that cave existence in these other areas 

follows the processes already proposed for central Scandinavia, and to develop a more general model for 

cave development throughout the metacarbonates of the whole Caledonide system. 

10.1 Scandinavia 

Appendix D6.1.1 reviews the caves in the valley of GrätAdal and provides a preliminary discussion about 

four major cave systems in other parts of northern Scandinavia. Although the subsurface cave distances 

of the caves of Grätadal lie within the one-eighth relationship (section 6.5.2), the mean cave dimensions 

are much greater than those of the main study area. The larger mean vertical range is accounted for by the 

greater tectonism visible in the valley, which probably arises from its considerable depth, and the much 

greater passage sizes are caused by enhanced recharge from permanent glaciers, especially in the active 

caves. It is therefore concluded that the caves in Gratädal developed over the same timescales and glacial 

cycles as the caves in the main study area, but that post-glacial phreatic enlargement of relict caves 

persisted for longer, giving them a somewhat larger size. Holocene vadose entrenchment was much more 

vigorous, creating the very large stream passages that exist today. The roofs of many previous sumps 

were also raised above water level by a combination of chemical and strong mechanical erosion, and 

resurgence sumps were lowered by the faster down-cutting of the external pocket valleys, to create more 

caves of the `late interglacial' stage of the TDMO model (Figure 9.1 i). There may have been no remnant 

glaciers during the previous interglacial, because of an elevated temperature during the Eemian, so that 

glacial recharge enhanced vadose enlargement did not then occur. This could explain why, although 

relict vadose passages of possible Eemian age occur in Grätadal, they are not particularly large. 

A contrast can be made between the rather long and deep caves in GratAdal, and the plateau of Glomfjell, 

which lies just l5km to the west. Glomfjell comprises some 200km2 of high-grade metalimestones, also 

of the Beiarn Nappe (but with commonly a low-angle foliation). However, the caves there only reach c. 

500m in length and 50m in depth, and much less in subsurface cave distance (e. g. Corbel, 1953; St. 

Pierre, 1984). The likely reason is that the plateau setting, with distant, isolated, peaks at c. 1100m above 

lakes at c. 500m did not provide the conditions for the large deglacial seismic shocks experienced in 

GratAdal, despite the area being surrounded by high neotectonic activity (Figure 6.1). Additionally, the 

lateral extent of the limestone does not reach beyond the plateau itself, and hence does not encounter the 
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lower valley sides towards Glomfjord, which might otherwise have acted as discharge points. The longer 

caves appear to be mainly vadose in character, and therefore to have formed within the Holocene. The 

short relict phreatic caves probably formed beneath an active IDL during Weichselian deglaciation, after 

Weichselian glacial erosion towards Glomfjord removed most pre-existing karst systems. 

The inception and evolution during successive glacials and interglacials of three of the four major 

systems discussed in Appendix D6.1.1 have yet to be analysed in more detail by any authors. From these 

brief observations, and from the limited study of the caves in GrAtidal, there seems no reason to suppose 

that most of the caves in northern Scandinavia in amphibolite grade VSK or ASK have not developed 

according to the conceptual models proposed for the main study area. Some suitable local interpretations 

may be required, such as enhanced vadose entrenchment for systems that still experience recharge from 

glaciers and permanent snowfields. 

However, at least three deep caves in northern Norway dramatically breach the proposed one-eighth 

relationship. Two of these (Tjoarvekrajgge and the Okshola / Kristihola system) are rather similar, as 

they occur in only medium metamorphic grade low angle karsts, and they both form maze networks of 

great total length and significant depth. The deepest cave in central Scandinavia (Ytterlihullet, ZA; 

180m deep) has also formed in low angle karst (although it is in high-grade metalimestone and still 

follows the one-eighth relationship). Thus, it seems likely that endokarst formation in low angle marbles 

is more likely to favour fractures that are aligned with the foliation, and can thus carry water to deep 

outlets, if the local topography is (stochastically) beneficial. In these cases, the fractures act more like the 

inception horizons of sedimentary limestones, so that chemical inception may become more important 

than tectonic inception, especially if the limestone is less-highly metamorphosed. 

The case of the Greftkjelen / Greftsprekka system is entirely different, because it is formed in 

complexly-folded marbles of high metamorphic grade. Here, inception does seem to be tectonic, with the 

synclinal / anticlinal folding enhancing the formation of deep, probably open, joints. It is suggested here 

that the prime tectonic activity that opened these joints may not be related to the deglacial seismicity that 

is caused by rapid uplift. Rather, it may be caused by much longer-timescale, possibly aseismic, 

processes, such as the general uplift of the Scandinavian landmass, or the spreading of the Atlantic 

Ocean. Thus, with a completely different process involved, the one-eighth relationship does not apply, 

and such a mechanism may also contribute to the depths ofTjoarvekrajgge and Okshola / Kristihola. 

The dimensions of the largest northern caves are much greater than those in central Scandinavia, and so 

(probably) are the mean dimensions of all these caves. The likely reason is the significantly greater 

seismic activity north of Ranafjord (Figure 6.1). Increased frequency and magnitude of neotectonic and 

postglacial earthquakes means that the one-eighth `limit' can be approached more closely in more areas, 

so increasing the overall lengths and densities of inception fractures, thereby providing larger 

frameworks in which individual cave systems can develop. In particular, the deepest and longest caves 
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briefly discussed above all lie within regions of greatest neotectonic activity. Because the mountains are 

higher, it is also likely that caves enlarged beneath deglacial IDLs for longer periods of time, resulting in 

larger cross-sections. The author also has the impression that there are proportionately more multi-cycle 

caves in northern Scandinavia, as supported by the greater ages of some dated speleothems (up to 800ka: 

Table A5.1). These may survive because reduced glacial erosion away from the central `saddle' area 

(section 2.3.3) preferentially allowed older, higher, passages to remain farther north. However, Lund and 

Eraso (1989) remarked that the karst in Glomdalen is (also) shallow, depths mostly being 40-50m. 

The discussion about marine limits (sections 8.1.2 and 8.1.3) also applies to northern Norway. The map 

by Sorensen et al. (1987) shows that the YD isostatic uplifts at various karst areas are as follows (south- 

north): Burfjell, Il0m; Revassdal, 150m; Dunderlandsdal, 180m; Saltdal, 170m; Fauske, 140m; 

Hellemofjord, 140m. Thus, many local caves below these altitudes potentially have entrances enlarged by 

marine action. The large (c. I Om high) Resakjelen entrance to Setergrotta in Revassdal, at an altitude of 

100m, probably formed at a time of rising sea level at the end of the Eemian, in the manner described in 

section 8.1.3, with further enlargement during deglaciation. The two huge tapering entrances of Okshola 

and Kristihola at 160m altitude (commonly dry with large boulders on their floors) have almost certainly 

been enlarged by marine activity. They were probably above the reach of storm levels when the sea 

invaded after the start of the Holocene, because the YD isobase in this area is at about 145m. However, 

both are good candidates for enlargement upwards by a rising sea level at the end of the Eemian. 

The conclusion to be drawn from the overview of karrt caves in southern Scandinavia (Appendix D6.1.3) 

is that there is nothing remarkable about them, when compared to the caves in central Scandinavia, 

despite the poorer quality of the information used. It thus seems reasonable to assume that their cave 

inception and development followed the same processes described for the main study area. The data also 

hint that, as well as the maximum subsurface cave distance being determined by the depth of the local 

valley, the mean length and depth of caves may be similarly influenced. 

10.2 New England 

The marble caves of New England (Appendix D6.2.3) are commonly contained within small lenses of 

merokarst with low angles of foliation, giving their surveys a different appearance to those of many caves 

in north central Norway. The Quaternary glacial history is similar to that of Scandinavia and the area 

provides much evidence of deglacial IDLs. Deglacial seismicity is confirmed by the existence of many 

talus and fracture caves and by movements within the karst caves themselves, which are suggestive of 

tectonic inception. The mean lengths, cross-sections and volumes are rather smaller than in central 

Scandinavia, but the mean vertical range is comparable and subsurface cave distances consistently lie 

within the one-eighth relationship. There are proportionately less mainly-vadose caves, but they have 

larger cross-sections than the MV caves of the main study area, perhaps indicating a longer period of 

interglacial conditions. 
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Generally, it is concluded that the relict and combination caves are single-cycle caves. They commonly 

have less vertical complexity than those in central Scandinavia, and therefore do not contradict the 

principles of the TDMO model of cave development. The few mainly vadose caves are half-cycle cave% 

which enlarged to present dimensions after the Wisconsin deglaciation. 

10.3 British Isles 

In the British Isles, the Caledonide terranes comprise the Dalradian Supergroup in Scotland, Ireland and 

the isles of Shetland, which are described in Appendix D6.3. The geological setting in the three areas is 

remarkably similar to that of the Helgeland Nappe Complex in north central Norway, with many long 

linear outcrops of high metamorphic grade vertical or angled strike karst. The Pleistocene glaciations 

were probably less intense, especially at Shetland, and deglacial IDLs more short-lived. Evidence of 

deglacial seismicity is well reported but less widespread, with fewer reports of talus and fracture caves, 

for example. However, the author has always been successful when looking for signs of tectonic 

movement in the Scottish marble caves. 

Scotland (Appendix D6.3.1-D6.3.3) contains many karst caves in the Dalradian Supergroup, but, 

although the proportion in each hydrological cave class is similar to that in central Scandinavia, they 

have much smaller mean dimensions. It is concluded that all the relict, and probably most of the 

combination, caves are single-cycle caves. They commonly have less vertical complexity than those in 

central Scandinavia, and do not contradict the principles of the TDMO model of cave development. The 

mainly vadose caves are half-cycle caves, which enlarged to present dimensions in the Holocene. 

Because the caves east of the centre of the Devensian icesheets have smaller dimensions than those 

closer to the centre, it is surmised that the depths of caves and fractures formed below much thinner ice 

covers are always less than the maximum allowed by the one-eighth relationship, and that they were 

inundated by IDLs for shorter periods of time. 

Only 12 caves are recorded in the Irish Caledonides of NW Ireland and Connemara (Appendix D6.3.4), 

but there has been little systematic searching for caves there compared with Scandinavia, Scotland and 

New England. Despite the small sample size and the sparse written record, the approximated mean cave 

dimensions are of the same order as those in the Scottish Caledonides. It is therefore assumed that all the 

caves in the Irish Caledonides developed within a single glacial cycle, with any previously-existing 

higher passages being eroded away during the Devensian (and earlier) glaciations. It is likely that more 

caves wait to be found, and that the dimensional similarities with Scotland will be strengthened in future. 

The absence of endokarst on Shetland (Appendix D6.3.5) may seem paradoxical in the context of the 

metalimestones of the Caledonides. However, when the models of cave development that are proposed in 

this thesis are applied to Shetland, the reason becomes clear. An obvious difference with many karstic 

Caledonide terranes is that the relief on Shetland is very modest. The maximum elevation difference 
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between the floor and ridge of a limestone valley is only 250m. This means that, based on the one-eighth 

relationship, the absolute maximum depth of tectonically produced inception fractures is only some 30m, 

and in many settings, it is much less. Also, Shetland was partly overrun by ice from Scandinavia during 

the Devensian glaciation, before forming its own local ice cap, which was centred on ridges less than 

300m high (Flinn, 1967; Mykura, 1976). The Scandinavian icesheet was certainly 200m thick locally, 

because it completely overran the nearby Fair Isle. Thus, it appears that the maximum thickness of the ice 

on Shetland was only in the range 200-300m. This would only permit much lower intensity deglacial 

seismic shocks than in all the areas previously discussed, making the one-eighth relationship too 

generous for this setting (as in the eastern part of the Scottish Caledonides, and perhaps in Ireland). 

Another difference is that, unlike in most of the other glaciated Caledonide terranes, there are no raised 

beaches, and the sea level is presently rising at Shetland. Valleys are being inundated by the sea, to 

create inland waterways called `voes'. According to Mykura (1976), this submersion has been continuous 

during the Holocene, and the land has been depressed by 9m since 5500a BP. The reason is that Shetland 

lies in the forebulge area of both Scandinavia and Scotland, so that as these lands were depressed 

isostatically during each glaciation, Shetland, with a thinner icesheet, actually rose. The process was then 

reversed during interglacials, with Shetland falling as Scandinavia and Scotland both re-adjusted 

upwards. The effect of this interglacial depression of Shetland is to suppress seismicity in its immediate 

area and to close up any previously-formed fractures. The absence of neotectonic seismicity at the 

Shetland Platform was noted by Bungum (1989), and can be observed at those web sites that record 

present and historical earthquakes. Additionally, the smothering effect of the icesheets over Shetland 

during its enforced isostatic uplift also suppressed seismic activity (Johnston, 1987), as did the proximity 

of the sea around a relatively small island (c. f. section 8.1.10). Hence, Shetland did not experience the 

seismic activity necessary for the creation of inception fractures in metalimestones at any time during the 

last glaciation. It therefore could not enter the phreatic phase of passage enlargement, whatever ice- 

dammed lakes were created during deglaciation, and, except sporadically in the top 2m of the limestone, 

has not been able to develop any karst conduits during the Holocene. 

Mykura (1976) also reported the occurrence of offshore submerged platforms of probable earlier erosion 

surfaces at depths of 9,24,45 and 82m. These can be explained from the comment made in section 8.1.1 

that, as a trend, the crustal rocks of Scandinavia continued to rise relative to sea level during the 

Quaternary, as glacial and fluvial erosion reduced the weight on the mantle. As a consequence, Shetland 

continued to fall by at least 82m over the same timescale, from the above evidence. Thus, previous 

glacial and deglacial conditions at Shetland were the same as those observed for the Devensian. 

Consequently, karst caves probably never developed on Shetland during the Quaternary. 
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10.4 The Arctic region 
The Arctic Caledonides comprise Central East Greenland, North East Greenland, the Northern Greenly 

Fold Belt, Spitsbergen, and, for completeness, the small island of Bjerneya, as described in Appendix 

D6.4. Karst caves have only been reported in North East Greenland sedimentary limestones and In 

Spitsbergen in both sedimentary and metamorphic limestones. Palaeokarst caves are also reported from 

both areas, and Spitsbergen exhibits present thermal activity and hydrothermal karstification. 

There are three fundamental differences between the Arctic Caledonide environment and that of the other 

Caledonide areas discussed in this thesis. Firstly, the Proterozoic and early Palaeozoic carbonates 

commonly experienced less deformation and metamorphism during the Caledonide Orogeny in the Arctic 

terranes. This would allow greater fracturing, permeability and porosity to greater depths than in the 

amphibolite facies metalimestones of the HNC in north central Norway, for example. Thus, 

speleogenesis could be promoted more strongly in the Arctic, and any palaeokarst developed soon after 

deposition was more able to survive later tectonic events, as appears to be the case. 

Secondly, sedimentary deposits (including carbonates) that were subsequently laid down on the Arctic 

Caledonide rocks survived later glacial and fluvial erosion much better then elsewhere. This author 

conjectures that this is because glacial erosion is primarily concentrated during deglaciation. Thus, in the 

Arctic Caledonides, with their large icesheets and ice caps that persist during interglacials, paradoxically, 

there has been less glacial erosion. There was also little fluvial erosion in the late Pleistocene, because of 

permafrost during interglacials. The consequence of the cover sequences remaining above the Arctic 

Caledonide carbonates is that these lower rocks were shielded from further karst development (after 

forming the reported palaeokarsts), whereas the post-Devonian limestones could themselves contain 

caves. A corollary is that in areas where the upper parts of the Caledonide metalimestones have been 

eroded away, any pre-Caledonide palaeokarst there that was able to survive metamorphism has also been 

removed. This is demonstrated by the complete absence of reported palaeokarst at the surface in 

metalimestones in the other studied Caledonide areas (section 3.1.6). 

Thirdly, large-scale glaciations (which started at 7Ma in the Late Miocene in Greenland, according to 

Larsen et al., 1994) and a permafrost polar climate have continued into the Holocene. The muffling 

effect of the present and previous icesheet and ice caps probably reduced the deglacial seismicity, thus 

impeding tectonic inception in the higher-grade metalimestones, reducing karstification in at least those 

rocks. Permafrost prevents the interglacial vadose entrenchment that forms combination and mainly 

vadose caves elsewhere. This is demonstrated because there are no recorded vadose passages anywhere 

in the Arctic Caledonides, except in NE Greenland paleokarsts, which were formed in tropical 

conditions. Cuffey and Marshall (2000) deduced that a greatly-reduced Greenland Ice Sheet contributed 

more than 4m to sea level rise during the Eemian, because of the generally warmer global climate. Thus, 

more carbonate outcrops may have been exposed beyond the local ice caps than at present, and the 
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permafrost may have been thinner. However, the absence of vadose passages in both Greenland and 

Spitsbergen suggests that, even during the Eemian, there was little fluvial activity. 

In Spitsbergen, there is the additional major factor of hydrothermal karstification. Because of all the 

above differences, it is inappropriate to expect the caves and karsts of the Arctic Caledonides commonly 

to fit the models derived in this thesis: cave inception and development in East Greenland and in the 

Svalbard archipelago need to be addressed from first principles. The large phreatic passages at three 

levels in the valley walls near Grottedalen, NE Greenland pose interesting questions. Did they form 

successively, following the erosion of the valley floor downwards? Did they form concurrently along 

deep inception horizons during either a warmer, earlier, perhaps interglacial, Pleistocene climate? Or did 

they form whilst submerged beneath early Pleistocene deglacial ice-dammed lakes? (The enlarged size of 

the main entrance to Grotte des Quatre may be explained by IDL, instead of marine, enlargement). A 

fuller study of the geomorphological evolution of this area under the influence of glaciation, uplift, and 

seismic shocks is required before these questions can be satisfactorily answered. 

10.5 The general Caledonide model for cave development 

This section makes comparisons among the various karstic Caledonide terranes, and proposes a general 

model for their cave development. The data giving mean cave dimensions and internal attributes for each 

of the Scandinavian, Laurentian and British Caledonides are presented in Tables 10.1 and 10.2. Table 

10.3 summarises the observations about each area, together with deductions about applicable processes 

and controls. Table 10.4 summarises major cave dimensions for each non-Arctic Caledonide terrane and 

provides relevant glacial and geomorphological data. 

10.5.1 Applicability of the models 

The preceding sections showed that the four models derived in Chapters 6-9 to represent cave 

development in central Scandinavia can also be utilised in most other Caledonide terranes that contain 

metalimestones, with some additional processes being necessary in those areas with special geological 

and / or climatic characteristics. However, this does not apply in the Arctic Caledonides, which 

experienced a completely different glacial regime throughout the Pleistocene. 

The similarities in many mean cave dimensions and in the numbers of entrances, cave streams and sump 

pools per cave across all areas for each hydrological class suggest that similar processes have operated 

across all the non-Arctic Caledonide terranes (and not just across central Scandinavia: section 5.8.11), 

with two extra processes applying to northern Scandinavia, one process applying to Norway and perhaps 

to Ireland, and a null-process applying to Shetland. 
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Table 10.1 Caled onide Caves -h drol ical classes and ma jor dimensions 
CAVE CLASS 

and 

AREA 

No. 
of 

caves 
in 

class 

% 
of 

caves 
in 

class 

Total 
cave 

length 
in class 

m 

% of 
total 
cave 

length 
in class 

Mean 
cave 

length 

m 

Mean 
cave 
VR 

m 

Mean 
cave 
XS 

m2 

Mean 
cave 

volume 

m 

RELICT 
GrAtAdal 13 31 963 13 74 4.7 6.3 168 
C. Scandinavia 280 32 9437 13 34 5.9 3.1 131 
S. Scandinavia 11 23 117 3 11 5.7 2.0 18 
New England 81 53 1998 22 25 5.3 2.6 75 
Scotland 42 28 745 18 18 5.9 1.9 44 
Ireland 8 67 142 34 18 5.6 2.8 70 

RC TOTALS 435 34* 13401 13* 31 5.7 3.0 110 
COMBINATION 
GrAt6dal 14 33 4925 67 352 33.6 24.9 3372 
C. Scandinavia 360 41 58995 79 164 14.5 4.8 1020 
S. Scandinavia 16 34 3454 81 216 17.6 5.9 1902 
New England 52 34 6189 68 117 14.8 3.1 473 
Scotland 55 36 2736 64 50 8.9 2.8 175 
Ireland 4 33 276 66 69 12.5 5.1 314 

CC TOTALS 501 39* 76575 76* 153 14.5 5.0 959 

MAINLY VADOSE 
GrAtAdal 15 36 1474 20 98 10.2 8.8 808 
C. Scandinavia 244 28 6449 9 26 3.9 2.1 62 
S. Scandinavia 20 43 667 16 33 4.3 2.5 96 
New England 20 13 900 10 45 10.7 3.4 237 
Scotland 55 36 744 18 14 2.9 1.6 25 
Ireland 0 0 0 0 0 0.0 0.0 0 

MV TOTALS 354 27* 10234 10* 29 4.4 2.4 100 

ALL CLASSES 
GrAtddal 42 3.3* 7362 7.3* 175 16.3 13.4 1465 
C. Scandinavia 884 68.5* 74881 74.7* 85 8.8 3.5 474 

S. Scandinavia 47 3.6* 4238 4.2* 90 9.1 3.5 692 
New England 153 11.9* 9087 9.1* 59 9.3 2.9 234 
Scotland 152 11.8* 4225 4.2* 28 5.9 2.1 84 
Ireland 12 0.9* 418 0.4* 35 7.9 3.6 151 

GRAND TOTALS 1290 100 100211 100 78 8.8 3.6 437 
Values for areas with small samp le size nr Inwer nunlity data are. chnwn in italics. 

*% of alI caves 

10.5.2 Rankings of Caledonide terranes 

The rankings of maximum and mean cave length, maximum VR, and mean cave cross-section (Table 

10.4, columns 2,3,4 and 6) are in the same order for each of the five better-documented areas: northern 

Scandinavia (largest caves, using Grathdal as an example for mean cave dimensions); central 

Scandinavia; New England; Scotland; and Shetland (zero caves). Only the ranking of the mean cave VR 

(column 5) is slightly different, probably because the meticulous recording of small caves in central 

Scandinavia has reduced this value more than applies elsewhere. This uniformity in ranking of the major 

cave dimensions suggests that the differences between the five areas are greater than the differences 

within each of them, so that each area can be considered in its entirety in comparison with the others. 

This is in contrast to the zones within the main study area of central Scandinavia, where the absence of 
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ranking led to the conclusion in section 5.8.11 that not only had each zone experienced a similar history, 

but that there was uniformity in the effectiveness of the applicable processes. 

The placement of southern Scandinavia and Ireland within this scheme is more difficult, because their 

rankings vary much more for each measured parameter. This may be because, as already noted, the 

sample sizes are small and the data quality is poorer. Additionally, each of these two areas comprises 

several geographically-dispersed distinct regions, which would be better considered individually. 

However, if the quality of this data is improved in future, it is anticipated that these two areas will fit in 

the rank order shown in Table 10.4, with the mountainous Jotunheimen area ahead of the rest of southern 

Scandinavia, and Donegal ahead of Connemara in Ireland. 

Table 10.2 

CAVE CLASS 

and 
AREA 

No. 
of 

caves 

SE 
per 

cave 

RE 
per 
cave 

DE 
per 

cave 

Total 
entrances 
per cave 

CS 
per 

cave 

SP 
per 

cave 
RELICT 
GrAtAdal 13 1.62 1.62 
C. Scandinavia 280 1.41 1.41 
S. Scandinavia 11 1.27 1.27 
New England 81 1.16 1.16 
Scotland 42 1.21 1.21 
Ireland 8 1.13 1.13 

RC TOTALS 435 1.34 1.34 
COMBINATION 
GriltAdal 14 0.71 0.29 1.07 2.07 2.21 0.43 
C. Scandinavia 360 0.50 0.21 0.97 1.68 1.13 0.80 
S. Scandinavia 16 0.50 0.31 1.94 2.75 1.38 1.13 
New England 52 0.38 0.21 0.68 1.27 1.23 0.47 
Scotland 55 0.55 0.22 0.71 1.48 1.25 0.47 
Ireland 4 0.75 0.50 0.00 1.25 1.50 1.00 

CC TOTALS 501 0.50 0.22 0.93 1.66 1.20 0.73 
MAINLY VADOSE 
GrfltAdal 15 0.80 0.73 0.67 2.20 1.00 0.20 
C. Scandinavia 244 0.58 0.34 0.40 1.32 1.04 0.39 
S. Scandinavia 20 0.65 0.25 0.50 1.40 1.00 0.35 
New England 20 0.80 0.20 1.00 2.00 1.15 0.15 
Scotland 55 0.49 0.44 0.29 1.22 1.04 0.25 
Ireland 0 

MV TOTALS 354 0.59 0.36 0.43 1.39 1.04 0.34 

ALL CLASSES 
Gr$tAdal 42 0.52 0.36 1.10 1.98 1.10 0.21 
C. Scandinavia 884 0.36 0.18 0.95 1.50 0.75 0.43 
S. Scandinavia 47 0.45 0.21 1.17 1.83 0.89 0.53 
New En land 153 0.24 0.10 0.97 1.31 0.58 0.18 
Scotland 152 0.37 0.24 0.70 1.31 0.83 0.26 
Ireland 12 0.25 0.17 0.75 1.17 0.50 0.33 

GRAND TOTALS 1290 0.35 0.18 0.93 1.47 0.75 0.37 
Values for areas with small sample size or lower quality data are shown in italics. 

Caledonide Caves - hydrological classes, entrances, cave streams and sump pools 
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Table 10.3 Caledonide caves and karsts - major observations, processes and controls 
Caledonides Observations Processes and Controls 

Scandinavian 

-Northern Has the longest, deepest and largest caves, as Commonly, high local relief caused large 
exemplified in Grätädal. Mean cave deglacial seismic shocks. Exceptionally, very 
dimensions for the whole of northern deep tectonic movement violates the one- 
Scandinavia are unknown, but they are eighth relationship, as can also occur in 

probably greater than those of central extensive low angle karsts (which may utilise 
Scandinavia. inception horizons). Locally, recharge from 

permanent glaciers produced larger relict 
passages, greater vadose entrenchment and 
fewer sumps. Entrance enlargement below 

marine limits when isostatically depressed. 
-Central The main study area, as reported in Chapters The four `standard models' described in 

4-9. Chapters 6-9. Entrance enlargement below 

marine limits when isostatically depressed 
-Southern Less well studied, and small sample size. No Follows the 'standard models', with controls 

caves in VSK. None below marine limits. similar to those in central Scandinavia. 
Laurentian 

-New England Reduced cave dimensions (except VR) and Follows the ̀ standard models'. These may also 
proportionately more Relict and less MV apply to caves in metacarbonates of the 
caves compared with main study area. No Grenville-age Canadian Shield. 
caves in VSK. None below marine limits. 

-Newfoundland There are no metacarbonate outcrops in this Caledonide models do not apply, but could be 
terrane. considered for the sedimentary limestones of the 

Humber zone. 
British 

-Scotland Reduced cave dimensions, compared with Follows the `standard models', but with smaller 
main study area and New England. No caves phreatic enlargements under shorter-lived IDLs, 
in low angle karst, and none below marine and less vadose entrenchment from shorter 
limits. spring melts. The one-eighth relationship is too 

generous in the east, where the Devensian 
icesheet was not continuous. 

-Ireland Less well studied, and small sample size. Probably follows the `standard models'. 
Mean dimensions may be comparable with Unknown reason for apparent absence of MV 
Scotland. No MV caves. caves. Possible entrance enlargement. 

-Shetland There are metacarbonate outcrops in this Low relief, thin icesheets, and continual 
terrane, but no karst caves. interglacial isostatic depression has 

suppressed tectonic inception and always 
prevented cave formation. 

Arctic 

-CE Greenland There are metacarbonate outcrops in this Unknown, but may be similar to NE Greenland. 
terrane, but, as yet, no reports of karst caves. 

-NE Greenland 13 large relict phreatic caves and infilled Early post-depositional infilled palaeokarst 
palaeokarsts reported in low metamorphic protected by overlying sediments, even during 
grade low angle karsts. Universal (moderate) Caledonide tectonism. Early 
permafrost, and adjacent large-scale Pleistocene phreatic development, perhaps using 
glaciation. inception horizons and chemical inception. 

Permafrost during interglacials prevents vadose 

entrenchment. (Glaciation and deglaciation little 
studied). 

-N Greenland There are probably low-grade low angle Unknown, but may be similar to NE Greenland. 
karst metacarbonates in this terrane, but, as 

et, no reports of karst caves. 
-Spitsbergen Short relict phreatic caves in low angle karst, As NE Greenland, plus effects of hydrothermal 

infilled palaeokarst, universal permafrost, karstification. 
adjacent large-scale glaciation, and thermal 
s rin s reported. 

- Bjerneya There are low angle sedimentary limestones Unknown. 
in this terrane, but no reports of karrt caves. 

Processes and controls in bold are additional to the main processes that apply in central Scandinavia. 
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qrekIo tnd C9ledonide caves. alaciation_ unlift and local relief difference 

CALEDONIDE 
AREA 

Max. 
cave 

length 

Mean 
cave 

length 
(m) 

Max. 
cave 
VR 

m 

Mean 
cave 
VR 

m 

Mean 
cave 
XS 
m2 

Max. local 
icesheet 

thickness 
m 

Local 
Holocene 

uplift 
m 

Max. 
relief 
diff. 

m 

N. Scandinavia 17000 ? 580 ? ? 2000-3000 40-200 1655 

_ Grätßdal 175 16.3 13.4 2000 140 1174 
C. Scandinavia 5600 

D 

85 180 8.8 3.5 1800-2800 120-280 900 
New England 900 900 59 82 9.3 2.9 1500-2500 60-180 790 
S. Scandinavia 560 90 46 9.1 3.5 1200-2400 120-360 1200 
Scotland 340 28 48 5.9 2.1 1000 <=40 980 

Ireland 220 35 25 7.9 3.6 500? 15? >300 
Shetland 200-300 -9 250 

Values for areas with small sample size or lower quality data are shown in italics. 
Refer to earlier texts for references. 

10.5.3 Main control on karstification 

The prime conclusion of this thesis is that the main control on the extent of karstification in the 

non-Arctic Caledonides is the weight of each of the various Pleistocene icesheets, for which the 

thickness of the local icesheet at the Weichselian LGM can be taken as a proxy. 

The weight of the icesheets caused isostatic depression, and therefore the previous thickness determined 

the amount of postglacial uplift. The greater this was, the faster was the initial acceleration of the uplift, 

by Hooke's Law. This, in combination with the change of local relief (valley bottom to ridge top), 

determined the magnitude of local deglacial earthquakes. These in turn controlled the density and the 

depth of tectonic inception fractures that were wide enough to permit breakthrough and enlargement to 

explorable cave passages within the timescales of the various hydrological regimes that the karst 

subsequently experienced. Hence, because the Pleistocene glacial-interglacial cycles were globally 

synchronous, these timescales were approximately the same for all Caledonide terranes, and total 

explorable cave lengths and vertical ranges are direct functions of previous local icesheet thicknesses. A 

supplementary mechanism for phreatic enlargement related to icesheet thickness is that the more ice 

there was to melt at the end of each glaciation, the longer caves and fractures remained submerged under 

ice-dammed lakes, and the more water flowed through them. Greater flows in turn caused a greater 

widening of cave passages, increasing their measured cross-section and permitting smaller conduits to 

enlarge to explorable size, so increasing the measured length of each cave. 

The final demonstration of these relationships is presented in Table 10.4, columns 7 and 8. These show 

that the ranges of both local icesheet thicknesses at the LGM and the local Holocene uplifts for the five 

better-documented areas follow ranking orders similar to those of the main cave dimensions. Column 9 

shows how the applicable maximum topographic relief differences also follow roughly the same trend. It 

is anticipated that a suitable index of seismicity for each area would give values in the same order. 

Shetland, the extreme end-member of the series, illustrates the case where deglaciation caused isostatic 
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depression. This suppressed seismic activity, prevented tectonic inception, and explains the complete 
lack of karst caves to be found there. 

The enigma of the Caledonide marble caves, which has puzzled Scandinavian geologists for over 

century, is resolved in this thesis and the key research objectives set in section 1.1 are now satisfied, Tip 

inception, development and destruction of the caves in metalimestones in the non-Arctic Caledonides eile 

explicable by the paradigm based on the five models developed in Chapters 6-10, which explain the cave 

attributes of the main study area described in Chapter 5. The succeeding sections of this Chapter 

reconsider the main conclusions, discuss outstanding Caledonide questions and propose how the 

Caledonide model can be extended to other karst areas. 

10.6 Main conclusions 

This section reviews the main conclusions against the thesis objectives and considers several other major 

research results. The other important, but less significant, findings arising from this project were 

discussed throughout Chapters 4-10, and are not repeated here. 

10.6.1 Variation of the extent of karstification 

Chapter 5 showed that there is no systematic variation of mean cave dimensions across the zones and 

nappes of the main study area of central Scandinavia, although later deductions suggest that this 

observation may need to be moderated for those caves in low angle karst, especially those that occur in 

the lower-grade Kali Nappes in the east of the area. These caves have maximum lengths and vertical 

ranges that exceed those predictable from the data about the caves in the high-grade and steeply-dipping 

HNC metalimestones in the major part of the area to the west. Their inception was more likely to be 

along fractures that are aligned with the foliation, making them more like caves in sedimentary 

limestones in this respect. 

Although a detailed study of variations with altitude and location was not undertaken for caves in the 

other Caledonide terranes, and would commonly be less reliable because of smaller sample sizes, it 

seems safe to assume that the larger of these areas also show no systematic internal variation. Only in 

Scotland is there a probable systematic geographical decline in cave dimensions, because of a reduction 

in the thickness of the relatively small Scottish icesheet from west to east. Hence, most Caledonide areas 

can be treated as coherent entities regarding the influence that their previous geological history had on 

cave development. Within the main study area and probably within other Caledonide areas the cave 

location and glacial situation (including situation east or west of a major ridge) were commonly more 

important influences on cave dimensions than other variables. On the other hand, important differences 

occur between the various terranes, and, as shown in section 10.5.2, cave dimensions can be usefully 

ranked by Caledonide terrane. This suggests that their geological histories, whilst being similar, were not 

identical in detail. 
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10.6.2 Processes 

It is hereby proposed that cave development in the metamorphic non-Arctic Caledonides commonly 

followed a four-stage process. Firstly, local seismic and aseismic tectonic movements that accompanied 

deglacial isostatic uplift, the retreating ice margin and ice-dammed lake jökulhlaups created inception 

fractures to depths that were commonly within one-eighth of the change of local relief. Secondly, the 

fractures were enlarged phreatically under contemporary and / or subsequent active ice-dammed lakes in 

aqueous conditions at very low temperatures and CO2 partial pressures without necessarily invoking the 

influence of strong acids (section 10.7.4). Thus, the caves themselves are the observable expression of 

deglacial tectonic activity. Phreatic enlargement occurred at high flow rates, when a proportion of c. 

80000km3 of glacial meltwater flowed from the study area into the sea at each major deglaciation. Cave 

dimensions are probably related to the size of the submerging IDL, because large IDLs inundate 

underlying fracture and conduit systems for longer periods of time. Thirdly, there was primarily vadose 

entrenchment at the lowest level of many caves during each ensuing interglacial at a maximum rate 

controlled by the size of the catchment area. Finally, at least the upper and outer parts of the caves were 

removed by glacial erosion during the next glaciation, but valley-deepening produced ever-deeper 

inception fractures at the first stage of the next cycle. An additional process for some caves below marine 

limits in Norway was the enlargement of entrances by marine activity when isostatically depressed. 

Put more simply, all cave passages developed from local inception fractures created primarily during 

deglaciation by seismic, aseismic and unloading processes. The relict phreatic passages and levels arose 

from deglacial speleogenesis beneath ice-dammed lakes. Vadose passages, including any presently- 

active phreatic sections, developed during interglacial speleogenesis. Depending on external topography, 

the phreatic deglacial and the vadose interglacial flow directions could oppose each other, especially if 

the cave was submerged by a backward-flowing IDL. 

Most combination caves, which developed in a Top-Down, Middle-Outwards (TDMO) sequence, are 

assumed to be single-cycle caves in this thesis. Relict caves (universally in the main study area and 

commonly also single-cycle caves) and relict passages (commonly) retain phreatic forms, because they 

exist in topographic locations that caused them to escape the vadose entrenchment phase. Mainly vadose 

caves achieved most of their enlargement during the interglacial that followed the demise of the ice- 

dammed lakes and the final disappearance of the valley glaciers, and are thus referred to as half-cycle 

caves. Those caves that developed passages too far from the surface to be removed by the subsequent 

glaciation became multi-cycle caves, with their oldest parts commonly occurring in central positions 

nearest the surface. However, the `cyclicity' of the remaining cave could change at each glaciation, as the 

surface lowered and cave development progressively took place at lower and lower levels above the 

basement in any metacarbonate outcrop. 
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The processes and models discussed in Chapters 6-9 provide an explanation for the relationships 

between caves, carbonate outcrops and topography listed in section 5.8. Because of the epigean nature of 

the caves, they may perhaps be described as epikarstic (section 3.1.8), but in this case it is an epikarst 

that can support a wide range of cave morphologies, without any passages lying in the deeper unfractured 

rock mass. The concept of a `watertable' has little validity in the metamorphic Caledonides, because 

water storage and flow is contained within discrete fractures, conduits and cave passages. Cave 

morphologies and other internal attributes (Appendix B2) are explained by the same processes, which act 

in concert with the local external geomorphological evolution and the effects of glacial and interglacial 

climatic and hydrological conditions. 

10.6.3 Commonality of processes across the Caledonides 
From the evidence presented in Appendix D6, there are many similar relationships among the caves of 

the various Caledonide areas for which databases were constructed. Thus, there certainly is a prima facie 

case that similar processes have operated in all the non-Arctic Caledonides. However, there are many 

examples of more complex caves in northern Scandinavia that probably experienced more than the 

`standard' processes, and certainly even more that developed over many glacial cycles. On the other 
hand, caves in all the other Caledonide areas tend to be simpler and smaller than those in central and 

northern Scandinavia, indicating less development stages over shorter timescales. Shetland provides an 

extreme example of thin icesheets, reverse isostasy, and negligible seismicity that contributed to a 

complete absence of endokarst. 

Whereas there is no reason to doubt that the four-stage process commonly applied to all parts of the non- 

Arctic Caledonides, there are several important subsidiary processes that appear to apply only in 

particular Caledonide terranes. The entrance areas of pre-existing caves could be modified by marine 

activity during both rising and falling sea levels, if below the applicable marine limit. This almost 

certainly applied near the coast of north central Norway, and probably applied in northern Norway 

(Appendix D6.1.1) and at one cave in Ireland (Appendix D6.3.4). Entrance enlargement by ice-wedging 

at ice-dammed lakes could apply at all non-Arctic terranes. Recharge from permanent interglacial 

glaciers can explain both larger relict phreatic passages and greater vadose entrenchment with fewer 

sumps, but only applied in northern Scandinavia. However, recharge from what are now perennial 

snowfields in central Scandinavia also contributed to the development of significant mainly vadose 

passages, as probably did the earlier initiation of interglacial vadose processes in New England (and 

perhaps in Scotland), with a consequential reduction in numbers of sumps. In northern Norway, a very 

deep, and probably very long-range, tectonic movement may have caused the one-eighth relationship to 

be exceeded, as did cave development in extensive low angle karsts. In the Arctic Caledonides, sediments 

overlying the Caledonide metacarbonates protected palaeokarstic caves, and interglacial permafrost 

prevented vadose entrenchment. Spitsbergen is the only Caledonide area that displays evidence of 

hydrothermal karstification. 
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10.6.4. Timescales 

As discussed in Chapter 9, the timescales of the various stages are commonly related to the Pleistocene 

glacial stages. Thus, mainly vadose caves primarily enlarged during the Holocene, combination caves 

commonly enlarged phreatically at the end of the Weichselian glaciation and experienced vadose 

entrenchment in the Holocene, and most relict caves only enlarged for a maximum period of c. 2000 cal. 

a during the last deglaciation. Those few combination caves in the main study area with relict vadose 

passages and / or obviously relict higher-level resurgence outlets are assumed to have developed their 

oldest existing passages during the deglaciation of the Saalian, or more rarely during the deglaciation of 

the Elsterian. It appears that, in central Scandinavia, only parts of Toerljellhola (Z3) may pre-date the 

Elsterian glaciation, despite noting that Isacsson (1999) suggested that the complex Korallgrottan (KL) 

was fully-formed at the end of the Pliocene (section 3.3.3). 

Development timescales for single- and half-cycle caves in the other areas are broadly comparable to 

those in central Scandinavia. It appears that only in northern Scandinavia are there multi-cycle caves with 

passages that originated at about the time of the Mid Pleistocene Revolution (1Ma). However, outside the 

Arctic Caledonides, there is no evidence that any cave passages have survived since before this time. 

10.6.5 Key parameters 
The discovery that mean cave dimensions in each of the main Caledonide areas fit universally into one 

ranked order led to the idea that there may be one key factor that determined the extent of endo- 

karstification in each place. This appears to be substantiated by the finding that the rankings of modelled 

LGM icesheet thicknesses and their consequent isostatic uplifts are in the same order. Thus, the prime 

parameter that determined the mean and maximum cave dimensions in each terrane was probably the 

weight of the recent Pleistocene icesheets, assumed to be represented by the thickness of the Weichselian 

ice at the LGM. Important subsidiary factors were glacial situation (especially west and east differences), 

cave location and the change of local relief (from ridge top to glacial-valley bottom), which also 

influenced the extent and magnitude of neotectonics. Less important factors were the proximity to thrusts 

and any contact metamorphism of the limestone. 

10.6.6 Non-fractal nature of phreatic passage sizes 

A counter-intuitive finding is that Caledonide phreatic cave passages have cross-sections with a positive 

mean value: they do not follow an exponential, fractal, distribution from a small number of explorable 

passages towards a large number of tiny conduits. The likely explanation is that the caves all followed 

the processes described in section 10.6.2 and kept in step with each other. Thus, after tectonic inception, 

all fractures were subjected to phreatic enlargement under IDLs for similar periods of time, giving a 

relatively small variation in the size achieved before they were drained. Similarly, those mainly vadose 

passages that retained phreatic sections throughout the Holocene experienced phreatic enlargement for 

the same period of about 10ka. Thus, although few caves of the Caledonide metalimestones achieve the 

larger dimensions associated with caves in sedimentary limestones, there are very few tight relict 
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passages or active sumps. This finding does not necessarily apply to vadose passages, where the 

hydraulic gradient can cause narrow stream canyons to form that are too tight to explore. 

10.6.7 Validity of previous theories 
As discussed in section 3.3, the previously-proposed timings of speleogenesis in Scandinavia have 

ranged over most conceivable possibilities, from the postglacial, proglacial, subglacial, interglacial and 

preglacial theories of earlier authors to the polygenetic ideas of Lauritzen (1984b) and a Miocene age 

proposed by Haugane and Grenlie (1988). These theories were all based on studies of the longer caves of 

northern Norway, without considering the significance of the short, superficial, caves and without the 

analysis of hydrological classes introduced in this thesis. In fact, elements of many of the early theories 

can now be seen to apply to particular situations that have been discussed herein (with suitable 

interpretations), but without providing a complete explanation. Thus, `postglacial' applies to the 

enlargement of mainly vadose caves in the Holocene and `proglacial' may be the analogue of phreatic 

enlargement of relict passages in relict caves and combination caves beneath ice-dammed lakes: the 

Corbel (1952a) opinion that caves in zone KL formed beneath glacial lakes is supported in this thesis 

(Appendix D2.4-D2.9). However, the concept that Scandinavian cave development was strongly 

influenced by a high calcite saturation concentration at low temperature (as assumed by Corbel and other 

authors) is rejected herein. This thesis assumes that, at the applicable large flow velocities, the water 

remained unsaturated (even, commonly, in interglacial conditions). Reaction kinetics dominated and 

conduits enlarged at maximum rates, even if the saturation concentration values remained low in almost 

pure water. 

The idea supported by Jakucs (1977, p121) that Scandinavian caves developed in periglacial conditions 

in the Holocene is unlikely, based on the commonly warm summer climate (section 2.4). The discussion 

about breakthrough times and enlargement rates in Chapter 8 showed that speleogenesis under strictly 

`subglacial' conditions is extremely unlikely, preventing the mechanism proposed by Horn (1937; 1947). 

However, if 'sub-IDL' is substituted for `subglacial', then much of the logic of Horn's argument is 

supported in this thesis, including his suggestion that joints are created and widened by earthquakes. 

Some of the `interglacial' chronologies (section 3.3.3) may refer to earlier stages in the development of 

the more complex multi-cycle combination caves, but Miocene and `preglacial' (which now has to be 

interpreted as speleogenesis at some time in the Tertiary) ages are ruled out by this thesis because, prior 

to the establishment of the large glaciations that followed the Mid Pleistocene Revolution (section 2.3.1), 

the relief was too subdued to permit the creation of deep inception fractures by postglacial earthquakes. 

Thus, superficial single-cycle caves that developed then were removed by subsequent glacial erosion. 

Similarly, because the oldest passages in an existing Scandinavian metalimestone cave occur at the top 

and towards the middle of any cave section (TDMO model), any passage elements that developed during 

the Tertiary or early Pleistocene were also removed, even if the younger and lower parts of the cave still 
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exist. Thus, ideas that the large relict phreatic passages developed before the deepening of glaciated 

valleys, when water levels and `watertables' were supposedly higher, are unnecessarily complicated, 

ignore glacial erosion, and do not consider possible inception mechanisms. Similarly, theories about 

interglacial `base-level' control of speleogenesis are false in the Caledonides, because caves occur 

randomly at almost any altitude, and there are no base-levels that extend beyond the immediate vicinity 

of each cave (as realised by Hellden, 1975, at Sotsbäcksgrottan; Appendix B 1.13). It also follows that 

the existence of palaeokarst in central Scandinavia dating from after the Cretaceous peneplanation 

(Appendix A1.3.2) is unlikely. Palaeokarst in sedimentary carbonates deposited after the Caledonide 

orogeny is impossible in the main study area, because such rocks do not exist. 

Cave development influenced by relatively fast external events, such as the creation and lowering of ice- 

dammed lakes, the bypassing of Vauclusian risings and the inundation of the sea, contribute to the 

TDMO model and to entrance enlargement. As noted in section 3.1.1, these concepts are in sympathy 

with the Woodward (1961) theory of stream piracy. However, the TDMO model of cave development in 

high-grade metamorphic limestone stands apart from the Ford and Ewers (1978) Four-state Model of 

cave development in sedimentary limestones (which depends on fracture frequency and long 

development timescales), because each tectonically-produced fracture in Caledonide marble is potentially 

capable of enlarging to a cave passage in a short time during deglaciation. The absence of passages with 

multiple phreatic loops likely arises from the negligible matrix and fracture porosity of the 

metalimestone, away from the relatively large fractures produced by deglacial seismicity. 

The earlier theories were developed in ignorance of the more recent research about the importance of 

deglacial seismicity to the fracturing of the `partially detached thin upper crustal layer' (section 6.2.3) 

and of the potential importance to speleogenesis of deglacial ice-dammed lakes, whose sizes and depths 

(facilitated by cold-based ice acting as an aquiclude below the plastic behaviour limit) provide a neat 

bypass to the problems that early authors sought to explain by deep dissolution beneath palaeo 

landscapes. Additionally, the quantitative approaches adopted in this thesis, including especially the use 

of pivot tables, provide revealing relationships among the caves that could not be derived or even 

guessed at by previous researchers. The four-stage process proposed in section 10.6.2 is considerably 

simpler than previous theories, and by application of Occam's Razor, is a more likely hypothesis. 

The new Alpine paradigms of Audra (1994) and Häuselmann et al. (2003), discussed in section 3.2.2, 

have some parallels in the metamorphic Caledonides, including the influence of tectonic activity and the 

in-phase relationship of cave development with the deepening of glacial valleys. However, the absence of 

soutirages in the study area relict phreatic passages supports the conclusion deduced from the commonly 

`impossible' locations of such passages that they did not enlarge to present sizes by regular interglacial 

floods. It would also be interesting to determine whether Alpine caves were influenced by dissolution 

beneath ice-dammed lakes during the many deglaciations that they experienced. 
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10.7 Outstanding work in the metamorphic Caledonides 
Further work could usefully be undertaken to underpin and to expand the conclusions reached in this 

thesis, as discussed briefly below. 

10.7.1 Statistical treatment 

Although the thesis relies heavily on the data contained in the various constructed databases and derives 

some formulae to relate the maximum dimensions of mainly vadose caves to catchment areas (section 

5.4.2), there was insufficient time and space to analyse these data with any statistical rigour. The 

approach has been to use simple arguments based on mean values and ranking orders. A successor 

project could quantify the derived models mathematically, based on the data contained in the 

Appendices, and try to find simple formulae to estimate cave dimension distributions from icesheet 

thicknesses or isostatic uplifts. It may also be possible to quantify mathematically the sectional 

geometries applicable to the TDMO model under various internal fracture geometries and dimension 

distributions and under specified external topographic conditions, and compare these with the 

relationships reported by Worthington (1991; section 3.1.12). 

10.7.2 Deglaciation 

The deglaciation histories of the study area (Appendix D2) and of the Tosenfjord-Fiplingdal area in 

particular (Appendix D3) were derived by the manual illustration of the effect of applying the 

reconstructed Grenlie formula to topographic maps. An approach using GIS techniques and computer 

simulation would provide a much more accurate depiction and a more precise calculation of inundation 

timescales by IDLs of each cave in the area. A more comprehensive study of scallop sizes and directions 

in each cave would also assist the determination of individual cave histories. The glacial conditions and 

hydrological flow regimes applicable to icesheets described in section 8.4 are probably not exhaustive. A 

more complete treatment would analyse the internal hydrology of at least four main time-varying glacial 

configurations: frozen surface + frozen base; frozen surface + warm base; melting surface + frozen base 

and melting surface + warm base. 

10.7.3 Exokarst 

This thesis provides scant information about the extent of exokarst in the Caledonide metacarbonates. 
Most dolines must date from the Holocene, because of glacial erosion. Their commonly modest sizes (up 

to c. I Om depth and I Om diameter) seem to confirm this. Larger dolines that may have survived one or 

more glaciations were not considered. It is known from some sedimentary limestones that there can be a 

correlation between endokarst and its overlying exokarst (Dreybrodt, 1988, p5), although this is unlikely 
in the case of speleogenesis arising from deep chemical inception. It is untested, but conjectured here, 

that this correlation also applies to metamorphic limestones. Thus, the depth of dolines may indicate the 

size of subterranean conduits, and perhaps also the depth of karstification. In this case, the maximum 
depth of dolines in areas of metalimestone without caves is 2m, as occurs in Shetland. 
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10.7.4 Dissolution chemistry 
Previous theories of cave development considered karst dissolution by carbonic acid and by stronger 

acids. This thesis demonstrates that at sufficiently large hydraulic ratios, karst breakthrough and 

enlargement can take place at maximum rates in pure water. Thus, section 8.5 considered the physics and 

chemistry of breakthrough and phreatic enlargement based only on cold aqueous solutions with very little 

dissolved carbon dioxide. The approach adopted was non-rigorous, and such dissolution in short 

fractures at high hydraulic gradients would benefit from a proper theoretical and experimental analysis. 

In some caves, inception fractures may occur at metadolostone-metalimestone contacts, at HMC-LMC 

contacts or along contacts between metalimestones and rocks containing sulphides (section 3.1.5). 

Metadolostones and HMC metalimestones commonly contain Fe impurities (giving a characteristic pink 

or yellow colour) and Fe may be liberated in the various complex dolomite dissolution reactions. Both 

situations may eventually lead to H2SO4 production via reactions with dissolved sulphates. Hence, in 

some inception fractures, both breakthrough and enlargement may be further enhanced by strong acid 
dissolution at low temperatures. Again, a theoretical and experimental treatment should enable applicable 
breakthrough times and wall retreat rates to be estimated. At the same time, it could be determined 

experimentally how mica and silica impurities within the metalimestone lithology influence the overall 

wall retreat rate of cave conduits at various flow velocities. At a practical level, this thesis has also paid 

scant attention to the cross-sectional profiles of individual cave passages (e. g. Osborne, 1999, Figs. 11 

and 17). Thus, it would be useful to study profiles at the various lithological contacts to determine if 

possible strong acid reactions influence the shape of such profiles and the shapes of any observable 
inception fractures. 

10.7.5 Evolution of Quaternary landscapes 

This thesis discusses several examples where the previous depth of glaciated valleys is constrained by the 

positions of relict resurgences. Thus, the existence and morphology of karst caves may themselves be 

used to interpret the geomorphological evolution of the Caledonide terranes. In suitably complex caves, 

their internal morphology may be sufficient for such an interpretation, with evidence from the dating of 

various internal cave deposits providing extra confirmation. However, not all speleogenetic histories may 
be soluble from the available evidence, because several possible solutions may lead to the same result in 

terms of existing passages and surface topography. This is particularly true for the less complex caves at 

shallow depths. The more complex a cave, then the easier it should be to deduce the evolution of the 

local landscape with respect it. This inversion of concepts, to use cave data to derive Quaternary 

geomorphological models, may also be usefully applied to other interdisciplinary subjects, including 

seismic and aseismic tectonics, neotectonics, glacial histories and previous sea levels. 
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10.8 Extensions of the Caledonide models 
This section considers how the models derived in this thesis may be applicable beyond the non-Arctic 

Caledonides. 

10.8.1 Model extension to the Arctic Caledonides 

As discussed in section 10.4, the Arctic permafrost areas do not appear to follow the five derived models. 

However, some aspects of the models could be expected to apply to the cave development that did take 

place in these terranes when they previously experienced much warmer conditions, early in the 

Pleistocene or soon after deposition early in the Palaeozoic. The extents to which the models did, or did 

not, apply then should provide useful information about contemporary environmental conditions. 

10.8.2 Model extension to other previously-glaciated metalimestone areas 
The extent to which metamorphic stripe karst occurs in other previously-glaciated parts of the world has 

been little studied, but it is conjectured that the principles derived herein should also apply. This appears 

to be the case for the caves in Grenville-age metalimestones in the Adirondack Mountains of New York 

state (Appendix D6.2.4). Ford (1967) described the sinking creeks of Mt. Tupper in Glacier National 

Park, Canada. The rock is a blue dolomitized limestone marble, forming an angled stripe karst with a dip 

of 45°. A 0.7m3s"' stream flows for 2km under a mountain ridge to a rising that is 480m below the main 

sink. The cave passage is probably partly down dip, and may follow marble / non-carbonate inception 

surfaces. The distance of conduits below the surface can be deduced to be 130m at the Tupper ridge. As 

the height of the Mt. Tupper summit above the local valley is 1536m, the system obeys the one-eighth 

relationship. There are no references to caves in metadolomites in Canada, agreeing with the 

observations about their absence in central Scandinavia. 

10.8.3 Model extension to previously-glaciated sedimentary limestone areas 

It appears to this author that, after the completion of this thesis, there are now two extreme paradigms 

that explain karst cave development. The Inception Horizon Hypothesis utilises slow chemical inception 

along deep, long-range, inception horizons in sedimentary limestones to create channels large enough to 

support continuous laminar flow. Flow rates and dissolution gradually increase until breakthrough 

occurs, after which phreatic enlargement proceeds at a constant rate until the recharge cannot maintain 

phreatic conditions above the level of the outlet. Thereafter, development occurs under vadose 

conditions. This scenario is completely credible for speleogenesis in sedimentary limestones during 

interglacials, and in regions that do not experience glaciation. The tectonic inception theory, introduced 

in this thesis, explains how near-surface caves can form in high-grade marbles, if they are subjected to 

repeated and extensive glaciations. 

In order to derive a Unified Model of Karst Development, bridges between the two paradigms need to be 

explored. One such bridge is the theory of the epikarst, which also relies on the creation of near-surface 

tectonic fractures. Other bridges concern cave developments in those sedimentary limestones that were 
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also subjected to repeated glaciations. Clearly, such karsts should also experience both the creation of 

tectonic fractures by deglacial earthquakes and phreatic dissolution beneath active ice-dammed lakes. 

These processes are additional to deep-seated chemical inception and to the primarily vadose 

entrenchment that occurs during interglacials, as observed at present and for which environment most 

current theories of speleogenesis have been constructed. Indeed, it seems that all these theories should 

now be re-visited in the knowledge that -90% of the Pleistocene (when many caves developed) was 

glacial, so that conditions over most of the planet were quite different from those at present. Significant 

terrestrial cave development may also have occurred at the transitions to and from glacial climates. 

Areas that would help elucidate a fuller range of cave development processes applicable to glaciated 

sedimentary limestones include those that contain ancient sedimentary limestones relatively close to the 

Caledonides. Examples include the Cambrian Durness Group carbonates of Scotland, similar limestones 

in Newfoundland, the Silurian limestones of the island of Gotland, Sweden, sedimentary limestones at 

Spitsbergen and the Carboniferous limestones in the Yorkshire Dales, Ireland and the northern part of the 

USA. 

Waltham (1977) reported the existence of two main groups of cave passages in the Yorkshire Dales: old, 

mainly phreatic relict passages, and younger stream passages. Thus, the hydrological classification of 

Caledonide caves as relict, combination and mainly vadose caves also seems appropriate in Yorkshire. 

Waltham deduced that, because the older series lie some 50m above the active passages, a major 

rejuvenation (caused by valley excavation) separated the two main phases of development. Following 

this thesis, it seems much more likely that the (upper) relict phreatic passages formed under ice-dammed 

lakes at the successive deglaciations of (e. g. ) Easegill, Kingsdale and Chapel-le-Dale, and that the active 

`mainly vadose' passages developed during the Holocene and earlier interglacials. Indeed, Waltham also 

noted the presence of "high-level vadose passages" (presumably relict) and it is their relationships with 

valley floors that should inform us about the depth of local valley entrenchment at each glaciation. 

Evidence in support of the idea that the major karst valleys in Yorkshire became submerged beneath 

IDLs at the end of the Devensian and earlier glaciations is the presence of deep gorges through which 

their outflowing streams presently pass. These could have been partly formed by jökulhlaups when the 

Yorkshire Dales IDLs breached the remnant Devensian icesheet to their south. 
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APPENDIX Al THE CALEDONIAN OROGENY 

The geological structure of the Caledonides was briefly described in section 2.1. This Appendix discusses the 
sequence of events that generated the original Caledonide mountain range, including its outcrops of metamorphic 
carbonates. 

A1.1 Precambrian environments 
The Scandinavian Caledonide nappes rest unconformably on the Precambrian Baltic Shield basement. This derives 
from several earlier orogenies that culminated in the creation of a Proterozoic super-continent. The ages of the rocks 
in this basement range up to 2800Ma (Archean) in northern Norway, becoming younger farther south. For most of 
the sequence, the ages are commonly between 1900-1500Ma (Palaeoproterozoic). In southern Norway and 
southwest Sweden, Grenvillian ages of 1150-930Ma (Mesoproterozoic) are typical (Barker and Gayer, 1985, pl 31). 
During the Vendian, the basement was eroded to a gently-sloping peneplain just above sea level, when it experienced 
the Varanger Ice Age from about 620-580Ma. It then became gradually drowned by the Iapetus Ocean in the 
Cambrian. During this time, a thin clastic deposition formed the cover rocks that, together with the basement, 

comprise the Autochthon. The Autochthon is thought to have extended far to the west of the present coast line 
(Gorbatschev, 1985). 

In common with all the Caledonian continental margins, deposition in terranes forming the Scandinavian 
Caledonides started in several Precambrian sedimentary ensialic basins on thinned continental crust. These basins 

started to form at about 800-700Ma. Deposition of the Uppermost Allochthon, off what is now the coast of eastern 
Greenland, may have started as early as 950Ma. The Lower and Middle Allochthon rocks are considered to have 
been deposited in a shallow marine environment off Baltica, starting in Late Riphean times, perhaps during the 
Grenvillian stretching that initiated the early rifting of the Iapetus Ocean. Dolostones were deposited to a thickness 

of loom in the Risbäck Basin within the study area in the Late Vendian. These are overlain by tillites from the 
Varanger Ice Age. The Seve rocks were perhaps deposited on the outer margin of a miogeosyncline in the 
Neoproterozoic, before being later depressed, metamorphosed and thrust eastwards. Hossack and Cooper (1986) 
included the Seve unit in their "Crystalline Thrust Sheet", believing it to contain mainly basement and other 
metamorphosed Precambrian rocks. Deposition continued generally into the Devonian, coupled with the many plate 
tectonic events. 

Those Caledonian terranes that currently reside on the eastern seaboard of northern America have the Canadian 
Shield as a basement. These rocks date from the Grenville Orogeny at about 1000Ma. In eastern Greenland, the 
Archean and Palaeoproterozoic basement is overlain by rocks that experienced pre-Caledonian orogenies, dating 
from around 1200-900Ma. The Precambrian environments in the NW of Ireland and NW of Scotland are related, 
but are rather complex and uncertain. In NW Scotland, a Lewisian Complex (Archean) basement is overlain 
unconformably by Torridonian Supergroup sandstones dating from about 1000Ma (Barker and Gayer, 1985, 
pp137,140-143). 

The Caledonide terranes of Ireland and Scotland are of interest because the Dalradian Supergroup (Grampian) 

terrane, which lies between the Great Glen Fault and the Highland Boundary Fault in Scotland, correlates with the 

eastern part of Shetland, with the Dalradian Supergroup in Donegal, and with the displaced Dalradian terrane in 
Connemara. Whereas the Grampian terrane and the Uppermost Allochthon of Scandinavia "have never been 

correlated, it would be fair to say that they have similar tectonic status and position" (R. Gayer, University of 
Cardiff, pers. comm., 1998). This supports the author's initial impression of great similarities in the metacarbonate 
outcrops and their contained karst caves between the Scottish Dalradian Supergroup and the Helgeland Nappe 
Complex of Norway. 
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A1.2 Caledonian deposition, metamorphism and thrusting 
The following highly-simplified account of the Caledonian Orogeny is condensed mainly from Barker and Gayer 

(1985, pp147-160) and Gee and Sturt (1985). The understanding of the orogeny is still being developed, so that 

conflicts inevitably occur between papers written at different times, even (or especially! ) between those written in the 

last two decades. Indeed, Van Staal et al. (1998, pp201-202) asserted that final continental collision can result in a 

pseudo-simplistic semi-linear orogenic zone that conceals an earlier complicated history and geometry. This history 

can be impossible to model backwards in time, because multiple pathways may lead to the same final result. 

A1.2.1 Cambrian 
The spreading of the Iapetus ocean continued into and throughout much of the Cambrian, by which time it reached a 

maximum width varying from 6000km to 10000km. On the NW side, a Cambro-Ordovician miogeosynclinal (non- 

volcanic) carbonate shelf developed in southern hemisphere tropical latitudes, whereas on the SE side, a clastic shelf 

could have lain farther south, in temperate latitudes. The Uppermost Allochthon originated within the NW Iapetus 

margin, between an east Greenland terrane and the Grampian terrane, but offshore from Laurentia. 

Most of the Cambrian age produced stable drift sequences that stretched for hundreds of kilometres off the passive 

miogeosynclinal margin of Baltica, as the Iapetus Ocean started to widen. The various shallow marine deposits were 

regionally uniform along the whole 1800km coastline. The deposition continued on the Autochthon, Parautochthon 

and Lower Allochthon as thin Cambrian sandstones, and as radioactive and organic rich black shales (Bergstrom and 

Gee, 1985). The Middle Allochthon remained dominated by its Precambrian basement. The Kali deposition 

probably started in an oceanic (Iapetus) eugeosynclinal (volcanic) environment during the Cambrian, and continued 

into the Ordovician in island arc, back arc and fore arc situations. 

Iapetus started to close from the Mid to Late Cambrian (Figure A 1.1), with later oceanward subduction and landward 

obduction being postulated on both sides of the ocean. Deformation of the earlier Cambrian deposits started in the 

Late Cambrian, accompanied by intrusions and metamorphism that produced metasedimentary rocks and 

metavolcanites in the higher nappes. The first orogenic phase to arise from the closing of the Iapetus Ocean was 

possibly the Finnmarkian, at the far north of what is now Norway. It continued from the Late Cambrian into the Early 

Ordovician. 

A 1.2.2 Ordovician 

The Ordovician Period was one of a general marine transgression interrupted by three major regressions that 

produced shallow water deposits. In the epicontinental seas, 200m-thick carbonates and shales were formed over a 

stable platform to the east of the Caledonides, as on the Swedish island of Gotland. At Oslo these sediments reached 

thicknesses of nearly 1100m. There were no deposits on the Autochthon or Parautochthon in the study area, but 

poorly-correlated Lower Keli rocks were formed in Sweden and central Norway, in an island arc environment to the 

west. 

As Iapetus closed further in the Early Ordovician, oceanic crust was obducted on to Baltica. However, the main 

event was the Taconic Orogeny on the other side of Iapetus, when various offshore terranes collided with Laurentia. 

The collisions caused subduction and metamorphism eastwards and southeastwards, and thrusting along the 

Appalachians to the west or northwest. To the NE, the Grampian Orogeny of Scotland occurred at the same time, 

whilst, however, the Uppermost Allochthon was probably experiencing only mild deformation. 

By Mid to Late Ordovician times, subduction was apparent along the deepening Baltic margin, and more island arcs 

developed, commencing deposition of volcanic sequences in eugeosynclinal sediments in the higher Keli Nappes 

(amongst others), which continued into the Early Silurian. Igneous intrusions are substantial in the various 

allochthons, but not in the platform, proving the later eastward thrusting. The existence of plutonic rocks only in the 

highest and most far-travelled nappes indicates that the thermal axis for the Caledonide Orogeny lay far to the west 

of the Baltic Shield. 
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Regions of the Caledonian-Appalachian Orogen in their pre-Mesozoic drift configurations, showing 
ages of principal deformation events. 
Large dots - Appalachians; dashes - paratectonic British Caledonides; cross-hatch - orthotectonic 
British Caledonides; closely spaced horizontal lines and triangles - Scandinavian Caledonides; widely 
spaced horizontal lines - East Greenland Caledonides; small dots - North Green fold belt, Ellesmere 
Island and West Spitsbergen: open circles - East Spitsbergen. 

Figure A1.1 Regions involved in the Caledonian-Appalachian Orogeny. 
From Barker and Gayer (1985, Fig. 1) 

A1.2.3 Silurian and Devonian 

The Silurian Period was one of increasing instability, as the Laurentian plate overrode Baltica obliquely, and the 
Caledonide Trough deepened to the west. Marine transgressions also promoted carbonate sedimentation 

environments as clastic source areas submerged along the thrust front. The Lower Koli in central Västerbotten has 

limestones that date from the Ordovician and Silurian. The Parautochthon and Lower Allochthon have Silurian-dated 

rocks in Jämtland. The Remdalen rocks in the Middle Keli are of Ordovician or Silurian age. There were also stable 

carbonate platforms and lagoons during the Mid Silurian along the western margin marine area. Section 3.1.6 

discusses evidence of palaeokarst in non-metamorphic limestones that dates back to this or earlier periods. 
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The closure of the northern part of the Iapetus Ocean was completed by the Mid Silurian, when ̀ Greenland' collided 
with, and over-rode, ̀ Scandinavia'. This was the start of the Scandian Orogeny, when the Uppermost Allochthon 
thrust southeastwards across the lower tectonic units. Thrusting continued through the Late Silurian into the Early 
Devonian, when docking of the two continents was complete, only c. 160Ma after the initial opening of the short- 
lived Iapetus Ocean (Van Staal et al., 1998, p201) and prior to the amalgamation of the super-continent Pangaea in 
the Permian. Studies in the Seve / KC li nappes suggest that the thrusts were active after the peak of metamorphism 
(Stephens et al., 1985, p158). The Uppermost Allochthon moved over 800km eastwards (Hossack and Cooper, 
1986). Intermediate nappes moved lesser amounts. The Lowermost Allochthon (Parautochthon) shifted only a few 
kilometres eastwards across the basement foreland. Thus, each major allochthon consists of several nappes 
containing folded combinations of basement and cover rocks. 

Most marine deposition had ceased by the end of the Silurian, as a consequence of the fall in sea level and the 

establishment of an icehouse climate at the initiation of Pangaea. Old Red Sandstone facies of Late Silurian and 
Devonian ages were then deposited terrestrially as wind-blown sands across all of Scandinavia, as it moved into the 

area of dry trade winds south of the Equator. These have since eroded away almost totally. 

From the deuterium to hydrogen ratio in thrust veins from Tromso in northern Norway, Barker et al. (1998) 

calculated that Early to Mid Devonian meteoric waters originated at altitudes of 5-6km before circulating as 
hypersaline metamorphic fluids at depths of several kilometres within the Caledonide mountain belt. This result 
indicates the height that the original Caledonide mountains reached during the final stages of orogenic relaxation. 
Dahl et al. (1997, p14) stated heights of 8-10km. Hossack and Cooper (1986, p289) stated that 10km of thrust sheets 
have been eroded away, above the present level of Jämtland. For comparison, the present Himalayas reach an 

altitude of 5.5km. 

The more westerly terranes were subjected to deeper subduction and therefore higher temperature and pressure 

conditions, giving rise to higher-grade metamorphism. Hence, the metamorphic grade of the nappe pile generally 
increases from sub-greenschist facies at the base, up to medium amphibolite facies (and even eclogite facies locally) 

at the top, although the Seve nappes generally have rocks of higher metamorphic grade than those in the Middle and 
Lower Koli nappes. The higher nappes also contain granitic pluton emplacements and igneous dykes. Gustavson 

(1988, p12) noted that the metamorphic grade along the coast is somewhat lower than otherwise in the HNC. 

According to Braathen et al. (2002), the HNC and other tectonic structures are bound by extensional shear zones of 
Devonian age that truncate the nappe sequences at low angles, rather than by previously-regarded thrusts. The Nesna 

Shear Zone (Z9) is one such example. However, the concept of nappes and nappe complexes being separated by 

thrusts is commonly retained throughout this thesis. 

Whilst the various Caledonide terranes were being developed and brought together as accreted island arcs, their 

general position on the surface of the earth was also evolving. According to Van Staal et al. (1998, p211), Laurentia 

and Baltica were both in the southern hemisphere in Early Cambrian times, perhaps straddling 30°S, but with the 
future Scandinavian coastline of Baltica facing away from Laurentia. It was not until the beginning of the Silurian 

that Baltica had rotated until what was to become Norway faced the future Greenland on the opposite side of Iapetus. 
By this time, both continents had moved northwards to straddle the Equator (Torsviket al., 2002). 

After the collision, the plate tectonic energy was directed into various strike-slip fault systems, such as the Great 

Glen Fault Zone in Scotland. Around 2000km of sinistral movement took place from the Early Devonian to the Early 

Carboniferous, during which time various Caledonide terranes moved to their present relative positions prior to the 

start of Atlantic opening. Figure Al. I shows the configuration of the Caledonian-Appalachian mountain range at this 

end of the orogeny. 
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A1.3 Post Caledonian developments 
The development of the Caledonides after their formation was described by Peulvast (1985). Torsvik et al. (2002) 
illustrated the global plate tectonic movements, giving the timings for the northward migration of the Caledonides 

that are reproduced below. 

A1.3.1 Late Palaeozoic 
The Caledonian Orogeny is thought to have been followed by an increased crustal rigidity, although subsidence and 

oceanic thinning occurred in the Devonian or Carboniferous around fault zones between Proto-Greenland and Proto- 

Norway. There is some evidence that, after these vertical movements, a peneplanation of the Caledonide structure 

occurred during the Carboniferous (except for the highest peaks and massifs, and except in the Arctic Caledonides, 

Appendix D6.4). During this process, Old Red Sandstone deposits of the Late Silurian and Early Devonian were 
largely removed. By the Early Permian, the rocks of thestudy area had migrated to 20°N. 

A1.3.2 Mesozoic 

The initial creation of an uplifted Scandinavian Marginal Bulge is considered to have been driven by the same 

processes that fuelled the late Palaeozoic rifting of the area between Greenland and Norway to open a new sea. This 

started in the south and has since become the Atlantic Ocean. The approximate present Scandinavian coastline, 
including various graben structures such as Oslofjord, was established by the start of the Mesozoic. The uplift was 

more widespread than just a reactivation of the now rigid Caledonide structures, and continued into the Jurassic. 

However, the Late Cretaceous global marine transgression as the Atlantic rift system propagated northwards 
(Torsvik et al., 2002) is thought to have led to a reversal, and reduced any exposed landscape in mid Norway to one 

of low relief, close to sea level, as evidenced by the universally fine-grained deposition (Dore, 1992; Solheim et al., 
1996; Riis, 1996). The location of north central Norway continued to move northwards, from 30°N in the Early 

Triassic to 50°N in the Early Jurassic. Its latitude then oscillated slightly until it reached 55°N in the Late Cretaceous. 
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APPENDIX A2 SCANDINAVIAN CARBONATES 

The chemistry and processes involved in carbonate deposition, lithification, diagenesis, dolomitization and / or 
dedolomitization are complex, but were addressed by Tucker and Wright (1990). The effect of metamorphism on 
these situations is commonly less well known. No attempt was made in that work to explain them, although 
particular topics have been covered in a few fairly recent research papers. The formation and alteration of carbonates 
within the Caledonides (and the applicable timescales) had received little detailed scientific study prior to about 
1985. Tucker and Wright (1990) included some 1500 references to carbonate sedimentation and related topics, but 

none referred to carbonates within the nappes of central Scandinavia. Brahana et al. (1988) tabulated processes and 

provided data that pertain to the porosity and permeability of carbonate rocks, including those that are 

metamorphosed, and made comparisons with non-carbonate rocks. The hydrogeology of carbonates is the result of 

variable combinations of more than 60 processes and controls. The two processes of dissolution / precipitation and 
dynamic freshwater flow seem to dominate, so that carbonate rocks show a range of hydraulic conductivities over 
ten orders of magnitude. This brief review attempts to describe what is known only in the context of the carbonates 
of the study area. 

A2.1 Sedimentation and diagenesis 
Tucker and Wright (1990, p419-420) stated that the great majority of sediments were clastic in nature during the 
Archean. As organic life developed in the oceans, carbonate deposition was initiated and grew. At the end of the 
Archean, at 2.5Ba, perhaps 1% of all rocks on the Canadian Shield were carbonates, but all of these were 
dolostones. The Baltic Shield fragments that are bound up in the Palaeozoic nappes of the study area probably date 

from 1.9-1.5Ba (Appendix A1.1). At the beginning of the Proterozoic eon, sea water temperatures were still high, 

with the only organisms present being algae, bacteria and fungi. An initial "soda ocean" of Na2CO3 became a saline 
ocean of NaCl and CaCO3 as the oceans cooled following the creation of the Proterozoic super-continent. During the 
Cambrian re-warming, dolostones rose to become about 20% of all rocks, and limestones another 5%. After this, the 
dolomite proportion of carbonate formation dropped rapidly from over 80% to under 50% on average, whilst 

remaining variable. Whereas the preponderance of dolostones in the Precambrian can explain that dolostones, and 
few limestones, are found in the Lower Allochthon in the study area, there is however a potential conflict with other 
Caledonide depositions, where in practice metalimestones always predominate over metadolostones in the mapped 

outcrops (section 4.2.1). Appendix A2.10 attempts to resolve this anomaly. 

Two major types of earth climate are recognised: a greenhouse climate, when higher temperatures and high sea 
levels promoted the sedimentation of carbonates in shallow seas; and an icehouse climate, during periods of 

mountain building and glaciation, when low sea levels and increased weathering favoured clastic sedimentation 
(although pelagic accumulation of carbonates also increased). Just over two complete earth climate cycles have 

occurred since the start of the Cambrian. During the icehouse climate of the late Proterozoic, Aragonite (A) and 
High Magnesium Calcite (HMC) were probably the main carbonate precipitates. Diagenesis is the process of 

cementation and mineral stabilisation. Diagenetic dissolution of fine-grained (micritic) A and HMC in partly- 

meteoric waters in shallow marine environments and re-precipitation as coarse grained (sparitic) crystals of Low 

Magnesium Calcite (LMC) probably started and completed soon after initial compaction. Thereafter, slow 
dolomitization of LMC occurred by dissolution and initial replacement as Calcian Dolomite (CD). The ultimate 
conclusion of this sedimentary dolomitization process is the replacement of previous calcite minerals by 

Stoichiometric Dolomite (SD). Appendix A2.4 reviews the chemical composition of the various types of carbonates. 

With the breaking up of the early super-continent after the Mid Cambrian, the earth entered a greenhouse climate 
that lasted into the Early Carboniferous. In these warmer conditions, "Aragonite Seas" were replaced by "Calcite 
Seas", in which calcite precipitated directly as LMC, before starting the slow process of dolomitization. The 

greenhouse climate also favoured the direct precipitation of dolomites, which are thought to account for up to 70% 

of carbonate rock formation at this time. 

Pelagic deposition was well represented in the Mesozoic and Cenozoic, but less common in the Palaeozoic during 

the Caledonian Orogeny. Carbonate precipitation varies with the temperature and Pc02, and therefore with the depth 
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of the sea (although it is little dependent on actual pressure: section 3.1.2) and the various minerals do not 

precipitate below their Compensation Depths. These are: A (2km at Equator now), LMC (5km), and Dolomite (D, 

>5km? ), so that below about 2km, LMC and D are preferred precipitates. Peterson (1966) reported that optical 

calcite dissolution is constant in Pacific Ocean sea water at 19°N, down to a depth of 3700m, and increases sharply 
below this depth. The Calcite Compensation Depth (CCD) varies with latitude, which is a proxy for temperature and 
dissolved CO2. Tucker and Wright (1990, Fig. 5.3) showed that it reduces rapidly to Ikm at c. 55° N and S and 
(Ibid., p33) implied that, at mid and high latitudes, it reduces to zero, as seawater becomes unsaturated. CCD also 

varied in geological time: it rose when sea level was high, as during the Eocene and Late Miocene, but fell when sea 
level was low, as during the Oligocene to Early Miocene and during the Pliocene and Quaternary. These concepts 

could be important in this study, not because of calcite precipitation during sedimentation, but because they illustrate 

the possibility of metalimestone dissolution when caves are inundated by the sea (section 8.8) or by various types of 
freshwater lakes (section 8.6). 

Three main carbonate depositional environments were recognised by Tucker and Wright (1990). These are: marine 

coastal (shallow offshore, carbonate ramps on shelf margins, or reefs plus reef mounds); pelagic (deep marine); and 
lacustrine. From Appendices Al. 1 and A 1.2, the majority of Caledonide carbonate deposition was in the marine 

coastal, miogeosynclinal, environment, which produced rather thin structures. Pelagic, eugeosynclinal, deposition 

may be applicable for the Ordovician and Silurian sediments in the higher Kali Nappes at the deepening Baltic 

Trough as Iapetus closed. Dallmann (1987, p45) regarded the rather unique 2000m succession of calcite marbles of 
the Susna Formation of the Hattfjelldal Nappe (KU: Appendix B1.13) as resedimented allodapic limestones, which 

experienced mass flow of unlithified calcareous debris over the edge of a tidal flat. This resedimentation occurred 
during a diagenetic phase prior to any dolomitization. There are no recorded lacustrine carbonates in the study area. 

A2.2 Carbonate metamorphism 
All metamorphic lithologies exposed at the surface in central Scandinavia experienced at least one cycle of prograde 
then retrograde regional metamorphism and some of these also experienced contact metamorphism. During the 

prograde path, rocks descend at increasing temperature and pressure. The fluid pressure increase leads to a loss of 

volatiles (mainly H2O and CO2), so that the rock dries out and becomes impermeable: "Fluid flow is down the 

temperature gradient" (Ague, 2000, lecture quotation). During the retrograde path, new minerals can only be 

created if further fluid is acquired, leading to bone-dry rock (Jamtveit et al., 2000). Commonly, when hot dry rock 

reacts with water it shrinks, creating extra stresses in the fabric and its fractures. The reaction proceeds via an 

advancing front of wetted cracking fissures in a tree-like pattern. However, if water flow ceases, "crack-healing" 

occurs. 

There has been little attempt in the scientific literature to provide an overview of the formation and development of 
the Caledonide limestones and dolostones through their generally complex and regionally-varying metamorphic 
history. Winkler (1976, Chap. 6) provided a general description of the metamorphism of dolomites and limestones 

and Yardley (1989, Chap. 5) gave a general description of the metamorphism and metasomatism of marbles and 

calc-silicate rocks. Yardley noted the importance of the composition of the metamorphic fluids in determining the 

mineral assemblages produced. Baumgartner et al. (1996), discussed the significant porosity and permeability of 

carbonates during contact metamorphism, and introduced the term "metamorphic aquifers". Because calcite is stable 

under most crustal conditions, pure calcite does not develop new minerals under metamorphism: calcite 

recrystallises back to calcite. [In the very rare conditions of very high pressures and very low temperatures, 

aragonite would be the stable species]. Metacalcite usually produces a coarser grain size, and commonly a foliation. 

Limestones containing other constituents (such as dolomites and silicates) react extensively with these during 

metamorphism. Thus, in marly sediments there is a complete spectrum possible between purely carbonate and 

purely silicate facies that can lead under metamorphism to a broad range of calc-silicate mineralogies. Rocks 

produced by metasomatic interaction between limestone and silicate rock are known as skarns. These occur 

particularly from the intrusion of granite into marble, and are well represented in the western part of the study area. 
Indeed, some of the geological maps used do not distinguish between metacarbonates and skarns. At very high 

temperatures but low pressures, as can occur during contact metamorphism, calcite and quartz react to form the 
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skarn calcium silicate (wollastonite) by the decarbonation reaction CaCO3 + Si02 => CaSiO3 + CO2 + porosity. This 

reaction may occur at 600°C and at pressures up to 200Mpa, when calcite becomes a soft, very ductile, rock 
(Balashov and Yardley, 1998). Whereas the production of CO2 as a supercritical fluid under metamorphic conditions 
is clearly of extreme importance in influencing other chemical reactions involving carbonates during metasomatic 
processes, the above necessary P-T conditions are not usual for regional metamorphism. 

According to Balashov and Yardley (1998) and Yardley and Balashov (2000), thick marble bodies survive to high 

metamorphic grade, despite being potentially very reactive with nearby siliceous metasediments, because they are 

extremely impermeable. However, the onset of decarbonation reactions (e. g. during retrograde metamorphism) 
creates porosity and increases the permeability of calcareous layers. This can permit layer-parallel infiltration of 

water from surrounding rocks that can promote a run-away reaction to wollastonite. Thus, all carbonate can be used 

up in at least the outer metre of a large marble body, creating calc-silicate zones at the edge of marble units, 

especially at low pressure. At high metamorphic grades, any thin (<Im wide) limestones should be completely 

converted to skarns. (However, cavernous bands of metalimestone down to Im thickness exist in, e. g., HNC Z6). The 

rates of porosity creation and collapse by creep and fluid back-flow (crack healing) are in dynamic balance, so that 

structures may spontaneously open or close down during reaction, dependent on conditions such as temperature 

over-stepping and water supply. At high metamorphic pressures, only the outermost metre of calcite is likely to be 

metasomatised to wollastonite, as porosity loss by creep dampens out the reaction. 

A range of Ca-Mg-silicates can also form in decarbonation reactions in cooler, regional metamorphism, P-T 

conditions, from carbonates that contain dolomite. Yardley (1989, p132) presented a triangular phase diagram for 

the system CaO-SiO2-MgO+CO2+H20, which includes the minerals calcite, dolomite and the three skarn minerals 
talc, tremolite and diopside, and showed how these vary with metamorphic grade. The chemistry and texture of 
metamorphic carbonates and silicates can vary at the centimetre and millimetre scale across the layers. A one metre 
thickness of such rocks could sustain a temperature difference of 1000°C during metamorphism, and therefore 
support a layered range of chemical reactions and products. Whereas calc-silicate skarns are non-karstic in 

themselves, it is clear from the above that they can form in association with the karstic metacarbonates, and 
therefore guide the morphology of karst caves (section 5.7.4). 

Yardley (1989) discussed the phase relationships among calcite, dolomite and quartz from the dolomitic marbles of 
the central Alps. The topics of dolomitization of calcite, retro-dolomitization, and the prograde and retrograde 
metamorphism of both calcite and dolomite in the Caledonides in the possible presence or absence of Mg-rich H2O 

derived from seawater were not addressed there. Presumably all these processes need to be invoked to explain the 

present variety and mineralogy of the Scandian carbonates. 

Because of its importance in understanding cave inception in medium- to high-grade metacarbonates, the possibility 
of residual porosity and permeability in such lithologies exposed at the surface needs to be considered. There is no 
possibility of the survival of a memory of peak metamorphic porosity, but, because pressure is reduced on ascent, 
calcite grains experience an isotopic stress relaxation (BWD Yardley, University of Leeds, 2000, pers. comm. ). This 

tends to increase permeability relative to the low values associated with peak metamorphism, and promote the 
creation of fractures. However, it must be noted that calcite marbles typically have porosities of <1%, compared to 

sedimentary micrites and sparites that are in the ranges <2% and 5-10% (Ford and Williams, 1989, p33). Limestone 

aquifers are said to exhibit triple porosity at the pore, fissure and conduit scales (Ford and Williams, 1989, p199; 
Worthington, 1994). At the pore and fissure scales, metacarbonates commonly have lower hydraulic conductivities 
than sedimentary carbonates (Ford and Williams, 1989, p135). Hence, from this evidence, it has to be concluded that 
karst cave inception is less favoured and would occur over much longer timescales in metalimestones than in 

sedimentary limestones, when both lithologies are set in otherwise equivalent environments. 
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A2.3 Caledonide carbonate metamorphism 
Bryhnie and Andreasson (1985) provided a general overview of metamorphism in the Scandinavian Caledonides. 
All the major allochthons are known to contain previously-sedimentary carbonates (limestones or dolostones) with 
metamorphic grades that generally decrease downwards through the nappes, i. e. in the direction west-east. The 
higher-than-trend grades of the Seve Nappes are an exception. Fossils are known from some of the low-grade lower 
nappes in the east, and possibly from the Keli Nappes (Kautsky, 1953). [The SGU map Ai75,23F Fatmomakke NV, 
shows fossil localities along the carbonate outcrops on the mountain Daunentjakke; these are in the lowest of the 
Lower Kali Nappes, the Bjorkvatten nappe (KB: Appendix B 1.17)]. These lower nappes can retain some primary 
structure, and probably experienced only one metamorphic event. In contrast, the high-grade highest nappes were 
multiply metamorphosed (Appendix A2.10). The regional metamorphism in the HNC is supplemented with contact 
metamorphism in aureoles around syntectonic intrusions. At Velfjord (Z2), this produced pure fine-grained calcitic 
marbles from which organic material has disappeared (Kollung, 1967; Thorsnes and Leseth, 1991). They commonly 
have a massive white appearance, and are being quarried in several places (Appendix A4.5). 

Weak metamorphism probably started in the Late Proterozoic. With the closing of the Iapetus Ocean, high 
temperature metamorphism in the Mid Cambrian to Mid Ordovician, at depths up to perhaps 50km, was 
accompanied by igneous activity, and followed by intermediate pressure metamorphism. The collisional stage of 
closure from the Mid Silurian into the Devonian saw varying degrees of regional metamorphism along the whole 
1800km length of the Scandian orogeny, from high-grade in the south of Norway, to practically-unaltered facies 

where the nappe sheets were thrust eastwards over the basement. The lowest nappes and the basement also exhibit a 
higher- to lower-grade metamorphic trend within each other, also in the direction from west to east, providing 
further evidence that the deepest burial and highest temperatures were well to the west of the present mountain 
range, whilst the Baltoscandian margin was subducted under the North American plate. 

Crustal shortening (up to 400km in southern Norway) and crustal thickening (from 30km initially to 70km, Hossack, 
1985, p98) was caused by nappe stacking and by the imbrication of previous sediments (repeated carbonate outcrops 
in the Uppermost Allochthon being good examples). This facilitated partial melting and deformation at depth, 
during which earlier structures, including bedding, were commonly obliterated. With the movements eastward up to 
higher elevations, and then with rapid erosion, many of the former high pressure assemblages experienced 
considerable pressure relief, causing extensive retrogression in their metamorphism. 

Various papers that analyse the structure and metamorphism of particular parts of the study area have been 
published since about 1985. Thus, Brattli (1996) discussed the RNC south of Korgen and included reactions 
involving siliceous carbonate rocks. Dallmann (1986) considered polyphase deformation in the Hattfjelldal Nappe 
(KU), and observed that, in parts, the movement of the HNC over the Upper Kali nappes was achieved by ductile 
flow of the lower mylonitic limestone group within the Hattfjelldal Nappe. He placed the Hattfjelldal Nappe in KU, 
whilst at the same time relating its upper group stratigraphically to part of the lower Gjersvik Nappe in the Middle 
Kali (KG). The relevant parts of the Carbonate Outcrops and Caves Databases (Appendices Cl-C5) were thus 
constructed according to Dallmann (1986). 

Dallmann (1987) considered, in detail, the stratigraphy and sedimentary environments of the Hattfjelldal Nappe 
(KU), in which both calcitic and dolomitic metacarbonates occur extensively (Appendix A2.1). He noted that 
dolomites (and other rocks) commonly show primary structures, whereas calcites (and other rocks) are dominated by 
tectonic structures (Ibid., p28), although recrystallisation of the calcite is variable, because, in places, graded 
bedding is observed as a primary feature (Ibid., pp31,44). In the transition zone between calcite and dolomite 
marbles, he observed dedolomitization progressing from fractures, which suggests that partly dolomitized rocks 
might have been completely dolomitized prior to the last recrystallisation process. Further evidence that at least 

some dolomitization occurred during diagenesis is provided by overlying conglomerates that contain dolomites and 
by the abundance of micritic and micro-sparitic dolomite crystals. However, other coarse-grained sparitic dolomites 
indicate epigenetic dolomitization (Ibid., p45). 
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In metalimestones of the Scottish Dalradian Supergroup, which have similarities with those of the HNC (Appendix 
A1.1), retrograde dolomitization of calcite during uplift and cooling of a metamorphic complex was reported by 
Fein et al. (1994). In this situation, high temperature epidote amphibolite facies calcites and calc-silicates were 
infiltrated by H2O and CO2 fluids along adjacent veins, which produced mainly lower-greenschist facies dolomite 

and quartz. Guest et al. (2000) noted that dolomite reaction zones in Loch Tay Limestones occur adjacent to faults 

cutting calcite-rich marbles. They suggested that porosity generation and growth of Fe-enriched calcite rims were 
both precursors to the retrograde dolomitization that followed the transport of sufficient Mg to nucleation sites. 
Gillieson (1996, p67) also noted that hydrothermal dolomites tend to be located along fracture zones where warm 
basin fluids are circulating. 

Melezhik et al. (1997) used isotopic data to suggest that metacarbonates from the Evenes Group in northern Norway 

were deposited from 635-615Ma and were metamorphosed at 600±80Ma. These rocks have been correlated to the 
Keli Nappes, and, alternatively, to the Uppermost Allochthon. Trennes and Sundvoll (1995) also used isotopic 
dating on 43 calcite and 5 dolomite samples from the HNC, Keli and Seve in north central Norway, and concluded 
that the environments of the Late Proterozoic HNC carbonates differed markedly from those of the Ordovician Keli, 

and of the Vendian or Early Cambrian, Seve carbonates. 

A2.4 Chemical composition 
Tucker and Wright (1990, pp 13,284,314,333,371-372) identified the chemically stable and meta-stable minerals 

of common sedimentary carbonates, which are brought together here in Table A2.1. 

Table A2.1 Common sedimentary carbonate minerals 
Symbol Mineral Occurrence Diagenetic Mole % Composition Mg/Ca 

Stabil* weiht ratio 
A2 Aragonite Marine Metastable -100% CaCO3 0.00 
C Pure Calcite Synthetic >99% CaCO3 <0.01 
LMC Low Magnesian Limestone Stable >96% CaCO3 <0.03 

Calcite + 1-4% MgCO3 
HMC High Magnesian Limestone Metastable >80% CaCO3 0.03-0.18 

Calcite (very rare) + 5-20% MgCO3 
DL Dolomitic Limestone -20% CD 0.07-0.10 

Limestone + 80% LMC c. f. HMC) 
D2 Pure Dolomite ? 100% CaMg(C03) 2, i. e. 0.61 

54% CaCO3 + 46% MgCO3 
SD Stoichiometric Dolostone Stable >97% CaMg(CO3) 2 0.57-0.65 

Dolomite 
CD Calcian Dolostone Metastable 54-58% CaCO3 0.52-0.57 

Dolomite + 46-42% MgCO3 
MD Magnesian Dolostone Metastable 44-54% CaCO3 0.65-0.91 

Dolomite + 56-46% MgCO3 
As used in this thesis Z Included for completeness 3 May contain Sr and Pb substitutions 

Additionally, siderite (FeCO3) and ankerite (ferroan-rich dolomite) are commonly present in dolostones (Hanshaw 

and Back, 1979, p294; Ford and Williams, 1989, p14; Tucker and Wright, 1990, pl71). Because Fe 2+ is intermediate 

in size between Ca' and Mgt+, it fits readily into the dolomite crystal structure, commonly causing pink or buff 

colours in weathered outcrops. The speleological literature commonly refers to more general classifications of 

carbonates (e. g. Klimchouk et al., 2000, p56). 

An important question is whether stable forms of metamorphic carbonates follow the same classification, although 

the millimetre-scale inhomogeneities in high-grade metacarbonates complicate the answer. The 43 calcitic marbles 
from north central Norway, analysed by Trennes and Sundvoll (1995; Appendix A2.3), have CaCO3 bulk 

compositions that vary from 82-99%, so that the (unreported) maximum mole MgCO3 compositions are from 1- 

18%, i. e. approximately within the LMC and HMC ranges. Shaikh et al. (1989) reported the petrographic and 

chemical analyses of many metacarbonate samples from the Swedish part of the study area. The great majority are 

clearly LMC, some are metadolostones that vary from CD to SD, but significant proportions are reported to contain 
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both "calcite" and "dolomite". However, the bulk compositions of these mixed samples have (with only one 
exception) MgCO3 values that vary from 5-19%, similar to the chemical composition of HMC or DL (and only two 

of these have values in the range 5-11%). Whereas the LMC samples (and the same two HMC / DL samples) 
contain proportions of silica that vary from 0.4% to 28.7%, all the samples with >11% MgCO3 contain at least 9% 

silica, so that the high proportions of Mg in bulk only occur with significant Si02. A very similar picture was 
provided by Robertson et al. (1949), who reported metacarbonate compositions from the Dalradian Supergroup in 
Scotland. Appendix A2.5 discusses the composition of karst spring waters in the study area, and shows that their Ca 
/ Mg ratios also conform to the ranges established in Table A2.1. 

Five metacarbonate samples from cave locations in the study area were analysed chemically at the University of 
Huddersfield as part of this project (Table A2.2). 

Tahle A2.2 Chemical analysis of study Ares metnrarhnnota eumnlac 

Sample 1: 2: 3: 4: 5: 
number 2000081902 2000080203 2000082001 2000082401 98080604 
Location Sarvenvartoe Bryggfjeldhullet Elgfjellhola Track Cave Tjuvhelleren 

-hullet (Z4) (ZA) (Z4) (ZA) (ZB) 
Weathered dark brown, yellow/brown, light brown White, clean- pale grey, 
appearance black, orange sucritic washed sucritic 
Grain size coarse coarse sand medium coarse coarse 

Internal similar + buff crystals purple mm- white, + 4mm homogeneous 
appearance white, with scale bands pale grey bands matrix, with 

muscovite tremolite? 
Dil. HCl test vv vv V VV a 
Visual HMC HMC HMC LMC Dolomite 
Identification 
Mole % 
composition 
CaCO1 83.0 82.1 84.2 97.5 79.2 
Mole % 
composition 
M CO ' 17.0 17.9 15.8 2.5 20.8 
Insoluble 17.4 12.2 9.2 3.0 8.1 
residue % 
Revised HMC HMC HMC LMC DL 
Identification 

Mike= -I ignoring msotuoie resiaue unu uuwer species 
a audible v vigorous vv very vigorous 

Samples 1-3 were chosen to test the author's ability to identify yellow / brown carbonates as HMC in the field, 

which is confirmed by the fairly uniform MgCO3 values. Sample 4 was a presumed (and confirmed) LMC control 
sample. Sample 5 was taken from the only cave in the study area that was a candidate for forming in dolomite 
(section 4.4.5). In fact, its MgCO3 composition is too low for dolomite, despite the occurrence of tremolite within its 

matrix. It therefore appears to comprise a type of dolomitic limestone, or contains both dolomite and calcite (which 

. would explain the audible dilute HCI reaction). The association of insoluble residue (assumed to comprise mainly 
silica) with larger MgCO3 values is also observed in these samples. 

From this discussion, it follows that the Caledonide metacarbonates probably do follow the Tucker and Wright 
(1990) classification as expressed in Table A2.1, and, additionally, mixtures with dolomite inclusions within a 
metalimestone have Ca / Mg contents that lie within the HMC / DL range. Thus, although it is not stable in 
sedimentary limestones, only appearing in young limestones, and never in Palaeozoic limestones (VP Wright, 
University of Cardiff, pers. comm., 2002), it seems likely that metastable HMC occurs quite commonly in the 
metalimestones of at least Scandinavia and Scotland. The karstic role of metamorphic HMC / DL is discussed in 
sections 4.4.6 and 5.8.2. 
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A2.5 Karst water chemistry 
Helldun (1975) noted that during the spring melt of the overlying snow, percolation water accounted for up to 60% 

of the flow from the Sotsbäcksgrottan (KU) rising, despite the large size of the allogenic input stream, indicating a 

well-developed epikarst. It fell back to 1-2% in August. Lauritzen (1981b) reported measures of the aggressiveness 

of karst waters at c. 100 caves and springs across Norway, using the Stenner (1969) method. There is a negative 

correlation between the size of springs and total hardness, especially for small springs below the tree line. The 

smaller the spring, then the greater is the proportion of autogenic recharge. Most (but not all) of the samples were 

unsaturated with respect to calcium carbonate, as expected with short residence times. (Ford, 1971a, pp606-607, 

noted that fast-flowing cave streams in Canada may not saturate, nor even gain hardness, along a distance of 1.9km, 

apparently due to a lack of opportunity for effective turbulent mixing and solute diffusion). Samples from above the 

tree line have a total hardness in the range 5-75 CaCO3 ppm. The hardness range is 7-120ppm below the tree line. 

For autogenic exsurgences above the tree line, the aggressiveness is inversely proportional to the hardness, which is 

also in the range 5-75ppm, indicating atmospheric supply of CO2. There is no such relationship below the tree. line, 

with hardness varying between 35-120ppm. Here, Lauritzen explained the lack of correlation as being caused by 

varying amounts of biogenic CO2 and organic acids from the differing vegetation above each site. The effect of the 

tree line was also shown in the generally negative correlation between hardness and altitude. (Appendices B2.9 and 

B2.10 and section 5.6 analyse the relationships between altitude and chemical and fluvial deposits in study area 

caves). Seasonal variations in hardness vary from very peaky to almost constant, depending on the system. 
Autogenic exsurgences are more uniform than allogenic or mixed resurgences. The hardness value at the end of 
August can commonly be taken to approximate to the annual mean. 

There is a very good linear correlation between titrated total hardness and the electrical conductance of karst waters, 

so that conductance can be used as a quick estimator of hardness (as confirmed at Sirijordgrotta, Z4 by Ovstedal, 

1991, p126). The total hardness in the above-treeline vadose streamway of Gronndalsgrotta (ZA) varied 
downstream from 8-12ppm, whilst always remaining aggressive. This aggressive nature of most Scandinavian karat 

waters was also reported by Hellddn (1975), Bakalowicz (1984), Lund and Eraso (1989) and Ovstedal (1991). 

Palmer (1991, p11) remarked that nearly all cave streams fed from non-carbonate rocks (which applies in the study 

area) are undersaturated all year round. The hardnesses of Norwegian karst waters from various studies are 

summarized in Table A2.3. 

Table A2.3 Karst water hardness 
Place Total 

hardness 
m 

Method Notes Reference 

Norwegian springs 10-55 Sterner (1969) Auto genic, above tree line Lauritzen (1981b, Fi .7 
Norwegian springs 9-75 Sterner (1969) Allogenic, above tree line Lauritzen 198lb, Fig. 7 
Grenndals otta (ZA) 8-12 Stenner (1969) Allogenic, above tree line Lauritzen (1981b, Table 1 
Norwegian springs 65-120 Stenner (1969) Auto genic, below tree line Lauritzen 1981b, Fig. 7) 
Norwegian springs 15-45 Stenner 1969 Allogenic, below tree line Lauritzen 1981b, Fi .7 
Norway, various 5-70 From Ca 18 karrt sites in flood Bakalowicz (1984) 
Q1 f ell otta (Z5) 20 From Ca Spring outlet Bakalowicz 1984 
Glomvatn, N. Norway 10 From Ca + Glomvatn outlet Bakalowicz (1984) 
Deep sub glacial 13 Modelling Lauritzen (I 986 
Sirijordgrotta (Z4 15-86 Stenner (1969) Sidord otta risin Ovstedal 1991 

According to Palmer (1991, Fig. 7), when water is in equilibrium with atmospheric CO2 (c. 340ppm) in an open 

system, calcite equilibrium solubility and Ca2+ saturation concentration vary from 70-50ppm and 28-20ppm over 

the temperature range 0-20°C. These are the lowest ranges applicable in present, open, conditions. Thus, the data in 

Table A2.3 confirm that most allogenic cave streams in Scandinavia are unsaturated. Autogenic karrt springs vary 
from unsaturated to saturated, dependent especially on the extent of vegetation cover. 

From a discussion about congruent dolomite dissolution (Appendix A2.8), the Mg/Ca ratios in spring waters 

commonly correspond to the Mg/Ca ratios in the aquifer bedrock for unsaturated solutions. Fairchild et al. (1994) 

and Fairchild and Killawee (1995) found that Mg/Ca ratios in Alpine glacial meltwaters with <1% dissolved 
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carbonate were much higher than in the local carbonates, but laboratory experiments showed that the ratio reduced 
to a constant value (in agreement with Picknett, 1976) as dissolution increased to 2%. A graph of 33 Norwegian 

carbonate spring waters has one sample close to the calcian dolomite (CD) ratio, none with ratios between CD and 
HMC / DL, and none with >99% Ca (Lauritzen, 1981 b, Fig. 10). The bulk of the samples thus appear to represent 
various mixtures between the proposed extremes of HMC and LMC. This provides hydrochemical support to the 

conclusion that mixtures of Caledonide metalimestones and metadolostones always have Mg/Ca ratios in the HMC 

range (Table A2.1, Appendix A2.4). 

In the springs analysed by Lauritzen (1981 b), Mg and Ca concentrations respectively varied from 0.1-4.4ppm and 
from 2-42ppm. The Na concentrations varied from 1-5ppm, reducing with distance from the sea, which suggested 
derivation from airborne salt spray. Other metal ions were <=1ppm. Hence, the cationic inhibitors are probably 
unimportant in Norway. 

The Lauritzen (1981b) results were supported in a more limited set of tests at 18 sites across Norway by Bakalowicz 
(1984), who measured the major cations and anions, generally in flood conditions. The maximum values recorded 
for various ionic species are presented in Table A2.4, together with mean ionic values taken by Ovstedal (1991) at 
Sirijordgrotta (Z4) in July 1988. 

To61n All Ionic sneciec enneentrntinnc from norme Nnrwuw and at CiriinrAornfa 

Ca + M+ M+ Na' Na' K K+ S042 SO 
s- 

CI' Cl- HCO3 HCO3 

Uo, t meqLl: ' ppm megL' ppm megL' ppm megU ppm megL' ppm megL' ppm megL' ppm 

E 

28 0.44 5 0.20 5 0.14 5 0.18 9 0.05 2 2.1 128 
ppm mmoIL' ppm mmolL' ppm mmolL ppm mmoIL' ppm mmolL' ppm mmoIL' ppm 

16 0.08 2 0.13 3 0.01 0.4 0.02 2 0.06 2 0.9 55 
4 34 0.07 2 0.17 4 0.01 0.4 -0.09 -9 -0.2 -1 1.6 98 

Max = maximum inaiviauai values rrom 18 sites across Norway at temperatures from 6.5-9.0"C (Bakalowicz, 1984) 
R= mean value at Sirijordgrotta rising at low-flow at temperatures from 5-7°C 

(Ovstedal, 1991, Station C, Table 6.1 and Appendix A) 
p= mean value for Sirijordgrotta percolation waters (Ovstedal, 1991, Station D, Table 6.1 and Appendix A) 
L= litre 

Ignoring other species, the mean Sirijordgrotta compositions are CaCO3 83 mole % (at the rising at low flow) and 
92 mole % (percolation water) and MgCO3 17 mole % (at the rising at low flow) and 8 mole % (percolation water). 
These are also within the HMC ranges discussed in Appendix A2.4. Although the Sirijordgrotta cave system lies 
below the tree-line, its source streams run over mica schists and granites before sinking at the tree-line, so that 

atmospheric CO2 levels should apply. Thus, despite the very low July 1988 flows (50ls'' peak) that ran through 
600m and 1200m of limestone passages, the resurgence water remained unsaturated, at Ca2+ = 16ppm. At higher 

flow rates, the degree of under-saturation would be higher, so that this cave is a good example of a cave stream that 
has probably remained aggressive throughout the Holocene. There is no reason to doubt that the above observations, 

mainly from northern Norway, apply equally well within the study area. 

Einvoll and Lauritzen (1994) noted that beneath 50-100m of rock, annual variations in stalactite drip chemistry and 
cave climate are well damped, giving near constant results. However, most caves in the study area are much closer 
to the surface. 

A2.6 Limestone denudation 
Various physical and chemical experiments that measured limestone denudation rates in Scandinavia and elsewhere 
are shown in Table A2.5. Engh (1980), Gunn (1981b) and White (2000) discussed the inaccuracies of early 
measurements, and the many factors to be considered in relating dissolution rates to rainfall or to runoff (i. e. annual 

precipitation less evapotranspiration). Droppa (1986) studied dissolution rates in Czechoslovakia, using limestone 

tablets. He found that corrosion intensity was consistently higher in summer than in winter, except for tablets buried 

under 20cm of soil, when winter maxima and minima were twice those of summer. White (1984; 1988) and Ford et 
al. (1988) cited Smith and Atkinson (1976) as giving a linear arctic and alpine denudation rate (presumably for 
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sedimentary limestones) of D=0.025R+7.4mmkä', where Rmma-' is the runoff. This formula gives a chemical 
denudation rate of c. 100mmka-' for arctic environments with 2.5mä runoff. White (1984; 1988) also argued, from 
both a theoretical and an observational basis, that annual denudation rate is proportional to runoff, and plotted 
various curves for groups of temperatures and Pc02. Denudation rate increases with the cube root of Pte, and by 

only 30% when the temperature reduces from 25-5°C. White (2000) gave a summary of denudation roe 
observations. 

Table A2.5 Limestnne denudntinn 

Place Rate 
mmka'' 

Method Notes Reference 

Kongsfjorden, 
Spitsbergen 

16 Corbel formula 
(Autogenic + 
allogenic total) 

Water hardness = 105ppm 
Precip. 350mmä', evap. 
50mmä', mean temp. -8°C 

Corbel (1960) 

Norway, various 80-500 Corbel formula From water hardness Corbel (1960) 
Non land, Sweden 40 Corbel formula From water hardness Corbel (1960 
Misvaer, N. Norwa 320 Corbel formula Water hardness =8m Corbel 1960 
Svartisen, N. Norwa 100-150 Post glacial pedestals Pedestals 10-15cm thick Kirkland 195 
Norway, various 30-50 Micro-erosion meter Rainwater, above treeline Lauritzen 1980 
Norway, various 300-400 Micro-erosion meter In stream beds and caves Lauritzen (1980) 
Svartisen, N. Norway 8-64 Sweeting formula Hardness = 32-96ppm 

(Lauritzen, 1981b results) 
Lauritzen (1984d) 

Glomdal, N. Norway 60-350 Limestone tablet Under water Lund(1986) 
Glomdal, N. Norway 0.1-4 Limestone tablet Under soil or vegetation Lund 1986 
Glomdal, N. Norway 0.1-1 Limestone tablet Under air Lund(1986) 
Glomdal, N. Norway 27 Bö li formula Hardness 10-11 m Lund and Eraso Q98ß 

.. 
Glomdal, N. Norway 25 Micro-erosion meter Rainwater, on bare karst Lauritzen 19909 
Glomdal, N. Norway 13-23 Veins and pedestals 9ka post glacial dissolution Lauritzen 1990a 
Glomdal, N. Norway 23-43 

Allogenic =8 
Linear mixing, 
multiple basin 

From water hardness Lauritzen (1990x) 

Sotsbäcksgrottan 
(KU, Sweden) 

21/28 
(modified 
formula 

Corbel formula, by 
complexometric 
titration 

Hardness = 20-45ppm Used 
Karlgren (1962) method 

Helldon (1975) 
Cited by Helld6n 
(1973) 

vre Altsvattnet 
(KU, Sweden) 

30 ? Cited by Norberg et al. 
(1988,1). 

Engh (1974) 

Mieseken (ZC, 
Sweden) 

32 ? Cited by Norberg et a!. 
(1988, I). 

Jasinski (1978) 

Kätaviken (ZC, 
Sweden) 

225 ? Hardness = 67-213ppm 
Cited: Norberg et al. (1988). 
Unreasonable rate? 

Nisell (1986) 

KAtaviken (ZC, Sw. ) 26 See formula used Hardness = 8-63 m Norberg et al. 1988 
Rödingsfjäll (KU, 
Sweden) 

14-19 ? Hardness = 5-45ppm 
Cited: Norberg et al. (1988) 

Norberg and Pettetssoa 
(1988) 

Rödin sf äl1 KU, Sw 34 See formula used Hardness =14-17 m Norberg et al. 1998 
Sirijordgrotta (Z4) 76 Stenner, Corbel Hardness =15-86 m Ovstedal (1991 
Sirijordgrotta (Z4) 124-302 Limestone tablet In streams Ovstedal 1991 
Pikikiruna Marble, 
New Zealand 

100 Modified formula Hardness = 50-120ppm Williams and Dowling 
(1979) 

Somerset Island, 2 Modified formula. 
Permafrosted to 
-300m. 

-17°C mean annual tempr. 
Precip. 129mm. Evap. 
39mm 
Hardness = 36-95ppm 

Smith (1972) 

Castle guard, Canada 

k 

6-15 Unstated formula Hardness = 20-30 m Smart (1983) 
27sites, world wide 1-22 Limestone tablet Rain, in air Gams 1981 

world wide 1-18 Limestone tablet Rain, on a dry surface Gams 1981 
world wide 1-44 Limestone tablet Buried in soil Gams 1981 

Results of studies of internal cave wall retreat rates in Scandinavia are presented in Table A2.6. According to Palmer 

(1981; section 3.1.13), the theoretical maximum cave wall retreat rate is c. lmma', i. e. 1000mmka t. Tables A2.5 

and A2.6 show that erosion in some Scandinavian active vadose and phreatic cave passages can approach this rate, 
despite the reduced flow during the winter months. From micro-erosion meter readings on marble, Lauritzen (1980; 
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1986c) calculated that active canyons could have developed to a depth of 3-4m during the Holocene. However, if 

the submerged 6m-diameter passage at the Glomdal Underground Outlet enlarged at an estimated present rate of 
gOpmmka"' throughout the Holocene, it would have reached its present size within 4ka, rather than >40ka (section 
3.3.3). The presence of the glacially-truncated Middle Entrances with 2m-diameters suggests that the main passage 
had reached this size before the last deglaciation, reducing the mean Holocene radius enlargement rate to only c. 
200mmka"'. 

Table A2.6 Phreatic cave wall retreat rates 
Place Rate Method Notes Reference 

mmka'ý 

Glomdal Underground 200 Hardness increase along Assumed passage Renwick (1962) 
Outlet, N. Norwa tube geometry 
Glomdal Underground 200-400 Limestone tablet and Present rate Lauritzen (1986c) 
Outlet, N. Norway 200-600 micro-erosion meter Lauritzen 1990b 
Glomdal Underground 800 Hardness increase along Present rate Lauritzen (1986c) 
Outlet, N. Norwa tube 
Pikhau , N. Norwa 5-88 Assumed aggressiveness' Present rate Lauritzen (1982) 
Kvithola, N. Norway 100-1000 Theoretical assumption Relict passage Lauritzen 1986a 

0.5-1.0 Speleothem corrosion Sub lacial Lauritzen (1990b) 
Hammernesgrotta, N. 0.2 Condensation corrosion of 2mm crusts Lauritzen (1990b) 
Norway relict passage 
Rödingsfjäll (KU, Sw. ) 14-87 Assumed aggressiveness' Lauritzen (1982) Norberg et al. 

method (1988) 
Rates from assumptions about maximum total hardness of 50 ppm CaCO3 in non-glacial conditions, 
and minimum total hardness of 12/20ppm CaCO3 in subglacial conditions. This method is less reliable, 
because it used a fonnula based on aggressiveness by Palmer (1981) that was superseded by a formula 
based on the degree of undersaturation (Palmer, 1991). 

2 The subglacial rate is probably an underestimate by comparison with a cited quartz weathering rate of 4mmka'. 

A2.7 Scandinavian dolostones 

Historically, the formation of dolostones containing dolomite minerals has been poorly understood, and there are 
many unresolved problems and contradictions (e. g. Gillieson, 1996, p67). Both direct precipitation (perhaps in high 
organic concentrations) and replacement of calcite are possible processes. The known `dolomite problems' include: 
a) Despite seawater being supersaturated by dolomite by nearly two orders of magnitude, precipitation is rare at 
present. Presently-forming dolostones are known, but it is thought that widespread precipitation is inhibited by 
kinetic factors such as the high ionic strength of sea water (especially sulphate) and fast, inhibiting, LMC 
precipitation. b) Sea floor calcite should be dolomitized by replacement, but this is rare. c) Although it can be 
formed at hydrothermal temperatures both artificially and during metamorphism, laboratory synthesis of dolomite 
from natural waters is impossible at normal temperatures. This arises from the very long reaction rates and long 

precipitation times, although eventual saturation concentrations are comparable to those of calcite. (Higgins and Hu, 
2005, found by experiment that a relatively rapid growth of a single crystal layer inhibits further growth). d) There 
are few modem analogues of ancient dolostones. e) Although seawater is rich in Mg, a large flow of Mg2+ ions 

would be needed to dolomitize a limestone formation completely. 

To summarise, whereas dolomitic minerals behave to an extent like the more reactive calcitic minerals, their very 
long reaction times means that they can only form over very long timescales [Ma? ], and, once formed, they remain 
stable and resist dissolution also over very long periods of time. Appendices A2.4, A2.5, A2.8 and sections 4.4.5 and 
4.4.6 discuss dolostone chemistry and the karstic properties of dolostones within the study area. 

There is no documented Scandinavian karst cave existing in a correctly-described metadolostone rock (i. e. one that 
is D, SD, CD or MD, as defined in Table A2.1). Although Lauritzen (1981c) mentioned the existence of cave 
systems in dolomite, he did not say where in Norway they occur, nor was a definition of "dolomite" given: he 

probably meant High Magnesian Calcite (HMC) or Dolomitic Limestone (DL). Ford (1971a, p586) remarked that 
areas of considerable dolomitization in the Rocky and Selkirk Mountains of Canada yield negligible development of 
karst landforms. However, Ford (1995) gave a description of some karren landforms on Canadian dolostones. 
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Where two different limestone lithologies are in contact along the strike, then it is common to find cave MUMMS 
formed along this junction. Bottrell (1988) reported caves formed at the junction of grey and yellow metalimestotm 
in Lower Glomdal, northern Norway. He described the grey lithology as being >95% calcitic, with silicate and mica 
impurities. This is presumably impure Low Magnesian Calcite (LMC). It varies from massive structures to banded 
structures, with darker bands at scales of 5-100mm. The yellow lithology always contains >20% non-calcift 
components and has a very variable composition (including dolomite, in some cases), colour (e. g. brown), and 
banding (up to a scale of 100mm), and may therefore include HMC or DL. Bottrell found that cave passages exist in 
both lithologies, but preferentially in the grey limestone. In caves where both types of limestone could be observed, 
the yellow limestone appeared to act as an aquiclude in some instances. Lower Glomdal lies in the RNC, some 
25km north of the study area boundary. See also sections 4.4.5,4.4.6 and 5.7.3 and Appendix A2.8. 

A2.8 Dolostone chemistry 
Hill and Forti (1997, ppl42-150) discussed the occurrence of various calcium- and magnesium-based carbonate' 

minerals in caves. The dissolution of dolomite in hydrochloric acid was studied using rotating discs by Lund et 4: 

(1973). They found that the rate of dissolution of calcite as marble or limestone is c. 100 times greater than that of 

dolomite for the same concentration, at 25°C. This is in agreement with field experience in the study area: calcitic 

metacarbonates give a vigorous reaction with dilute HCI, whereas metadolostones give a reaction that is not visible 

and barely audible (section 4.2.9). Picknett (1976, pp247-248) noted that when dolomite dissolves in carbonic acid, 

the ratio of Ca to Mg in solution equals that of the solid (congruent dissolution), and a true saturation is attainable. 
However, in saturated solutions, "magnesian aragonite" [A+HMC? ] crystallises out in preference to dolomite st 

normal temperature, because of a slow rate of deposition, as agreed by Palmer (1991, p15), who stated that dolomite 

cannot reach saturation without driving calcite into supersaturation below 25°C, causing incongruent dissolution. 

Wigley and Plummer (1976, Fig. 3) described the conditions favouring the replacement of calcite by dolomite in 

various solutions of dilute sea water at two PC02 concentrations. 

Rauch and White (1977) conducted experiments on the dissolution rates of various Ordovician carbonates from the 
Union Furnace outcrop in Pennsylvania. Their results showed that dissolution rates of carbonate types by carbonic 
acid at a standard 22% saturation reduce in the order LMC, C, HMC, CD, although this was less certain at low 

dilution. However, this author suggests that their results would now benefit from a modern re-appraisal to consider. 
a) the identification of samples against the carbonate classification in Table A2.1; b) the inhibiting effects of SiOZ 

and other impurities; and c) their assumption that C and D saturation occur together at equilibrium. 

The influence that MgCO3 has on calcite dissolution has been the subject of much debate. Picknett (1976, p247) 

reported some paradoxical evidence about the solubility of (low) "magnesian calcite" (LMC) compared with that of 

pure calcite. The solubility of high magnesian calcite (HMC) was also contradictory and confusing and he 

acknowledged (Ibid., p249) that the contemporary knowledge of Mgt+-related equilibrium constants was 

unsatisfactory. Thus, Jakucs (1977) found that MgCO3 substantially reduces calcium carbonate dissolution, in 

contrast to Rauch (1972) and to Picknett and Stenner (1978) who reported enhanced calcite solubility in dilute 

MgCO3 solutions. However, Dreybrodt (1989a) could find no such increase when he repeated the laboratory 

experiment. The work reported in section 3.1.15 probably resolves these conflicts. 

White (1977) explained the well-known rarity of conduits in dolomite aquifers by presenting experimental evidence 
that, although the dissolution rate is comparable to that of limestone in highly unsaturated solutions, the rate soon 
falls as saturation increases, and saturation takes several years to achieve. The slowdown in reaction kinetics on 
increasing saturation takes place much earlier than in calcite (sections 3.1.13-3.1.15), at 1% saturation, so that the 
critical triggering for conduit development never takes place. 

The most comprehensive experiments to study the kinetics of dolomite dissolution were those reported by 

Busenberg and Plummer (1982). They measured the rates of dissolution of eight samples of stoichiometric dolomite 
far from equilibrium, using the same procedures that Plummer, Wigley and Parkhurst (1978; section 3.1.3) had used 
for calcite dissolution. Four of the samples were of sedimentary origin, and four were "hydrothermal" (_ 

metamorphic). They deduced an empirical rate equation to describe the dissolution of dolomite that has similarities 
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with the PWP equation for calcite, and resolved many previous conflicts and anomalies in the understanding of 
dolomite chemistry. At low temperatures, the more highly ordered metamorphic dolomites always dissolved 

significantly more slowly than sedimentary dolomites i. e. they had lower forward reaction rates. Further, the 

metamorphic sample with the highest iron content dissolved the slowest, suggesting that it is the most stable. The 

slow dissolution rate of all dolomites is accounted for by a strong backward reaction in the presence of increasing 

bicarbonate ions. The effect is to slow down the reaction, rather than to precipitate a solid phase, so that dolomite 

dissolution becomes even slower than its initial speed of 100 times slower than calcite dissolution. They also 

confirmed that, except at the very start of the reaction, the dissolution of dolomite is congruent, i. e. the CaCO3 and 
Mg CO3 components react at the same rate, and the Ca/Mg mole ratio tends to unity, in agreement with field 

experience about the chemistry of springs from dolomite aquifers (Appendix A2.5). 

White (1984, pp244-246) explained the more subdued nature of dolomite surface karrt from its dissolution 

behaviour. The saturation concentrations of calcite and dolomite solutions as measured at springs are similar, so that 
denudation rates are also similar. However, the bulk mass of dissolved limestone comes from the surface, whereas 
dolomite dissolution occurs throughout the fracture system, commonly without forming large conduits, but 

generating highly-productive aquifers. 

Herman and White (1985) conducted low concentration rotating disc experiments on three dolomite samples, mainly 
at 25°C: one sedimentary, one metamorphic single crystal, and one coarse-grained metamorphic sample from Fauske 
in northern Norway. The shapes of their dissolution rate curves were in good general agreement with those of 
Busenberg and Plummer (1982), although actual dissolution rates were lower by a factor of about two, and the 
sedimentary sample behaved more like one of Busenberg and Plummer's metamorphic samples. The Fauske 
dolomite marble dissolved at a rate nearly equal to that of the sedimentary sample, but the single crystal rate was 
lower. 

From the above experimental results, Ford and Williams (1989, pp88-92) proposed a picture of dolomite, HMC and 
LMC dissolution at the molecular level. There is no information at present on the mechanism of dolomite 

dissolution under near-saturation conditions (White, 1988, p147). Borsato and Frisia (199? ) discussed the unique 
preferential karstification of Dolomia Principale dolostones in the South Tyrol, Italy. These host cave systems up to 
18.5km long. They noted that ordered, stable, stoichiometric dolomites are not common in sedimentary dolostones, 

which commonly consist of CD, are full of defects, and hence are better candidates for dissolution. Where 

hydrothermal fluids circulated through fractures, and caused recrystallization of original diagenetic facies, the grain 

size increased, giving reduced surface area, and in those places the Dolomia Principale is not karstified. 

Karstification is also lacking in porous and massive facies where intergranular porosity hindered concentrated 

recharge. 

Chou et al. (1989) studied the kinetics of the dissolution of the carbonate minerals calcite [LMC? ], aragonite, 
witherite (BaCO3), magnesite (MgCO3) and stoichiometric dolomite. The forward rate curves against pH were 
similar for the first three minerals, but rate constants for magnesite were three to four orders of magnitude lower 
(probably due to the difficulty to hydrate MgCO3), and those for dolomite were about one order of magnitude lower. 
The dissolution kinetics of dolomite are much more complicated compared to the others, with fractional reaction 
orders. The paper made the important point that minerals with similar solubilities may have very different 
dissolution rates. Singurindy and Berkowitz (2003) explored the oscillating competition between dissolution and 
calcite precipitation processes in stoichiometric dolomite (dedolomitization) at various flow rates and pH values. 
They agreed with earlier research that reaction becomes congruent as the reaction proceeds, and suggested that the 
earlier preponderance of Ca2+ arises from dissolution of calcite in the dolomite sample. 

Martinez and White (1999) found that (Calcian) Dolomite from the Isla de Mona (near Puerto Rica) had a lower 

dissolution rate than LMC (? ) from limestone overlying it. Karst development on Mona consists of shafts in the 

limestone to horizontal openings at the limestone / dolostone contact, with little penetration in the dolostone. The 

higher dissolution rate of the Mona dolostone compared to a reference dense Ordovician dolostone sample was 

explained by the presence of interspersed calcite (c. f. section 4.2.9 and Appendix A2.4). The global rarity and 
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subdued nature of karst in dolostone rocks is even more marked in the metadolostones of the study area (sec is 

4.2.1,4.4.5 and 5.8.2), although inception at metadolostone / metalimestone contacts is likely (section 3.1.5). 

A2.9 Breakthrough and enlargement in metadolostones 
From the discussion in section 8.1.10, there seems no reason to suppose that fracture systems were not also 

generated in the Caledonide metadolostone outcrops from seismic activity associated with glacial unloading. A large 

proportion of these should also be wide enough to sustain turbulent flows that in metalimestones would be beyond 

the breakthrough point. However, from the review in Appendix A2.8, dolomite only dissolves at a measurable rate 

when the solution is completely unsaturated. No reference is known to the equilibrium solubility of dolomite at low 

Pcoi and 0°C (as applies during deglaciation), but this is hardly relevant. According to Busenburg and Plummer 

(1982, Fig. 7), the dissolution rate of dolomite at zero PCO2 and 1.5°C is <0. lx10"7mmolcm 2s"' for pH>3. Herman 

and White (1985) gave the maximum (initial) dissolution rate of dolomite as about lµmolm"ZS"' (=10"7mmolem 2s ') 

at 0°C (but at a Pc02 of) atmosphere). Thus, the dolomite rate is comparable to the maximum calcite rate only in the 

most favourable conditions and the rate becomes negligible after a few hours as the saturation level increases. 

Hence, compared with calcite, neither breakthrough nor passage enlargement over significant path lengths are likely 

to occur within the timescales applicable to any Caledonide flow regimes. 

These theoretical and laboratory results explain the rarity of karst features in metadolostone outcrops in the study 
area (section 4.4.5). Small surficial karst features have developed from tectonic fractures, but presumably only under 
present meteoric conditions during the Holocene. The short Tjuvhelleren (ZB), whose bedrock partly comprises a 
dolostone (Appendix A2.4), probably enlarged to its c. 2m2 cross-section under an ice-dammed lake above Stor 
Akersvatn (Appendix D2.3), but only because the path length was very short (4m) and the hydraulic gradient was 
very high (0.75). 

A2.10 Caledonide carbonates: a discussion 
In concluding the brief review of the diagenetic, dolomitization and metamorphic history of the central Scandinavian 

Caledonide carbonates, the anomaly regarding the relative paucity of dolostones in the Proterozoic and Palaeozoic 

metacarbonates of the study area (when diagenetic processes commonly converted high proportions of carbonates to 
dolostones: Appendix A2.1) may perhaps be resolved as follows. 

Deposition of early carbonates was as A+ HMC, or as LMC, or as D directly. In many Caledonide situations there 

was sufficient time for the full range of diagenetic reactions and recrystallisations to have gone to completion, so 
that conversion to dolomite would be 100%. In other situations, metamorphism could have occurred too soon after 
deposition for full dolomitization, and much of these carbonate layers could have remained as calcite. From the 

work of Dallmann (1987), admittedly in only one area, there is at least some evidence that metamorphism can cause 
dedolomitization. His study was based on rocks in the Koli Nappes, which only experienced low-grade (typically 

greenschist facies) metamorphism. At the much higher grade metamorphisms suffered by the HNC / RNC and Seve 

rocks, conversion of dolomite back to calcite ("dedolomite") and skarn minerals may be facilitated and accelerated. 
Winkler (1976, p173) listed 16 applicable reactions in siliceous dolomites. In six of these, calcite is consumed, and 

skarns and dolomite are produced. In eight reactions, dolomite is consumed, and calcite produced, together with 

calc-silicate minerals. 

It follows that the rocks in the Uppermost Allochthon and in the Seve nappes may have been subjected to a 

sufficient number of repeated high-grade metamorphic events over sufficient timescales for dedolomitization to 

LMC or to HMC / DL to have been completed in many places. A corollary is that calc-silicate rocks would have 

been produced contemporaneously, and formed intermediate layers within the meta-calcites. This could partly 

explain the very high frequency of interlayered aquiclude rocks that are found inside the caves of the Uppermost 

Allochthon, but which are relatively absent from the caves in the Keli Nappes limestones. (Sections 4.3,4.4 and 
5.7.4 consider the roles of non-carbonate rocks in karst and cave morphology). Similarly, the paradoxical higher 

proportions (section 4.2.1) of dolomites in the Kali Nappes (16%) and Lower Allochthon (96%) could be associated 

with the reducing metamorphic grade of these nappes, and a consequent reduction in opportunities for 

dedolomitization. 
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APPENDIX A3 GLACIAL PROCESSES 

The likely timings and extents of glacial events in the study area were considered in section 2.3. The various 
processes that characterise the onset, existence and culmination of continental icesheets are reviewed in this 
Appendix. 

A3.1 Glaciation and deglaciation 

Warwick (1956 and 1971) discussed the onset and decay of glaciation in Britain in the context of cave development 

with a description that seems partly applicable to Scandinavia. The beginning of each stadial was triggered by a 
switch to a climate with cooler and drier summers and warmer and wetter winters. An increased amount of 
precipitation fell as snow in winter, whilst less fallen snow melted in summer. In critical areas on higher ground, a 
surplus of unmelted snow at the end of successive summers led to an accumulation of unconsolidated snow and ice 

each winter. At a critical depth, the ice bodies started to flow. Movement was initially guided by valleys, but later, as 
the icesheet thickened, the flow became radial from the higher mountain areas, where accumulation was most 
persistent. At the ice front, the supply of fresh ice from the centre was matched by the wastage due to melting. This 

thinned ice front waxed and waned with the seasons, but generally expanded outwards if the lower temperature 

persisted, and was also guided by the local topography. The surface was commonly quite dirty at the ice front, as the 
ice melted around enclosed debris, which was deposited as till. Meltwaters from the front of the ice carried much of 
this till forward as a fan, choking valley floors with sand and gravel. A zone of permafrost probably lay beyond the 
ice front at least, and beyond this there was a zone of periglacial conditions, with seasonal variations. 

At the end of each glacial, the mean annual temperature rose again, causing the melting to outpace the supply of new 
ice, and the icesheet to recede. Ice melted first at the highest levels, and the valley bottoms were the last to be clear 
of ice. Dead-ice remained in topographically low positions, commonly forming up-valley, ice-dammed lakes (IDLs), 

where large amounts of glacial deposits were laid down. Hence, each Scandinavian glaciation and deglaciation 

started and ended in the west, near the summits of the Norwegian mountains. Chapter 8 develops this concept, and 
also discusses the effect of the sea during glaciation and deglaciation. 

Oerlemans (1991) discussed the role of icesheets in the Pleistocene climate. Depending on local conditions, snowfall 
reaches a maximum at annual temperatures between -5 and +5°C. There is a powerful feedback between increasing 

altitude and ice accumulation, because the icesheet grows even if there is no further cooling (albedo effect). 
Although isostatic adjustment lags increasing load and decreasing thickness, both movements provide some negative 
feedback, restricting growth, and then restricting decay. Oerlemans referred to two studies that showed that at glacial 
maxima, when the Atlantic sea ice restricts moisture supply, precipitation decreases by up to 50% north of 60°N. 
This has the effect of drying out northern hemisphere icesheets. Icesheets can decay much faster than they grow, but 

a rapid decay requires destabilising mechanisms as well as a high summer temperature. Ice fronts that calve into the 

sea or into proglacial lakes can provide this instability and lead to a fast retreat. Geothermal heat input causes higher 
ice temperatures at the base of the icesheet and subglacial meltwater is produced when the base reaches the pressure 
melting point. This reduces friction and can lead to sliding on till layers, which may also accelerate the decay. 
Donner (1995, p96) mentioned that unfrozen sediments were commonly deformed under large icesheets in addition 
to frozen sediments near the ice margin. Andersen and Borns (1997, p108) remarked that even below a smooth 
icesheet there can be ice streams in subglacial valleys that drain much of the ice. 

A3.2 Cold-based glaciation 

It seems likely that permafrost conditions occurred beneath the icesheet near glacial maxima in much of the study 

area. Studies of pre-Late Weichselian Scandinavian glacial fans by Kiemen et al. (1997) suggested that the core of 
the Late Weichselian glaciation retained a frozen bed, assisted by reduced frictional heating. Kbmen and Hättestrand 

(1999) studied "ribbed" or "Rogan" moraines (linear moraines orthogonal to the ice flow that are probably formed 

subglacially) and "relict" landscapes (landforms not modified by overriding icesheets). They similarly deduced that, 
during the LGM, large core areas of the Laurentide and Fennoscandian icesheets were frozen-based, and therefore 

Trevor Faulkner Page A 19 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix A3 - Glacial processes 

high-domed and stable. Their maps (Ibid., Figs. lb and Id) indicate that the frozen-bed limit apparently reachad'vt 
least to Trofors in the study area, and perhaps as far west as Tosbotn. It shrank during deglaciation, so that in the 

study area only the Okstind mountains retained a frozen bed by 9500a. However, the extent of the frozen bed is 

related to the size of the icesheet and Johnston (1987) noted that icesheets tend to maintain bedrock temperatures 

near the pressure melting point, suggesting that karst rocks in the study area were covered by at least a film of liquid 

water during part of each glaciation. The reconstruction by Boulton et al. (2001, Fig. 17) showed that the mountains 

of Scandinavia, including the study area, experienced basal melting during the Early Weichselian prior to 80ka, but 

were subsequently characterised by basal freezing. During early icesheet growth, the base is everywhere below the 

freezing point (Ibid., p619). At the decay of the icesheet, a major ice stream flowed due west across Elgi)eil `az d 

Jordhulefjell (Z4), suggestive of a warm bed there at that time (Ibid., Fig. 15 and P600). However, during 

deglaciation, the rate of retreat of the ice margin was commonly greater than that of the melting / freezing intefce, 

so that much of the remaining icesheet was still frozen at its base, despite higher annual temperatures. 

A3.3 Warm-based glaciation 
Warm-based (temperate) glaciers and icesheets move by deformation and by regelation, whereby basal ice melts on 
the higher pressure stoss side of an obstacle and refreezes on the lower pressure lee side. Additionally, it is now 

known that contemporary subglacial lakes exist. A large, deep, freshwater subglacial lake lies below the Antue 

icesheet (Kapitsa et al., 1996; Nadis, 1999). It has bedrock walls and floor, and its upper water surface is at a depth 

of c. 3743m below Vostok (section 2.3.2), i. e. 255m below sea level. The mean and maximum heads of water in 

Lake Vostok are 125 and 510m (>1000m, Siegert et al., 2001). The total hydraulic pressure is equivalent to a head 

of water c. 3140m above sea level (-350 atmospheres) for the whole lake, on which the local icesheet is floating. For 

subglacial lakes to be in hydrostatic equilibrium, their ice-water interfaces slope at eleven times the ice surface 

gradient, but in the opposite direction (Siegert et al., 2001). Lake Vostok is the largest of around 70 identified 

subglacial lakes beneath the east Antarctic icesheet (Bentley, 2000). It is also possible that neighbouring subglacial 
lakes could have a hydrological connection with Lake Vostok (Siegert et al., 2001). The model of slow circulation 

replacement water in such lakes was confirmed by Siegert et al. (2000; 2001). They demonstrated that, at Lake 

Vostok, the basal ice melts on the west and north (up ice flow) side of the lake, whilst the lake water freezes (at-3°G) 

and builds up into the icesheet base on the east and south, down flow, side. Rotating water circulation patterns were 

estimated to have speeds of 0.3mms'. 

The presence of Lake Vostok and other subglacial lakes at the heart of an icesheet shows that both warm-based and 

cold-based glaciation can vary locally. The possibility that Lake Vostok is caused by the presence of a hydrothermal 

rift zone was virtually ruled out by Jean-Baptiste et al. (2001), who also deduced that the renewal time of the lake is 

c. 5000a. Dowdeswell and Siegert (1999) showed that the majority of Antarctic subglacial lakes are located near the 

centre of the icesheet, where ice surface slope, ice velocity and surface accumulation rates are all low, but a minority 
lie closer to the Antarctic coast. Pressure melting occurs in the centre because of the ice thickness (2-4km), and 

occurs nearer the periphery from the heat generated by basal sliding. Apart from Lake Vostok, most lakes are found 

in areas of relatively low relief (less than 400m elevation in 4km). The authors suggested that present Antarctic 

subglacial lakes provide an analogue for northern Quaternary icesheets at the height of glaciation. These 

observations complement those of Kiemen and Hättestrand (1999; Appendix A3.2), who suggested that the core of 

the Scandinavian icesheet had a frozen bed. Shoemaker (1991) calculated that under normal bed-slope conditions 

and hydraulic transmissivities, local ponding can occur in any bed depression. Thus, the variation of cold-based and 

warm-based glaciation over space and time is an extremely complex problem to resolve. Indeed, there are at least 

four general cases to consider, because the air and bedrock temperatures can vary almost independently above and 
below the freezing point of water. 
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A3.4 Subglacial groundwater 
Boulton et al. (1993; 1996) modelled the groundwater regimes that existed at the SW margins of the Saalian and 
Weichselian glaciations along a transect from the Netherlands via southern Sweden into southern Norway. They 

noted that subglacial meltwater tends to flow radially outwards towards the icesheet margin, forming eskers, except 
in mountainous terrain, where bed topography is more important (as in most of the study area). Unlike in present, 
non-glacial, conditions, water at the ice-bed interface and groundwater in aquifers beneath the icesheet both flow as 
parts of icesheet-wide systems. Where basal melting occurs, the water pressure head approximates to the magnitude 
of ice pressure, and may produce high pressures and flows in any lower, highly permeable, aquifers. Near to the ice 
divide, the basal ice does not melt, groundwater heads remain low and no groundwater flows in the frozen zone. In 
this model, continuous permafrost exists beneath the ice divide in the middle of the icesheet, and beneath the 
outermost margin of the icesheet, if this is on land. Between these two zones of freezing, and beneath sea areas and 
major rivers, is an extensive zone of melting. The melting rate rises to a maximum of 1-2cma l just before the 
permafrost zone that lies beneath, and beyond, the glacier snout. The maximum thickness of the outer continuous 
permafrost zone, at both maximum and intermediate glaciation, was modelled to be c. 100m. The permafrost thins 
farther forward of the glacier front and becomes discontinuous at a thickness of c. 50m. [Presumably, the lower limit 

of each of the permafrost zones would follow, in a subdued form, the topography of the land surface above]. Thus, 

although existing caves in the study area may have experienced permafrost conditions at various stages of glaciation, 
any cave passages lying farther than c. 100m from the surface would always contain water, even if surrounded by 

areas of ice and permafrost. However, section 5.3.7 shows that there are no passages in the study area this far from 
the surface. 

Lauritzen (1996d and 1997) reported an example of a contemporary glacier at south Spitsbergen where almost all the 
drainage is into an underlying conduit karrt. He suggested that the down-ice limit of capture is probably coincident 
with the transition between a temperate glacier base up-ice and the polar snout of the glacier. The melt-water at the 
base of the ice above the transition would produce a high hydrostatic pressure above the karst For glaciation above 
the sedimentary aquifers south of the Baltic Sea, if all the glacial meltwater can be discharged by groundwater flow 
in these aquifers, as modelled by Forsberg (1996), no base tunnels or eskers form. Otherwise, excess meltwater flows 
along tunnels and eskers to be discharged at the glacial front. The groundwater remains stagnant beneath the frozen 
ice divide, with a low head, but at very high effective pressure. At the outer margin, groundwater heads exceed the 
overburden pressure beneath the permafrost. This can lead to the hydrofacturing of bedrock and a strong upward 
groundwater flow through local gaps in the permafrost, perhaps in areas of former proglacial lakes. The potential 
importance of these processes for karrt development is discussed in section 63 and Chapter 8. 

A3.5 Glacial erosion 
From section 2.3, the Quaternary was a time of complex and repeated rapid advances and retreats of both whole 
icesheets and individual valley glaciers, with enormous surface erosion particularly during the deglaciation phases. 
The response to these glacial fluctuations was more pronounced on the steeper, western, side of the Scandinavian 
mountains than on the gently-sloping lee side, causing advances and retreats along the fjords. Off the north central 
Norway study area, the Skjoldryggen end moraine and sediments, which are over 500m thick at the Vering Plateau 
(Figure 2.5), continue to, and flow over, the edge of the continental shelf, 250km west of the island of Vega 
(Andersen and Borns, 1997, Fig. 2-30). A proportion of the sediment presumably derives from subglacial 
waterways (section 8.1.7) that flowed in tunnels under the icesheets and glaciers during the various deglaciations. 

Glasser (1995) modelled the effect of topography on the erosion of the Scottish icesheet along a W-E transect at the 
LGM. Noting that ice deformation rates and ice temperatures are mutually interactive, he distinguished between 
three basal temperature zones: basal melting, i. e. warm-based everywhere, close to 0°C; basal freezing, which is 

mainly cold-based but local pressure melting varies the temperature between 0 and -8°C; and cold basal freezing 
below -8°C, where melting does not occur. He showed that in the western mountainous centre of glaciation, basal 

melting was associated with thick ice and convergent flow along valleys, causing high erosion rates, and basal 
freezing occurred along ridges with thinner ice and less erosion. Ice streaming velocities in valleys could reach 
225mä ', three times greater than on adjacent interiluves. Modification of the landscape decreased eastwards, and 
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high velocities and basal melting resulted in deposition of till rather than high erosion at the lowland eastern end of 
the transect. Gently undulating topography is characterised by restricted glacial erosion and / or deposition, where 
the main outline of the preglacial (c. f. `paleic' in Scandinavia) landscape could survive. This description is similar to, 
that of the effects of glaciation on the landscape in the main study area (section 2.3 and below). The concept of=ice- 
streams along warm-based valleys was supported by Siegert and Bamber (2000), who suggested that enhanced 
velocities in Antarctica are facilitated by supplies of liquid water from subglacial lakes at the heads of these valleys. 

According to Sugden (2000) there is still uncertainty regarding the effect of glacial erosion at passive margins. Cold- 

based glaciers (below the pressure melting point) can protect valley sides, as evidenced by 14Ma-old sediments 80 
lying on the surface in the Dry Valley area of the Trans-Antarctic Mountains. At the other extreme, warm-based 

glaciations in NW Scotland have caused a fairly homogeneous areal erosion of 10-50m over the last 2.5Mä: In 

intermediate cases, localised selective linear erosion can occur with exploitation of existing river valleys deepened 

by ice to create fjords. Sugden stated that the oldest glaciations may have created the deepest landforms; with 

evidence of Miocene sediments at the base of some valleys in Antarctica. Thereafter, subsequent ice flows occupy 
the same glacial valleys. This reasoning was supported by Stuevold and Eldholm (1996), who noted that glacial 

erosion is probably greatest when eroding into material that is already weathered, as was the case with he". ' 

Scandinavian paleic surface (section 2.2.1). The offshore sedimentation evidence from Henriksen and Vorren (199 

section 2.2.2), is that major valley deepening and the formation of U-shaped valleys and fjords started from about 
3Ma. It seems likely, however, that the most significant deepening of glacial U-shaped valleys in the study area 

occurred after the Mid Pleistocene Revolution at 0.9Ma, when glacial advances became most extensive. 

The overall geomorphological effect of the waxing and waning Plio-Pleistocene glaciations was to emphasise the 

topographical guidance by rock type and tectonic structure and to create glaciated valleys and over-deepened Oor& 

in the mountains (e. g. Rudberg, 1992). Hebdon et al. (1997) also pointed out that during full ice cover, the greated 
denudation occurred along valleys aligned with the direction of ice movement. Glacial scouring is commonly aligned 

with linear and near-vertical metasedimentary units that are commonly furrowed by longitudinal valleys between 

narrow structural ridges of folded schists, quartzites or metacarbonates, with trends that usually lie between N-S and 

NE-SW, although E -W glacial through valleys also exist and E-W glacial sculpting is seen at peaks that are over c. 

I 000m in altitude. Hence, despite the importance of the repeated glaciations over the last 2.8Ma, the topography of 

the study area remains guided by the Caledonide geology. 

The nappe boundaries also continue to influence the study area landscape, with numerous examples being observed. 
These include the northern limit of the HNC, which is mostly along Ranafjord (gouged out to depths >500m); the 

three-way junction of the I"INC, the RNC and the Keli Nappes under the `Inland Sea' of Ressvatn that is c. 150kma 

in extent; and high mountain ranges along the sole thrust of the Uppermost Allochthon, where it overrides the KO H 

Nappes. These ranges form a N-S chain south of Rossvatn, with peaks up to 1700m (HNC / Keli; Photo 4.2), and 
form a W-E chain along the southern flanks of the Okstind range (RNC / Kßli). In Sweden, the individual nappes of 

the Upper, Middle and Lower Allochthons commonly create a `stepped' landscape. [The limestone escarpment 

scenery at Svartisen in northern Norway that is guided by gently dipping outcrops (Kirkland, 1958) is rare in the 

study area, where outcrops are usually much steepeij. 

The influence on the glacially-scoured high plateaux was much less marked, as the mean erosion across the whole of 
Scandinavia from all glaciations was interpreted to be only 16m by Peulvast (1985, p992), from data proved by 

Ruddiman (1977). Rudberg (1997, p198) calculated an average glacial lowering of the paleic surface of a c. 
15000km2 region in the eastern part of southern Norway to be c. 25m, a figure similar to one he cited from Helland 
for the glacially "lost rock" of Scandinavia. His calculation for the average thickness of the glacially lost rock layer 

at a region of similar size in the western part of southern Norway was c. 250m, i. e. ten times as much. From the 

geomorphological evidence, he deduced that periods with a lowering of the present altitude of glaciation by 500- 

800m were frequent and long-lasting. A lowering of 800m would fill most presently-empty cirques, fjords, through 

valleys and Swedish mountain valleys with ice. Lidmar-Bergström (1997) studied the denudation of the Precambrian 
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shield rocks since the Proterozoic and concluded that the amounts of erosion were 600m maximum during the 
Mesozoic and Tertiary and 200m maximum for channelled glacial erosion during the Pleistocene [and Pliocene? ]. 

The entrenchment of U-shaped valleys by glaciation has been estimated both by direct methods, as presented in 
Table A3.1 (which makes a simplifying assumption that Cenozoic glaciations can be represented by ten major 100ka 
glacial cycles since the Mid Pleistocene Revolution: section 2.3.1) and by dating the earliest growth of stalagmites 
located in relict cave passages ̀ hanging' above valley floors, as presented in TableA3.2. The stalagmite date method 
provides maximum rates, by assuming that speleothem growth can only start after a valley floor has lowered below 
the level of the passage, as otherwise the passage would be flooded (Ford et al., 1981). Minimum rates are also 
estimated by assuming that deposition commences within one 100ka glacial cycle. However, this minimum rate 
would still be too high if the passage formed above the level of its contemporary valley floor, so that it remained 
relict during subsequent interglacials, as considered likely in Chapters 6-10. The data in Tables A3.1 and A3.2 
indicate that glacial valleys in the mountains of Norway, Scotland and Canada can deepen by as much as 60m during 

each complete glacial cycle (probably dependent on rock type and valley orientation relative to glacial movement) 
whilst at the same time, glacial erosion can be negligible in areas of low relief. These values are considered further in 
Chapter 7. 

Takle All VnlIev entrenchment rote fr.. m . t:. t ... e*1.... ýe 

Place Rate Glac. Max. Method Notes Reference 
Rate or 

mmka' c Min. 
All Scandinavia 16 1.6 Scand. 16m total mean Peulvast (1985, p992) from 

mean removal data by Ruddiman (1977) 
W. Norway 500-600 50-60 mean YD moraine Larsen and Mangerud (1981), 

volumes cited by Lauritzen 1986a 
Hammernesgrotta, 240 24 actual 240m of total Haugane and Gronlie (1988, 
N. Norway glacial erosion Fig. 9) 
Nordland, Norway 440-450 44-45 mean Topographic a Nesje et al. (1989), 

volumes cited by Lauritzen 1990b 
Nordland, Norway 150-180 15-18 min Off shore a Nesje et al. (1989), 

sediment cited by Lauritzen 1990b 
Norway 60-960 6-96 range Present glacial b Hallet et al. (1996, pp217, 

330 33 mean erosion 220) 
N. Sweden >200 >20 max >200m channelled Lidmar-Bergstrom, 1997 
Precambrian Base. glacial erosion , 305 
a Launuen I1I UU) ascsxu mudii v4urwegian rates io oe in me range 13u-. 55ummka' (i. e. c. 15-55m per 

glaciation). 
b Glacial yields vary from 100-1300 tonskm'Za 1. Erosion is fastest beneath large valley glaciers with several 

tributaries, and can peak during years with large floods or discharges. Smaller yields are obtained from only 
partially covered basins. 

cm per 100ka glacial cycle 

A3.6 Holocene weathering 
The limestone weathering results (Appendix A2.6) can be compared with the commonly much lower weathering 
rates measured by Andre (1996; 1997; 2002) in various rocks exposed to the atmosphere in Scandinavia and in polar 
environments (Table A3.3). Holocene micro-weathering is consistently weak compared to the effect of glacial 
lowering. Andre (1996) concluded that, during the Holocene, azonal chemical and biological processes dominate 

over , periglacial" processes. Andre (1997) discussed the Holocene rate of rockwall retreat at Spitsbergen. She found 
that three processes combine to give mean triple-rates of erosion: biogenic flaking; frost shattering; and postglacial 
stress relaxation. Postglacial stress relaxation dominated over freeze-thaw processes, as evidenced by deep and 
widely-opened joints (up to 1.2m), which run parallel to cliff faces and to the former ice flow direction. She also 
noted that the present surface lowering rate of granite in northern Scandinavia is only I mmka 1, but in stratified and / 

or densely-fissured dolomitic limestone in Finland and Canada, the total Holocene cliff recession rate can exceed 
10m, i. e. 1000mmka 1. However, average Holocene rockwall retreat rates are usually much higher than present rates, 
indicating an intermittent process. This was supported by lichenometric evidence. 
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Table A3.2 Valley entrenchment rates. from stahl mite ornwth Ahne the valley floor 

Place Dewater Hang Rate Glac. Max. Notes Reference 
Age range (m) (mm Rate or 

ka ka"1 c Min. 

Grenndalsgrotta 148 50 340 34 max Lauritzen and Gascoyne (1980) 
(ZA) 248 50 200 20 min? 
Greftkjelen, A: 190 205 1080 108 max Holbye and Lauritzen (1983) 
N. Norway 290 205 700 70 min? 

B: 179 80 450 45 max 
279 80 290 29 min? 

Sirijordgrotta (Z4) 128 40 310 31 max Valen et al. (1997) 
228 40 180 18 min? 

Bearjaw Cave, >350 45 <130 <13 max a Ford et al. (1981) 
Deadman Pass, >450 45 <100 <10 min? 
Canada <690 45 >65 >6.5 max 

<790 45 >60 >6 min? 
Eagle Cave, >690 90 130 13 max a Ford et al. (1981) 
Crowsnest Pass, >790 90 110 11 min? 
Canada <1000 90 90 9 max 

<1100 90 80 8 min? 
Castleguard Cave, >690 365 530 53 max a Ford et al. (1981) 
Canada >790 365 460 46 min? 
Uamh an Claonaite, >192 205 680 68 max b Rebdon et al. (1997) 
Assynt, Scotland 
Uamh an Claonaite, >192 140 470 47 min b Hebdon et al. (1997) 
Ass nt, Scotland 

a In carbonate bedrock in the Rocky Mountains. Stalagmite dates were beyond the Usenes range, uut constrameu., 
by palaeomagnetic and U-isotope ratio constraints. The paper pointed out that a limestone massif with I000m of` 

relief will be eroded away within l OMa, if the denudation rate is l OQnmka'. 
b Also uses geochronological arguments. Calculations are based on three glacialcycles (300ka). However, four or 

five glacial cycles may be appropriate instead. 
cm per 100ka glacial cycle 

T.. kI f2 Q i7.. I-- L_. a___I. -_a__ 

Place Rate 
mmka' 

Method Rock type Notes Reference 

N. Sweden 0.1-2.0 Amphibolite a Andre 1996 
N. Sweden 0.1-0.7 Quartzophyllite and 

quartzite 
a Andre (1996) 

N. Sweden 0.2-2.0 Phyllite a Andrb 1996 
N. Sweden 1.4-13.7 Dolomite a Andre 1996 
Norway 0.2-1.0 Granite Earlier study Andre 1996 
S itsber en mean 2.8 Marble Earlier study AndrB 1996 
Canada mean 3.3 Limestone Earlier study Andrb 1996 
S itsber en mean 2.5 Dolomitic limestone Earlier stud Andre 1996 
Spitsbergen 2 Biogenic flaking Rockwall retreat: 

Amphibolite 
Andrd (1997) 

Spitsbergen 70 Frost shattering Rockwall retreat: 
Amphibolite 

Andre (1997) 

Spitsbergen 160 Frost shattering Rockwall retreat: Quartzite Andrd 1997 
S itsber en 700 Stress relaxation Rockwall retreat: Quartzite Andre 1997 
N. Sweden mean 0.2 Proud veins Homogeneous crystalline Andre 2002 

N. Sweden mean 1 Proud veins Biotite-rich crystalline Andre 2002 
N. Sweden mean 5 Proud veins Carbonate sedimentary Andre` 2002 

a At two study areas that have a contemporary precipitation of 80ommä', at altitudes of )uum ana luuum, 
with mean annual temperatures of-1.5°C and -5°C. The rates show postglacial surface lowering. 
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APPENDIX A4 PRESENT CONDITIONS 

This Appendix considers study area characteristics and features that apply at present. 

A4.1 Climate 
The contemporary climate is dominated by the variable extremes of temperature experienced during the annual 
cycle. Winter temperatures of -40°C are not uncommon from December to February, especially when still cold air 
sinks into the valleys. The inland annual average was around -5°C in 1925 (Corbel, 1957, p211). The winter diurnal 

variation is relatively low, because of the prolonged absence of sunlight. Snow cover builds up across the whole 
area during winter, reaching a maximum thickness in April everywhere, and can reach tens of metres thickness in the 
mountains. Corbel presented information (Table A4.1) that showed that the winter becomes more severe moving 
from south to north across the study area, and at increasing elevation. The highest snowfalls occur some 30km inland 
from the coast, with a general and gradual decrease towards the east. 

Tnhlp AAA Annual snowfall and nrerinibitinn in 1074 rf- C�ri, ot 10, C171 

Place Position relative 
to study area 

Altitude 

m 

Days of 
snowfall 

Days of 
snow 
cover 

April snow 
thickness 

m 

Total 
precipitation 

m 
Bessaker Coast, 30km S. 12 92 103 
Malm 50km inland, 

40km S. 
250 102 188 0.9 2.5 

Hattf elldal Central 250 108 210 1.2 2.0 
Hattfelldal Central 380 2.0 
Gronli Central, 20km N. 250 121 240 2.3 1.7 

Hence, the winter weather is cold, with temperatures rarely above 0°C. The rivers freeze over, and many higher cave 
entrances are buried under blankets of snow and ice. Within those caves that can be entered, water levels remain at 
very low stage. Sumps recede back along their containing passages and may even become passable by crawling 
along frozen surfaces. Elsewhere, ice formations grow and can block open passages, depending on local cave 
meteorological conditions (e. g. Photo: Endpiece). Because 1925 was near the end of the Little Ice Age, the climate 
has become warmer since then (section 24.5). In particular, the winters were much milder in the late-1990s. 

The onset of the spring melt is variable, but commonly starts in May or June, when the temperature rises 
considerably. Most of the accumulated low-lying and mountain snow melts, and is transported to the sea via swollen 
mountain streams and valley rivers. The spring melt normally lasts for about one month at very high flow and 
accounts for a high proportion of the annual discharges. In the areas of stripe karst, some of this water flows 
underground for short distances with high erosive power. The remnant snow patches left in dolines usually melt, with 
the water draining away underground. Mountain streams reduce in size or cease completely when the snow fields in 
their catchment areas disappear. Larger snow fields (and glaciers) may persist all summer, in which case the stream 
flow is very variable, depending on the height and strength of the sun, and follows a diurnal pattern. In a cool 
summer, some snow fields may survive until the following winter. Similarly, at high altitudes, cave entrances may 
remain blocked by snow. However, it is unusual for known caves to be blocked for more than one summer at a time. 
Once the snow has gone, mountain flora recover quickly and come into bloom and into fruit. 

The temperature in the short spring, summer and autumn seasons is very variable, as is the rainfall. The weather may 
remain unchanged for several weeks, or may change almost daily. An extreme example was experienced in 1997. 
After a winter with only light snowfalls, perhaps the largest snowfall for 100 years occurred in late May. The snow 
built up in the mountains to depths of 10-30m, and snow covered the ground beside all the roads. Conditions 
changed on 1 June and the daytime temperature rose to 15-20°C, accompanied by an enormous spring melt. For the 
whole of June and July, it only rained on 5 days, and temperatures occasionally peaked at 34°C. Despite this, 
temporary snowfields persisted at altitudes over 500m, and there was almost complete snow cover above I 000m for 
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these two months. Sometimes mist rising from a snowfield indicated that the snow was ablating directly into the 

atmosphere from its top surface, as well as melting as run off. However, July temperatures from 10-13°C in the main 

valleys are more usual. 

During periods of heavy summer rain, rivers and mountain streams can rise in a few hours and become impassable. 

Hence, it is necessary to check the size of catchment areas before crossing rivers or entering stream caves if there is 

any possibility of rain. Very large spring and summer floods clearly occur quite frequently, because it is not 

uncommon for roads to be damaged, and sediments in karst caves can be moved dramatically. The autumn can be a 
time of dry conditions as temperatures drop, often to below 0°C in the valleys by September. With lower stream 
flows after the disappearance of the mountain snow, cave waters approach low stage before the onset of complete 
freezing in late autumn and winter. 

Corbel (1957) also presented monthly precipitation charts for seven places in the central and southern parts of the 

study area. These showed a very consistent pattern in 1925 of high snow fall in January, reducing to the lowest 

precipitation rates in April and May. Rainfall then increased from June to September, when, presumably, 

combinations of rain and snow continued at about the January rate until November. December had a somewhat lower 

precipitation in most places. Going from west to east, annual precipitation varied from l. Om at Bronns ysund on the 

coast, via 2.3m at Strompdal some 30km inland, to 0.8m at Leipikvattnet, just inside Sweden. Hellddn (1973) gave 

0.7m (averaged from 1965-1972) at Hemavan, at an altitude of 450m in the NE, Swedish, part of the study area, 

where the mean annual temperature is -0.4°C, and the temperature falls 0.6°C for each 100m of altitude (Earl-Goulet 

et al., 1998). In his study of nearby Sotsbäcksgrottan (KU), Hellddn (1973) remarked that only five months of the 

year are frost-free at the cave's altitude of 750m, but there is no permafrost. A minimal underground drainage 

continues throughout the winter. Lauritzen (1996c) gave the present annual mean temperature at Mo i Rana as 3.5°C. 

Table A4.2 gives the mean monthly temperatures, precipitation and length of day for the coastal towns of Bode and 

Trondheim, which are 120km north and 120km south of the study area. 

Table A4.2 Monthly temperature, precipitation and length of day 
(from the Norwegian Tourist Board, 1992, averaged from 1961-1990). 

Month Bode 
tempr. 

°C 

Trondheim 
tempr. 

C 

Bode 
precip. 

mm 

Trondheim 
precip. 
(mm) 

Trondheim 
daylight 

h, m 
January -2.2 -3.1 86 87 4h44 
February -2.2 -2.4 64 70 7h13 
March -0.6 -0.5 68 68 10h15 
April 2.5 3.9 52 60 13h32 
May 7.2 9.4 46 50 16h43 
June 10.4 12.6 54 66 19h44 
July 12.5 13.9 92 85 20h21 
August 12.3 13.4 88 86 17h43 
September 9.0 9.8 123 133 14h29 
October 5.3 6.0 147 131 11h22 
November 1.2 0.8 100 99 8h08 
December -0.3 -1.6 100 113 5h20 
Annual 5 °C 5 °C 1.0m 1.0m 

The values and trends in the above data may not be representative for inland areas. For comparison (from Whitaker's 

Almanac, 1993, p1193), in England / Wales and in Scotland annual mean temperatures are 10°C and 9°C (both 

averaged from 1951-1980) and annual rainfalls are 0.9m and 1.4m (both averaged from 1941-1970). 

The mean annual rate of evaporation in the study area is estimated at c. 300mma 1, from the temperatures and 
information presented in Table A4.2 and by Ward and Robinson (1990, p110). Hellddn (1973) cited Angstrom 

(1958) who presented Tamm's formula: Evaporation (mma t) = 221 + 30 x Mean Annual Temperature in T. On this 

basis, the annual evaporation at Mo i Rana is 326 mm. Ovstedal (1991) studied the hydrological and hydrochemical 
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properties of the Sirijord karst aquifer (Z4). Using data loggers, he recorded the hourly air temperature at the main 
rising for Sirijordgrotta (Z4) from July 1988 until October 1989. This showed summer fluctuations from 1-25°C, 

with typical swings of about 12°C in any 24-hour period. By the end of November 1988, the temperature had drifted 
down to -28°C, with the fluctuation wavelength commonly being several days rather than 24 hours. The temperature 
commonly varied between O'C and -20°C from December 1988 until the end of March 1989. 

A4.2 Caves and modern glaciers 
At present, neither mapped carbonate outcrops nor known karst caves pass beneath the (commonly small) modem 
glaciers in the study area. Thus, it is likely that all the karst systems were free of permanent ice cover for at least 

2500a. There is no permafrost in the study area, except at an isolated site in the Okstind mountains (Griffey and 
Worsley, 1978). A few caves receive recharge from small glaciers and perennial snow fields (section D. 6.3). 

A4.3 Farming and forestry 

Within the study area, the main effects of habitation and industry have been small scale farming and logging, even in 

remote areas and in valleys up to altitudes of several hundred metres. Local communications used to rely on the 

railway and various types of watercraft along the Norwegian coast and across fjords and lakes. Horses were used 
along tracks through the forest. The tendency since the 1950s was for the more isolated farms to be abandoned, 

whilst at the same time modem roads and tracks cut by the state timber company increased public and industrial 

access to the forested areas. Logging is an industry that was successfully exploited in the area for at least 250 years, 
following its development by an English company in about 1750. Thus, some of the karst areas lie under stripped 
forest, and cave entrances may sporadically be blocked by logs and branches. Rapid changes can be caused by just 

one employee operating modem machinery. Due to farming and forestry, much of the primary forest has been 

replaced by younger conifers, as evidenced by the larger diameters of the stumps of the old felled trees. Close to 
farms, cave entrances are sometimes used as places for refuse. 

A4.4 Hydroelectric schemes 
Many major lakes in the area are dammed for hydroelectric power. The raising of water levels potentially inundates 

dry cave passages, and this may have happened at one small cave beside Stor Akersvatn (ZC). The outlet from 

Ressvatn (ZA) is dammed and the water flows into Tustervatn, from where its flow is controlled by electricity 

authorities in Korgen. In normal conditions, most of the outflow is along a tunnel of 150m3s"' capacity that was built 

in c. 1960. In 1997, the overflow discharge along the continuing Ressäga valley was crudely estimated by the author 
to be 50m3s'' at the height of the spring melt, from a total catchment area of some 1700km2. All this water flowed 

powerfully into a sumped passage, where several jammed logs indicate the strength of the spring melt prior to the 

construction of the hydroelectric tunnel. The sump heads the mainly phreatic Ressigagrotta (ZA; Photos 7.6 and 
7.7). This has a passage size in excess of l Om diameter, and resurges at the side of the continuing dry valley. [It is 

essential to enquire about plans for opening sluice gates before entering caves situated downstream of such 
hydroelectric schemes]. Assuming an annual precipitation of 1.5m and evaporation of 0.3m, then the mean flow rate 

along the upper Ressäga used to be 57m3s1, prior to the construction of the tunnel, when the cave would have taken 

the normal flow. During floods, water would have also flowed partly on the surface, bypassing this oxbow-type 

conduit (and others lower down the valley). This passage must represent the highest mean and maximum flow rates 
for any karst system in Norway. For comparison, the catchment areas for Plurdal and Glomdal in northern Norway 

are -80 and - 50km2. 

A4.5 Quarries, mines and tourist caves 
Several marble quarries exist in the Norwegian part of the study area, in outcrops of both calcitic and dolomitic 

metacarbonates. A quarry at Hegge in Velfjord (Z2) de-roofed a short karst cave (S-E Lauritzen, University of 
Bergen, pers. comm., 1998). Planning permission was sought in 1998 for two new marble quarries at Velfjord that 

may be close to some undocumented caves and karst features. There are both working and abandoned metal mines, 
but none are known to be associated with karst caves. There are no local show caves, but `adventure caving' trips 

may be arranged with local guides at Etasjegrotta (Z4), ßyfjellgrotta (Z5), Kvannlihola (Z7) and Korallgrottan 

(KL). Norway's only show cave, Grenligrotta, is situated near Mo i Rana, just north of the study area. 
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A4.6 Strandflat 
The long strandflat along the Norwegian coastline was studied by Holtedahl (1998), who divided it into three types. 
Part of the strandflat in Helgeland is characterised as a 50km-wide horizontal shelf with a slope close to zero 
(Rudberg, 1997, p192; Photo B 1.1). It is situated mainly below 20m altitude (approximately 50% being below sea 
level), with a steep back wall rising to c. 100m, which is also the Late Weichselian marine limit during the maximum 
isostatic depression. Holtedahl concluded that the Helgeland strandflat must be very mature and therefore developed 

during times of crustal stability (after the Tertiary uplift), i. e. it developed by glacial and marine erosion coupled with 
frost-shattering during the interglacials and interstadials of the Plio-Pleistocene. [This author conjectures that, 
because the elevation of the strandflat above sea level typically occurred only in the last Oka, its emergence during the 
long and climatically stable Holocene period, with its uninterrupted isostatic uplift and relatively low sea levels, is not 
typical of earlier interstadials and interglacials, and may indeed be unique. For example, the shorter, warmer, Eemian 

interglacial period had a eustatic sea level maximum higher than at present (section 2.3.2)]. 

A4.7 Sea caves 
The large sea caves found along the Atlantic coast of the study area were summarised by St. Pierre and St. Pierre 

(1986, p76). Their heights were studied by Sjoberg (1988), among others. He showed that the altitude of the sea 

caves follows a linearly increasing trend from south to north which reaches a maximum at the Helgeland coast and 
then declines linearly farther north. He concluded that this follows a bulge in the postglacial isostatic and neotectonic 

uplift. However, with the straight and parallel isobase lines now presented by Sorensen et al. (1987), this trend seems 
instead merely to demonstrate the indentation of the central Norwegian coastline (e. g. Figures 1.1 and 2.5). A 

possible formation process for these caves is presented in section 8.8. 

A4.8 Jettegryter: `Giant Pots' 
Jettegryter are rock-mills drilled by large boulders that were swirled around by huge deglacial outflows. They can 

occur in any rock type, and although there are many in the study area, the only ones known in metalimestone form a 

group of 20-30 near Stabbfors (ZA). The largest is 12.5m deep with a diameter of 6m (Photo A4.1). No karst caves 

are associated with these features, but some have captured recent drainage, and some display tectonic movements 
(sectio u ý, ;? I . ý! 1L 1) 11) 

t'liuio X4.1 Jettcgry ten near Stabbfors (ZA) 
This is a 12.5m-deep non-karstic shaft in metalimestone. 
It displays neotectonic movement (arrowed) that post-dates 
its formation during the Weichselian deglaciation of the 
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APPENDIX A5 DATING OF SCANDINAVIAN CAVE SEDIMENTS 

This Appendix reviews the work done on dating Scandinavian cave sediments (summarised in Table A5.1) and the 

deductions made about their cave development histories. Caves in the study area are identifiable by the use of the 

zone code. The mineralogy of Norwegian cave sediments, particularly authogenic precipitates, was reported by 

Onac (1995), Onac and Ghergari (1993) and Onac and Lauritzen (1995). The presence of extensive moonmilk 

deposits was attributed to a present favourable very cold and wet underground microclimate. 

A5.1 Radio-carbon dating 

The first report of organic deposits was by Hoe] (1906), who found marine shells in caves at Aunhatten (Z2). He 

identified many Pomatoceros tricuspis and Saxicava pholadis (a bivalve borer) and one example of Balanus 

creratus in Aunhattenhullet 2, at an altitude of 116m. Hoel also found many Saxicava pholadis and a fragment of 

Pomatoceros tricuspis in Aunhattenhullet 3, at an altitude of 132m. Although these shells were not dated, they 

presumably lived at the earliest part of the Holocene, when the area was deglaciated at sea level, before isostatic 

rebound raised the caves to their present levels (section 2.4.6). No remaining evidence of these marine shells was 

found by this author during the 1998 field trip. However, barnacle shells attached to passage walls, unconsolidated 

marine shell floor deposits, elk bone and organic sediments in Neptune's Cave (Z2, only 13km from Aunhatten), 

were radiocarbon-dated by Beta Analytic, Miami, as part of this project (Appendix D5.3). The YD age of the 

barnacles shows that the relict parts of this cave were in existence before this time. 

Engh (1980) reported the "C date of fowstone in Labyrintgrottan (ZC) to show that the cave pre-dates an age of 
18-19ka, and has remained undisturbed since, suggesting an interstadial origin at least. [This date now appears 

unreliable from the evidence of continuing glacial cover until c. 10100 given in Appendix D2.4]. Lauritzen (1985) 

reported the14C dating of brown bear bones from Revhelet (ZA), among other animal bone datings from Norway. 

Skjonghelleren, a non-carbonate littoral cave in southern Norway, was reported by Larsen et a!. (1987) and by 

Larsen and Mangerud (1989) to have formed probably in an early Weichselian period, after taking radiocarbon dates 

on bone samples from its 15-20m-thick pre-Holocene subglacial sediments. These have three laminated fine-grained 

deposits, alternating with blocky sediments. The glaciolacustrine clays and silts were correlated with three stadials 

of full ice cover, dated by their palaeomagnetic properties (Larsen et al., 1987). The blocky beds represent four ice- 

free interstadials. Other bone fragments from higher layers gave younger dates. U-series dating of speleothems 

clustered around 30ka at the end of the Alesund Interstadial; the oldest dated at 80±9ka, proving the cave's existence 

early in the Weichselian. Correlated sequences were also dated in two nearby coastal caves, Olahula and 

Hamnsundhelleren (Valen et a!., 1995; 1996). The latter paper considered four depositional phases for glacier- 

overridden marine abrasion caves: a) ice-free; b) shallow, subaerial, ice-dammed lake, formed during the onset of 

glaciation; c) subglacial lake; d) ice-plugged. 

About 10000 '4C-dated bone fragments and skeletons in the pitfall Elk Shaft of Sirijordgrotta (Z4) lie in a 

stratigraphy covering the last 7ka (Table A5.1). Lauritzen and Lauritsen (1995), Lauritzen et al. (1996), Lauritsen 

and Lauritzen (1996) and Nese and Lauritzen (1996) discussed Quaternary cave and landform development at the 

Kjepsvik quarries near Tysfjord, northern Norway, where Norcemgrotta is the palaeospring for Storsteinhola. 

Norcemgrotta displays three or four depositional cycles, the second youngest being at 70ka. Faunal assemblages 

from one of the sediment horizons fall into two climatically incompatible groups. These are cold fauna (including 

polar bear, Ursus maritimus), suggestive of open-sea contact with a glacier front, and warm fauna (including field 

mouse), suggestive of a temperate vegetation with grass and trees. "C dating of these bones at 39-42ka was 

assumed to be incorrect, because they are overlain by a calcareous concretion dated by U-series techniques to 

70f8.5ka. This layer also gave an almost vertical palaeomagnetic direction, which perhaps represents the onset or 

termination of a palaeomagnetic excursion, such as is thought to have occurred at 70-76ka and at the Blake event at 

c. 105ka (or I l7ka: Valen ei al., 1997, p233). The association of the two faunal groups could be explained by either 

climatic change during deposition, or by a subsequent mixing in the cave, which is compatible with the mass- 

movement character of the host sediment. The horizon also contained fragments of marine, littoral, invertebrates. A 

single bear bone from a gravel layer 3m above gave the unlikely 14C LGM date of 20.1±0.3ka. 
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A5.2 Palaeomagnetic dating 
The use of the palaeomagnetic dating method was attempted at several other karst caves. Noel and St. Pierre (1984) 

found that the magnetic record for clay sediments in Jordbrugrotta, northern Norway, was too short to reveal 

evidence of geomagnetic secular variation. At Grenligrotta, they correlated clay sediment with a Swiss lake 

sediment core, and suggested an age of 9600-6800a. The same sediment bank was tested again by Levlie et al. 

(1988). Their correlation with the British geomagnetic secular record gave an accumulation period of 9500-8900a, 

restricting the deposition to ice contact conditions, rather than extending into the subsequent temperate period when 

the cave would be drained, but would carry an active stream. S St. Pierre (1988) also discussed the morphology and 

sediments of the Grenligrotta / Setergrotta system. A study of clay sediment laminates in Ragge Javre Raige at 

Hellemofjord in northern Norway suggested that deposition took place either from 10.9-10.2ka, or during several 

subglacial events (Levlie et al., 1995). The first alternative is within the local final Weichselian glacial retreat from 

10.9-9.8ka. 

Levlie and Lauritzen (1996) reported briefly on attempts to correlate palaeomagnetic results from 10 caves in 

northern Norway, which they assumed were exposed to comparable climatic and depositional histories. Reliable 

signals were found in four of the caves, which were correlated in fairly great detail, suggesting synchronous 

sediment accumulations under complete ice cover from LGM2 to the YD. They noted that the thickness of sediment 

appeared to be proportional to the height above present sea level, but the duration of deposition showed no 

systematic relationship to altitude. 

A5.3 U-series dating 
The first definite evidence for a pre-Weichselian karst cave in the study area was provided by Lauritzen and 
Gascoyne (1980), who dated a flowstone from Grenndalsgrotta (ZA) using U-series methods. Between 1980 and 
1983, some 44 Norwegian speleothems were dated in this way (Lauritzen, 1984c). The dates tend to cluster into four 

groups. Because these periods do not always correspond to ice-free surface conditions, they were called speleothem 

chronozones. The probable number of speleothem chronozones was later expanded to ten, dating back to c. 600ka, 

from a sample of 100 speleothems (Lauritzen, 1991 a), and from these data Lauritzen (1993, p29) gave a probability 

curve for speleothem growth back to 300ka, with a maximum value in the Eemian. 

Lauritzen (1995) constructed a palaeo temperature proxy record for the last interglacial from the dating and analysis 

of speleothems from Okshola and Stordalsgrotta in northern Norway. He proposed that speleothem growth rate is 

a proxy parameter for climatic mildness, and that growth can only occur during the absence of full stadial 

conditions, when caves become flooded, or percolation water freezes. It was observed by comparison between the 

two caves that speleothem growth was delayed and restricted at higher altitudes, where cold conditions may have 

persisted longer. Although the Okshola Speleothem Chronozone lasted from 150-80ka, optimum growth occurred 

during the Eemian, from 128-114ka. The paper also noted the general rarity of Norwegian speleothems dating from 

the mid-Weichselian interval. (This thesis notes the paucity of speleothems in the study area: Appendix B2.9). 

[From studies of the many actively-growing speleothems in Castleguard Cave, Canada, which is situated beneath the 

Columbia Ice Field, Atkinson (1983) showed that speleothems can grow without biogenic CO2. if common-ion 

effects or incongruent dissolution of dolomite occur. This can apply in mixed gypsum / limestone or limestone / 

dolomite terrains, and in carbonates with abundant pyrite. Gascoyne and Nelson (1983) proposed, as an alternative 

mechanism, that the CO2 source in the groundwater was derived from the oxidation of inactive carbonaceous 

substances in the bedrock overlying the cave]. An Eemian stalagmite from Seylegrotta, near Mo i Rana, was 

reported by Berstad et at (1997) and another stalagmite from the same cave revealed four interglacial growth 

periods from c. 630-320ka (Berstad et at, 2002). 

Linge et al. (2001c) reported dating of another stalagmite from Hammernesgrotta, which grew at a fast and 

constant rate of lmm every 22a from 123.35-119.5ka. This shows that conditions were highly favourable for 

speleothem deposition during the late Eemian, when measured 6'SO and 613C values and ranges were similar to 

those of the Holocene, agreeing with the above result from Okshola. The growth rate reduced to tmm every 1475a 

from 119.5-107.7ka, and to 1 mm every 13760a from 107.7-73.3ka (OIS4), after which deposition ceased. 
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Takla A1 flntina of S ndinavian cave. sediments 

Date Reference Cave Area Sediment tyM 
Radiocarbon dating method (Ages i n Ca BP) 
Norcemgrotta N. Norway bone >42-39ka Lauritzen et al. (1996) 

bear bone 20.110.3ka Nese and Lauritzen (1996) 

Lab t ottan ZC Sweden flowstone 18.2-19.2±0.2ka En 1980 
Revhelet ZA bear bone 4420±70 Lauritzen (1985) 
Sirijordgrotta, Z4 bone 7.3±0.9ka Lauritzen (1991b) 
Elk Shaft to present Valen et al. (1997, p243) 
Neptune's Cave Z2 barnacle shell 10280±90-380±20* This thesis 

mollusc shell 10010±80_100±20* (unconsolidated) 
elk bone 5100±70 *assumed local reservoir age 
organic material 1780±70 (unconsolidated) 

Skjonghelleren W. Norway bone 32.8±0.8ka Larsen et al. (1987) 
(non- bone 29.6±0.8ka Larsen and Mangerud (1989) 
carbonate bone 11.5±0.2ka 
coastal cave) bone 10.4±0.2ka 

Hamnsundhelleren W. Norway bone 32-28ka Valen et al. (1996) 
bone c. 24.5ka and 9.9±0. lka 

Paiaeoma netic dati n method 
Jordbruotta N. Norway clay None Noel and St. Pierre (1984) 
Grenli tta N. Norway clay 9600-6800a Noel and St. Pierre (1984) 
Grenli tta N. Norway same clay 9500-8900a Levlie et al. (1988) 
RAgge Javre Raige N. Norway clay 10.9-10.2ka or earlier Levlie et al. (1995) 
4 caves N. Norway clays to sands 16/15.5-11.5/10.5ka Levlie and Lauritzen 1996 

Norcem otta N. Norway bone la er 76-70ka Lauritzen et al. (1996) 
Siri'ord otta Z4 Clay de glacial Lake Mungo 10.4ka Valen et a!. (1997, p249 
Skjonghelleren W. Norway clay and silt Laschamp (c. 42-36ka) Larsen et al. (1987) 

silt Alesund onset (c. 33ka) Larsen and Mangerud (1989) 
clay Lake Mungo (c. 30- 

28ka 
plahula W. Norway clay Laschamp Valen et al. (1995) 
Hamnsundhelleren clay Lake Mungo Valen et al. (1996) 

U_series datin met hod 
Greftkielen N. Norway stalagmite 190.2 and 178.8 ± 15ka Holbye and Lauritzen (1983) 

Unspecified N. Norway 44 speleothems 800-350ka "4 speleothem chronozones" 
1 200-170ka Lauritzen (1984c) 
mollusc shells / 130-90ka, 12-Oka 
vertebrate teeth 

15 caves N. Norway 100 s leothems 10 chronozones Lauritzen (1991 a; 1993) 

Lapphullet N. Norway stalagmite 730-350ka Lauritzen (1986a) 
Lauritzen et al. 1990 

Harnmemesgrotta N. Norway corroded 500-21 ka Lauritzen (1990b) 
stalagmite Lauritzen et a!. (1994) 
stalagmite 123350-73300a Line et a!. 2001c 

Norcemgrotta N. Norway calcareous 70±8.5ka Lauritzen et al. (1996) 
concretions Nese and Lauritzen (1996) 

Okshola N. Norway flowstone 145±5-81±4ka Lauritzen (1995) 
Stordals otta N. Norway flowstone ll 1±10-6.0f0.7ka 

Seylegrotta N. Norway stalagmite 10.41±0.0- Lauritzen (1996c) 
0.253±0.002ka Lauritzen and Lundberg 1999 

Soylegrotta N. Norway stalagmite >350ka Berstad et al. (1997) 
144-114ka 

Soylegrotta N. Norway stalagmite OIS15,13,11,9 Berstad et a!. (2002) 
c. 630,470,390,320ka 

Greýnndals otta ZA flowstone 148+23/-20-91+7/-6ka Lauritzen and Gascoyne (1980) 
Siri'or otta Z4 speleothem 128±5ka Valen et al. (1997, p2 
Korall ottan KL(Sweden) speleothem 148-127ka Sund vist (2002) 

Sk'on elleren W. Norway s leothem 80.1±8.7-8.5±0.2ka Larsen et al. 1987 

Caves are grouped under Northern, Central and Southern Scandinavian areas for each dating method 
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A5.4 Holocene dates 
The 14C dating of bone and shell and the use of the palaeomagnetic dating method has resulted in YD or Holocene 

ages for several faunal deposits, indicating entries into caves after Weichselian deglaciation. 

Many speleothems have yielded Holocene dates from U-series dating methods, but these are generally not included 

in Table A5. I. Lauritzen (1996c) sampled a single large (32cm) stalagmite from Soylegrotta every 1mm to derive 

the temperature every 25-30a, from the 8180 signal. From this information, he derived a smoothed curve from 180- 

8500a. The shape of the curve is in good agreement with a Holocene temperature curve for south Norway, which 

was derived from the palynological, botanical and glaciological data of other workers. Lauritzen and Lundberg 

(1999) revised this curve to produce an absolute temperature record for the Holocene in northern Norway that is in 

good agreement with a Greenland ice core. Lauritzen et al. (1986) showed that brown-to-black banding in 

speleothems from northern America may contain 2000ppm of organic material derived from humic and fulvic acid 
from overlying soils, rather than indicate the presence of iron. Linge et al. (2001 a) demonstrated that 8180 and 813C 

stalagmite records reflect the local cave microclimate, and are significant, but complex, proxies of the external 

palaeoclimate. Linge et al. (2001b) suggested that the main bands of luminescent organic matter in a Holocene 

speleothem from Larshullet (c. 20km north of the study area) were deposited by soil-flushing during spring snow 

melts and that the less intense subannual laminae result from heavy autumn rainstorms, so that there is a strong 

relation between summer soil-zone conditions and stalagmite growth rate. 

Within the study area, Holocene dates were obtained from Sirijordgrotta (Z4; Lauritzen and St. Pierre, 1982; Valen 

et al., 1997) and Korallgrottan (KL; Sundqvist, 2002). The age of a stalagmitic cap from Neptune's Cave (Z2) was 
indeterminate, but probably of Holocene age (S-E Lauritzen, University of Bergen, pers. comm., 1998). 
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APPENDIX BI CAVES IN EACH ZONE 

Chapter 4 discussed the database constructed to record the zonal attributes of the carbonate outcrops and Chapter 5 

discusses the two cave databases. The purpose of this Appendix is to introduce each zone by describing the longer 

caves in their local geological context. Some caves in Z2-Z4 provide examples of the various cave development 

models proposed in this thesis (Appendix D5). 

B1.1 HNC Zone 1: The Coastal Area 

The HNC and RNC in the Uppermost Allochthon comprise rocks with medium to high metamorphic grades: mainly 

amphibolite facies, with some being only to greenschist facies locally, and some being altered further by contact 

metamorphism (e. g. Thorsnes and Leseth, 1991). The coastal area was delineated to cover the low-lying coastal 
islands, the strandflat and some of the immediate hinterland. The Outcrops Database records 41 carbonate outcrops, 

with an average maximum altitude of only 27m. Only four very short caves are documented, near the football pitch 

at the port of Bronnoysund. Three of these appear to have been formed by wave action, but one is a short truncated 

phreatic tube. Non-carbonate, raised-beach, littoral caves occur at least at seven places along the coast, some being 

very large. Their altitudes and sizes are indicative of the extent of Quaternary isostasy (section 8.8). A surprising 
feature of the zone is the mapping of some 160 Quaternary karst features in the area of Tjetta alone. These are 

primarily on many tiny islands of low-lying limestone. Two larger limestone islands, S. Heroya and Tenna, were 

visited on 11 August 2000, when several shallow karst depressions were seen. Additionally, there are several good 

examples of Size Groups 3 and 4 bowl karren (Holbye (1989, section 4.4) near a brackish-water tarn on Tenna that 

overlooks the sound Tennsundet ( Photo B 1.1). 

B1.2 HNC Zone 2: The Fjord Area: Svartdalgrotta and Neptune's Cave 

Svartdalgrotta (Figure B1.1) is the longest cave in Z2 at 899m. The upper entrance is at an altitude of 180m. The 

cave has a depth of 53m (Newton, 1999), but is atypical for the zone, because it lies within the contact 

metamorphism aureole of a large pluton of diorite, monzonite and monzodiorite. This has caused the limestone to 
lose any former steep, striped, foliation so that the foliation dip is only 25°N. The survey and section show that large 

passages occur mainly at two levels, with down-dip trends. These passages are connected via large shafts and steep 
ramp-tubes that are probably formed on orthogonal joints. With a catchment area of c. 0.7 km2, a large stream flows 

through the lower levels of the cave in summer. Along the cliffs above Svartvatn and only some 400m east of 
Svartdalgrotta is Neptune's Cave (Figure B1.2; Appendix D5.3), where marine shells were collected at an altitude 
of about 120m (Appendix A5.1). These two caves were flooded by the sea to an altitude of c. 150m at about 10250a 
BP, during the Younger Dryas (Appendix D2.3). The lowest part of Svartdalgrotta emerged from the sea some 
500a later, and the chamber inside the lower entrance appears to be enlarged by marine activity. The main stream 
passage grades towards the lower entrance at an altitude of c. 140m and the main flow must have left the cave via a 
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Plwvtu 111.1 fowl karren and seven sisters 

Karren, perhaps formed by the sea, in stripe karst on the strandflat 
at the island of Tenna (Z1). Compass for scale. U-shaped glacial 

valleys between the Seven Sisters in the background. 
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tidal sump, prior to emergence. The present stream exit route through impassable fissures is a recent capture. No 

marine deposits remain in Svartdalgrotta because the large active stream would remove ancient deposits during 
flood events, but Newton's description of the cave indicates that the upper passages contain speleothems and 
moonmilk. 
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Figure BI. 1 Svartdalgrotta (Newton, 1999) 

B1.3 HNC Zone 3: The Central Granite Area: Toerfjellhola and Cave of the Cold Wind 

The longest cave in the HNC is Toerfjellhola (Figure B1.3), with a surveyed length of 1896m and a depth of 101m 

(Faulkner and Newton, 1995, ppl3-16). Its morphology is typical of many HNC caves. The metalimestone is well- 
banded in grey and white colours, commonly with a vertical foliation. The cave contains several levels of sub- 
horizontal strike-aligned relict passages stacked vertically above a very active streamway (Photo 131.2) that 
interconnect by joint-aligned shafts and rifts. There are only a very few (straw) speleothems in the system. The cave 
lies within an unmapped outcrop measuring perhaps 1000m by 200m that forms a platformal bench above the upper, 
dry, part of the glaciated valley of the Overengbakk (Photo D3.4). Despite being in Z3, it is some distance from a 

pluton so that the limestone is consequently unaffected by contact metamorphism. From a study of the cave survey, 

section and passage cross-sections it appears as if much of the early cave development was phreatic (Appendix 
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D5.2), because the explored upper series of passages mainly represent the descending parts of several interconnected 

phreatic loops. These loops are all blocked at boulder chokes beneath surface dry valleys, just as they start to ascend. 
The resurgence is 500m away in Overengbakkdal (Photo D3.5), 50m below the level of the terminating downstream 

sump. This valley is remarkable (but not untypical of the area) for the size and extent of its talus slopes and the 
block stream that occupies the dry valley bottom (Figure BI. 3; Photos D3.4 and D3.5). These are surmised herein to 
have been formed by jökulhlaups that rapidly lowered the levels of ice-dammed lakes to the east (Appendix D3.3). 
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Figure 131.3 Toerfjellhola (Faulkner and Newton, 1995, Fig. 16) 
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The present catchment area for Toedellhola is c. 1.1 km2. The powerful stream runs through the vadose streamway 
(Photo B 1.2) for the duration of each summer, fed by large snowfields on Toerfjell. Diving at the sump revealed that 

this passage is also choked by boulders, and it is probable that the final 50m descent to the Overengbakk Resurgence 
is entirely within the valley block stream. Hence, much of the cave pre-dates at least the final Weichselian 

deglaciation (Appendix D5.2). 

Even higher up the side of the Overengbakk valley is Cave of the Cold Wind (372m long; Figure B1.4). This 

consists primarily of a single phreatic passage leading from above the blocked resurgence to two high avens 
(Appendix D5.1). 

B1.4 HNC Zone 4: Eiteridal and Jordbruelv: Sirijordgrotta, Elgf ellhola, Gevirgrotta, 
Etasjegrotta and Caves at the Rockbridge 

Zone 4 has one of the smaller areas defined in this thesis (814km2), a low number of carbonate outcrops (36), a 

rather small total carbonate area for the HNC (37km2), and yet it has the largest number of caves (182) and the 
highest total passage length (14.5km) of all the zones in the study area, for reasons considered in Chapter 8. The 
longest cave in the zone is Sirijordgrotta (1411 m; Figure B 1.5); its vertical range is 78m (Faulkner, 1980; St. Pierre 

and St. Pierre, 1980; Valen, 1991). As mentioned in section 1.7.1, this is the only cave in north central Norway to 
have received a detailed scientific study. It is formed within near-vertical, banded, limestones (Photos 5.4, B1.3, 

B1.4, B2.1, B2.3, D1.4-D1.7) and has some of the morphological features also displayed in Toerfjellhola (Z3), 

including stacking of relict passages. A stalagmite from the cave was dated to 128±5ka (Table A5.1), proving that 

the large upper part of the main passage was fully developed before the Weichselian glaciations. The references 

given in sections 1.7.1 and 3.3.3 and in Appendices A4.1, B2.7, B2.8 and B2.9 discuss Sirijordgrotta, its 

sediments, water chemistry, and flow rates. In the same valley lies EiterAdalgrotta and EiterAdalgrotta 

Resurgence Cave, an epigean system with a total length of some 700m (Frontispiece 2; Photos B1.5 and B1.6). 
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Photo 131.2 Toerfjellhola stream 
Powerful spring melt stream. 
Photo by M. Smith. 
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Figure B1.5 Sirijordgrotta (Faulkner 1980, Fig. 5) 
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An informative part of Z4 is the plateau / cirque of Elgfjell (Faulkner and Newton, 1990). This is an upland area of 

c. 8km2 at an altitude of c. 600m, crossed by several long N-S aligned outcrops of metacarbonates. Many small 

north-draining and south-draining valleys lie parallel to these outcrops. Despite being mapped as contiguous with 

the carbonate outcrops along the Jordbruelv to the south, the Elgfjell carbonates differ in weathered appearance. 
Two marble types are seen: 'a pure grey variety and a yellow / brown striped variety that likely comprises HMC 

(Table A2.2, samples I and 3). These two varieties commonly occur in pairs of linear outcrops, which are either 

adjacent or separated by up to 50m by schists. The yellow / brown striped marble outcrops are narrower (up to 60m 

wide) than the grey outcrops, and do not occur in isolation. These observations also apply at Kvitfjell, 12km to the 

north, and both mountains display complexly-folded karst outcrops (section 4.4.6). The foliation dip and the contact 

angle with the mica schist country rock varies from 50°W in the central part of Elgfjell to 70-80°W on the steep hill- 

slopes to the east and south. This contrasts with the vertical foliation in the Jordbruelv valley, to which these same 

outcrops are mapped as continuing. 

The longest cave on Elgfjell is Gevirgrotta at 683m. The survey and section (Figure 131.6) show that this cave 
developed along-strike at three main levels. The upper two are relict shallow phreatic loops that directed water 

northeastwards to unknown resurgences on the hillside above the highest Gäsvatn lake, at about the level of the 

upper entrance and at perhaps 8m below this. The lowest level may represent rejuvenation with an active vadose 

streamway leading to a sump 27m below the upper entrance. The actual present resurgence is 28m below this, which 
is still some 40m above the lake. In contrast to the caves formed in vertical limestones, the passages are not stacked 

vertically above each other, but have migrated down the dip towards the west. 
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Figure B1.6 Gevirgrotta (Faulkner and Newton, 1990, Fig. 17) 

About 90 caves with a total passage length >5km are known at Elgfjell, some lying at the junction of the two marble 

types. Many of these caves are relict or carry only misfit streams, as at Elgtjellhola (Figure B1.7; Photos 4.4, D1.11, 

D 1.12; Appendix D5.4). 
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Figure BI. 7 Elgfjellhola (Faulkner and Newton, 1990, Fig. 9) 

The second longest cave in Z4 is Etasjegrotta (Photos B 1.7 and B 1.8) in the valley of the Jordbruelv that contains 
many karst caves. It is 1055m long and 42m deep (Faulkner, 1987; Faulkner and Newton, 1990). Again, the bedrock 
is vertically-banded and several tens of metres wide, although thick non-carbonate aquicludes interlayered within 
the limestone are noticed throughout the cave. These commonly form the walls of passages and chambers, and have 

guided the cave morphology (Photo B1.8). As in-Toerfjellhola (Z3), the vertical limestones enabled many stacked 
passages to form along horizontal joint planes. This cave is probably the best known example of this type of tiered 

cave development in vertical stripe karst (section 9.2.1), as shown in the survey and section (Figure 131.8). The 

upper levels of the cave also form rather shallow phreatic loops, which must have fed along-strike resurgences that 

were only about 150m from the present sink. A conventional view of speleogenesis might deduce that the down- 

cutting of Jordbrudal (Rockbridge valley; Figure 131.9) resulted in underground rejuvenation, because the present 
stream resurges some 700m away, via a long and large underwater phreas that has been partly explored by diving 
from the Main Rising and from Vatnhullet. The primarily relict and interconnected Beehive Cave, Cliff Cave and 
Invasjonsgrotta lie above this phreas, indicating a complex speleogenesis that is considered further in Appendix 
D5.5. South of here, the short cave Anastomosegrotta has an anastomatic roof at its low entrance, which probably 
formed as a distributary maze above a resurgence too small for flood discharge, as described by Palmer (1972; 
1984a; section 3.1.16). 
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Photo B1.4 2m Cascade, Sirijordgrotta 
Chamber formed in VSK with cm-scale banding 

at junction of narrow vadose streamway with 
phreatic upper-level passages. 

Vý 

d- 

Photo BI. 6 Eiteradalgrotta main passage 
Phreatic level, with amphibolite roof pendants, 
rounded cobbles and condensation droplets. 
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Photo B1.3 Streamway in Sirijordgrotta (Z4) 
Formed in vertical stripe karst, with scallops 2-3cm 
in size. 

Photo B1.8 Etasjegrotta entrance chamber 
Shattering at the inner end of the entrance chamber. Tiered 

passages can be seen, formed along horizontal joints in VSK. 
The vertical wall consists of amphibolite. Photo by A. Marshall. 

Photo BI. 5 Eiter: rdaIgrulta streaiii a 
Vadose entrenchment beside and below phreatic level, 
with wall along amphibolite within VSK. 

The extremely shattered entrance. At low 
stage, the stream sinks in the floor of the 
Preceding gorge. 
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B1.5 HNC Zone 5: Mosjeen to Fjellryggen: Oyfjellgrotta, Geitklauvgrotta and Blifjellgrotta 
Zone 5 includes a carbonate outcrop that is some 53km long and contains significant caves in many places along its 

length. Despite being adjacent to a long pluton of granite and granitic diorite for c. 25km, this outcrop does not 

appear to be affected by contact metamorphism, being well-foliated with mainly vertical grey and white banding. 

The best-known cave is Oyfjellgrotta near Mosjeen, regularly visited by local people (Grimsby, undated) and 

mapped to a length of 800m and a depth of 105m (Heap, 1968), but only a plan survey was published (Figure 

B1.10). The cave contains very large upper relict passages above a very large and vigorous streamway. Smart 

(1984b) compared upper-level sandy sediments in the cave with those at Castleguard Cave in Canada, which he 

regarded as a `proximal' equivalent, because both comprise autochthonous stream-laid deposits. See section 8.8.3. 

0 

Figure B1.10 Oyfellgrotta (Heap, 1968) 

The longest cave in Z5 is Geitklauvgrotta (935m long; Figure BI. 11), which was studied in 1997 and 1998 (Photos 

B2.2, D1.27, D1.28 and D1.29). This important cave is very different from those discussed previously, as it contains 

a maze of passages within a limited vertical range of only 16m. The length between ßvre Geitklauvgrotta and the 

main cave (Photo 7.4) is a short example of an Unroofed Cave (section 3.1.1 1). Here the two lowest levels of the 

system have been removed at the valley bottom, probably by glacial action. Surprisingly, the highest level, being 

situated in the valley side, is preserved, as Wasp Nest Passage and as Fearsome Chamber. 

The second longest cave is Blifjellgrotta (Newton and Faulkner, 1992; Figure B1.12). This contains 861m of 

passages that are rather small when compared to the length of the system. The cave, formed in dark, banded, vertical 
limestones, consists of three shallow phreatic loops that are interconnected via ramps and rifts. Some vertical 

stacking of passages occurs, but the cave has also developed across the width of the outcrop, which here may reach 
200m. Some eight sumps are encountered along the streamway at the lowest level. 

Trevor Faulkner Page BII June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix BI - Caves in each zone 

r 
GEITKLAUVGROTTA, cr, n" +\ Sa- 

ý" 
ý>O6+rr1p IFUlal Vll al[. l l all It The GrealLake 1 

ý'. 
0 

/ý'~ yý 

" a" .E / 

t7 PLAN LILLE LVGROTTA � 
of ! la u. lh[ ý-k onar[onrn 

f-w ýcyK ., a, ý vw 1oN irz . Iw l lv va r! 

ýq-. 

er. a. c,: 1 
New 

.. w«,. oA rv[ r ,., e 0a., *lA76- IK7I[., L ., n. I 

Myo He. ac 
Passaga/ 

!O 
Qi 

y'' cna[roa 
, 

/ CROSS 
( SECTIONS . , r . r, 1 nq 1 lu. 

Aa" 
I. Ary IK) IM" OMwu. "rew"1 O I-- F Miw"w A 05([017 . Or_ OMR [ 1) 

IQX The Small I ake ;' 
. w " 179 My 1K/ a 

Mn! M+M IKa IG"al"u7a11.1 1ý N 
'/" .i 

n...., o. r rrlw 1"nun 1000 H,; , o. 5(\ 
y. 

T" -act 

CMmen E K Y 
e Qi 5( b 2 

w«... ea« 
.s I w. 1 

c r EýD 
aT a 

i": 'w 
. 

.. 
M 

". J 5 L-+ 
. w+. . m"wl -. ice- 

K: ý 

AeW Weal. Wall ChamiTe, 

a - 
"cý« 

IE - 1.111 
174 

ý""r"0"'"ý" // 
'Eý r 

!! KEY 

, w« LOCATION 
_ ýý' 

rPy ___ /2 
" 

ý a 
[M Mr... l. rw .. a n"v aa. [n 

ý 

p, 
e n"ý. ^ "er.. 01e Im 5(n .r _ rte. 

as 

0= 
k "" 

yk S OVREGEITKLAUVGROTTA 
k 

1 
vH 1fla 1111 . 1! 1 l as NI a 

,,... crý, ý 
>Y[IM[ ?w 

/I- 

ýý 

R . wN 6.101.7136.1E [alOY[ 

SECTION SOUTH TO NORTH mnwa, c[p. SSIIy 1 

_? - ----_ Wasp Neal Passage a -- 

rIIC C /' 

_ 

4 

Ch-lIe 

Cnanlhel l A N d 

-' - 
ng a lc o Meg. 

Cn 11-11 1 amoer ýn. G- 
rn rte. ro.. a . sm"« 

a 
__--- 

Figure B1.11 Ceitklauvgrotta 

BLAFJELLGROTTA STORE HJORTSKAR No, w., `° === oo 
-, 

VN 21455791 A-795 L861 VR31 ýL.., n '"'ý 

. Ix. 

ö" 

199D ac. " GONAD[ 1 AUG: ':. 
rt- 

.. 4, EA 5 
!ý 

. O[tIK laO1DlII 

.. rr 

ALA m=" N 
,, LUIO 

ti 
! ! a. f'y 

_ .3 

c, clci 
ýr 

h" dui R. W. lurrrn rlun 
ýe" 

". aao aTir 
f uuol. 

,, ý ýý 

!!! w[! Ilulwo . Irt 8 

t. wnvua rlur Yom! uica y. . /. , a". l. i c,.,. 

Oc 

c to 

wIlr a irwrr. r 

EXTENDED ELEVATION 
c. - "" aW!! L. LwwlL 

y III ý 

"" ! pp am ý 
CWM! 

A- 
1r nIY W. 

"t 

Yf" lJ4G! 

"W 'ý ., +us iv.! iw1! 'a 
u 

rr r 

I. Ylilin 
ý 

i, 

ulnr! 

"""" MaY.! 
1,5: 5*? IaMTI 

Figure B1.12 Blßtjellgrotta (Newton and Faulkner, 1992, Fig. 17) 

Trevor Faulkner Page B 12 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix BI - Caves in each zone 

B1.6 HNC Zone 6: Hemnes to Dunnfjell: Kovagrotta and Luktindgrotta 
Zone 6 has received comparatively little attention from British and other cave explorers, although there is probably 

unrecorded knowledge about individual caves held by people who live in the Mosjeen area. The longest published 

survey (c. 650m) is that of Kovagrotta (Grenlie, 1982, pp19-20; Figure B1.13). A previously-unreported cave, 
Luktindgrotta (Photo D1.3j), was visited in 1997 and 1998. This cave consists of a roomy vadose, strike-aligned, 
streamway. It presently carries a small misfit stream for c. 500m to a sump that is close to a presumed resurgence in 

an orthogonal surface valley. At the southern end of the zone, a group of caves at Dunnfjell (Newton, 1999) lie at 
the upper reaches of the Namsen catchment area. 
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Figure B1.13 Kovagrotta (Gronlie, 1982) 

B1.7 HNC Zone 7: Akervik to Fiplingdal: Kvannlihola 

The Carbonate Outcrops Database records a total length of 421 km for the carbonates in V. Much of the limestone is 

contained within six highly complex and multiply-interconnected outcrops with many parallel limbs. Each of these 

outcrops has a total limb length of 20km or more. The outcrop with the longest limb length (42km) contains 
Kvannlihola, the longest cave in the zone (Faulkner, 1983; Figure B1.14). The cave is entered at its resurgence and 
consists mainly of a single streamway, although a short sump has to be passed after some 200m. The passage 
enlarges considerably beyond here, has a display of excellent speleothems (Photo B1.9), and then passes an area 
with a considerable number of collapsed blocks (Photo D1.36). Narrowing above a waterfall (Photo 131.10), the 

passage displays the clean-washed vertical banding of the limestone at its floor, with a nest of cave pearls near the 

roof (Photo 131.11) and a large collapsed block at roof level (Photo Dl. 37). A second waterfall (Photo 131.12) leads 

to a canal and a sump that is only a short distance from the undived sump in the Kvannli Sink Cave. The total 
length of the connected system would approach I000m, with a vertical range of c. 30m. The survey reveals that the 

cave morphology is guided by the presence of thick, interlayered, aquicludes within the vertical limestone. The 

passage has broken through these aquicludes at Canal Corner, the Top Waterfall, the Greasy Climb and at Sump I, 
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shifting to the left (east) on each occasion. Side passages that join the cave at some of these breakthrough points 

may represent earlier, now abandoned, sinks of the same cave stream. There is no sign of vertical stacking of 
horizontal passages in this cave, perhaps because much of the cave development was vadose after an initial phreatic 

phase, which can be deduced from the keyhole shape of the cross-sections. The catchment area is some 2km2. 
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Figure B1.14 Kvannlihola (Faulkner, 1983, Fig. 14) 

B1.8 HNC Zone 8: The Eastern Area 
Zone 8 comprises the HNC basement in the east, where it overrides the Upper Koli nappes. Only 27 carbonate 

outcrops are recorded, of which only three have been visited by cave explorers, and only one, near lengelvatn at the 

head of the Namsen catchment area, contains fully-reported caves. This outcrop is separated from the HNC sole 

thrust boundary to the east by a band of gabbro and amphibolite only 500m wide, and abuts a granite and granitic 
diorite pluton on its west side. Several caves were found here in fractured grey-banded metalimestones that contain 

numerous impurities within a partially drift covered area (Faulkner, 1987). If Ovre and Nedre Jengelgrotta could 
be connected the system would be over 700m long, but due to the remoteness of the area (18km from the nearest 

road), the published cave surveys are too inadequate to permit an understanding of cave development. S. St. Pierre 

(in Faulkner, 1987) quoted Oxaal (1910) and Foslie and Strand (1956) in describing a former ice-dammed lake with 

a surface some 30m above the present level of Jengelvatn. This ice-dammed lake would have flooded at least the 
lower parts of Jengelgrotta, and other local caves, but the effects of this on the caves and their sediments await 

study. 

B1.9 HNC Zone 9: The Nesna Shear Zone 
The NGU 1: 50000 Sandnessjoen map shows an internal thrust within the HNC, and this "Nesna Shear Zone" 

(Braathen el a!., 2002) is taken to be that part of the HNC that lies to the north of, and structurally below, this thrust. 

Z9 lies in the area of Ranafjord, beneath which the HNC overrides the RNC, and includes parts of the islands of 
Donna, Lokta and Hugla as well as part of the peninsular of Nordvikfjell. Only 22 carbonate outcrops are recorded, 

and only one 'carbonate' cave is known, the 25m long Marmorhelet on the island of Donna, visited in August 

2000. The cave has formed in calcitic biotite schist. It appears to have a tectonic origin, although its walls are 
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covered by calcitic formations and crystals that mask the bedrock. The cave is located at the c. 90m YD isobase 

shown by Sorensen ei al. (1987). Because its altitude is 113m, it was subjected to marine influence and probable 
enlargement for a significant time after the ice melted locally during the Younger Dryas (Appendix D2.1). 
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Photo 111.9 Maiacutes ana stalagmites in Kvannlihola 2 (7.7) 
Likely formed entirely in the Holocene, some stalagmites in the group show rotational movement 

Photo B1.1V ý, treamway in mvannnnoia L 
Formed in monoclinal vertical stripe karst. 
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B1.10 RNC Zone A: Bleikvassli Area: Grenndalsgrotta and Ytterlihullet 
Metamorphic grade in the RNC is similar to that in the HNC (Appendix B1.1). The longest cave in ZA is 

Grenndalsgrotta, which is 1400m long and 70m deep (Lauritzen, 1977; Figure B1.15; Photo D1.38). It has formed 

where the Jord$ga stream flows underground at a wet shaft from a catchment area of c. 5km2 in the Okstind 

mountains. The cave is in a folded metacarbonate mapped as "calcitic and dolomitic marble". Lauritzen described 

the limestone as being generally relatively impure, with several schist layers that have directed the present 

watercourse. The foliation dip is mentioned as "varying towards the north". From the diagrams and text it appears 
that the dip is, in fact, quite low, as the cave seems to have formed at two main levels (along the east-west strike 
direction), in two types of limestone. The upper "bench of homogeneous marble" contains maze-type passages of 

phreatic origin; the vadose active river passage has formed in the more impure lower limestone, which is rich in 

schist "horizons". The upper limestone is floored by a schist flake at Fossprekka, where a waterfall has broken 

through to the lower level. A similar connection has formed at the Large and Small Rope Shafts, farther 

downstream. Lauritzen noted the presence of shallow dry valleys beyond abandoned inlets into the cave, and 

concluded, therefore, that the streamway development followed a model of knick-point recession of the stream 

along the strike to the east. He also deduced that the cave structure pre-dates the contemporary valley topography. 

The cave system that is deeper by far than any other in the study area is Ytterlihullet in Bryggfjelldal (Heap, 1975; 

Figure B 1.16), with a depth of 180m and length of 700m. The entrance (marked "Storhola" on the 1: 50000 Korgen 

map) is at an altitude of 817m, below a summit plateau at c. 900m. The catchment area is c. 0.4km2. The system was 

visited by the author in wet weather in August 2000 as far as The Duck, when the flow was c. 0.7m3s'. The foliation 

dip is 20°W in the Upper Stream Passage, and 40°W at Inlet Passage. Heap described the cave as a typical 
"Yorkshire pothole": it has a turbulent noisy stream that drops down eight shafts, up to 15m deep, which require 
ladder or rope to descend. 

The meandering and steeply descending streamway is generally along narrow rift passages that display clean- 

washed blue, grey, orange and white bands in the marble walls. The roof and / or floor are commonly formed along 
flat, within-foliation, layers of mica schist [or amphibolite? ]. Two sumps and a duck can be bypassed, or crawled 
through. These bypasses and the lm-diameter tubular tunnel that links to Inlet Passage appear to be perched phreatic 
diversion conduits, as described by Palmer (1972; 1984a; 1991). The difficult exploration conditions are halted at an 
undived sump, at an altitude of 637 in. The water eventually rises from a small unexplorable entrance at an altitude 
of 614 in, some 400m to the SW. Inlet Passage carries only a misfit stream, and terminates beneath a snow-choked 
collapse doline at a choke of large rocks that hang from the roof and litter the floor. The presence of a surveyor's 
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Photo B1.11 Cave pearls in Kvannlihota 2 
These are at roof level, well-above the stream. 

Photo B1.12 The top waterfall in Kvannlihola 2 
Formed where the stream has breached a thick layer of 
amphibolite contained within the vertical stripe karst. 
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pencil in a polythene bag, on a ledge Im above the floor, showed that there has been no inundation of Inlet Passage 

between 1974 and 2000. This passage is of similar form to the Upper Stream Passage, but larger. It was clearly 
developed by the same stream, prior to its capture at the present entrance. At Boulder Hall, slabs of marble have 

spalled away from the walls, and rest at various angles on the floor, perhaps brought down by earthquakes (Chapter 

6). The roof and floor here are 3m apart, and consist of mica schist or amphibolite that does not seem to have 

collapsed. Ytterlihullet is clearly atypical for the study area, because both main passages have formed as 

predominantly vadose developments along passage segments that commonly descend the dip directly in a low angle 
karst outcrop that is some 2km wide and that is not representative of stripe karst. 
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IaYOYoQ YTTERLIHULLET 

............. 
---" J- _- 

YTTERLIHULLET 

Figure B1.16 Ytterlihullet (Heap, 1975) 
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B1.11 RNC Zone B: Bjerka and Stor Akersvatn: Akersvanngrotta 
The plan survey of Akersvanngrotta (Figure B 1.17) shows it to be another atypical cave for the study area, as it has 
formed in metalimestones that are only gently folded and lie beneath a thin cover of mica schist (with surface 
dolines), forming an interstratal karst. The relict cave passages are predominantly horizontal, so that the cave has 
developed as a rectangular network on öne level, presumably by utilising an orthogonal N-S and E-W joint system. 
Cave passages have a typical height of 2m and width of Im. The mica schist roof is present throughout the cave. 
Passages commonly terminate at fills of silt, which, together with sand, also floors much of the cave. Speleothem 

comprises flowstones and 30cm-high columns. Where the bedrock is water-worn, the limestone has a striped, 
banded, appearance. 
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Figure B1.17 Akersvanngrotta (Hjorthen, 1968) 

Akersvanngrotta appears to represent a drained phreatic maze cave, perhaps formed below the impervious roof in a 

way analogous to the formation of gypsum maze caves, but with a much lower passage frequency. Ford and 
Williams (1989, p278) referred to this type as a single storey reticulate maze cave. Palmer (1991) explained how 

this type of cave can form by diffuse recharge through a permeable caprock. The cave is only I00m from the large 
lake Stor Akersvatn, and only about 20m above its present water surface at c. 520m. This lake drains to the NW, via 

a narrow valley, and was ice-dammed up to c. 750m altitude during the Weichselian deglaciation, when the cave 
was waterlogged (Appendix D2.3). At present, the level of the lake is raised artificially by a hydroelectric dam, and 
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this has caused limestone and dolostone outcrops to be inundated, possibly including some short caves. However, 

Tjuvhelleren, the only cave candidate in dolomite (section 4.4.5), is at an altitude of 580m and is consequently not 
inundated at present. It is likely that it, and the cliff in which it is situated, formed when the lake Stor Akersvam was 

above this level at various times during the Quaternary. 

B1.12 RNC Zone C: Southern and Border Area: Baaagrotta and Labyrintgrottan 

Baaagrotta is the longest cave in the Norwegian part of ZC (Figure B1.18). It lies in a fairly linear outcrop of 

creamy grey coloured, non-banded, metalimestone on Kongsfjell with a 60° strike and an average dip of (probably) 

c. 500N. The survey, made by J. Lundberg in 1991, shows a rather simple system in which the active stream has 

migrated down-dip via ramp passages, leaving behind a higher-level relict passage. Except for the ramp passages, 

cave development is strike-aligned. Other shorter caves, farther along the strike, contain internal aquicludes of 
biotite and muscovite mica schist, and it seems likely that similar schist layers guided development in Baaagrotta. 
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Labyrintgrottan, one of the longest caves in Sweden, is at Mieseken on the southern shore of the large lake Över- 

Uman (Figure B1.19). It is contained within a long outcrop aligned N-S with a total limb length of about 44km, 

which extends south into Norway. The outcrop width is about 2km at Labyrintgrottan, creating the appearance of a 

classical karst. Glacial erosion has left a bare limestone hummocky platform, with dolines, clints, grykes, larger 

fissures and cave entrances at an altitude of about 710m. These are the best examples of limestone pavements in 

Sweden (R Sjoberg, University of Stockholm, pers. comm., 1998), although erratic boulders mask the pavement 

surface in places. A stream flows east, from the mica gneiss and mica schist slopes of Mieseken, to sink into the 

limestone. It flows underground for 2km northward, to resurge slightly lower, at the tree line. However, the situation 
is not quite as classical as it seems, as the limestone is quite folded, forming along-strike corrugations, with a 

wavelength of several tens of metres. The observed dip confusingly changes from 45°W to 45°E when traced across 

the strike. The hummocks form linear N-S ridge and gully structures. Most of the limestone is of the massive grey 

variety, with little banding visible in weathered outcrops, which can make the determination of dip difficult. 

Trevor Faulkner Page B 19 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix BI - Caves in each zone 

However, on the eastern side of the bench, brown, sucritic, limestones [HMC? ] predominate. These have high mica 
content, with some quartz, and contain the entrances to short caves. 
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Figure B1.19 Labyrintgrottan (After Freij) 
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The plan survey of Labyrintgrottan was assembled over many years of exploration by Y. Freij. Its measured length 

is now c. 2600m, having been extended by diving through several upstream sumps at the SSF Mountain Camps in 

1998 and 2000. The vertical range is only about 20m. Most of the cave is dry, because the active stream has 

abandoned most of the explorable passages. Hence, even without a published section, the cave can be seen to 

combine several horizontal along-strike passages that run to the NE, with sloping orthogonal passages that run to the 

NW. On the journey from the Facettgrottan entrance into the cave, progress is alternately along horizontal strike 

passages and via up-and-down ramps that follow the dip, or that follow joints that are normal to the dip. Throughout 

the cave, the limestone is of the massive grey variety, although towards the south it becomes more banded, with 
black layers roughly every 2cm. Commonly, these indicate a dip of 45°W. Very few aquiclude layers are seen within 

the limestone, but slabs of mica schist occur near the roof at the diver's sump at the end of the normally dry Ostra 

Klyftgängen. There are several sediments of very fine silt and sand in the cave, indicative of deposition at low flow. 

However, banks of clastic pebbles up to 5cm in diameter at the sump indicate the force with which water has flowed 

out in the past. The whole cave appears to have a phreatic origin, from observation of those parts of the cave visited 
by the author in August 1998, 

On the northern side of Over-Uman lie the karst areas of Kätaviken and Mjölkback (Wilhelmsson, 1997). The 

complex series of small interconnecting passages near the entrances to the large cavern Östra Jordbäcksgrottan at 
Kätaviken may have formed as a floodwater maze (e. g. Palmer, 1991). 

B1.13 KU: Koh Nappes - Upper nappes: Stor Grubblandsgrotta and Sotsbäcksgrottan 

The Keli nappes comprise low-to-medium grade metamorphic rocks, commonly to greenschist facies, but with 
higher grades near intrusions in the higher nappes. The KU Hattfjelldal Nappe exists only on the Norwegian side of 
the border, where it underlies the HNC sole thrust. Extensive areas of both calcitic and dolomitic metacarbonates 

occur, not forming stripe karsts (Appendices A2.1 and A2.3. ). Pink marble of the Unkerelva Formation crops out in 

Susendal (Photo B1.13), probably analogous to the famous (cavernous) Fauske marble in northern Norway. 

However, no caves are known in this lithology in the study area. 

The longest cave in the Hattfjelldal Nappe is Stor Grubblandsgrotta (Heap, 1968; Figure B 1.20), 1890m long and 
50m deep. It appears to have formed partly by successive captures of the Stor Grubblandselv, a relatively large 

stream with a catchment area of c. 19km2. It runs southeastwards, from small glaciers on 1300m-high mountains of 

quartz diorite and trondhjemite at the edge of Z8, to flow over a waterfall on to KU (Photo 4.2). After flowing for 

1.3km more over limestones and distinctive white dolostones (Photo 4.3), the water sinks at a pool below another 

powerful waterfall. The cave itself is visited via a dry entrance 150m south, below the west cliff of the continuing 
dry valley. It is formed in dark grey folded limestone that variously dips at 30-70°W, with a general strike direction 
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of N-S. The limestone is cut by many white calcite veins and mica schist layers, and white bedrock, which might be 
dolomite, occurs in at least one place. 

The main streamway probably migrated downwards and westwards (utilising the dip) via six separate tributary 

passages, which all lead back towards the surface dry valley. Each major junction reached when exploring the cave 
to the Main Drain has the form of a tube that descends partly down dip, and partly aslant the strike, to reach the roof 

of a larger orthogonal passage. All six tributary passages are focused on the First Lake of the Main Drain, where 
they meet. Beyond the Main Drain is a complex maze of incompletely-explored distributary passages, many 

containing sumps even when dry conditions permit exploration of this part of the cave. 

Stor Grubblandsgrotta is probably the most disturbing cave to explore in the whole study area, because of the 

volume of the stream and the fluctuating water levels. On the day of its discovery, the Grubblandsely overflowed its 

waterfall sink and continued down the dry valley to sink in the 80m-long ßvre Grubblandsgrotta. Inside the main 

cave, the roaring main stream reached a "temporary saturation level" some 15m above its normal level, as marked 

on the survey. As with most caves in the study area, Stor Grubblandsgrotta is entered very infrequently, the last 

recorded previous visit being in 1983. No sign of any earlier visit was observed during a brief reconnaissance as far 

as the Main Drain in August 1998, proving that the whole cave has filled to the roof at least once in the intervening 

period. As Heap (1968) remarked, the cave may have developed relatively quickly and mainly by mechanical 

erosion caused by the large flood-discharges of glacial meltwater carrying abrasive materials. Above the First Lake, 

much of the cave development is vadose, whereas below it, the distributary passages mainly developed phreatically, 
probably under a considerable hydraulic head. Presumably the various clastic sediments seen throughout the cave 

are of very recent origin. No speleothems were noted. It is not known how the water penetrates the massive white 
dolostone layer that lies between the sink and the upstream passages, but perhaps this rock is not a true dolomite 

(Appendix A2.4). 
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Several caves occur in the very dark, lower metamorphic grade, limestones of the Akfjell Nappe in KU, also on the 

Norwegian side of the border. These lie north and east of the lake Favnvatn, and have E-W strikes. Despite long 

pecked blue lines on the 1: 50000 Hjartfjell map, the underground drainage is rather superficial, and exploration is 

commonly halted at sumps. The longest cave here is the 260m-long Skinfellvassgrotta (Faulkner, 1987 and 1988). 

It is formed in an elongated ridge of dark grey limestone with platy fractures that dips at 70°S, and consists of a 

strike-aligned inclined rift down to water level, with sumps at each end. The whole karst drainage system is about 
I km long, and deep sumps along the phreas can be seen at several other openings and short caves (Photo 9.1). Caves 

along underground tributaries of the nearby Tverrelv were shown to have formed along the strike, in anticlinal 

ridges of limestone (Sjoberg, 1979; section 5.7). 

On the Swedish side of the border, the KU outcrops continue below the sole thrust zone of the RNC to the 

Rödingsfjäll karst area (Norberg and Petterson, 1988). This is some 10km south of the Labyrintgrottan outcrop in 

ZC. The sole thrust is commonly marked on the ground by a south-, or southeast-, facing cliff, above the under- 

thrust Jofjell Nappe of KU. In many places, a single metacarbonate outcrop forms the contact rock in the Jofjell 

Nappe; in other places this outcrop lies up to 500m south of the contact. Many short caves carry an underground 

stream that flows steeply down, along the strike of the thrust, below the mountain Rodingsfjäll. This underground 
drainage route commonly runs parallel to other surface streams. The longest cave system (235m) comprises Övre 

and Nedre GlimAkragrottorna, both being entered at the same collapse doline. Here the limestone dips under the 

thrust at 30°W, and has a varied lithology. Mostly it is dark blue / grey in colour, but a thin yellow / brown layer 

occurs half way up the 6m-high passage that leads in to the upper cave entrance and also marks the top of a waterfall 

some lOm inside. The lower cave has formed entirely in the lower layer of blue / grey limestone, which becomes 

almost black in its tall and narrow entrance rift, closely resembling the limestone in Skinfellvassgrotta. 
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Fig. 4. Sotsbacks Cave. Dotted lines Indicate passages in a different orientation to the 
master passage A-AS. The rose diagrams above indicate the strike of the beds for 
the distances A-K, K-Os O-T and T-AS. Th. rose diagrams below indicate the dip of 
the bedrock in the direction of the fold axes for the distances A-F, F-T and T-AE. 
n denotes for the number of measurements and H the mean values of the dip. The arrows 
indicate water streams and the triangles collapse accumulations (He11d6n 1974 b). 

Figure B1.21 Sotsbäcksgrottan (Hellden, 1975) 
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Sotsbäcksgrottan, the second longest cave in KU (Figure B1.21) lies several kilometres to the NE, along the thrust 

zone and in the same Jofjell Nappe limestone outcrop. This cave, 1850m long and 110m deep, was studied in a 
thesis (summarised by Hellden, 1975) when it was Sweden's longest explored cave. A powerful stream flows akM9 
the large main passage of the cave in spring and summer, from a catchment area of c. 2.5km2, which generally 
follows the strike to the NE. Hellden noted that the limestone is deeply folded, so that the dip fluctuates from 109W 
to 50°W, with a mean dip of 35°W. The cave also has several relict passages that are above, and offset to the eßt 
(i. e. up dip), of the streamway. Hellden mentioned two main passage forms for these abandoned routes: high and 

narrow fissures, and phreatically-formed, elliptically-shaped, passages along bedding planes. The cave also contt 
extensive areas of collapse, which have formed enlarged chambers with vaulted roofs. 

Large accumulations of allochthonous sediments occur, especially in the relict passages. These are commonly coarse 

sand, although grain sizes vary from very fine sand to coarse gravel. According to Hellden, clay deposits was 
brought into the cave by percolation water. Various types of speleothem were discussed, especially straw stalacti 
In discussing the development of the cave, Hellden did not regard the relict and active parts of the cave as 

representing different phases; rather, he thought that the vadose main stream development just followed the tim 

when the phreatic passages grew to such a size that their capacity exceeded the water supply. However, the cave 

section seems to show that the relict upper passages acted as shallow phreatic loops to old, short-distance, 

resurgences, which were progressively captured along the strike, perhaps by rejuvenation. Thus, the system probably 
follows the internal cave development model proposed in Chapter 9. The present resurgence for the system is some 
1.5km NE of the explored end of the cave at the Devil's Crater. The endokarst is unknown between these two 

points, except for two very tight and steeply-descending, possibly tributary, systems that occur half way along, but 

on the east side of, the outcrop (Sjoberg, 1991b). The overlying exokarst has several shallow dry valleys and small 
features such as dolines. 

The RNC / Köli thrust zone and the accompanying limestone outcrop in the Jofjell Nappe continue across la6 

Över-Uman to the Övre Altsvattnet karst area, which is near the Norwegian border. The outcrop wideft= 

considerably, with assumed low foliation angles, and this area has 54 recorded (short) caves, the longest being 

Marmorgrottan at 320m (Sjoberg, 1980; Engh and Sjoberg, 1981). Swedish geological maps indicate granitic 
intrusions within this area, suggesting some contact metamorphism. 

B1.14 KG: Kali Nappes - Middle Nappes: Gjersvik Nappe 
The Gjersvik nappe lies to the south of the Hattfjelldal Nappe of KU, entirely within Norway. Its outcrops consist of 

calcitic metalimestones and metaconglomerates of limestone and dolostone. They have not been searched for caves. 

B1.15 KL: Kali Nappes - Middle Nappes: Leipikvattnet / Orklump Nappe: Korallgrottan 

Only seven carbonate outcrops are recorded in KL. The longest is 23km in length, with a mean width of 200m. This 

outcrop lies along the thrust plane between the lower Gelvenäko Nappe (which has no carbonate outcrops) and the 

Leipikvattnet Nappe. It contains several well-known caves in both Norway and Sweden. The large stream 
Rennselelv passes the dry entrance to Marmorgrotte, which is signposted from the frontier road in Norway. The 

cave was mapped by Oxaal (1909) and surveyed during the 2000 field trip at 108m length. It appears to have formed 

phreatically along a wide joint plane in angled stripe karst (dip=80°S). Its walls display scallops up to 20cm in 

width, indicating dissolutional development when submerged by water flowing at c. 20cros" (section 3.1.7). 

The whole Rennselelv passes under the road 500m farther down the valley, at the large Landbrua cave. This was 

surveyed during the 1998 field trip to a total length of c. 150m. The limestone dips vertically with a change of 
lithology across the strike, as seen at the cave entrance, which is 6m wide and 2m high. On the south side of the 

entrance, the limestone is very banded, with pale grey and blue grey colours. There are then some white bands 

before the limestone becomes more massive on the north side. Inside the cave, the roof forms a phreatic arch, 

without breakdown. Scallops 2-3cm in diameter point downstream across the whole width of the roof, indicating 
fast water flows at the latest stage of phreatic development. The cave is terminated by a large deep sump that has 

been dived to emerge at a rising on the south side of the road (Photo D 1.40). 
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The outcrop continues NE along the intermittently-dry valley of Langslätten to the Swedish border, where it forms 

the nationally-famous Bjuräly karst area. The discovery of Övre Bjurälvsgrottan was mentioned in section 1.6.4, 

and the studies about the deep dolines and other karst features are referenced in section 1.7.2. The limestone remains 

steeply dipping; a dip of 80°S was noted in Svenoniusgrottan during the 1997 field study trip. The low-grade 

metalimestone displays very'pale blue / grey bands and is massive in appearance, with few impurities. 
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Another outcrop of limestone lies 4km southeast of the Bjuräly. It is 4km long and commonly over 100m wide. This 

is near the thrust boundary with the underlying Stikke Nappe: the intervening Gelvenäko Nappe is squeezed out at 

this location. This second outcrop and another five outcrops represent a continuation of the Landbru- 

Marmorgrotta-Bjurtily outcrop. The limestone was wrapped around through 180° and partially dismembered and 
displaced by minor faults during the Caledonide fold events. The outcrop contains Korallgrottan, the longest cave 
in Sweden, to the north of Stor Bldsjön (Figure B1.22). This is now 5.6km in length, with a vertical range of 144m, 

including a sump that is 16m deep (the deepest in Sweden, according to Myrin, 2002). It has several entrances, 
including large stream sinks. Commonly, passages follow the strike at several levels. The dip throughout the cave is 

generally about 45°N. Isacsson (1989; 1994; 1999) studied the cave's morphology and sediments. 

The following brief notes were made in July 1997, when Korallgrottan was traversed from the Doline Entrance to 

the Skymningsgrottan Entrance. Four varieties of the low-grade metalimestones were observed. They appeared to 

form a vertical sequence: pure white; pale blue-grey banded; dark grey-black banded; and black. Each type is 

homogeneous, and several tens of metres thick. Very few, if any, examples of dykes and aquiclude layers were 

observed, but some within-band brown layers of low-grade mica schist were noted in dip-aligned passages at the 

well-washed Skymningsgrottan end of the system. The route from the Doline Entrance to Stora Salen is along dry, 

predominantly horizontal, walking-sized, passages that are strike-aligned, ph reatical ly- formed, and inclined along 

the dip. Dip-tubes ascend and descend from the main passage and, in places, phreatic loops of ascending joints and 
descending dip-tubes provide connections between strike passages at different levels. Paragenetic channels along the 

roof indicate stages of previous sediment fill. Speleothems include: straws and other stalactites; flowstones and 

stalagmitic banks; a form of calcitic `cup' on the walls, where underlying sediment has been washed away; 

concretions of gravel and pebbles; and, in one area, raised calcitic deposits that resemble coins have formed on 

several near-horizontal blocks in an almost regular pattern. The route out from Stora Salen to the Skymningsgrottan 

Entrance is along a small and awkward, ascending, vadose streamway, with, in one place, a low static duck. From 

the survey section, most of the through-route passes well above, and to the south of, the mainly vadose "Active 

System", which lies between Stora Salen and Sifonsalen. The cave thus seems to represent another example, in 

dipping limestones, of passage migration down-dip during development, when at least one higher and older 

resurgence (Doline Entrance) was abandoned. However, the cave morphology is in reality much more complex than 
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this in the eastern part, as lower passages have developed under phreatic conditions both north and south of the high- 
level through-route, i. e. both down-dip, and in lower dip-planes. 

According to Isacsson (1994), the relict phreatic passages developed before a higher landscape (which provided a 
larger catchment area) had been eroded away by glacial action. Large quantities of rocks fell from the walls of the 

main passage during deglacial earthquakes, and varved sediments were laid down at the end of the last glaciation, 

when the cave was flooded under an ice-dammed lake. These were mostly removed, and stones deposited at high 

levels, by high flows, when the ice dam was suddenly breached. However, this explanation is refined in sections 
6.5.1 and 6.5.3 and modified in Appendices D2.6-D2.8. 

B1.16 KS: Keli Nappes - Middle Nappes: Stikke / Virvass Nappe + Remdalen Repetition 

Although 27 carbonate outcrops with a total length of 41 km are recorded in KS, none have been visited by cave 
explorers, and no caves are known. Short caves exist on the north and south sides of Södra Storfjället in an outcrop 
that was visited in the August 1998 field study trip, which was assumed to be part of the Stikke nappe (Faulkner, 
2000). However, the SGU geological map Ail 60 (published in 2001) interpreted this formation to lie in KU. 

B1.17 KB: Keli Nappes - Lower Nappes: Bjerkvatn / Joesje Nappe 
There are 122 recorded carbonate outcrops in KB, only six visited by cave explorers. The 47m-long 

Rapstengrottan, V. Fjällfjället, was surveyed on the 2000 field trip. It has formed by the dissolution of a 1.2m-thick 

band of white limestone that is sandwiched between a phyllite roof and loose, platy, layers of mica schist that 

commonly form the floor. The stream is deepening the passage floor by eroding the mica schist, and flows aslant the 

20°S dip of the `sandwich'. An outcrop close to the thrust boundary with the higher Stikke Nappe, near the 

Sjliengojukke stream (Photo D1.41) and below the mountain Gelvenäko, was visited in August 1988. The dip is 

commonly 20°N. Two types of limestone were seen: a 2m-thick calcitic layer, banded with pale grey and white 

colours, and an overlying thinly-banded brown layer that attained a surface width of about 20m. Whereas this rock 
looked like mica schist, in places it also gave a vigorous reaction with dilute HCI. The grey limestone was followed 

for some distance along an outcrop only 5m wide. The 25m-long Renbenshllet is in this vicinity. Several small 
dolines and one small rising were also noted. Four outcrops on the mountain Daunentjakke (1291 m) were visited in 

August 1998. These highly-folded limestones have a brown platy micaceous appearance, and give only a faintly 

visible reaction with dilute HCI. The dip varies from 45°W to vertical. The SGU map indicates one of the outcrops 

as a fossil locality. The only karst features seen were shallow dolines on the NE lower slopes. 

BI. tS SU: Seve Units 
The reducing trend of metamorphic grade is reversed in the Seve nappes, with rocks of medium to high grade. Some 

84 small outcrops are recorded in SU on the SGU maps, but they do not distinguish between carbonates and calc- 

silicates for any Seve nappes, and few outcrops have been visited by cave explorers. The area of two mapped tiny 

outcrops at BlomhÖjden was visited on 13 August 1998. No carbonate outcrops and no karst features were seen. 
There are no known caves in nappes below the Kali Nappes in the study area. The absence of karst caves in the Seve 

Nappes also holds for the few Seve carbonates that occur in northern Norway, although such caves occur in Sweden 

to the south (Appendix D6.1.3). 

B1.19 SB: Seve Belts (Western, Central and Eastern) 
A total length of only 36km in 39 outcrops is recorded in SB. Visits to three sites in August 1998 failed to identify 

carbonate bedrock. 

B1.20 ML: Middle and Lower Ailochthons 
There are no mapped carbonates in the low-grade Middle Allochthon. The Lower Allochthon has 15 dolostone and 6 

limestone outcrops of Ordovician (Tremadoc) age in the study area, but no known caves, although they do occur to 

the south in both Norway and Sweden (Appendix D6.1.3). During the August 1998 field study trip, one dolomite 

outcrop was positively identified, but without seeing any karst features. One Ordovician limestone and two other 
dolomite outcrops were sought but not identified. 
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APPENDIX B2 INTERNAL CAVE ATTRIBUTES 

This Appendix discusses the various internal attributes recorded in the cave databases (as defined in Appendix 
C2.2), and reviews the influence that the external attributes (section 5.3) and the hydrological cave classes (section 
5.4) have on them. Table B2.1 gives the mean values of the internal attributes for each of the cave classes and the 
three main karst types, derived from pivot table analyses of the combined cave databases. Further information from 
the pivot tables is also discussed, without being presented in more detailed tables. 

Tohln R2.1 Average internal attributes- cave hvdrnlnoirni olncept and barst tvnp¬ 

Cave 
class 

Av. 

KT 

SE RE DE All 
ents. 

CS SP Ch Sh BC RV DC FS 

MV V 0.56 0.23 0.47 1.26 1.01 0.36 0.04 0.22 0.17 0.000 0.013 0.051 
MV A 0.59 0.34 0.37 1.30 1.05 0.42 0.03 0.14 0.07 0.017 0.000 0.101 
MV L 0.71 0.46 0.37 1.55 1.09 0.37 0.06 0.03 0.06 0.029 0.029 0.057 
MV ALL 0.58 0.34 0.40 1.32 1.04 0.39 0.04 0.15 0.10 0.012 0.008 0.078 
Re1. V 0.00 0.00 1.33 1.33 0.00 0.00 0.03 0.63 0.13 0.027 0.013 0.173 
Rel. A 0.00 0.00 1.42 1.42 0.00 0.00 0.05 0.41 0.16 0.020 0.026 0.209 
Rel. L 0.00 0.00 1.58 1.58 0.00 0.00 0.08 0.08 0.29 0.000 0.053 0.263 
REL ALL 0.00 0.00 1.41 1.41 0.00 0.00 0.05 0.43 0.18 0.018 0.029 0.204 
Com V 0.45 0.26 1.05 1.76 1.21 1.02 0.31 1.21 0.42 0.110 0.098 0.305 
Com A 0.50 0.18 0.95 1.63 1.12 0.72 0.22 0.61 0.31 0.125 0.077 0.327 
Com L 0.59 0.28 0.93 1.80 1.09 0.78 0.41 0.57 0.22 0.222 0.074 0.315 
CC ALL 0.50 0.21 0.97 1.68 1.13 0.80 0.27 0.74 0.32 0.139 0.083 0.322 
All V 0.34 0.17 0.95 1.46 0.76 0.48 0.13 0.69 0.24 0.047 0.043 0.179 
All A 0.36 0.16 0.95 1.47 0.74 0.42 0.12 0.43 0.20 0.065 0.042 0.233 
All L 0.45 0.24 0.97 1.66 0.76 0.43 0.21 0.28 0.20 0.102 0.055 0.228 
ALL ALL 0.37 0.18 0.95 1.50 0.75 0.43 0.13 0.48 0.21 0.066 0.045 0.217 
`All' tnctuaes caves in Karst types IL, ana A. 

B2.1 Cave entrances (SE, RE and DE) 

Common cave entrance positions within the landscape were discussed in section 4.4.2. Cave entrance areas are 
commonly not much larger than continuing passage sizes, although larger chambers that measure up to 5m high by 
5m wide (or more) are found in some entrances. These almost invariably display various degrees of frost shattering, 
so that it has sporadically been necessary to dig through loose rocks with dimensions up to one metre to gain first 

access to a cave entrance, at any altitude. The possible processes that enlarged such cave entrances are discussed in 

sections 8.8.2,8.8.3 and 8.9.4. 

Three entrance types are distinguished: sink entrances (SE), resurgence entrances (RE) and relict (dry) entrances 
(DE). The cave databases and summaries record the numbers of these entrance types for each cave. The total 
numbers are: SE 323; RE 160; and DE 840; i. e. 0.37,0.18 and 0.95 per cave, giving a total of 1.50 entrances per 
cave. These means are very consistent. The DE: SE: RE rank order of entrance types is the same for all `inner' 
zones, cave types a-h, karst types V, A and L, cave locations and glacial situations (except that situation C has only 
one SE, and the situation U cave fragments are relict). Combination cave entrances have the same ranking, but 

mainly vadose caves have more SE than DE, and relict caves only have DE. Thus, the great majority of entrances 
are relict, with no water flow through them in normal conditions. As there are 662 cave streams in the study area, the 
mean number of cave streams per cave is only 0.75, of which only about half enter caves directly at an open sink 
entrance. There are only half as many resurgence entrances as sink entrances, because all active caves in the area are 
ultimately dendritic: there is not one reported case of a karrt system that feeds widely-separated risings in normal 
flow conditions. 

There is no systematic variation of any entrance type across the zones. However, there are some very consistent, but 

small, trends for karst type. For mainly vadose caves, as foliation dip reduces (V: A: L), SE and RE both increase, 
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and DE primarily decreases, but their total means still increase. The DE trend is reversed in relict caves. 
Combination caves reflect this `competition', because their SE increase and DE decrease, whereas RE show no 
trend. Taking all caves together, entrances of all types commonly increase slightly as foliation dip reduces. SE and 
RE both increase slightly if R=1 or T=1, whereas DE means decrease. This fording agrees with the `favouring' of 
vadose over phreatic development by either R=1 or T=1 (section 5.5.4). 

Caves in cave locations R, S and W have less SE (0.23,0.26 and 0.33) and RE (0.06,0.12 and 0.13), and, 

correspondingly, more DE (1.37,1.26 and 1.05), because of the predominance of relict caves over mainly vadose 
caves in these locations (section 5.5.5). These trends are reversed for the small samples of mainly vadose caves in 

these locations. Locations R and S have the largest numbers of total entrances per cave (1.66 and 1.64). SE show a 

slight increase with higher glacial situations, RE have no trend, and DE show a slight decrease on the eastern sides. 
SE and RE are always greater in the western glacial counterparts, whereas DE are always greater to the east 
(especially at GS=E rather than D). The total numbers of entrances are largest at GS=E (1.75) and smallest at GS=S 

and C (1.16 and 1.27). Entrance frequencies show greater variations when cave location and glacial situation are 

considered together. 

The large number of entrances per kilometre of cave passage (17.7) means that there is one entrance for every 56.6m 

of passage, arising from the large number of very short caves in the study area. However, many caves possess more 
than one entrance. It might be expected that the number of entrances would generally increase with cave length, as 

postulated by Curl (1958) for his study areas in sedimentary limestones in the USA. However, this may not be the 

case, because the caves with the largest number of recorded entrances (ten, all DE) are Shelter Cave (Z4, relict) and 
Murevardolabyrinten (KU, combination), which are only 78m and 275m long. The relict cave with the third-most 

entrances (six) is Balcony Cave (Z3,175m). Two combination caves also have six entrances: Roaring Cave (Z5, 

522m) and Mellanselvgrotta (Z7,280m). In fact, SE and RE show no increasing trend with cave type complexity 
(a-h), ranging between only 0.26-0.44 and 0.06-0.29. This null trend is also followed for both MV caves and 

combination caves, all karst types, all cave locations (except that SE tend to increase with cave type at CL=R) and 
for all glacial situations (except that RE increase for the lower situations GS=C, D and G). The SE and RE means of 
both active entrance types are therefore commonly independent of cave length. This is understandable, as few caves 
have more than one SE, and the maximum number of RE is commonly one. On the other hand, DE do increase fairly 

smoothly with cave type a-h, from 0.65-2.13, and increase similarly within each cave class. Therefore, only the DE 

increase with length agrees with Curl's postulate. Neither of two other postulates by Curl (1958), i. e. that a) there 

could be 20 times as many caves without entrances as with entrances (for caves over 15m long), and b) most caves 

with entrances have already been recorded, are likely to hold in this study area. The non-autogenic nature of the 
karst, and the observation that cave entrances are commonly of similar dimensions to their internal passages, suggest 
that large proportions of the caves along each part of each visited carbonate outcrop have indeed been entered and 

recorded. However, because only 14% of the total mapped outcrop length has been visited, some 86% of all caves 

may remain to be recorded (section 5.2.3). 

B2.2 Cave streams (CS) 
The maximum numbers of cave streams that flow in each cave during normal summer discharges are shown in the 
two Cave Databases. These include tributaries, roof inlets, impenetrable inlets and presumed flows at apparently- 
static sump pools. The overall mean of 0.75 cave streams per cave varies non-systematically from 0.5 to 1.0 across 
the `inner' zones, and hardly shows any overall variation with karst type. A slight increase in CS for MV caves as 
foliation dip reduces agrees with the corresponding increase in SE and RE (Appendix B2.1). However, combination 
caves show a reduction in CS as KT reduces. The CS means for caves with R=1 or T=1 are slightly higher at 0.80 or 
0.93, again agreeing with `vadose favouring'. Cave locations F and P seem to favour cave streams slightly, as their 
means are 0.85 and 0.82, whereas R and S have slightly less (0.55 and 0.65), agreeing with their reduced SE and RE. 
Mean CS increases for higher western glacial situations but shows no trend for eastern situations, and the 

counterpart rankings are inconsistent. 

The cave with the greatest number (five) of cave streams is Korallgrottan (KL), which is also the longest cave. 
Five caves across the study area (with cave types from b-h) each have four cave streams, including one that is a 
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mainly vadose cave. Ignoring relict caves, which do not have cave streams, the mainly vadose and combination 

caves have means of only 1.04 and 1.13 cave streams per cave, showing that the overwhelming majority of active 

caves have just one stream. This suggests that, in nearly all cases, vadose cave development has occurred under a 

flow regime similar to the present one. In contrast to the independence of SE and RE with cave type (Appendix 

B2.1), the number of cave streams per cave does increase fairly smoothly with cave type a-h, from 0.64-1.38. 

As mentioned in sections 4.2 and 4.4, the geomorphology of the study area is mainly non-karstic because of the 

small percentage of outcropping carbonate rocks, even at a local valley scale. Hence, most of the catchment areas 

for most of the caves are on non-carbonate bedrocks. Within the active stream caves, a high proportion of the water 

that flows back to the surface consists of the allogenic recharge water from the catchment areas upstream of the cave 

sink points. The catchment areas directly over the cave systems vary from c. 0.2km2 for the longest cave, 

Korallgrottan (which has a total catchment area of c. 3.5km2), down to the vanishingly small. Hence, the 

contributions of autogenic waters to the contemporary development of active stream passages must be very small. 

However, the presence of dolines above cave systems shows that percolation water does enter the subcutaneous 

zone and epikarst, and may drain in to any underlying caves. The volume of this autogenic recharge is highest 

during and after heavy rain, and during the spring melt of the overlying snow and ice, when it is concentrated via 

joints and, especially, via the dolines that always drain underground (section 4.4.3). Thus, autogenic recharge makes 

a disproportionate (and perhaps the only) contribution to present passage enlargement in those higher levels of the 

cave systems that have been abandoned by down-cutting vadose streamways. Autogenic recharge also provides the 

percolation water that forms those few speleothems that occur. For most active caves in the study area, flow-through 

times are very short, because of short cave lengths and / or high hydraulic gradients. One of the longer systems 

(Ytterlibullet, ZA) was tested from sink to rising (horizontal distance 840m, VR 203m) with fluorescein, which 

passed through in only three hours (Heap, 1975). 

The annual weather cycle and the meteorological effects on caves and cave environs are discussed in Appendix 

A4.1. Very few caves in the study area have been studied at all during winter conditions. Only the limited 

observations of Hellden (1973) about temperature and precipitation for Sotsbäcksgrottan (KU) are known from 

Sweden. Ovstedal (1991) gave information from data loggers about the Sirijordgrotta (Z4) stream waters for a 16 

month period. The flow rates measured at the Sirijordgrotta spring show that from about early July 1988 until the 

and of November 1988, a low flow rate of about 20Ls' was re-established within a week of a non-repeated flood 

pulse. From December 1988 until the end of April 1989, the recovery period extended to about two weeks and from 

early February to mid-April 1989, flow rates remained commonly at a minimum 20Ls" level, presumably due to the 

melting of some winter snow. From the onset of the spring-melt in May 1989, the flow maintained a rate from 100- 

200Ls' between flood pulses, but with diurnal variations of about 50Ls". This pattern continued until the end of 

June 1989, when presumably all the snow in the catchment area had melted. About 40 flood pulses giving 

discharges up to 1200Ls' were recorded in the 12 months from July 1988 to June 1989, with the flooding frequency 

peaking between mid-September 1988 and the end of January 1989. 

A very approximate calculation based on these data reveals that Sirijordgrotta discharges at a mean annual rate of 

10OLs', or some 3.4xl06m3a'. This is made up by: 1.6 (flood events); 1.2 (snow melt); and 0.6m3ä' (base flow). 

The Cave Database shows a 2km2 catchment area for the cave, giving an annual run off of 1700mm. Addition of an 

estimated evaporation rate of 300mma' (Appendix A4.1) gives an estimated annual precipitation of 2000mm. This 

is a very reasonable result, as it is equal to the 2000mm for Hattfjelldal (also Appendix A4.1), and thus gives an 

approximate confirmation of the estimated catchment area. [However, Ovstedal, 1991, p63, measured an area of 

1.6km2 for the catchment, from a map at the scale of 1: 5000]. 

Extremely high floods are common throughout the caves of the study area, and there is evidence that, in some caves, 

all known passages can fill to the roof. During these events, sediments can move considerable distances, block 

individual passages, and seal or open cave entrances. The sink entrance to 9vre Landegrotta (Z2) was blocked by 

debris between 1983 and 1997. In Etasjegrotta (Z4), the Hole in the Wall in the streamway is now blocked by a 

boulder, and the high-level route to the south end of the cave is choked by sediments. These changes occurred 

between 1986 and 1998. The sink for Gjeitvikgrotta (Z6) was described as "at the foot of a low cliff" Whitehouse, 
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1969, p3). In 1997, this cliff was 12m high. Caves at Gulimoen (Z6) mentioned by Helland (1907, p467) could not 
be found in 1998, and were not known locally. In White Cave (Dunnfjell, Z6), large blocks above the pitch, 
observed in 1997 (G. Newton, cave explorer, pers. comm. ), were found to be shifted downstream in 1998, so that 

cascades over boulders in the lower streamway were replaced by a 3.5m overhanging pitch. At Stor 
Grubblandsgrotta (KU), the lower passages, which were explored in 1967 and 1968, were choked by sediment in 
1979, thus preventing access to the lower stream passages (D. Heap, cave explorer, pers. comm. ). As noted in 
Appendix 81.13, all signs of previous visits to this cave were removed by floods before 1998. Whilst it is possible 
that just one large storm over a wide area between August 1997 and June 1998 caused changes in up to four of the 

caves mentioned above, it seems more likely that flood events of a size that can open and close cave entrances, and 

move large amounts of sediment underground, are a regular occurrence. In these respects, some of the active caves 
in the study area may be compared to the f oodwater caves of Palmer (1972). 

B2.3 Sump pools (SP) 
The numbers of sump pools in each cave (where the roof of a passage normally descends below water level in July 

and August) are recorded in the Cave Databases. A sump that has been visited at each end is shown as two sump 
pools. The total number is 384, or 0.43 sump pools per cave, which is much less than one sump pool per cave 
stream, giving even less than one complete sump per cave stream. The mean varies non-systematically across the 
inner zones from 0.17-0.72, but (as for cave streams) it is almost constant for the different karst types, except that 
combination caves in vertical stripe karrt have a high mean SP of 1.02, in agreement with their higher mean CS, and 
for both R=0 or 1. Caves with T=1 have a slightly higher mean (0.52). As expected, caves in location F have more 
sump pools (0.64), whereas caves at CL=P and W have relatively few (0.30 and 0.23). There is also little variation 
in sump pools in each glacial situation, except that the lower eastern situations E and H have larger means (0.65 and 
0.71). 

The cave with the highest number of sump pools (15) is Blfi jellgrotta (Z5). These all occur in the course of its 

powerful stream, along a probably-immature stream passage. This can be visited at several places by descending 

connections from higher-level phreatic crawls and passages. Stor Grubblandsgrotta (KU) has eight sump pools 
that are all situated in the so-called "saturation zone" of the cave. Labyrintgrottan (ZC) has six, Sirijordgrotta 
(Z4) and Korallgrottan (KL) have five each, and Ytterlihullet (ZA) has four sump pools. Some 15 caves have 

three sump pools each. Most of the remaining active caves of the study area have just one sump pool, which is 

situated typically at the lowest explored point of the system. Hence, the incidence of sumps along the active 

streamways of the central Scandinavian caves is probably comparable with other caving regions of the world. 

The caves mentioned above with four or more sump pools are all combination caves of cave type h, except 
Ytterlihullet (type d). Only one mainly vadose cave has three sump pools, although some 14 have two each. The 

overall SP means for the cave classes are relict: 0.0 (as specified), mainly vadose: 0.39 and combination: 0.80, and 
the lower SP mean for MV caves compared with combination caves is maintained for cave types a, c and d, but not 
for type b. The SP ̀ half value' for the mainly vadose caves and their common lack of multiple sump pools seem 
anomalous, but Appendix D6.1.1 interprets this finding by suggesting that vadose streamways with powerful 
discharges have fewer sumps, because of chemical and mechanical erosion at roof level. The total numbers of sump 
pools per cave increase fairly smoothly with cave type a-h, from 0.23-2.18, as occurs with cave streams. 

The preponderance of phreatic over vadose passage forms in upper cave levels was noted in section 3.3.2 and in the 
discussions about individual caves in Appendix B1. Rather conversely, there are very few perched static sumps and 
ducks (where a pool of water has a small airspace below the passage roof) in these upper phreatic passages, 

suggesting that any water that may pond in the upper levels of a cave soon drains away to lower levels, because 

evaporation must be slow in the cold cave atmospheres, even in summer. All the known sumps in all the caves of the 

study area occur along streamways or at the lower ends of dry passages, where they probably connect with 

unexplored streamways. 

Only a few sumps in the study area have been investigated by diving. The long underwater system at Vatnhullet 

and Main Rising (Z4; Appendix 131.4) was dived for 340m upstream towards Etasjegrotta, in a large conduit with 
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complex parallel passages and pillars, via a maximum depth of 20m. The total dived length of this active phreatic 

system is some 580m (Whybro, 1986; 1988). In Sirijordgrotta (Z4), the Upstream Sump was shown to become 

only 0.3m high after 11 m, probably above sediment (Whybro, 1987), and three short ducks in various places can be 

passed in dry summer conditions. The short first streamway sump in Kvannlihola (Z7) was passed by free-diving 

(Faulkner, 1983). A duck, which is about one third of the way along the stre8mway in Ytterlihullet (ZA), can be 

passed to complete an exploration of this system. In Sweden, several upstream sumps at Labyrintgrottan (ZC) 

were passed by diving at the SSF 1998 mountain camp, and there is also a short, temporary, sump in the Sydgßngen 

passage. The Skymningsgrottan passage in Korallgrottan (KL) passes a short low duck. Several of the lowest level 

sumps in this cave are currently being investigated by diving. 

B2.4 Large chambers (Ch) 
The number of significant internal chambers (excluding entrance chambers) that are large compared to passage 
dimensions is shown for each cave in both cave databases. Across the whole study area, the total number of such 
chambers is 118, i. e. 0.13 per cave. The mean number of chambers per cave varies non-systematically across the 
inner zones from 0.0-0.4. The mean rises to 0.21 at KT=L, where it is highest for all cave classes. It is independent 

of contact metamorphism (R), but doubles to 0.27 if T=1. There is no consistent trend with cave location or glacial 

situation. The shorter mainly vadose and relict caves have means of only 0.04 and 0.05 chambers per cave (their 

maximum is two), whereas combination caves have double the overall mean at 0.27. 

Although the overall means appear to be low, few internal chambers can be expected in caves that do not have 

internal connections, i. e. cave types S, a and b, which account for 635 (72%) of all the caves, and only 24 are 

recorded there. For those caves that do have connecting levels and passages, the mean becomes 0.4 chambers per 

cave. The cave with the most chambers (eight) is Korallgrottan (KL), and Svartdalgrotta (Z2) has five, suggesting 

that the number of chambers is loosely related to the length of the cave. In fact, the numbers of chambers per cave 
increase rather erratically with cave type a-h, and probably therefore with length, from 0.03-1.15. The number of 

chambers per kilometre of cave passage increases with reducing karst dip, despite the few trends apparent in Table 

B2.1. Most internal chambers and passages with cross-sections larger than 20m2 contain large, angular, commonly 

rectangular, blocks and slabs of unweathered limestone and other non-carbonate rocks that have clearly fallen from 

the roof and peeled away from the walls (section 6.3.3). 

B2.5 Shafts (S6) 
In an attempt to analyse the interconnectedness of cave passages, the number of vertical, or near-vertical, relict 
entrance shafts and internal, apparently phreatic, shafts and avens are recorded in the two cave databases. The 
figures do not include shafts at sink entrances nor changes of level along vadose passages. There are 424 such 
shafts, i. e. 0.48 per cave, which vary in depth from c. 2m (the smallest recorded) up to 55m at the relict entrance to 
Djupdalshullet (KU). The mean number per cave varies across the inner zones from 0.1-1.0, and shows a 
decreasing trend eastwards, perhaps related to the eastward decline in angle of dip and / or metamorphic grade. The 
dip relationship is confirmed, because all cave classes commonly have decreasing means in the order V: A: L. For 
R=1 or T=1 the means decrease to 0.44 and 0.18 from 0.54 at R=0 and T=O. The numbers of shafts per cave are 
much more at cave locations R (1.13) and S (0.86), and less at P (0.28) and F (0.37). Easterly glacial situations 
below marine limits have much greater shaft means than their western counterparts, agreeing with their larger 

vertical ranges (section 5.3.5). From Table B2.1, combination caves have by far the greatest number of shafts and 
mainly vadose caves by far the least. 

Caves that are mainly shafts (CT=S) share some of these trends. By comparing their cave location percentages with 
those of the full set of caves, 18% of shaft caves are at CL=S, but only 6% of all caves, whereas only 12% of shaft 
caves are at CL=F, compared with 28% of all caves. It is therefore concluded that caves of type S are not 
fundamentally different from other karst (dissolutional) caves, and can be considered to be a special case of cave 
type a. 

Toertjellhola (Z3) contains the most shafts (14) and Etasjegrotta (Z4) and Blifjellgrotta (Z5) each contain 13. 

Balcony Cave (Z3) is the relict cave with the most shafts (7). Only four mainly vadose caves have as many as two 
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shafts. This is suggestive that the number of shafts may also be loosely linked to the length of the cave. However, 

the longest cave, Koraligrottan (KL) in medium grade metalimestone, has no shafts, although this record may arise 
from the absence of a complete surveyed section. The numbers of shafts per cave increase quite smoothly with cave 
type a-h, from 0.11- 2.95, probably confirming a relationship with length. The number of internal shafts per 
kilometre of cave passage decreases with decreasing foliation dip (V: 23, A: 14, L: 6), suggesting that shafts 

preferentially align with foliation-parallel fractures rather than with orthogonal fractures. A count of the number of 

unclimbed avens for the whole study area reached less than 30. This again seems a small number, and is probably 

related to the common small vertical range of most of the caves, and to the general ease of exploration. 

B2.6 Boulder chokes (BC) 
The total number of internal boulder chokes that hinder or prevent further exploration along passages is 187, i. e. 
0.21 per cave, varying from 0.0 to only 0.3 across all the zones. In mainly vadose caves, the means decrease with 
decreasing foliation dip, but they increase in relict caves. In this case, the MV trend `wins', because combination 

caves also show decreases. The mean is almost independent of R and T. It is larger in cave location F (0.28), and 

smaller at P (0.13) and S (0.09), but has little variation with glacial situation, except for the small sample at GS- S 

(0.44). As with shafts (Appendix B2.5), combination caves have by far the greatest number of BCs and mainly 

vadose caves by far the least, suggesting that the boulder chokes were commonly formed during deglacial outflows, 
before the MV caves enlarged to present sizes. 

The cave with the most boulder chokes (seven) is the commonly-flooded Ovre Bjurälvsgrottan (KL, section 1.6.4 

and Appendix B 1.15). Stor Grubblandsgrotta (KU) has five and Anastomosegrotta (Z4) has four. Remnant 

Cave (ZA, relict) also has four BCs and Rainbow Cave (Z5, mainly vadose) contains three. No other relict or 

mainly vadose caves contain more than two boulder chokes. The number of boulder chokes per cave increases rather 

erratically with cave type a-h, from 0.12-0.79. Thus, there may be a weak relationship with cave length. Whereas 

many chambers contain fallen and slipped limestone and / or non-carbonate slabs from roofs and walls, these piles 

seldom accumulate to reach the ceiling and prevent further exploration. This is in contrast to the situation in the UK, 

for example, where passages are commonly choked by infills of water-worn and collapsed boulders and blocks of 
limestones and gritstones in a matrix of sediment, such chokes lying beneath tall avens. 

B2.7 Relict vadose passages (RV) 
Following an observation of the apparent rarity of relict vadose passages, the instances of these passage forms were 

recorded in the two cave databases. The RV field also includes those cases where a stream that once sank into an 

apparently vadose entrance has been captured underground in normal summer flow conditions, upstream of the 

explorable cave. Phreatic passages with dry, narrow, vadose trenches (creating keyhole-shaped profiles) are not 
included. Such trenches almost universally occur in upper-level relict passages situated at the present `upstream and 
descending' ends of phreatic loops, as in the combination caves Tourist Cave (Z2), Toerfjellhola (Z3), Green 

Valley Cave (Z4), Sarvejaellagrotta (Z4) and Kompassgrotta (Z5). A study of cave surveys showed that the only 

vadose entrenchments of `downstream but ascending' ends of relict phreatic loop passages occur in Gevirgrotta 

(Z4) and Oyfjellgrotta (Z5; section 9.3). The keyhole profiles in the descending Roof Passages of Sirijordgrotta 

(Z4; Valen, 1991, p151) are representative of the first case, despite them occurring at the lower end of the cave. 
There are few examples of vadose to phreatic transitions along sub-horizontal passages (c. f. Bitterli and Jeannin, 

1997; section 3.1.4) above the active streamways (section 8.4.12). Active vadose passages with indications of 
discordant higher-level vadose profiles or hanging potholes (section 3.2.1) would suggest vadose entrenchments 
during two interglacials. The relict vadose passage and shaft inside the main entrance to Sirijordgrotta (Z4) is one 

such example (Photo B2.1). The large streamway in ßyfjellgrotta has not been checked for this possibility. 

The RV count for the whole study area is only 58, a mean of 0.066 relict vadose passages per cave, confirming the 

extreme rarity. The means vary non-systematically across the zones, and have the opposite karst type trends to 

boulder chokes (Appendix B2.6), because the frequencies increase with reducing foliation dip in mainly vadose and 

combination caves, but reduce in relict caves. The mean is independent of R, but doubles where T=1 (0.11). There is 

no clear trend with cave location. The frequency is always greater for eastern glacial situations compared with their 

western counterparts. The RV means increase fairly smoothly with cave type a-h, from 0.01-0.54. 
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Nearly all the RV passages are contained in combination caves (0.139 per cave). Just two mainly vadose caves (in 

Z2) are recorded with RV passages (both with probably a Holocene upstream capture), and only five relict caves. 
Three of these relict caves are in Fiplingdal (Z7). Their RV passages are all probably active during spring melt. The 

other relict caves are Balcony Cave (Z3; section 8.4.12) and Stupgrottan (near Kätavik, ZC). Their RV passage 
floors probably formed during deglacial melting. A review of cave surveys showed that the only relict cave with a 
keyhole passage profile is Fault Cave (Z4). Its lower vadose entrenchment also probably occurred during deglacial 

melting. Thus, the overwhelming majority of relict caves contain no relict vadose passage elements and have 

therefore developed primarily under phreatic conditions. 

B2.8 Anastomosis and paragenesis 
Anastomosis channels are observed in the roofs of many cave passages. This may suggest that the early 
development phase of many passages was phreatic, i. e. under water with perhaps a large hydraulic head, but the 

more likely explanation is of dissolution by aggressive flood-water (Palmer, 1991; section 3.1.16). A particularly 

good example of anastomosis occurs in the roof of the entrance passage in Anastomosegrotta (Z4). Farther inside, 

corroded roof pendants reach 1.5m in length. 

There are no known examples of paragenetic passages that either meander or have continuously descending floors in 

the caves of the study area, which would indicate paragenetic enlargement of an originally vadose passage. Valen 

and Lauritzen (1989) hypothesised that Elk Passage in Sirijordgrotta (Z4) enlarged paragenetically by rising water 

above a diamicton fill at a time when the cave outlet was dammed by ice. The author noted paragenetic roof 

channels in Korallgrottan (KL, Appendix B1.15), but, although other similar roof channels undoubtedly exist, they 
have not been systematically recorded. 

A thorough study of all cave surveys did not find one definite blind passage, i. e. a passage that ends at a blind, near 
horizontal, termination in solid rock. Those passages that appeared at first sight to have this property were later 

shown to end at a boulder choke, at a sediment infill, or at a narrowing slit. This is in contrast to the recording of 
blind passages in vertical to steeply dipping sedimentary limestones in NSW, Australia, by Osborne (1999), which 
he surmised could form along lensoid inception surfaces. Osborne (2001b; 2001c) suggested that the dissolution of 
these blind passages was by rising hydrothermal waters, a possibility without an analogue in the non-Arctic 
Caledonide metacarbonates. 
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B2.9 Chemical deposits (DC) 
The reported presence or absence of significant speleothems in each cave is shown in the cave databases by a simple 
I or 0 in the chemical deposits (DC) column. Only 40 of the 884 reported caves (4.5%) contain such stalactites, 
stalagmites or other chemical deposits, which must therefore be regarded as consistently rare in this area, especially 
as the zone with the highest incidence (Z2) only reaches 6%. There is no consistent trend across the zones, but the 

percentage increases as foliation dip reduces in relict caves, whilst reducing in combination caves and in type h 

caves. It increases slightly to 5.6% if R=1, but hardly changes if T=1. The percentage commonly declines with 
increasingly high glacial situations (registering a reducing average interglacial temperature, increasing annual snow 
cover and reducing vegetation), and is commonly greater for eastern rather than western counterparts (perhaps 
indicating higher summer rainfall on the east of mountain ranges). The controls on chemical deposition must be 

complex, because if CL=P or R the probabilities are larger (6.4% and 11.3%), but smaller if CL=F (2.4%). 

The numbers of caves that contain various types of chemical deposits are approximately recorded as: 
Stalactites (incl. straws) 32 Stalagmites 6 Columns I Helictites 
Flowstone 7 Gour pools 2 Corraloids 3 Cave pearls 
Moonmilk 6 `Cups' I `Coins' I Wall crystals 

Since this table relies on information appended to cave surveys and described in reported texts and personal 
observations, it is probably a slight underestimate of the true position in the known caves. There are some 30 

combination caves with significant speleothems, but only eight relict caves and two MV caves. As expected, the 

probability of a cave containing speleothems increases with cave type a-h, and therefore with length, from 0.6-33%. 

The cave with the greatest number of straws and stalactites is probably Sotsbäcksgrottan (KU), for which the 

estimate is 200, with a mean length of 10cm (Hellden, 1975). Straws that are 45cm long occur in Sud 

Langskjellighattengrotta (Z2, revealed during the 1998 field trip). In both Sirijordgrotta (Z4) and 
Geitklauvgrotta (Z5), complex and pure white stalactites occur, some having bulbous lower ends (Photo B2.2). 
Sirijordgrotta also contains stalagmites, and stalactites that taper downwards rather like ice cream comets (Photo 

B2.3). These appear similar to the bulbous type, but with the extra `stem'. The only known complete columns occur 
in Akersvanngrotta (ZB), where they reach 30cm in length. In many of the above cases, the chemical deposits have 

formed in relict upper passages that are quite close to the surface (probably within I0m). Only in a few of the caves 
have speleothems formed in the higher parts of stream passages, such as the fine grotto in Kvannlihola (Z7), which 
contains both stalactites and stalagmites (Photo B1.9). The extreme rarity of substantial floor and wall deposits of 

stalagmite and flowstone is significant when considering cave development (section 9.8.1). Apart from a chemical 

analysis of dripstone waters in Sirijordgrotta (Ovstedal, 1991; Appendix A2.5), there are no other published 

chemical studies. The datings of chemical deposits from the study area are included in Appendix A5. 
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A pure white stalactite with a bulbous end. 
Photo 132.3 Cornet Chamber, Sirijordgrotta 
Rare cornet-shaped stalactites. Photo by P. Hann. 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix B2 - Internal Cave Attributes 

B2.10 Fluvial sediments (FS) 
In contrast to caves in England and Wales, few caves in the study area contain extensive deposits of moist clays and 
fine muds away from entrances, although many do contain dry silts, sands, gravels and larger fluvial deposits. The 

reported presence or absence of significant clastic fluvial sediments in each cave is shown in the cave databases by a 
simple 1 or 0 in the `FS' column. A blank entry means that the report and survey include no relevant data about such 

sediments. Some 192 of the reported caves (22%) contain such clastic deposits, which is probably an underestimate 

of the true number. The inner zone percentages vary non-systematically from 8-38%, with Z2 having the highest, as 
it has for chemical deposits. Caves with KT=V have slightly less fluvial sediments overall (18%), but only relict 

caves show an increasing trend as foliation dip reduces. Type h caves have a decreasing trend as KT reduces. There 

is little change with either R=1 or T=1. 

Unlike with the chemical deposits (Appendix B2.9), FS does not vary much with cave location, except that the 
percentages are high for CL=R and CL=S (44% and 32%) where relict caves dominate and there are few MV caves 
(section 5.5.5). This strongly suggests that most fluvial sediments derive from deglacial flows and not from annual 
spring melts or floods. Hence, the present fluvial activity generally acts to flush sediments out of caves, despite 

observations about the recent blocking of some passages (Appendix B2.2) The FS percentages of each hydrological 

cave class support this conclusion, because only 8% of MV caves have fluvial sediments, compared with 20% of 
relict caves and 32% of combination caves. 

Combination caves contain more upper levels, which are commonly too high to be affected by present streams, and 

which emerged first from the deglacial flows. For example, it is clear from studies of sediments in Sirijordgrotta 

(Z4; Valen et al., 1997) that not all caves flood to the roof regularly during interglacials and interstadials. Fluvial 

sediment percentages decrease smoothly with higher glacial situations, with no east or west dominance. This 

opposes the trend of increasing catchment area (section 5.3.5), and follows the reduction of temperature, vegetation 

and soil cover with altitude. Hence, it seems that fluvial sediments are also more likely to be washed completely 
through cave systems with higher flow rates, and at higher altitudes, where deglacial sediments were also less likely 

to be deposited. As expected, the probability of a cave to contain fluvial deposits increases with cave type a-h, and 
therefore with length, from 16-74%. 

Four main deposition environments were proposed in Sirijordgrotta (Valen et al., 1997): laminated clay deposited 

subglacially during full ice cover and ice damming; gravel and boulders deposited during high-energy water flows; 

sands from alternating flow regimes (which section 8.10 suggests may have been deposited by the sea in other 

caves); and laminated fine sand and silt from almost stagnant conditions. Also, coarse gravel situated beneath 

stalagmite dated to 128ka BP (section 3.3.3) was thought to represent a high-energy deglaciation event prior to the 
Weichselian. The clay deposit was tentatively correlated to a Lake Mungo excursion at 28ka BP on palaeomagnetic 

evidence. The other three deposits were thought to represent catastrophic floods, alternating flow conditions, and 

stagnant conditions during the final deglaciation. Fluvial sediments were also studied in Sotsbilcksgrottan (KU; 

Helldön, 1975) and Korallgrottan (KL; Isacsson, 1989; 1999). 

B2.11 Marine deposits 
Four caves with entrance altitudes around 120-130m at Velfjord (Z2) are reported to contain various types of 
marine shell deposits. These must date from the early Holocene, when the land surface was still depressed by the 

previous weight of the Scandinavian icesheet. Their present altitude indicates the extent of isostatic rebound that has 

occurred since then, relative to a sea-level that has also risen since the melting of all the Weichselian icesheets in 

both hemispheres (Chapter 8). Aunhattenhule 2, in which Hoel (1906) reported marine shells, was visited by the 

author during the 1998 field study trip. No sign of these shells remains in the cave. However, a British expedition 
reported fording barnacles attached to the walls and roofs of three different caves, one of which (Neptune's Cave) 

also contains many marine shells on, and among, gravel sediments on the floor in several places (Newton, 1999). 

Samples of these deposits were collected in 1998, and later identified at Liverpool Museum. A paper describing 

them and their significance in the Holocene uplift history of the area will be published separately. Section 8.10 

suggests that some thick deposits of dry sand were brought into caves by the sea. Cave development deductions are 
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made in Appendix D5.3. Kirkland (1958, pp68-70) discussed the marine invasion of some karst caves at south 
Svartisen (north of the study area), and the possibility of marine sediments. 

B2.12 Animal deposits 
It is not uncommon to find the bones and skeletons of both large and small animals and birds inside the study area 

caves, either within other clastic deposits or lying loose in relict passages or, more rarely, calcited to the floor or 

wall recesses. In the more accessible caves and entrance areas, they may have been left there in recent times by 

Norwegian or Sami hunters or reindeer herdsmen, who use such caves as shelters. Thus, not all instances of 

underground bones are mentioned in cave reports. The cave with the most important faunal deposits is undoubtedly 
Sirijordgrotta (Z4). Below the pitfall Elk Shaft, some 10000 bones and fragments were collected and are being 

identified and dated at the University of Bergen. These have ages up to at least 7500a BP. (Lauritzen, 1991b). At 

least three caves on Elgfjell (Z4) contain animal bones, some of which are calcited to the floor (Faulkner and 

Newton, 1990). The remains of field vole, bank vole and willow grouse were found in a side passage in Jegerhullet 

(Z4; Faulkner, 1987). 
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Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix DI --Neotectonics 

APPENDIX Dl NEOTECTONICS IN CENTRAL SCANDINAVIA 

This Appendix provides the author's uncorroborated evidence of neotectonic activity in the study area, as discussed 

in section 6.3.3. Each of the 56 observations is described in Table D1.1, many being supported by Photos D1.1- 
D1.41. The observations are classified into five types defined by the author and are presented in a format similar to 

that used by Olesen et a!. (2004), using the same five observation grades, and record the size and direction of 

movement. However, no checks were made that neotectonic faults at the surface meet the five criteria listed by 

Stewart et al. (2000, p1378) for distinguishing between true faults and the products of glacial erosion. 

The use of the term `neotectonics' has been interpreted very widely here, and may include the following effects: (1) 

superficial movements; (2) movements that may be supplemented by the effects of ice wedging; (3) gravitational 

mass slip movements, possibly at steep shafts near valley sides; (4) lateral corrasion at floor level causing wall 

collapse (Ford, 1965a, p122), perhaps triggered by seismic activity; (5) pressure release after a cave is drained of 
deep water or after powerful streams subside; (6) simple gravitational collapse of cave ceilings (although this seems 

unlikely as roof spans rarely exceed l Om); (7) shear stress of over-passing icesheets and glaciers (section 3.2.2); (8) 

stress release caused by the presence of the cave itself, perhaps seismically triggered; and (9) liquefaction and 
slumping of laminated sediments. 

\4 

Trevor Faulkner Page D1 June 2005 

Photo DI. I S"; mla .c( ave (Z2) 
Along-strike horizontal movement 
(arrowed) with vertical settlement 

Photo D1.2 Klausmark Sink entrance (L2) 
Smooth surfaces along movement (arrowed) within foliation of 
angled stripe karst. Person wearing hat for scale. 

Fractures and movements at base of Hornet Shaft. 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix DI -Neotectonics 

Table Dl.! Evidence of neotectonic movements from central Scandinavian karats 

o. Location Observation Type Size Grade Comment 

1 Swanlake Cave Possible horizontal movement north, along strike, plus M 5cm C Photo D1.1 
2 UN84478000 vertical settlement H, 

Klausmark Sink Smooth surfaces along movement within foliation of M 15cm B Photo D1.2 
2 UN86457835 steel) angled stripe karst A 

Bulandsdalgrott Clean limestone blocks on floor of Square Chamber. This F - B 
2 a is well away from the entrances. 

UN90536700 
Hornet Pot, -3cm vertical movement down, on wall at foot of Hornet M 3cm C Photo D1.3 
Bulandsdal Pitch. Appears to be more extensive than just spalling. V 

2 UN90256765 
Indräsen quarry Shattered nature of top 3m of marble M 5cm C Photo 6.1 

2 UN84005510 H 
Tarmaunbotn- 3 caves at altitudes of 5,15 and 20m, apparently formed T 1-2m B Movement probably 
grottene by mass movement down side of ridge. The caves have A occurred below sea 

2 UN93625084 angular passage rofiles with little or no karst dissolution level, unless recent 
Melnvatngrotta Clean limestone blocks on floor of Waterfall Chamber, F - B 

2 UN85724155 near Forest Entrance 
8 Johngrotta Shattered and moved slabs of complexly folded M 30cm C Photo 3.1 

2 UN92123120 limestone in wall of Tosenford at sea level A 
Godvassdal- 6m-long tectonic cave with a triangular cross-section, T Im A" Photo D1.10 
grotta apparently formed by mass movement and rotation of H 

3 VN08075266 roof upwards to create the cave. 
10 Durmälstind Possible movement in calc silicate gneiss, within vertical M 15cm C Photo D3.2 

canyon foliation ? 
3 VN09404460 H. 

11 Sirijordgrotta, Possible horizontal movement on right hand side of M 10em C Photo Dl. 4 
Twin Ducks P. figure. H 

4 VN15027065 
12 Sirijordgrotta, Clear horizontal movement at first, lower, roof. M 15cm B Photo D1.5 

Eccles Gallery 
1 
H 

13 Sirijordgrotta, Movement at floor level of upper (Arctic) passage M 10cm B Photo D1.6 
Arctic Passage H 

14 Sirijordgrotta, Movements of walls by rotation of lm-wide vertical slab M 5cm+ B Photo D1.7 

upstream w'fall V 
15 Green Valley Relative movement at vertical fracture within vertical M 25m C Or dissolutional? 

Cave, Kvitfjell foliation of the marble at a 2.5m-deep shaft entrance. m 
4 VN 15526280 V 

16 Kidney Lake Relict phreatic passage of typical 2m diameter in VSK. M 15cm A Photo D1.8 
Cave Midway is horizontal movement of roof to the right, H 

4 VN 11975065 probably along original inception fracture. 
17 Gäsvasstindhola Fallen blocks of limestone in very large chambers, away F - B Photo D1.9 
4 VN 15175400 from entrances, with fractured N wall. 

18 Elgfjellhola, Horizontal movement of -25 cm to W, across near side M 25cm A' Photo D1.11 
Elgfjell of top of shaft, as viewed from far side. H 

4 VN 14525084 Large fracture movement in vertical plane at N64°E, 2m 11 cm 
N of the shaft, is seen all the way round passage walls, H 
including an 11 cm 'step' across a wall scallop. A sharp Photo D1.12 
1mm-thick fault gouge ̀ wafer' protrudes up to 50mm at 

" the fracture. A2 vertical fracture occurs 2.3m N of the 
first, also showing movement and a ̀ wafer'. 3m farther 
N is a 3`d fracture with less clear movement but with 
wafer blades up to 30cm in extent, and 3mm thick, 
hanging from the E wall. N of the cave entrance are 
fractures at N72°E that cross limestone and adjacent mica 
schist, with wafers, but with no obvious movement. 

19 Paradox Cave, Sub-horizontal neotectonic movement along vertical M 20cm A Photo D1.20 
EIgfjell fracture that clearly occurred after the passage had H 

4 VN 14715087 enlarged to its present size. 
0 Secret Stream Large mainly tectonic cave formed at marble contact T 3m B Photo D1.13. Or 

Cave, Elgfjell where a hummock of mica schist has split and W wall H collapse into 
4 VN 14625077 has rotated upwards to create a 3m-wide opening. dissolutional void? 

Trevor Faulkner Page D2 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix Dl -Neotectonics 

I Brown Stains Sub-horizontal fracture movement across roof of Upper M 2cm C Photo D 1.16 
Cave, Elgfjell Entrance. H 
VN14835110 

2 Upper Entrance Across-foliation vertical fracture set in limestone, at M 2cm A Fragile protruding 
to Brown Stains same bearing as fractures in Elgfjellhola, on surface H wafer must be post- 
Cave, Elgfjell above entrance. Calcitic `wafer' fault gouges 2-6mm in glacial, formed by 
VN148351 10 thickness protrude up to Icm, but surfaces have a shiny extrusion or 

veneer that resists dilute HCI. One fracture shows a remaining after 
movement of 2 cm, apparently post-dating formation of dissolutional 
some karren, as shown by the splitting of a flow of coffee. lowering of the 
by a wafer. This fracture is visible inside entrance, but karat surface. 
has not influenced passage morphology. . Photos D1.17, 

D1.18 
3 Injection Cave, Movement of roof in short, superficial, dry, phreatic cave M 10cm C Photo D1.19 

Elgfjell that also exhibits rocks brought in by injected ice. Ice V 
VN15135137 heave is also a possibility 

4 Cliff at Valley Horizontal mass movement outward of a 2m-thick M 20cm A Photo D1.14 
5N, Elgfjell metalimestone slab between two fractures at the surface H 
VN15325150 cliff. Proto-conduits at upper fracture. 

5 Sarvejaellagrotta Vertical movement at Joint Entrance along vertical, M 10cm C Photo D1.15 
VN 15865150 across-strike fracture V 

6 Jegerhullet Movement within foliation in Slot Chamber M 10cm B Photo D1.21 
VN15644702 V 

7 Etasjegrotta Fallen limestone blocks and open horizontal joints, up to F - B Photo B1.8 
VN15744660 35m from entrance in Entrance Chamber, and 80m from 

entrance in Whichway Chamber. 
8 Jordbruelv Wfall Neotectonic horizontal joints in VSK that provide a focus M 15cm B Frontispiece I 

VN 15724640 for tectonic inception H 
9 Cliff Cave Horizontal and vertical fractures and slips, with shattered M 30cm A Photo D1.22 

entrance area, towers of limestone. H 
Jordbruely The view out of Cliff Cave shows 50cm-thick floor of Im Photo D1.23 
VN15824605 the phreatic passage opened horizontally --lm along H 

strike, as shown by matching indentations and 
colourings, plus crushed rocks on unmoved parts of both 
walls. 

0 Invasjonsgrotta Laminations of fine sand at Oddstue that dip at 30°W, S - B Appendix D5.5 
VN 15924600 with possible liquefaction features. This is the first report Photo D5.1 

of liquefaction in a karrt cave in Scandinavia. 
l Vatnhullet ent. A relict Vauclusian rising, with evidence of horizontal M 10cm C Photo Dl . 24 
4 VN15884590 movements in VSK H 
2 Near Ramp Simple slips at shattered marble above a short shattered M 10cm C Photo D1.25 

Cave, Jordbru cave, also near Vatnhullet H 
VN 15924590 

3 BjerkAsgrotta, Fallen limestone blocks, near entrance. F - B Photo D1.26 
Interview Room 
VN 16824430 
Anastomosegr. Collapsed wall slabs up to 3m long x 70cm x 50cm from F - B 
VN 16484492 east wall of upper passage, 70m from the entrance. 

5 Geitklauvgrotta Horizontally moved wall section, Im thick, in Stream M 20cm B Photo D1.27 
5 VN20607700 Passage H 
6 Geitklauvgrotta Clean fallen angled limestone blocks in large F - B Photo D1.28 

Megachamber (5m high, 10m wide, 20m long), 70m 
from the entrance 

Geitklauvgrotta, Split in narrow arch that is a remnant of a smaller M 25m A Photo D1.29 
Anglo-Nordic phreatic passage. Vertical and horizontal displacements in 
Chamber of 13/17 and 25mm. The arch is 105m from the entrance, A 

and is therefore protected from seasonal frost action. 
However, it could have been affected by subglacial 
freezin 

8 Geitklauvgrotta, Vertical fracture in vertical wall, 5mm wide at base, M 5mm A 
Loop Series taPerillg to closure lm above. H 
Melnbekk, near 4cm movement within vertical foliation and with fault M 5cm C Photo 131.30 
Laksfors. gouge wafers, in bed of surface stream on marble. V 

5 VN20408445 

Trevor Faulkner Page D3 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix DI -Neotectonics 

0 Cascade Pot 2m-wide vertical block of settled limestone. The block is M 5cm C Photo D1.31 
(SH6) Bläfjell orthogonal to the strike V" 

5 VN21305757 
1 Kammely Sink Im-thick horizontal slab of limestone has moved across M 20cm B Photo D1.32 
6 VP32152195 roof of passage H 
2 Luktindgrotta Prominent horizontal fracture near roof, and lower M ? C Photo 131.33 
6 VP32252200 fractures at lm intervals H 
3 Almdalsely Vertical fracture at junction between schist and limestone M ? C Photo D1.34 
7 VN27787170 V 
4 Almdalselv Near-vertical movements aligned with strike-oriented M ? C Photo D1.35 
7 gorge, Trofors gorge V 

VN28027205 
5 Kvannlihola Limestone block pile in large chamber between two F - A Photo D1.36 
7 VN28023985 sumps, well-protected from seasonal frost action 
6 Kvannlihola, Sloping stalagmite and possible moved roof D 10cm C Photo B1.9 

Stalactite Grotto H 
7 Kvannlihola, Sloping fracture with horizontal movement in both walls. M 5cm C Photo D1.37 

upstream of the H 
Big Finger 

8 S. of Korgen, W Thrust zone at HNC/RNC boundary shows movements, M 10-20 A' Photo 4.1 
8 side of E6 crushed rocks, slickensides and voids. Stress relief may cm 

VP40452645 be initiated by road and tunnel construction. (C. f. A 
A Roberts, 2000, p1439) +H 
9 Stabbfors `Giant Pots' in metalimestone. Some have diagonal M 30cm B Photo A4.1 

Jettegryter fractures and movements of -30cm, some lying beneath A' 
A VP46671886 metamorphic boudins 

50 Ytterlihullet Collapsed marble wall slabs in Boulder Hall, Inlet F - B Or collapse after 
A VP51762279 Passage, well away from possible entrances. The passage pressure release 

roof (and floor) consists of mica schist or amphibolite when water 
that does not seem to have collapsed. subsided? 

1 Gronndalsgrotta Large shifted slabs at Resurgence Entrance. Three M 30cm B Photo D1.38 
A VP54721720 fractures normal to foliation. Slab thickness 2-3m H 

52 Bekkehelet The entrance passage is centred on a vertical fracture. M 2cm B Photo D1.39 
A VP55201728 H 
3 Sotsbacksgrotta Slab breakdown F - B Hellddn 

KU n (1975, Fig. 4) 
VP92102160 

4 Landbrua Fractures and small horizontal movements at roof level M 3cm C Photo D1.40 
Resurgence above resurgence H 

L VM48809630 
5 Korallgrottan Many rocks from the walls fill the bottom of F - A Isacsson (1994) 
L VM59209575 Huvud An en by several metres 

56 Sjliengojukke Reverse fault with -50cm throw within foliation of M 50cm B Photo Dl. 41 
waterfall calcareous phyllite. This is Ilan NW of RenbenshAlet, A 

KS VN74601183 which is in a marble outcrop in KB. 
Co-ordinates are to i 1TM WGS84_ HNC and RNS' inn, -. c and Kali Wann, -. care. - listed i n the ' No. ' co lumn 

--- --- -- - ---- - ------- 
Observation types: D Disturbed speleothems No. 1 

F Fallen blocks from walls and ceiling 11 
M Movement along fracture 40 
T Tectonic Cave 3 
S Slumped sediment with liquefaction 1 

Total 56 
Movement size key: H Horizontal No. 27 

V Vertical 10 
A Angled 7 

- Not applicable 12 
Observation grade (from Stewart et at., 2000, p 1378): Total 56 

A Almost certainly neotectonic No. 12 
B Probably neotectonic 24 

C Possibly neotectonic 20 
D Probably not neotectonic 0 
E Very unlikely to be neotectonic 0 

Total 56 
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I'thuty 1) f. -t t�u c: uu watci Lill. -, trijordgrotta 
Rotational tectonic movement at non-carbonate 
barrier. 

Photo D1.8 Kidney Like (aNe (14) 
Relict phreatic passage, with -2m diameter. A prominent 
horizontal neotectonic movement bisects the passage, 
probably resulting from seismic amplification because the 
cave lies in a ridge. Although this movement occurred after 
the passage enlarged to it present size, cave inception 

probably took advantage of a similar movement at the end 
of the Saalian deglaciation. Photo by P. Hann. 
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Photo D1.5 Eccles Gallery, Sirijordgroita (/. 4) 
Shattered passage, with horizontal tectonic movement 
near roof. 

Photo D1.4 Twin Ducks t'a»age. Nirijordgrotla 
Sub-horizontal tectonic movements above and to right 

of the figure. 

Photo 1)1.6 Arctic Passage. Sirijord;; rotta 
Horizontal tectonic movement at base of upper passage. 

Photo UI. 9 ( Ik. i uhii ii 1. ýýý. a (IIItllýula (Z4) 
Fallen ceiling blocks in one of the largest chambers 
in the study area. 
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Photo D1.13 Secret Stream Cave, Elgfjell (Z4) 
Primarily a tectonic cave, formed at junction of mica schist 
and marble. The mica schist has split and rotated upwards. 
The pick-axe head is a relic of previous mining activity. 
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I'lloto ll1. Iu Uodhtissdalgrotta (L3) 
A tectonic cave, formed in stripe karst 
by apparent rotation of roof upwards. 

Photo D1.11 Shaft in Elgfjellhola (Z4) 
Sub-horizontal neotectonic movement across top 
of shaft on upstream (far) side. Ladder for scale. 

Photo D1.12 Scallop in Elgtjellhola (G4) 
I lcm neotectonic movement at scallop, which 
occurred after formation of the passage. 
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Photo D1.14 Slickensides in Paradox Cave, Elgfjell 
Neotectonic movement of --20cm after enlargement of 
passage to its present size, probably synchronous with 
movements in the nearby Elgfiellhola (Photos D1.11 and D1 

Photo D1.18 Diverging flow 

Diverging flow of coffee across vertical fracture 
(Photo 6.16), suggesting that movement occurred 
after the surface flow had been established. 

I 2). 
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Photo DI. 15 Sarvejaellagrotta, Elgfjell 
Joint Entrance, formed at vertical movement 
along vertical, across-strike, fracture. 

Photo D1.16 Brown Stains Cave, Elgfjell 
Prominent sub-horizontal fracture bisects upper part 
of cave entrance. 

Photo 17 Abo,. e Brown Stains Ca%e 
Vertical movement with fault gouge, near rucksack in 
Photo 6.15, Compass for scale. 

Photo D1.19 Injection Cave, Elgfjell 
Rock movements and blocks injected by glacial ice at 
this superficial cave. 
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Photo D1.21 Slot Chamber, Jegerhullet (Z4) 
Movement within foliation, above sediments 
that block former resurgence. Person at lower 

slot for scale. 
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Photo D1.22 Cliff Cave (Z4) entrances 
Shattered cliffs and towers of limestone near the Rockbridge, Jordbruelv. 
Figure for scale. 

Mass movement outward (after glacial smoothing) of 2m-thick 
slab of metalimestone, with proto-conduits at upper fracture. 

Horizontal opening of c. 1m to both left and right that split floor of phreatic 
passage to create a box-like profile. This is the largest known neotectonic 
movement in the study area. 
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Photo D1.26 Bjorka g vita ýL4) 
Large fallen slabs in entrance chamber 
Photo by P. Hann. 

Photo 1)1.25 Shattered marble 
Slip openings and short relict cave near Vatnhullet, 
at the end of the Rockbridge dry valley. 

Photo D1.27 Geitklauvgrotta streamway (Z5) 
1 m-thick wall section has moved right c 20cm. 
Photo by A. Marshall. 
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Photo D1.24 Vatnhullet Entrance (/. 4) 
A relict Vauclusian rising, with horizontal 
movements in VSK. 

Photo D1.29 Split arch in (; eitl1; 11vgrotta 
The arch is a remnant wall of an earlier smaller 
(Saalian deglaciation? ) phreatic passage. The 
displacement of - 20mm probably occurred 
synchronously with collapses in Megachamber. 

Photo 1)1.28 Megachamber, Geitklauvgrotta 
Angled limestone blocks 70m from the entrance, and 
therefore little influenced by annual freezing. Probably 
collapsed during Weichselian deglacial seismicity. 
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The cave entrance is where a 2m-wide block 

of marble has lowered vertically, across the 
strike of VSK at Store Hjortskar, Blafjell. 

rnoto 1)1.34 Almdalselv cliffs (Z7) 
Vertical fracture at cliff wall vertical junction of darker schist and lighter marble. 
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Photo D1.33 Luktindgrotta (Z6) 
Prominent horizontal fracture near roof in angled 
stripe karst, with lower fractures at Im intervals. 
Photo by A. Marshall. 

Photo 1)1.30 Neotectonism in streambed (Z5) 
Vertical movement of --4cm, with fault gouge wafers, 
near Laksfors, Vefsndal 

Photo D1.35 Almdalselv gorge 
Near-vertical movements aligned with 
strike-aligned gorge formed in VSK. 

Photo 1)1.32 Kammeh Sink (16) 
I m-thick slab has moved horizontally across roof 
of entrance. 
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Photo D1.38 Grenndalsgrotta (LA) 
Three vertical fractures created shifted slabs 
some 2-3m thick at the resurgence entrance. 
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Photo D1.37 The Big Finger, Kvannlihola 2 
The collapse of this large block probably happened 
at the same time as the collapse at the Blockpile. The 
sloping fractures in the walls show movements of 
several centimetres. 

Photo 1)1.36 The Blockpile, Kvannlihola 2 (Z7) 
Well-away from freeze-thaw influences, this collapse 
likely occurred during early Holocene earthquakes. 

Photo D1.40 Landbrua resurgence (KL) 
Fractures and small horizontal movements at roof level 

above the resurgence. 

Photo D1.39 Bekkeholet, Grenndal (ZA) 
Vertical neotectonic fracture inside entrance. Torch for scale. 

Photo 1)1.41 Sjliengojukke waterfall (KS) 
Reverse fault with --50cm throw within foliation of 
calcareous phyllite (in Sweden). 
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APPENDIX D2 DEGLACIATION OF THE WHOLE STUDY AREA 

This Appendix puts the terms and concepts introduced in section 8.1 into context by deriving the deglacial sequence 
for the whole study area. Contemporary influences on the karst cave sites are also discussed in general terms. The 
Tosenfjord-Fiplingdal area deglaciation is considered in more detail in Appendix D3. 

Figures D2.1-D2.9 are small-scale models of the deglaciation that show the encroachment of the sea, the movement 
of the ice margin and the evolution of ice-dammed lakes. They are based on the study area map (Figure 1.1) and are 
derived from the reconstructed Grenlie (1975) formula for ice-melting height (section 8.1.4; as adapted in Figure 
8.2a for the Western catchment area only), from the published 14C dates of various ice margin moraines, and from 
the author's construction of YD isobase lines that are extrapolations and interpolations from the map of Sorensen et 
al. (1987). These isolines are also in general agreement with altitude / age information provided by Grenlie (1975). 
Their direction is N25°E, which is similar to geological trends in parts of the study area. To be consistent, the upper 
ice-melting heights are stated for most dates at a common 180m YD isobase. The profiles assume that the upper ice- 

melting height rose by c. 100m for each 20m increase in isobase (i. e. for each 15km farther east) at any point in 
time, and lowered by c. 50m every 100a after 1000014Ca BP at any isobase. (The icesheet surface was roughly 
horizontal during deglaciation). Different colours are used to differentiate between nunataks, ice-dammed fakes, the 
ice margin and sea water or meteoric lakes. Uncoloured areas west of the ice margin are completely deglaciated. 
Those to the east are covered by the remaining icesheet. The maps do not attempt to show directions of ice flow, nor 
the more transitory ice margin IDLs. 

D2.1 Deglaciation at c. 12000"Ca BP: Figure D2.1 
At c. 12000, practically the whole area inland from the ice margin along the coast was still covered by the is eshoet 
and the only (possibly) karst cave invaded by the sea was Marmorhelet (Z9), on the island of Donna. The only 

coastal mountains to stand out as nunataks above the 900m (or lower) ice-melting height at the 100m isobase were 
the Seven Sisters (Z2). These formed static nunatak IDLs that became westward- and backward-flowing as the ice 

surface lowered, the latter flooding Grotte Aug. 82 and then Sevikgrotta. Near the 180m YD isobase, only 
Brurskanken stood out as a nunatak, above the ice-melting height of c. 1300m. Farther east, the Okstind mountains 
were deglaciated above c. 1400m, and the mountains of Bergef)ell above c. 1500m. These nunataks formed narrow 
static IDLs in glacial situation U, none of which extended far enough down the mountain 'sides to immerse any 
nearby caves, because the highest cave was some 300m below the ice-melting height at this time. 

D2.2 Deglaciation at 1070014Ca BP: Figure D2.2 
By 10700, the sea reached the Seven Sisters and moved inland to about halfway along Vel1 ord, covering much of 
the land that is now well above sea level. Grotte Aug. 82 became drained but the four Football Pitch Caves at 
Brenneysund (Z 1), Sovikgrotta and Vistnesoddgrotta (Z2), and probably Green Gorge Cave, Marble-Arch, and 
the lower entrances to the JOBshullet / Klausmark System, all in Klausmarkdal (Z2), were inundated by sea water. 
Appendix D4.12 discusses the effects of marine inundation. With the ice-melting height at the 180m YD isobese 

now at c. 900m, more nunatak, and some westward- and backward-flowing, ice-dammed lakes formed along the 
upper ridges of the area's major catchment divides that were now exposed above the icesheet. In the Vefsn, 
Northern and Eastern catchment areas, some caves along the Herringsely (Z6), Ytterlihullet (ZA), 
Gronndalsgrotta and Leirskarelvgrotta (ZB), the caves at KAtaviken and Mjölkback (ZC), and Stor 
Grubblandsgrotta and caves at Rödingst)All (KU) became flooded by these IDLs. 
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D23 Deglaciation at 10300"Ca BP: Figure D2.3 
The sea covered most of Velfjord, UrsI ord and Bindalsfjord (Z2) by 10300. This marine invasion probably included 
Hubruhola and Langkilagrotta, followed soon after by Aunholet and the caves near Bordvik: Bordvikgrotta, 
Nordlysgrotta, Marimyntgrotta and Skinvikgrotta. The presence of extensive sand banks below the entrance 
shaft of Nordlysgrotta confirms that it lay below the deglaciation marine limit. By c. 10200, the sea covered the 
lower part of Svartdalgrotta and other caves at Svartvatn, including Neptune's Cave, Barnacle Cave and 
Draugenshullet, where marine inundation is proved by the presence of barnacles on their walls (Appendix D5.3). 

The ice-melting height was now c. 750m at the 180m isobase. The backward-flowing IDLs became much wider and 
some coalesced into one large and deep lake west of Svenningdal in the Vefsn catchment area that probably reached 
to the Svenningdal valley itself (Appendix D3). The caves at Herringsely (Z6) and Grenndalsgrotta (ZA) at GS=K 

experienced inundations below IDLs that migrated from nunatak to westward-flowing, whereas Stor 
Grubblandsgrotta (KU, GS=L) was covered by a nunatak, backward- and then eastward-flowing IDL. 

Those caves situated totally above 750m altitude at the 180m YD isobase (rising to 950m at the 220m YD isobase 
inside Sweden) were by now drained and experienced flow regimes (or dry conditions) similar to those at present. 
Deeper systems that straddled the upper ice-melting height experienced variable flow regimes that depended on the 
extent of blocking of their resurgences by the icesheet (section 8.4.12). The 180m-deep Yttertihullet (ZA, GS=S), 
with an altitude of 817m near the 180m YD isobase, is an example of this phenomenon because its outlet was likely 
to have been restricted by the area's largest glacier (section 6.5.3) for a further 360a. Indeed, a possible overflow 
beyond its present sink entrance into an entrance at the upstream end of Tributary Passage may partly explain the 
large size of that passage. 

The mountains along the Main Scandinavian Watershed (MSW) increasingly emerged above the icesheet, starting at 
lower isobases in the north (where the international border turns through 90°). Narrow, initially static, nunatak ice- 
dammed lakes formed along both sides of the MSW ridge at elevations from 850-1050m (at YD isobases of 200- 
240m), to repeat the process of enlargement and merger that had begun along the mountains west of Svenningdal 

some 400a earlier. Thus, Akersvanngrotta (ZB, GS=K) and caves at Rödingsfjäll (KU, GS=S) were submerged 
beneath nunatak and then westward-flowing IDLs and the outlets from the mountains along the Norwegian / 
Swedish border area were towards, and into, Norway. Labyrintgrottan and other caves at Mieseken (ZC), and 
caves at Skinnfjell, 6vre Altsvattnet and Sotsbäcksgrottan (KU), which are all at GS=L or T, became submerged 
below nunatak and then backward-flowing IDLs, whose outlets to the west or north became controlled by a 
succession of high pass-points along the MSW. Indeed, some of the waters that passed through Labyrintgrottan, 
Sotsbäcksgrottan and the caves at 6vre Ältsvattnet must have also passed through Akersvanngrotta! 

D2.4 Deglaciation at 1010014Ca BP: Figure D2.4 
At 10100, the ice margin reached to the ends of the shorter fjords, and about halfway along Vefsnfjord and 
Ranafjord, although Tosenfjord remained filled with ice. The sea submerged the inner end of Langfjord (Z2), 
covering Tarmaunbotngrottene 1-3 and Langfjordgrotta, and at the same time, Jenshola, farther south. Laveste 
Langskjellighattengrotta, above Langfjord, is probably the highest cave in the study area to be influenced by the 
sea during deglaciation. It has three entrances, at altitudes from 160 to 167m, and its lowest part descends to 153m. 
The ice margin passed the cave at 10130, when the local sea level was at 158m (Appendix D5.3). Melnvatngrotta 
and caves along the marble outcrop to the north, caves at Saus, and Aunhattenhule 1-4 (all in Z2) were covered at 
100501250, and in Z3 the ice margin passed Trondjordhula, and Risehula 1 and 2 soon afterwards. 

The 180m YD isobase ice-melting height was now reduced to c. 650m, and new ice-dammed lakes NE of Trofors 
submerged the caves along the Glugvassely (Z6) and in Svartvassdal (Z7). ßyßskjeleren (Z4) and Oyfjellgrotta 
(Z5) were submerged below an eastward-flowing ice-dammed lake that formed to the SW of Mosjeen. Along the 
Swedish border area, the ice-melting height lowered to c. 850m at the 220m YD isobase, the ice-dammed lakes 

enlarged, particularly along the eastern side of the MSW, and the caves at the highest altitudes at Mieseken and 
Rödingsfjäll started to drain. Landbrua, Marmorgrotta and other caves along the Rennselelv (KL) in Norway near 
isobase 260m were over 500m below a new nunatak IDL at an initial altitude of c. 1050m. 
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D2.5 Deglaciation at 999014Ca BP: Figure D2.5 
By about 9900, the ice margin had retreated across most of the Western catchment area. It was about to `jump' 

across the intervening mountain range to reach Svenningdal and Eiter dal, because this high ridge had already been 

deglaciated downwards (Appendix D3). Gjeitvikgrotta and Berntvikgrotta, on and near the island of Hemnes on 
the south side of Ranafjord, were covered by the sea, as were Sildgarngrotta, Splintigrotta and Kumragrotta 

near Elsfjord (all in Z6). Tosenfjord melted at 9890±230 (Andersen et al., 1982), slightly preceded by marine 
inundation from the west at Svartdalsholet and at ovre and Nedre Landegrotta, and followed soon after by the 

inundation of Kalkdalgrotta on the other side of Tosenl)ord (all in Z2). 

D2.6 Deglaciation at 960014Ca BP: Figure D2.6 
Vefsnfjord melted as far as Mosjeen by 9550, flooding the nearby Hogligrotta (Z6) when a sea water sound 

connected Vefsnfjord to Elsfjord. Only the inner end of Ranafjord remained ice-bound. G&rdsfjellgrotta (Z6), also 

on the island of Hemnes, was invaded at 9500. Northward-flowing ice-dammed lakes remained in the upper part of 
Svenningdal and along Fiplingdal. Most of the high ground here was clear of ice, which only occurred as valley 

glaciers below 350m at the 180m YD isobase. Farther east, in the Vefsn and Northern catchment areas, IDLs 

remained above present lake positions, when very large discharges of water and sediments flowed into them from 

deglaciation centres over Borgefjell and Okstind (Grenlie, 1975, p465). 

The IDLs were generally unstable and more short-lived in the steeper, west-draining, terrain in Norway (although 

they typically existed for c. 1000a: section 8.4.12). They commonly collapsed with catastrophic drainings 

(jökulhlaups) through rapidly-eroded glacial channels on to outwash terraces (e. g. Schöner and Hard, 1996). A 

modern example at an Okstind glacier was discussed by Theakstone (1978) and by Knudsen (1978). After each 

collapse, the lake surface commonly fell to a lower level, controlled by the next lower ice dam, until this too 

collapsed in its turn. 

During the later melting, when up-valley ice melted before down-valley glacier ice (section 2.4.1), the backward- 

flowing IDLs in the Eastern catchment area (at YD isobases up to 280m, and therefore with ice-melting heights up 

to c. 850m) grew to enormous sizes in Sweden, whilst still being held back by the residual icecap. The northern 
IDLs possibly coalesced into one lake at Tärnaby (the Gliuta Ice Lake), which flowed west into Norway at Ressvatn 

and at Stor Akersvatn via three pass-points ("spillways": Rudoy, 2002) at heights of 540m (Övre Jovatn), 550m 

(TBngvatn) and 535m (Över-Uman), and an IDL above Arevatn overflowed west to Vefsndal at a height of 677m 

(Gronlie, 1975, p465). Large IDLs also occurred at Borga, Stor Bläsjön and Frostviken (Lundqvist, 1972; Donner, 

1995, p109; Dahl et al., 1997, p46). 

During its enlargement, the Gäuta Ice Lake probably covered most of the northern caves in the Swedish part of the 

study area, providing high-flow phreatic conditions. However, by the time its level lowered to be controlled by the 

above-mentioned passes, all these caves were exposed above the level of the lake, to revert to conditions similar to 

those of today. The westward-flowing IDL above Stor Akersvatn was temporarily dammed at 525m at its western 

outlet, so that by this time Akersvanngrotta (ZB, altitude 540m) was also drained. 

By 9600, Landbrua and Marmorgrotta along the Rennselelv (KL), at altitudes of 475 and 480m respectively, 

were inundated beneath a deep IDL with a surface at 750m. The same IDL widened to the east to cover the Bjuräly 

karst area and Korallgrottan (altitude range c. 603-459m), but the precise timings of their inundations are 

uncertain. During the establishment of this IDL, many of its outlets were `backwards' over northern passes, but 

westward englacial flow can also be anticipated. Hence, there was probably east to west flow-switching and water 

interchange through and between the submerged caves. Enlargement of the phreatic passages in Korallgrottan by 

active IDLs seems more likely than formation from a previously-larger interglacial catchment area, as proposed by 

Isacsson (1994; Appendix B1.15). 

Trevor Faulkner Page D 18 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix D2 - Study area deglaciation 

12" 

Seawater / meteoric 
water lake 
Ice margin 
Nuuatak 
Ice-dammed lake 

660 

/-1 

Contour interval: 300m 

10km rl 

165°30' 

1650 

t-;;, 

MOM 

13° 

0 

, ý3 , ! ýI 

0 

`z) 

p of oe ý oý 

Diagrammatic west to east profile along UTM 33W 7267000: c. 65'30' 
1250 

Jordhulefjell Rorgefjell 
1000 1 Kvitijjell MSW 

Borjedal Eiter'Adal Susendal I Palric face 
750 

Velfjord Svenniui I )e )r 
500 -II 

250 

Xxx 
0KX Nonv tiw 

0 40 50 60 70 80 90 100 110 120 170 Ido 17o 
Distance east from 100m YD isohase (km) 

Figure D2.5 Deglaciation of the study area at 9900i4Ca BP 
(I 80m YD isobase ice melting height: c. 550m) 

Trevor Faulkner Page D 19 June 2005 



Cave Inception and Development in Caledonide Afelacarbonate Rocks: Appendix D2 - Study area deglaciation 

Seawater / meteoric 
$ water lake 

Ice margin 
Nnnatak 

" Ice-dammed lake 

66o 

A 

Contour interval: 300m 

10km , 

1 65°30' 

im 
13° 

0 

I 

9 65° 

V: l 

i' 

ýý , 

q 
a 

Di. grammatk west to east profile along UTM 33W 7267000: c. 65-SU' 
1250 

Jordhulefjel l Ilorgefjell 
1000 I Kvitfjell I MSW 

Berjedal Eiterhdal Suscudal I I'aleic soda 

750 
Velfjord Svenningdal xX 

500 -I(x )c X 

250 IxIxk 

iY 
tk Nonva 0 Swedcn 

0 30 40 50 60 70 80 90 100 110 120 130 140 I? tl 

Distance east from 100m VI) isobase (km) 

Fi¢ure D2.6 DeQlaciation of the study area at 9600 Ca BP 
(180m YD isobase ice melting height: c. 350m) 

Trevor Faulkner Page D 20 June 2005 

oA ,A 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix D2 - Study area deglaciation 

The deglaciation of zone KL is more complex and the assignment of caves to the glacial situations previously 
defined is less relevant. These difficulties arise, firstly, because the MSW makes a major westward incursion here 
into Norway; secondly, because deglaciation was much more controlled by the lowering of the icesheet surface, with 
a receding ice margin hardly being recognisable; and thirdly, because a potentially huge IDL formed across the 

whole zone, which initially covered minor passes that became relevant later. Possible variations in the size of this 
IDL are indicated in Figures D2.6-D2.8. The problem is compounded because the zone contains Korallgrottan, the 

study area cave that is the longest by far and that is also the second deepest. Its assignment is therefore significant in 

characterising the mean dimensions of caves in each glacial situation. The `major local ridge' for most of the caves 
in KL is taken to be the higher ground along the Norway / Sweden border that runs roughly north to south, rather 
then the high mountains that run west to east along the MSW to the north. Accordingly, all the Norwegian caves 
along the Rennselelv in KL are assigned GS=K, because they lie west of and below the pass (at 540m) to the Bjuräly 

area in Sweden, whose caves are all assigned GS=L. The caves near Koraligrottad are variously assigned GS=L or 
T, depending on their altitude. Korallgrottan itself is assigned GS=L, because the major length of this cave and 
probably all its relict phreatic passages are below the level of the lowest local pass, despite its highest active 
entrance being above this level. 

D2.7 Deglaciation at 9300'4Ca BP: Figure D2.7 
Moraines dated to c. 9300 (Bergstrom, 1995) give the last reliable indication of the icesheet recession in the study 
area. All the fjords were by now ice-free, and the inland ice margin had crossed several mountain ranges to enter the 
Northern, Vefsn and Namsen catchment areas. The sea melted the glacier in the Vefsn valley upwards from its 
lower, northern, end to cover the Nedre Laksfors Rising and Mellebekkgrottene (Z5) and Farewell Cave (Z6), 
although it seems that Oyiskjeleren (Z4), ßyfjellgrotta and the caves associated with Geitklauvgrotta (Z5) were, 
by this time, uplifted too high isostatically to be reached by the sea (section 8.8.3). South of Korgen (ZA), Remnant 
Cave along the Rü ssäga and the huge arch of Fjellbrygga in Bryggtjjelldal were probably just reached by the sea 
prior to their uplift above sea level. Deglaciation marine limits were reached at 131 m in Svenningdal at 9150 and at 
133m in Vefsndal at 9080 (Grenlie, 1975). 

The only valley glaciers that remained near the 180m YD isobase were below 200m in altitude. The IDLs in the NW 
corner of the Eastern catchment area lowered below the levels of the MSW passes to occupy dead-ice positions 
above the present large surface lakes, with probably a slow eastward englaeial drainage towards the Baltic in the 
east. Outlets to the north were no longer possible when the ice lake above Stor BlAsjön and the Rennselelv (KL) 
lowered to a 260m isobase level of 600m, so that flow was consistently westward through Korallgrottan and some 
of this meltwater then passed via Marmorgrotta and Landbrua. If, as seems likely, lake Limingen melted at this 
time, then several cols along the MSW to its west enabled strong overflows to the deglaciated Namsen valley. The 
highest part of Korallgrottan began to emerge above water level, but most other local caves remained submerged. 

D2.8 Deglaciation at 900014Ca BP: Figure D2.8 
By 9000, the ice-melting height reduced to the then sea level at Svenningdal, as the deglaciation marine limits had 

already been reached above Trofors and nearly as far as Hattf)elldal (Appendix D2.7). What was left of the ice 

margin crossed the Main Scandinavian Watershed and the diminishing and lowering Swedish eastward-flowing 
IDLs in the north retreated farther eastwards, eventually to flow away to the Baltic. The lake Limingen IDL lowered 

to a level of 400m, draining Landbrua and Marmorgrotta of deep phreatic water. However, when the Stor Bläsjön 

end of the IDL lowered below the level of the border passes at 540m and 530m, it became an eastward-flowing IDL, 

reversing the direction of the phreatic water flow through Korallgrottan. Because of its higher isobase at 280m, 
Korallgrottan did not drain until c. 8900, to receive its present allogenic inputs. Thus, Koraligrottan experienced 
deep reversing flows for up to 300a, a westerly flow for about 400a and a falling easterly-flowing submersion for 

about I00a. After 9300, the direction of phreatic flow remained consistently westward through both Marmorgrotta 

and Landbrua, which is also the present stream direction, because the Rennselelv flows westward before finally 

reversing direction at Reyrvik, to flow east into Sweden via lake Limingen. 
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D2.9 Deglaciation at and after 870014Ca BP: Figure D2.9 
Following the same procedure, by 8700 the only ice and ice-dammed lakes left in the study area would be at the SE 

corner, at an altitude of 300m at the 280m isobase. This is well below all the Swedish caves, which should therefore 
have drained to experience present conditions. However, whereas the reconstructed Grenlie (1975) formula 

indicates that the ice-melting height should have reached the 460m altitude of Hemavan (15km NW of Tärnaby at 
the 240m isobase) at about 9200, it can probably not be applied in Sweden after about 9300, because, according to 

Earl-Gulet et al. (1998), this area only became ice-free at c. 8000, and the Tärna glacier remained in place until c. 
6000, when the local tree line reached a maximum of 200m above its present level (Earl-Goulet et al., 1998), as it 

did in Eiterddal (Z4) at 8000 (Lauritzen and St. Pierre, 1982). Although this evidence of more persistent glaciation 

should not influence the times of the draining of the caves near the northern part of the MSW in the study area, it is 

suggestive that glaciers and ice-dammed lakes lasted much longer than predicted by the formula farther south. Thus, 

the timings of the flooding and eventual draining of Landbrua and Marmorgrotta, the caves along the Bjuräiv, 

and the Korallgrottan system, are less clear. They may not have drained until c. 6000. What is clear is that, because 

of their locations at high YD isobases in the range 250 to 280m, these were the last caves of the area to experience 
the melting pulse and submersion below an ice-dammed lake, and this was probably the largest and the longest 

lasting IDL in the study area. 
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APPENDIX D3 DEGLACIATION OF THE TOSENFJORD-FIPLINGDAL AREA 

Appendix D2 reviewed the inland deglaciation of the whole study area, an area too large for a detailed analysis of 

the various hydrological conditions applying to individual caves. This Appendix focuses on a key part near Tosbotn 

(the so-called geographical centre of Norway) that has many important cave systems in the mountains between 

Tosenfjord (Z2) and Fiplingdal (Z7) of the Western and Vefsn catchment areas. Figures D3.1-D3.9 illustrate the 

Weichselian marine and inland deglaciation of this area and show major pass heights. They use the same constructs 

as Figures D2.1-D2.9 and the same 180m YD isobase for the upper ice-melting height, but at four times the scale. 

D3.1 Deglaciation at Tosbotn at 11000'4Ca BP: Figure D3.1 
At 11000, only a few nunataks along the eastern divide of the Western catchment area protruded above the 1000m 

ice-melting height. The only extensive (nunatak) ice-dammed lake was at the heads of the valleys surrounding 
Bldfjell, Langfjell and Langskardnäsen, which probably submerged the 861m-long BlMfjellgrotta (Z5; altitude 
795m). Some of the caves on the south side of Kvitf)ell (Z4; altitudes 809-900m) were probably also directly below 

a deep, narrow, nunatak IDL. Two shattered 7m-long caves on the eastern slopes of Jordhulef)ell (Z4, given the 

Lappish name Jienemeguovdele in Figure D3) became covered by a small nunatak IDL at GS=U at 940m altitude. 
These only experienced static phreatic conditions during this deglaciation before being drained. The shattered nature 

of their entrances indicates that they suffered ice-wedging in winter, probably when they were coincident with the 

IDL surface (sections 8.4.4 and 8.9.4). 

D3.2 Deglaciation at Tosbotn at 1070014Ca BP: Figure D3.2 
The ice-melting height lowered by 100m to c. 900m within c. 300a and backward-flowing ice-dammed lakes 

developed along the major ridge between Kvanlitinden in the south to Grundvasstmden in the north, although 

Jordhulefjell remained separate as a nunatak. Some of the IDLs in this area probably coalesced subglacially via Nye 

channels that followed the valleys downward, to inundate the upper parts of the GAsvasely and Jordbruelv 

catchments in high pressure subglacial reservoirs (SGRs). IDLs flooded the very large through-cave 

G&svasstindhola (Z4; GS=T; altitude 778m; Photo 8.1), the caves west of Jordhulefjell (Z4; GS=T; 860-730m) and 

Elgfjellhola (Z4, on the plateau east of Jordhulefjell; GS=L; 600m) at high pressures. The caves at Vargskar (Z5, 

east of BlAfjell; GS=T or L; 800-500m) probably received a speleogenetic `kick start', although their common small 

size and predominant vadose character, with high present flow rates, indicates that most developed to their present 

dimensions during the Holocene (section 9.2.4). 

During the falls of the ice-dammed lakes from I000m to 900m, their surface levels were controlled by passes along 

the ridge at heights of (to the nearest 10m) 950,910,910,910,900,940,930 and 930m. Underlined heights in this 

Appendix D3 indicate that there is a significant gorge on the coastal side of the ridge, strongly suggestive of a 

jökulhlaup at the time of the change in lake level. Thus, strong reverse flows through these IDLs probably 

commenced around 10850 at a height of 950m. As all but the last of these passes are south of the caves at 

GAsvasstind, Elgfjell and west of Jordhulefjell, if all these caves were submerged beneath one SGR at this time, their 

flow direction was predominantly to the south. The water from each of the passes at the head of the Western 

catchment area flowed west into a growing westward-flowing IDL, at a slightly lower height, to submerge Cave of 

the Cold Wind and Toerfellhola (Z3, south of the peak named Tverrfjellet on Figure D3; GS=K; 640 and 485m) 

to depths up to 465m in high pressure SGRs. At about this time, Sirijordgrotta (Z4; GS=H) and other caves in 

Eiterädal may have become flooded in an SGR beneath a nunatak IDL below Visttinden (1236m), to a maximum 

head of 700m. Geitklauvgrotta and Mollebekkgrottene (Z5; GS=H and E) could also have become flooded 

subglacially by a nunatak IDL that formed on the east side of Eiteräfjell, with heads of water up to 800m. 
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D3.3 Deglaciation at Tosbotn at 1040014Ca BP: Figure D3.3 

After another 300a, the ice-melting height fell another 100m to c. 800m. The large eastern IDLs retreated down the 

sides of the steep ridges but widened, so that their combined subglacial reservoir may have reached what appear to 
be `jaws' created by northward- and southward-pointing ridges on each side of the GAsvasely (shown by a dashed 

blue line in Figure D3.3). In this case, Jegerhullet, Etasjegrotta, Invasjonsgrotta, Anastomosegrotta and 
Bjerkäsgrotta (Z4, in the Jordbruelv valley, GS=L) were flooded, probably in mainly static conditions at this depth. 

Such an ice-dammed lake and reservoir was about 100km2 in extent and 500m deep on its eastern side, but still with 

a general reverse flow towards the passes along the `lengthening' western mountain ridge. All the previously 

mentioned caves east of this ridge remained submerged, except for the caves on Kvitfjell, and the higher ones west 

of Jordhulefjell, which, being higher than 800m, were drained by this time to revert to Holocene conditions. 

During the falls in the eastern lake levels from 900-800m (Photo D3.1) their outlets were controlled by passes at 
heights of 830(S), $40(S), 810(S), 830(S), 890(S), 821(S), 830(S), 840(N) and 825(N)m, S and N indicating whether 

the outlets caused water to flow through the caves at Elgfjell towards the south or towards the north. The second to 

seventh of these passes all directed water into the failing and expanding westward-flowing IDL, which continued to 

cover Cave of the Cold Wind and Toe> t)ellhola (Z3). 

The results of two of the jökulhlaup captures have been observed by this author. The valleys west of the passes at 
821m (near Durmälstind) and at 830m (above Toerfjellhola) contain deep canyons and talus slopes where the valley 

sides consist of large areas of jumbled rocks several metres in size. The effects of such a jokulhlaup can be 

explained by considering that when a 100km2 lake suddenly fell 10m as the remaining ice collapsed at the next 
lower pass-point, some lkm3 of water, weighing 1000 million tonnes, flowed out before the eastern lake stabilised 

again. This water flowed into the western IDL with catastrophic effect, depositing rocks torn from the pass-point at 

the head of the valley, which could potentially fill the IDL and block any underlying cave entrances. 
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Photo D3.1 Nedre Jordbruvatn and Tverrfjell, from Jordhuletjell (Jienemeguovdele) 
View to the NW from the Jordhulefjell limestone outcrop. Horizontal snow patches (arrowed) possibly indicate 

some terrace levels of the deglacial ice-dammed lake that formed between the Tverrfjell (Toerfjell) ridge and 
the Jordhulefjell ridge. The prominent col south of Tverrfjell heads the valley leading west to Toerfjellhola. 
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Simultaneously, the IDL overflowed westwards on to the surface of the continuing icesheet, with flow concentrated 

along the edges of exposed ridges at each side of the valley. Thus, blocks of rock were also wrenched from the 

upper valley sides and carried along the ice at high speed with low friction, until they were deposited at ridge crests 

where the water velocity reduced. Some of these rocks could tumble farther down the hillside when the ice later 

melted. This process could therefore account for the dry canyons and the large blockfields high on valley sides west 

of Durmälstind (Photos D3.2 and D3.3) and below ToerrJellhola (Photos D3.4 and D3.5). If this is the case, their 
location constrains the maximum width of the western IDL at the time of the jökulhlaup. However, the constraint is 

not tight enough to determine whether Cave of the Cold Wind or Toerfiellhola lay directly below the surface of 
the IDL or just below its SGR. The observed blockfields could be autochthonous, created by local permafrost or 

seismic activity, or allochthonous and deposited by glacier movement or by a jökulhlaup as described. A more 
detailed and lithological study is needed to confirm the jökulhlaup process in the examples given. An alternative 

explanation for large autochthonous blockfields could be the `blowing up' of bedrock by deglacial earthquakes, as 
described by Mörner et al. (2000; section 6.3.1). 

Photo D3.2 Durmalstind dry canyon (Z3) 
View towards the ridge to the east 

; fAd 
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Photo D3.5 Toerfellhola resurgence 
Block field above the resurgence at lower 
end of the Overengbakk canyon 

Blockfield at down-valley shoulder 

I'Iiutu DJ A ilr, N ýaný on lw%itlc I oerfjellhola plateau 
Overengbakk canyon. Toertjellhola is situated beneath 

the limestone bench. Tosenfjord in the distance. 
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If the formula given by Rudoy (2002; Appendix D4.5) also applies in the study area, then the above eastern IDL 

example would have Q 7.5x103m3s', and the continuing now persisted for at least 36 hours. It is doubtful t 

some of this water passed at high velocity through either Cave of the Cold Wind or Toerfjellhola to Cam, 

significant enlargement by mechanical abrasion, because their SGR was unlikely to have a large lower outlet at3, 

stage. Dawson et al. (2002) suggested that tectonic deformation accompanied the jökulhlaup drainage of IDLshi 

Scotland, and this also probably occurred in the study area, together with the formation of inception fractutes. 

The caves on Elgfjell experienced high flow regimes beneath the collapsing eastern IDL, especially those near, the 

lake surface. However, those submerged caves along the Jordbruelv (Jegerhullet to Bjerkisgrotta), which 

currently have flows eastwards towards Svenningdal, are likely to have experienced relatively slow movements of 

water (to the west) during the time that the large ice-dammed lake overflowed backwards, because of their depth 

below the lake surface. Another important factor during this period is that there were four switches of the direction 

of flow of the water that passed through the caves of Elgfjell, as two pass-points lie to the north. Whereas southward 
flow is most common, flow to the north was observed by north-pointing scallops in Elgfjellhola, Paradox Cave and. 

Pustehola (Z4) during the 2000 field trip. 

D3.4 Deglaciation at Tosbotn at 1020014Ca BP: Figure D3.4 
The deglaciation of the adjacent Velfjord area was briefly discussed in Appendices D2.3 and D2.4. The next fsU of 
I00m in the ice-melting height took c. 200a to reach the 700m altitude. The eastward-retreating ice margin entered 
the area in Figure D3.4, so that the fjords of Visten, Storbe ja and Langfjord terminated at tidewater glaciers. Small 

ice margin IDLs had temporary existences on eastern slopes, but on coastal western slopes (sections 8.1.5 and 8.43) 

the ice at the margin melted directly as slope flow (Appendix D4.2). The caves in Tettingsdal (Z3; GS=L, H andE) 
became submerged beneath an IDL east of Rakfjell, before being drained when the ice margin went past. 

The large eastern ice-dammed lake narrowed in its upper valleys, and melted farther east into the `jaws' on each side 

of the Gßsvasely. However, other IDLs in the immediate vicinity grew larger, and coalesced to form an 

interconnected system of glacial lakes extending for c. 70km from south to north along the east side of the 

mountains, with a mean width of c. 3km, giving a total surface area of some 200km2. Freshwater, meteoric, lakes at 

present positions were left behind in the mountains above 700m altitude. Gisvasstindhola (Z4) and all the caves on 

the ridge west of Jordhulefjell were drained by now, but all the caves on and below Elgijjell remained submerged 

under the backward-flowing regime. The Cave of the Cold Wind and Toerfjellhola (Z3) were still submerged 

below the large westward-flowing ice-dammed lake that now surrounded the north end of the Tosentord glacier, 

and received a proportion of their flows from water that had already passed through caves on Elggell! 

The pass-points available to drain the long south-to-north backward-flowing IDL during this period are at heights of 

740 and 730m south of Elgfjell and at 7Q0,720,782,730,750 and 710m north of Elgfjell. However, because of the 

orientations of the ridges around Elgfjell, the flow through the caves there remained consistently to the south during 

this period. Similarly, when, on four occasions, the outlets were many kilometres to the north of ElgtJell, the flows 

through the caves of the lower Jordbruelv became increasingly aligned down-valley. The only pass in this group 

observed by this author is the lowest, at 700m. It lies at the head of the Jordbruvatn lakes, below Grundvasstin&n, 

and has a narrow gorge at the top, with a broad scree slope along the base of the side valley leading down into 

Godvassdal, providing evidence of a jökulhlaup that could have discharged some 2000 million tonnes of watet, if 

the level change in this instance was 10m. In contrast to the valleys below DurmAlstind and Tver flell, there is no 

blockfield on the east side of Godvassdal, because the Tosbotn IDL was now wide enough to absorb the energy of 

the jökulhlaup and reduce the speed of the overflow. This was the last jökulhlaup and the last pass to be used as a 

western outlet from the large ice-dammed lake trapped within the ring of mountains at the head of the Jordbruelv 

and the GAsvasely, as all the western pass heights were now above the level of the water surface. 
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Over a period of c. 80014Ca, from 11000 to 10200, the level of the eastern ice-dammed lake fell abruptly on some 25 

occasions, of which 15 created significant jokulhlaups that are recognisable from surface gorges. The possible 
terrace levels of some of these IDLs are indicated by horizontal lines of snow, seen when looking west across the. 

Jordbruvatna lakes (Photo D3.1). The total level change was c. 300m, so that the total volume of rapidly-discharged 

water was of the order of 35km3. Because 15 of the 25 passes discharged water towards the Tosenfjord glacier, the 

volume of the western IDL at the head of Tosenfjord is crudely estimated as at least 21 km3. With an ice-melting 

height of 700m at 10200, the lake occupied an area of c. 30km2, which is in agreement with the area available within 
the local topography (Figure D3.4). 

D3.5 Deglaciation at Tosbotn at 10000'4Ca BP: Figure D3.5 
With the lowering of the ice-melting height to c. 600m at 10000, the size and level of the previously large ice- 

dammed lake east of Elgl)ell gradually decreased as the water retreated down the sides of the valleys, with eastwapd 
flows towards the ice and northward flows along ice contact spillways. Summer flows became part of the hydrology 

of the large glacier occupying Svenningdal, via englacial conduits in the upper 200m above the plastic behaviour 

limit (section 8.1.8). All the caves along the Jordbruelv remained submerged, as did the many caves on Elggell that 

have altitudes just below 600m, including Elgtjellkola (Z4). Underground flow was commonly aligned with present 

stream flow directions. On the other side of the mountain, Cave of the Cold Wind was slowly drained by this time, 

but Toerfjellhola (Z3) remained submerged below the western ice-dammed lake at the head of the Tosenfjatd 

glacier that was about to melt, as the sea and ice margin advanced towards its side via two low passes at Tosen at 

altitudes of 100 and 116m. 

To the north, Sirijordgrotta (Z4) became increasingly inundated by an eastward-flowing IDL on the western side of 

the Eiterädal glacier. Later deglacial flows were to the north, opposing the direction of the present stream in 

Sirijordgrotta, according with reports of reversed flow from scallop directions and the dip of sediments (Vales ýet 

a!., 1997). Geitklauvgrotta and Mellebekkgrottene (Z5) remained flooded by almost static water in subglaciai 

reservoirs. To the east, Kvannlihols and the many caves in Fiplingdal (Z7; GS=L; altitudes 700-400m) were 

submerged by subglacial reservoirs below a long and narrow nunatak IDL that started to form. 

D3.6 Deglaciation at Tosbotn at 980014Ca BP: Figure D3.6 
At the YD 170m isobase at Tosenljjord, the advancing sea flooded the two passes at Tosen to an altitude of c. 160m 

to reach the side of the Tosentjjord glacier, which had a surface at c. 480m and a base at -100m to -400m. The ice 

slowly melted over about the next 100a, creating a dead-ice lake in the middle of the glacier that expanded to north 

and south. Because the glacier remained frozen for 20km to the south (Figure D2.4), where its base deepened to - 
550m, the melting-front reached the 10km-distant northern end first. This end of the glacier was already supporting 

the large ice-dammed lake, so that when it finally collapsed at 9890±230 (from the moraine dates given by Andersen 

et al., 1982), the pent-up water in the IDL surged forward as a superflood. All the caves lying above the deglaciation 

marine limit, including Toerfjellhola (Z3), were thus suddenly drained. The superflood water flowed west via the 

two low passes to Ursfjord. Some passed via Neptune's Cave (Z2) and other nearby caves and temporarily replaced 

their internal sea water with glacial meltwater, some of which had come from Toertjellbola. Although it is possible 

that the demise of the Tosenfjord glacier was instead provoked by the jökuihlaup caused by the collapse of the 700m 

ice dam (Appendix D3.4), the Gronlie formula gives a date that is too early by c. 300a. On the other hand, the 

relentless approach of the warming sea water made the catastrophic collapse of the glacier inevitable. 
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All the western fjord glaciers had now melted and the sea inundated the coastal valleys to depths of <I 50m. During 

this interval, the ice margin rapidly crossed the deglaciated mountain range to the western side of what, by now, 
were valley glaciers in Svenningdal, lower Vefsndal and EiterAdal. The large but shrinking dead-ice lakes became 
ice margin IDLs, trapped between these valley glaciers and the ridge spurs, with a melting height down to c. 500m 
by 9800. Most of the caves on Elgfjell were now drained, after which they experienced a very large deglacial 

earthquake (section 8.1.10). The caves along the Jordbruelv remained submerged, but their flow rates (in present 
down-valley directions) increased as the ice continued to melt, and as the surfaces of the remnant ice-dammed lakes 
lowered towards the caves' entrances. Spring meltwater flowed north to the sea via ice contact spillways along the 

glacier edges. Similarly, the caves along the western sides of the Eiteridal, lower Vefsndal and Fiplingdal glaciers 
remained submerged. 

D3.7 Deglaciation at Tosbotn after 980014Ca BP: Figures D3.7-D3.9 
The pattern of commonly-shrinking IDLs behind receding valley glaciers continued until deglaciation was complete 
in the whole Tosenfjord-Fiplingdal area. The upper height of the inland valley glacier system reduced to c. 400m at 
9700, to c. 300m at 9500 and to c. 200m at 9300. The outlet valleys of Svenningdal and upper Vefsndal remained 
occupied with long glaciers that merged at Trofors and continued, initially, to Vefsnfjord. All the caves along the 
Jordbruelv (Z4) below Jegerhullet (altitude 381m) remained flooded at 9700, with overflowing waters that 
probably created, or deepened, the dry valley beyond Etasjegrotta, the gorge below the Jordbruelv waterfall, and 
the Jordbru dry valley that bypasses the Cliff Caves / Invasjonsgrotta / Vatnhullet system (Figure B1.9). These 
caves were then progressively drained, the last one being Bjork*sgrotta (altitude 284m) at about 9450. The large 
deglacial earthquake that created the Im horizontal movement at Cliff Cave (section 6.3.3; Table D1.1: item 29; 
Photo D1.23) occurred a few years before the IDL lowered below its level at 9300 (section 8.1.10 and Appendix 
D5.5). 

Several IDLs followed the retreating EiterAdal glacier northwards, flooding the southern end of the valley, and 
probably submerging the whole valley at the side of the Vefsndal glacier before 9500. Thus, Sirijordgrotta (Z4), 

with an altitude range from 275-197m, remained totally submerged by a strong northward flow until then, as did 
Geitklauvgrotta and the three Mellebekkgrottene (Z5, near Laksfors) beneath a narrow, northward-flowing IDL 

along the western side of the glacier in lower Vefsndal. Kvannlihola (Z7) continued to be submerged beneath a 
northward-flowing IDL (i. e. flowing in the opposite direction to the present cave stream) that occupied the whole 
width of Fiplingdal at 9700, but then soon drained as the Fiplingdal glacier retreated north towards upper Vefsndal. 

At about 9500, the ice margin rapidly moved eastwards again, across the next range of deglaciated mountains. 
Sirijordgrotta and other local caves were suddenly drained at 9300, when the sea melted the end of the Vefsnfjord 
tidewater glacier adjacent to the junction with lower EiterAdal, but were at too high an altitude to be invaded by the 
sea. The sea continued to melt the glacier southwards, up lower Vefsndal, and encroached inland via Laksfors. The 
only glaciers then remaining were those in Svenningdal, and in upper and middle Vefsndal. Small dead-ice lakes 
may have remained up-valley of these glaciers, before becoming drained, probably catastrophically. 

The low-lying caves at My llebekk were all invaded by the sea soon after 9300. Geitklauvgrotta and its resurgence 
cave, Lilleelvgrotta, remained flooded by a northward-flowing ice-dammed lake until about the same time, when 
they were drained, but remained just above sea level. The final dead-ice lakes disappeared at 9080 (Gr anlie, 1975), 
when the sea reached its deglaciation marine limits in Svenningdal and Vefsndal, by which time all caves above the 
contemporary sea level reverted to flow conditions similar to those at present. 
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APPENDIX D4 BREAKTHROUGH AND PASSAGE ENLARGEMENT 
UNDER EACH FLOW REGIME 

Section 8.4 discussed the 13 liquid flow regimes applicable at each stage of the glacial cycle and sections 8.5.1- 
8.5.5 derived the likely constraints on the achievement of breakthrough and of phreatic passage enlargement at the 
maximum rate. This Appendix considers the opportunities for these first two cave development phases to occur 
under each flow regime, primarily using as examples the caves of Toerfjell (Z3) and of the Jordhulefjell / Elgfjell / 
Jordbruelv valley system (Z4), whose deglacial sequences were discussed in Appendix D3 and Figures D3.1-D3.9. 

D4.1 Subglacial lake 

Subglacial lakes occur under warm-based icesheets (section 8.4.2). They are exemplified by Lake Vostok, 

Antarctica, where Siegert et al., (2001; Appendix A3.3) estimated that water circulation has a speed of 0.03cros', 

driven by convection and by melting and freezing mechanisms. 

Breakthrough 
From Figure 8.8, a velocity of 0.03cros' (logV=- 1.5) would only permit a IOm-long planar fracture with an aperture 
of 30cm and zero dissolved calcite at its entrance (which is probably impossible, as discussed below) to exhibit post- 
breakthrough behaviour and enlarge at the maximum rate, at logHR - -9 (m''). Extrapolation beyond the range of 
Figure 8.10 shows that with an initial aperture of lcm, such a fracture would require -106 years for breakthrough. 

Thus, any karstic inception fractures that were completely submerged below an SGL experienced little hydraulic 
flow and, except in trivial and exceptional cases, breakthroughs could not occur within glacial timescales. The 

possibility that meltwater could pass from the lake by subglacial recharge via the fracture system into a small lp- 

SGR is precluded because such fractures were well-below the plastic behaviour limit of the icesheet (section 8.1.8). 

Enlargement 
With no dissolved calcite in the inflow, post-breakthrough cylindrical tubes with lengths and initial apertures of lm 

and 1cm, 10m and 10cm, 100m and lm or lkm and lOm could enlarge at maximum rates at a flow velocity of 
0.03cros' (Figure 8.8). From the various observations reported in section 3.2.3, the water in SGLs was relatively 
pure, with a low concentration of CO2. The maximum dissolution rate would be c. 0.3mmä' (section 8.5.3 and 
Figure 8.9), so that if these conditions lasted for l0ka, the diameters of such tubes could theoretically enlarge by 6m. 

However, the estimated 0.03cros' water circulation speed represents a maximum flow velocity within any 
underlying conduit, because this would present a greater resistance to flow, and might not be aligned parallel to the 

external flow direction. Another impediment to karst conduit dissolution in this situation is that the meltwater at the 
base of the SGL would also be in contact with the limestone bedrock that contained the karst conduit, and would 
therefore enter any such conduit already relatively saturated with dissolved calcite. The discharging water would 

also add to the calcite concentration in this almost closed system, perhaps eventually creating an SGL that was 

completely saturated at 10mgL"', at the prevailing low temperature and low Pco2. Indeed, Priscu et al. (1999) 

predicted that the concentration of Ca2+ in Lake Vostok is as high as 2.3mgL" (giving c. 6mgL" for CaCO3), 

although there are no reports that the underlying bedrock contains carbonate. Siegert et al. (2001) also reported Ca 2+ 

concentrations in the range 0.1-0.3megL'' (i. e. 2-0ppm=2-6mgL"' Cat+, equivalent to 5-15mgL-' CaCO3) for 

subglacial environments, including Lake Vostok. 

From the above data, it must be expected that karst conduits below SGLs had input waters with saturation ratios 
approaching 100%, i. e. much greater than the 60% limit for maximum dissolution rate in these conditions (section 

8.5.2), so that dissolution reverted to slow, higher-order, kinetics with little passage enlargement. Slow-moving 
laminar flow in an SGL also allowed fine-grained sedimentation on all surfaces of any submerged caves, which 

would inhibit subsequent dissolution and which might also include calcitic clays that could precipitate from the 

poorly aggressive solution. Such clay occurs in the roof of Luktindgrotta (Z6), for example, and Lawson (1995, 

p26) suggested that fine-grained deposits in caves at Assynt in Scotland consist of glacial "rock flour" washed into 

the caves via fissures and deposited in still-water conditions. 
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Another, more uncertain, argument can be made against the likelihood of slow dissolution of karst conduits beneath 
SGLs. The most prevalent country rock in the study area is mica schist. It seems very likely that the tectonic events 
that are postulated to create inception fractures in marbles of the study area (Chapter 6) also created them within the 

mica schists (and other crystalline rocks). A component mineral of schists and these other rocks is quartz, and silica 
is more soluble than calcite in pure water (that contains no C02). Thus, the potential dissolution of sclüst below 

subglacial lakes is also worthy of consideration. No references are known that quantify the kinetics of the dissolution 

of silica to the extent that has been achieved for calcite, but long and large phreatically-formed caves in quartzites 
are well-known in other parts of the world (e. g. Wray, 1997). These are thought to have developed over very long 

timescales in stable conditions at low dissolution rates. If karst caves in the study area also developed when 
submerged over rather long timescales, then it could be assumed that caves and conduits would also develop from 

tectonic fractures synchronously in the local schists, with phreatic passages in mica schist that both connect to, and 

are completely separate from, the limestone caves. However, there is a complete absence of such conduits in the 

schists. Except along the contact between limestone and other country rocks, no passages divert away from the 
limestone, and no separate but phreatically-formed caves are known in other rocks. This absence of conduits in 

schists provides supporting evidence that the karst caves did not enlarge beneath SGLs. 

A second uncertain idea to consider is that, if the caves enlarged from tectonic fractures at very high pressures below 

SGLs, there should be many more `autogenic' openings into the cave passages, rather than the single relatively large 

entrances that are more commonly found at the extremities of the systems. These entrances suggest that Nye 

channels operated in sympathy with valley topography, providing focused flow into `upstream' entrances at flow 

rates much higher than available under convective circulation, in a different glacial regime. 

It is therefore concluded from the above reasoning that karst cave passages in the study area (and in all the 

Caledonides) did not enlarge significantly under subglacial lakes. Indeed, the following sections, as summarised in 

section 8.6.2, explain phreatic passage enlargement without the need for any dissolution below SGLs. Breakthrough 

and enlargement whilst submerged by films of water at the base of warm-based ice streams are even less likely, 

because a typical ice velocity of 225mä' (Appendix A3.5) equates to a potential water velocity of only 7x10'scros', 

which is three orders of magnitude slower than predicted for water flow in an SGL. 

D4.2 Slope flow 
The possibility of slope flow inundating fractures and caves in the Western catchment area at coastal western slopes 
was discussed in section 8.4.3. This would be a high-energy but short-lived now regime. An extreme example of a 
5km-long west-draining valley could have sustained powerful surface flows for c. 70a as the ice margin retreated 
eastwards at 70mä'. However, the effects of earthquakes were muffled at the low altitudes near the coast where 
IDLs do not form (section 8.1.10), so that fracture systems were smaller and less frequent there. The almost 
complete absence of caves in these situations confirms that the slope flow remained on the surface, and was unable 
to enlarge any pre-or post-breakthrough fractures into explorable cave systems within the limited time available. 

D4.3 Nunatak flow 
Nunatak IDLs were almost static (section 8.4.4). The physical conditions applying at a near-static IDL have some 

similarities to those of a subglacial lake (Appendix D4.1), although, in contrast, nunatak IDLs were situated at the 

highest points of the landscape and had a maximum duration of only c. 20014Ca (= c. 280 cal. a: section 8.5.3). 

Internal circulation was likely to be stratified, especially when ice formed at the surface in winter. Summer flows 

were driven by convection (mainly powered by solar heating of the upper layers), by winds blowing across the lake 

surface, by small fluvial inputs, and by melting and freezing mechanisms. It is possible to envisage mean circulatory 

water speeds that ranged from the 0.03cros' estimated for SGLs in winter to, perhaps, l0cros' in summer, with a 

possible annual mean of 5cros'. In the majority of cases, any underlying karst fractures and conduits were parallel to 

the ridge and the IDL (section 8.4.8), and could, therefore, have aligned with any circulating flows. The water in an 
IDL equilibrated up to the prevailing atmospheric Pc02 within a few hours of melting. Atmospheric Pco2 remained at 
0.020% during most of the Weichselian, and only reached 0.026% at the Younger Dryas, the period of importance 
here (Petit et a!., 1999, p431). The calcite concentration in the water of a nunatak IDL was also kept very low by 
dilution, as more low-carbonate-content glacier ice melted as the lake deepened, but water at 0°C that equilibrated 

Trevor Faulkner Page D 42 June 2005 



Cave Inception and Development in Caledonide Metacarbonate Rocks: Appendix D4 - Breakthrough + enlargement 

up to the YD atmospheric CO2 concentration still became saturated at only c. 1lmgL"' of CaCO3 (Palmer, 1991, 
Fig. 7). Any sedimentation into fractures was extremely fine, and of low intensity, as, with small catchment areas, 
there was little eroded material to deposit. 

Breakthrough 
A mean velocity of 5cros-' would permit planar fractures with lengths <_50m and an aperture of 1 cm to exhibit post- 
breakthrough behaviour and enlarge at the maximum rate, at a hydraulic ratio of 10dm' (Figure 8.8). Any 50m-long 
fracture with an aperture of 0.1cm and HR of 10'5m would require 3300a to reach breakthrough (Figure 8.10), which 
was not available, even considering an order of magnitude reduction caused by the low temperature compared with 
the standard (Palmer, 1991) conditions. Thus, probably few karstic inception fractures that were submerged below a 
nunatak IDL were significantly advanced towards breakthrough before the IDL descended below their level. The 

possibility that meltwater could be sucked via the fracture system into an lp-SGR is not considered because the PBL 

was initially near the surface of the icesheet (section 8.4.4). 

Enlargement 

If a mean flow velocity of 5cros"' could occur in conduits below a nunatak IDL from circulating currents, then any 
tubes and fissures with combined dimensions below the logV, cros"=0.7 region in Figure 8.8 could enlarge at 
maximum rates. Taking the wall retreat rate of 0.35mmä' estimated in section 8.5.3 for a glacial lake equilibrated to 

atmospheric C02, fractures and passages within the allowed range could widen by c. 20cm under a nunatak IDL in 
its maximum duration of c. 280 cal. a, a small amount in the context of explorable cave passages. Hence, it is 

concluded that as well as not promoting dissolutional breakthrough, nunatak IDLs did not persist long enough to 

allow any narrow tectonic breakthrough fractures to enlarge into explorable cave passages, although they could have 

contributed to the enlargement of existing passages. The significant rarity of recorded caves in glacial situation U 
(section 5.5.5) supports the conclusion that caves do not form beneath nunatak IDLs, even over several glacial 

cycles. The two known cave fragments at GS=U east of the summit of Jordhulefjell (Z4) probably formed during a 
previous deglaciation at GS=T, before subsequent glacial erosion changed the local landscape. 

D4.4 Reverse flow 
Reverse flow only occurred within a backward-flowing IDL (section 8.4.8). The applicable hydraulic parameters for 
a fracture or cave submerged beneath such an IDL are difficult to determine from topographic information. 
However, deductions about cave flow rates can be made from the sizes of the scallops, and perhaps from the sizes of 
sediment particles. The northward-facing scallops in Elgfjellhola, Paradox Cave and Pustehola (Z4) are roughly 
20-25cm long. These indicate high-stage flow velocities up to c. 20cros' (section 3.1.7). Sediment collected from a 
ledge near the scallops in Paradox Cave consists of brown silt containing larger individual schist particles with 
diameters of c. 1mm. From a modified Hjulstrem diagram (Andersen and Borns, 1997, p129), it is seen that the 
schist particles of 1mm size are transported at velocities above 20cros', and deposited below 20cros'. The silt could 
have been deposited at around 0.2cros, or slower, in perhaps a subglacial flow regime. Such silts are not eroded 
below a velocity of 20cros'. Thus, a flow velocity of 20cros" through these caves seems reasonable, and is taken as 
representative for post-breakthrough conduits of similar lengths situated below a backward-flowing IDL. 

Breakthrough 

From Figure 8.8, the range of planar fractures from 2m length and 0.01 cm aperture, via 240m (the length of 
Elgfjellhola) and 1.2cm, to 21m and 10cm would be beyond breakthrough at a velocity of 20cros-'. Thus, initially- 

narrower fractures with these final dimensions achieved breakthrough if given sufficient time, and tectonically- 

produced fractures with these geometries immediately widened at maximum rates. 

The Darcy-Weisbach equation for turbulent flow is used to deduce applicable hydraulic parameters (Lauritzen et al., 
1985): Q2/AZ=2dgi/f, where Q is the discharge, A is the cross-sectional area of the conduit, d is its diameter, g is the 

gravitational constant, i is the hydraulic gradient, and f is a dimensionless friction factor. Rearranging yields: 
i=fil2/2dgA2=fV2/2dg, where V is the mean flow velocity. For Elgfjellhola, V=0.2ms' (above), the mean A=20m2, 
d=5m, g=9.8 I ms"2. Hence, i=4x 1 Of. 
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The friction factor depends on the roughness of the cave walls, tortuosity and other obstacles to the flow. Lauritzen., 

et al. (1985) found that in the submerged tube with mean cross-section c. 20m2 at the Glomvatn Underground 
Outlet in northern Norway, f varied from a constant 0.116 at discharges above l4m3s' (V= 0.7ms'), up to c. 2.5 for 

discharges down to 2m3s"' (V=0. lms'). The mean annual runoff is 2.5m3s, giving a mean flow velocity of 
12.5cros". The flow rate through Elgfjellhola under the backward-flowing IDL=VA=0.2x2Om3s"=4M3 sr'. By 

making the assumption that the hydraulic characteristics of Elgfjellhola and the tube' studied by Lauritzen et al. 
(1985, Fig. 9) are similar, because they have similar cross-sections and are both mainly simple single conduits, the 

relevant friction factor for Elgfjellhola is taken to be c. 1.0, from their graph. Thus, the hydraulic gradient 

applicable to Elgtjellhola under a backward-flowing IDL=4x10-4 xf 4x104. This value can be checked against 
Figure 8.8, because if the 240m-long Elgfjellbola achieved breakthrough at an aperture of 1.2cm, then it did so at a 
hydraulic ratio of 10-5'8m'=1.6x10-6m'. Hence, the HG was LxHR=240x1.6x10-6=3. $4x10'{, a similar result. The 

effective head of water at Elgfjellhola in this flow regime =240x4 x10-4= C. 0. Im. 

From the discussion in Appendix D3.3, the only opportunities for water to flow north via Elgfellhola were when its 

IDL discharged water via cols at altitudes of 840 and 825m. The surface of the IDL was then some 240 and 225m 

above the cave, and some 500m above the valley bottom. As no other information has been obtained to correlate 
scallop sizes with depth below the surface of an IDL, the variation of effective head with depth is unknown, 
although artificial reservoirs are known to exhibit warmer-water surface overflow, interflow at thermoclines, and 

undertlow of cold, dense, water along their bases. A value of 0. Im is taken to be indicative of the effective head that 

applies at all depths within a backward-flowing IDL. For fractures with lengths of 10-1000m, the applicable 
hydraulic ratios lie in the range 10"3-10"7m"'. Although the effective head at Elgf)ell has been derived from 4 

consideration of phreatic flows during an enlargement phase at the end of the YD, a similar head must have applied 
during a previous gestation phase, prior to breakthrough, which might have been at a similar time or during the 

Saalian deglaciation or during a Weichselian interstadial. 

The caves of Elgfjell were submerged beneath a backward-flowing IDL from c. 10850 (at the earliest, with flow 

over a col at 940m altitude) until c. 10200 (when the IDL became eastward-flowing), a maximum duration of some 
650'4Ca (Appendices D3.2-D3.4) or 910 cal. a (section 8.5.3). From Figure 8.10, Elgfjellhols could only have 

reached breakthrough (at an aperture of 1.2cm) in 910 cal. a at a hydraulic ratio of 10's'8m' if its initial aperture was 
larger than c. 0.3cm. Fractures with initial apertures of 0.1 cm could only achieve breakthrough in this timescale at a 

hydraulic ratio of 10'4,6m'. They would have to be less than 20m long under the same effective head of 0.1m. 

From the above points, a major conclusion is that the inception-gestation phase of breakthrough from laminar to 

turbulent conditions under the effect of fourth-order dissolutional kinetics is unlikely to have completed for 20m- 

long karst fractures less than 0.1 cm in aperture under a uniquely backward-flowing ice-dammed lake in the 

timescale available during a single deglaciation. Fractures of c. 0.3cm aperture 240m long could reach 
breakthrough in the time available, but this would leave little time for subsequent enlargement during the 

contemporary series of IDLs. It follows that the many caves that exist in this situation, including all the caves on 
Elgfjell, result from the subsequent enlargement of fractures that achieved tectonic breakthrough during seismic 

activity at the start of the deglaciation (even though apertures that are significant fractions of a centimetre are 

required to bypass the inception-gestation phase in conduits measuring over 20m in length), or else they reached 

chemical or tectonic breakthrough during a previous deglaciation. Because the Elgfjell IDL soon became a wide 
backward-flowing IDL (Figures D3.2-D3.5), there was little opportunity for its karst fractures to achieve 
breakthrough as part of low pressure SGR flow (section 8.4.5 and Appendix D4.8). 

Enlargement 
Inverting the estimation of the Elgfjellhola breakthrough aperture width, Figure 8.8 shows that all cylindrical tubes 

with a radius >0.4cm and a flow velocity _20cros' enlarge at maximum rates for all path lengths up to 250m. This 

therefore applied to many caves in the study area that were submerged beneath a backward-flowing IDL, including 

all those on Elgfjell, and continued to apply in a succeeding, faster, englacial flow regime. The actual dissolution 

rate in these conditions could be higher than the 0.35mmä' estimated in section 8.5.3, because of enhanced 

mechanical erosion, and wall retreat rates up to 1. Ommä' are considered. Thus, if the IDL at Elgfjell remained 
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backward- or eastward-flowing for 1190 cal. a (i. e. until 10000, when the caves drained), conduit and passage radii 

could have enlarged by 0.4-1.2m, giving minimum passage diameters of 0.8-2.4m. These are at the lower end of the 

range of explored phreatic passages on Elgfjell. As well as the dissolution of passage walls, pre-existing 

speleothems could also be corroded, especially stalactites, as the water would remain more aggressive at roof levels. 

D4.5 Jökulhlaup flow 

Many flowing IDLs experienced catastrophic jökulhlaups, which perhaps lasted for several hours whilst ice- 

dammed lake levels suddenly fell at least several metres (Appendices D3.3, D3.4 and section 8.4). Glacier-dammed 

lakes and "glacial superfloods" were studied by Rudoy (2002) in the mountains of southern Siberia, and various 

papers about these processes in northern America were reviewed by Fisher et al. (2002). The characteristic relief 

forms of water-forced hollows, niches, "drillpots" (jettegryter in Norway), outburst gorges with box-like profiles, 

dry canyons, and dry, possibly stepped, waterfalls are formed by evorsion, the destruction of rock caused by the 

rotation of water that falls sub vertically. Erratic, but angular, boulders can be transported high on to the slope of the 

watersheds. Rudoy (2002) suggested that maximum jökulhlaup discharge, Q. =0.0075xV°'667m3s"1, where Vm3 is 

the IDL volume, and gave examples of velocities up to 32.5ms"'. Walder and Costa (1996) gave mean relationships 

of Q,,,. X 0.0046xV°'66m3s"' for tunnel-drainages from 26 lakes and QMax=0. l lxV°'44m3s'' for non-tunnel collapses. 

Breakthrough 
Because of their short duration, it seems certain that jökulhlaups could have played no significant role in the 
breakthrough of inception fractures, unless they initiated seismic movements. 

Enlargement 
Each of the many jökulhlaups that occurred dramatically raised the head within an IDL, but as they each only 

persisted for several hours, the extra immediate dissolutional widening was insignificant. However, the mechanical 

erosion of existing passages in line with jökulhlaup flow must have been considerable. Large blocks of limestone, 

and contained clastic impurities, were rapidly transported along cave passages and either evacuated from the cave, 

or deposited at blockages. Subsequently, the limestone deposits were probably dissolved away at the contemporary 

maximum rate in some of the continuing IDL flow regimes, whilst the cave walls also regained a more smooth 

appearance. Thus, indirectly, jökulhlaup flows contributed to wall retreat rates, despite their short durations. 

D4.6 Ice contact spillway flow 

Overflow via ice contact spillways could occur from all IDLs at later stages of deglaciation (section 8.4). The 

applicable flow velocities at submerged fractures and conduits are difficult to determine, but may approximate to the 
20cros' estimated for reverse flow (Appendix D4.4). This flow regime was also intermittent, only operating when 

englacial flows were restricted by freezing or were overwhelmed by high melting rates or high precipitation. 

Breakthrough 
Because of its intermittent behaviour, the contribution of ice contact spillway flow to the breakthrough of inception 

fractures was less than that of reverse flow, which itself did not last long enough to cause breakthrough of fractures 

with apertures below about 0.1 cm (Appendix D4.4). 

Enlargement 
Appendix D4.4 showed that a flow velocity of 20cros' was sufficient to enable most post-breakthrough conduits to 

enlarge at the maximum rate applicable to the temperature and Pe02. The next few sections show that enlargement 

also occurred at maximum rates in most other forward-flowing IDL flow regimes. Hence, it is not necessary to 

estimate the separate timescales over which ice contact spillway flows operated, if the total time that a cave was 

submerged by a forward-flowing IDL is taken into account. 

D4.7 Englacial flow 

Flow in englacial conduits above the plastic behaviour limit (PBL) occurred in westward- and eastward-flowing 
IDLs and in ice margin IDLs (sections 8.4.5,8.4.9 and 8.4.10) to depths <200m below the icesheet surface. Using a 

typical icesheet lowering rate of c. 0.5m14Ca I (section 8.1.4: Figure 8.2b), caves and fracture systems could 
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therefore remain submerged in this condition for a maximum of c. 400" Ca or c. 560 cal. a (section 8.5.3). Caves and 
fractures >200m below the surface of a wide IDL previously experienced circulatory flow (Appendix D4.9). The 

regime at Kvithola (northern Norway; Lauritzen, 1986; section 3.3.2) is assumed to be representative of englacial 
flow, where water from a cave system completely submerged by an active IDL flowed fairly directly into 
Röthlisberger channels on the opposite side of the lake and then into outlets at the lower glacier surface. This 

contrasts with the view of Lauritzen (1986), whose Fig. 5 assumed that the flow from Kvithola was via Nye 

channels into a large high pressure subglacial reservoir below the PBL. From its 8cm-long scallops, Kvithola had a 
I m3s'1 high-stage flow rate, at a water velocity of c. 50cros', making it unlikely that an SGR could accept such a 
high flow rate without causing the IDL to overflow the icesheet surface, which would reduce the velocity of the cave 
stream. The larger scallop size also makes it less likely that Kvithola was part of a meltwater SGW (section D4.10). 

The maximum head for englacial flow is c. 200m, because the outlet can only occur above the PBL. However, the 
effective head at Kvithola was c. 10m (below). As the ice surface lowered, the PBL also lowered in altitude, so that 
the total head of water driving englacial flow through conduit or fracture systems and the icesheet remained roughly 
constant at a maximum of c. 200m, but more likely at an average near 10m, if Kvithola is typical. Thais, each 
individual cave hydraulic ratio (HR) also remained roughly constant, until the conduits and fractures emerged above 
the IDL and the phreatic flow was cut off. However, the flow velocity and effective head of water for englacial flow 

was extremely variable between caves, because they each depended on local glacier hydrology, and Kvithola may, 
in practice, not be typical for either its I Om head or its 50cros' flow velocity. 

Breakthrough 

From Figure 8.8, planar fractures from 5m length and 0.01cm aperture to 5km length and 10cm aperture would be 
beyond breakthrough at a flow velocity of 50cros'. A 130m-long planar fracture (the length of the Kvithoia 

conduit) would coincide with breakthrough at HR= 6x104m' at an aperture width of c. 0.25cm. Hence, Kvithoia 

can be assumed to have experienced tectonic breakthrough to this aperture size, or alternatively, a smaller inception 
fracture with this breakthrough dimension could have reached breakthrough in this flow regime, given sufficient 
time. The effective head at breakthrough=HRxL2= c. 10m, and this likely continued to drive the enlargement phase. 

From Figure 8.8, the 240m-long Elgfjellhola would have had a HR of 1.7x1 0'm', a flow velocity of 60cros' and 
an aperture of 0.4cm at breakthrough below a head of 10m, or a HR of 0.9x10'm', a head of 5m and an aperture of 
0.5cm if the velocity was 50cros"'. The caves of Elgfjell were submerged in an englacial flow regime from c. 10200 

until c. 10000, a maximum duration of some 200t4Ca (Appendix D3.5) or c. 280 cal. a (section 8.5.3). From Figure 
8.10, the 240m-long Elgfjellhola could have reached breakthrough (at an aperture of 0.4cm) in 280 cal. a at a 
hydraulic ratio of 1.7x 104m' if its initial aperture was larger than c. 0.06cm. At a hydraulic ratio of 0.9x 10 -41no', an 
initial aperture of 0.08cm would be required to achieve breakthrough in this timescale. These are relatively small 
tectonic openings, showing how effective the englacial flow regime, with its large effective head, was inpromoting 

chemical inception at those fractures not created large enough for immediate tectonic breakthrough. 

Enlargement 

From Figure 8.8, all 1km-long cylindrical conduits with a radius of 0.6cm or more enlarged at maximum rates when 
the flow velocity was 50cros"1. This therefore applied to most phreatic caves in the study area. Extra mechanical 
erosion seems even more likely to raise the wall retreat rate to -lmma' than in the lower velocity reverse flow case 
that was considered in Appendix D4.4. For caves submerged in this flow regime for the maximum time of 560 cal. 

a, the maximum diameter enlargement was 560x2xlmm = -l. lm. 

D4.8 Low pressure subglacial reservoir flow 
This special flow regime probably occurred above the PBL of all narrow flowing IDLs that had fractures small 
enough to prevent the filling of the lp-SGR (section 8.4.5 and Figure 8.7). The head was : 5200m above the `open' 

outlet, but the maximum duration was constrained by the `fracture straddling' time when the fracture straddled the 
ice wall between the IDL's hp-SGR and the fracture-fed lp-SGR, without a continuous bypassing Nye channel 
above it, nor an enlarged parallel karst conduit. The duration of an lp-SGR can be estimated from the shorter of the 
time it took the ice wall to advance along the length of the fracture and the time it took the base of the hp-SGR to 
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descend through the vertical range of the fracture. From Figures D3.2-D3.5, the western extremity of the Tverrfjell 
IDL advanced some 41an in some 85014Ca, i. e. -5m14Ca'. This gives a first estimate of lp-SGR duration for a 
1000m-long fracture of c. 200'4Ca. Assuming that the bases of the SGRs lowered at least at the typical c. 0.5m '°Cä' 

rate of the ice-melting height (section 8.1.4), then the second estimate also gives a maximum duration of about 
20014Ca or 280 cal. a (section 8.5.3) for a steeply-inclined system with a vertical range of 100m. 

Breakthrough 
In this case, the breakthrough can be calculated more directly from the hydraulic parameters. Thus, a 1000m-long 

planar fracture under a maximum head of 200m has a hydraulic ratio of 2xI04m"'. From Figure 8.10, an initial 
0.1cm aperture would achieve breakthrough in <40 cal. a, which is within the maximum time available. However, 

although the hydraulic ratios were higher for fractures with shorter path-lengths, reducing the time needed for 
breakthrough, the time taken for the ice wall to pass the fracture was also shorter. For example, al 00m-long fracture 

with 0.01cm aperture and a maximum HR of 0.02m' would take <100 cal. a to achieve breakthrough, but the ice 

wall would pass in only c. 28 cal. a, preventing breakthrough. However, IOm-long fractures with 0.01cm apertures 
would be at breakthrough instantaneously, despite the ice wall passing in only three years. 

Enlargement 
After breakthrough, the fracture would enlarge in turbulent flow at the maximum wall rate of 0.3mma l (section 
8.5.3), but only whilst the large head was sustained above an outlet into the lp-SGR that remained unfilled. Thus, 

although a 1000m-long fracture might still have 240 cal. a before the ice wall passed (potentially giving a widening 
of 2x0.3x240mm = c. 15cm), it is assumed here that the lp-SGR would soon fill up after breakthrough, to become 

part of the hp-SGR at the base of the IDL, when the other flow regimes apply. Hence, the contribution that flow into 

a previous lp-SGR could make to the enlargement of post-breakthrough conduits is regarded as insignificant. 

D4.9 Circulatory flow 
The deeper parts of wide IDLs and hp-SGRs may have had slow, circulatory, flow regimes below the more direct 
flows towards western and ice contact spillways or into englacial channels above the PBL (Appendix D4.7). Flow 

rates through caves probably varied considerably with depth and locality. Maximum flow rates were perhaps 
somewhat greater than those of the stratified flows of nunatak IDLs (Appendix D4.3). A typical flow velocity of 
I Ocros"' is assumed, i. e. much more than would apply from just the enlargement of the SGRs by melting. Minimum 
flow velocities were «lcros ', from the evidence of very fine sand deposited in Invasjonsgrotta (Z4; Appendix 
D5.5). From Figures D3.3-D3.6, this condition could have persisted for some 60014Ca or 840 cal. a (section 8.5.3) at 
the base of the Jordbruelv IDL that had an initial water depth of 500m, before the PBL lowered below the base of 
the SGR, and any caves or fractures at the lowest levels became more directly in line with englacial flow. 

Breakthrough 
From Figure 8.8, a velocity of lOcros-' at breakthrough required planar fractures to have maximum lengths of 10, 
100 or I 000m for final aperture widths of 0.1,1.0 or 10cm at hydraulic ratios of 10'2,10'5, or I04m'. The applicable 
hydraulic gradients and hydraulic ratios are intermediate between the nunatak flow and the reverse flow cases. From 
Figure 8.10, only fractures with initial apertures as small as 0.2cm that are <100m long could achieve breakthrough 

within the maximum 840 cal. a available, at a hydraulic ratio of 10'5m'. A fissure 1000m long at HR=104m' could 
only have reached breakthrough if its initial aperture was about 3cm wide. At a flow velocity of <lcros'', all the 
above lengths would need to be reduced a factor greater than 10. 

Enlargement 
Figure 8.8 shows that cylindrical conduits with radius >_I cm enlarge at maximum rates at a flow velocity of 10cros-', 
for path lengths <_300m. Thus, many caves in the study area perhaps enlarged at maximum contemporary rates even 
whilst being submerged deep beneath wide IDLs. The actual dissolution rate in these conditions may be near the 
0.35mma' estimated in section 8.5.3. Thus, if the Jordbruelv IDL retained a mean circulatory flow regime of 10cros 
' for 840 cal. a, most of the pre-existing underlying passages could have enlarged their diameters by 840x2xO. 35mm 

= c. 0.6m during this phase, as could most post-breakthrough conduits. However, for circulatory flow velocities of 
I cros'', only conduits with a radius of 1 cm that were < 30m long could enlarge at maximum rates. 
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D4.10 Meltwater subglacial waterway 
Meltwater SGWs flowed from IDLs that eventually became drained IDLs above the deglaciation marine limit 

(sections 8.4.5 and 8.4.6). In both cases of gradual and catastrophic draining, phreatic flow in any underlying cave 
commonly lasted until the level of the IDL and any ap-SGR fell below the level of the cave, when the cave was also 
drained. Figure 8.7f illustrates the case where the SGW flowed beneath a short tidewater glacier. The meltwater 
SGW flow regime may be compared to the present spring melt, but it was more powerful and it lasted initially all 

summer. Thus, endokarst caves and conduits that lay beneath the remnant Nye tunnel channel and that were above 
the deglaciation marine limit could continue to exhibit phreatic flows, dependent on their elevation, morphology and 
the seasonally-varying recharge. The large flows persisted until all the ice had melted, during which time the caves 

were either drained, to remain as relict phreatic passages, or else they reverted to mainly vadose stream passages. 

For the dissolution of limestone, this regime only differs from that of the variable interglacial summer flows 

(Appendix D4.13) by the high flow rate, the lower water temperature (now slightly above 0°C), and by the 

continuing low PcO2, prior to the re-establishment of vegetation. Thus, all three cave development phases could 

occur in this regime, even whilst cave entrances were still situated below glaciers. 

The peak flow velocities in these situations probably reached the highest of all the flow regimes (except for 

jökulhlaup flow). According to Boulton et al. (1996, p407), simulated rates of glacially-driven flow are two orders 

of magnitude greater than modern flow rates. This can be related to an icesheet lowering rate up to 0.7m14Ca 

(Figure 8.2b), which (ignoring ablation) is equivalent to an annual calendar year precipitation of 0.45m. This must 
be added to a Preboreal precipitation rate that was greater than at present (section 2.4.1) and that lost little in 

evapotranspiration, because it fell directly on to the melting icesheet, before the growth of vegetation. 

It is not unusual to find scallop lengths as short as 4cm in relict phreatic passages at valley floor locations, as in 

Bulandsdalgrotta (Z2; Photo D4.1). These indicate a high-stage flow velocity around 100cros"', which is assumed 
to be representative of a meltwater SGW. For SGWs below stagnant glaciers, the ice melted at the fastest possible 

rate, at least 0.7m14Ca 1. Because this ice had a maximum thickness of 200m, the maximum duration of this flow 

regime at any one cave was likely some 30014Ca or 420 cal. a. [It would be a useful exercise to study if small 

scallops are only found at lower cave locations and glacial situations where CL=F or where GSA, D, E, G or H, i. e. 

where deglacial flows were most severe]. 

Photo D4.1 Dry Passage in Bulandsdalgrotta (Z2) 
Formed in vertical stripe karst (with minor folding). Scallop size -4cm. Photo by M. Smith. 

Breakthrough 

A velocity of 100cros' coincides with breakthrough for lOm-long planar fractures with apertures of 0.01cm at 
HR=1 m` to fractures 1000m long with apertures of l cm at HR=10'5m--1 (Figure 8.8). The flow rates were very high, 
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but the hydraulic heads probably reduced to being little more than the vertical ranges of the fracture system, because 
the effective heads in the above two examples are 100m and IOm. From Figure 8.10, a I000m-long fracture would 
achieve breakthrough within 420 cal. a at HR=10"3m' from an initial aperture of 0.2cm. 

If the fracture was totally submerged below an ap-SGR, rather than below a hp-SGR, this could reduce the hydraulic 
parameters and increase breakthrough times. Alternatively, for any glaciers that melted at their lower ends above the 
contemporary sea level, if the lower end of the fracture was beyond the end of the SGR, this would increase the head 
and reduce breakthrough times. Otherwise, the hydraulic conditions in the karst could have- been comparable to 
those which persisted during the 1000014Ca of the Holocene. In this case, because the breakthrough times of 
fractures at low temperatures and low Pco2 levels are comparable to those at present ambient conditions (Appendix 
D4.13), the maximum 30014Ca contribution of this regime to fracture breakthrough should not be significant. 

Enlargement 
For conduits submerged by flows at 100cros', wall retreat rates of lmma l can be assumed more safely, by also 
considering mechanical erosion. Thus, the diameter enlargement during the maximum 420 cal. a of this flow regime 
is 420x2xlmm=c. 0.8m. Enlargement below a meltwater SGW could explain the existence of the relict hybrid 
(phreatic / littoral) Football Pitch Cave B (Z I; section 8.4.3) and also Neptune's Cave (Z2; Appendix D5.3). 

D4.11 Brackish subglacial waterway 
Brackish SGWs commonly continued beyond meltwater SGWs and also occurred below drained IDLs, at active or 
stagnant short tidewater glaciers below the deglaciation marine limit (sections 8.4.5 and 8.4.6; Figure 8.7f). At this 
elevation, vadose flow was not possible early in the Holocene. The low hydraulic gradient is difficult to determine. 
The speed of flow could vary from 100cros' (near the contemporary sea level, being the maximum velocity of the 
inflowing meltwater SGW, Appendix D4.10) to practically zero (where tidal effects became paramount). A stagnant 
tidewater glacier was <200m thick above its valley floor at the onset of an SGW. Because of melting by the sea, this 
ice melted faster than the previous high rate of 0.7m14Ca' (Figure 8.2b), i. e. in <300'4Ca. 

Breakthrough 
If the inflowing meltwater had a sufficient head to maintain a high velocity near sea level (perhaps creating an 
upwelling beyond the end of the tidewater glacier), breakthrough conditions at fractures at the deglaciation marine 
limit could approximate to those up-valley, beneath the meltwater SGW (Appendix D4.10), and the two regimes 
could be considered together. Fractures with entrances closer to the end of the tidewater glacier experienced 
dissolution in water of higher salinity, probably restricting further the achievement of chemical breakthrough 
(Appendix D4.12). 

Enlargement 
By comparison with Appendix D4.10, maximum wall retreat rates could perhaps be reached in conduits near the 
deglaciation marine limit. Flow velocities towards the end of the tidewater glacier may have remained as high, and 
can be assumed to have stayed above, say, 20cros ', even in tidal situations. Without considering salinity effects, by 
comparison with reverse flow (Appendix D4.4), a maximum dissolution rate (including mechanical erosion) could 
then have been sustained at most conduits beneath the waterway. Hence, diameter enlargement in the <420 cal. a 
available could have reached <420x2xlmm=<0.8m. However, from Appendix D4.12, marine salinity in the early 
Holocene appears to have prevented dissolution, so that conduits at low altitudes close to the end of the tidewater 
glacier probably did not enlarge at all. 

Assuming that SGWs are always formed when the thickness of the tidewater glacier reduces to <200m, then the 
lower the altitude of the upper input to the fracture system, the shorter the time that inception fractures can 
experience breakthrough conditions as part of an englacial hydraulic flow path before becoming part of a subglacial 
waterway, or before the collapse of the tidewater glacier. This, together with the probable lack of conduit 
enlargement at low altitudes in marine conditions, provides an additional explanation for the comparative rarity of 
dissolutional karst systems both at the coastal strandflat, and below about 40m altitude (section 8.1.10). 
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D4.12 Marine inundation 
The submarine conditions applicable at the onset of glaciation and during deglaciation and isostatic uplift were 
discussed in section 8.4.7. Referring to Calcite Compensation Depth (CCD; Appendix A2.1), Trudgill (1985, 

pp127-155) pointed out that, although oceanic surface sea water is supersaturated with respect to calcite, and 
commonly will not dissolve limestone, the chemistry of inter-tidal waters can vary considerably, especially if 

organic matter is present with restricted circulation. Both carbonate precipitation and dissolution can then occur, the 
latter even if the water is apparently saturated. At night, CO2 levels rise and pH falls, due to respiration of marine 
organisms in the absence of photosynthesis. Additionally, grazing and boring molluscs and other organisms directly 

remove coastal limestone and also weaken the surface further for wave erosion (Photo D4.2). Tucker and Wright 
(1990, p33) stated that the supersaturation of sea water is limited to low latitudes: it is undersaturated in mid and 
high latitudes. Thus, dissolution of CaCO3 can occur in temperate shallow seas. The likely enhanced dissolution in 

sea water diluted by glacial meltwater (which in winter could reach temperatures below 0°C) does not appear to be 
discussed in the literature. Singurindy et al. (2004) conducted laboratory experiments to examine calcite dissolution 

and precipitation in various NaCl and artificial seawater solutions, but at 23°C. However, EL Sjöberg (1978, p66) 

reported that the maximum rate of calcite dissolution at the CCD at 2°C is 2mgcm 2a ', equal to a wall retreat rate of 
<0. Olmma 1. 

The applicable chemistry during the formation of sea ice is complex. Papadimitriou et al. (2003) cited expectations 

of calcite precipitation during natural sea ice formation and suggested supersaturation or precipitation with CO2 
degassing, from their own experimental evidence. 

Breakthrough and enlargement 
Photographic evidence from Neptune's Cave (Z2), where barnacle shells are still attached to the walls and roof of a 
passage that was inundated by the sea for 55014Ca after the barnacles died at the end of the Younger Dryas 
(Appendix D5.3), does not reveal any `plinths' beneath the bases of the barnacles. Such plinths, and corrosion of the 
barnacle shells themselves, might be expected if there was strong dissolution in sea water, and their absence 
demonstrates that Neptune's Cave was enlarged prior to its marine inundation. Thus, it is deduced that, apart from 

the enlargement of entrances discussed in sections 8.8.2 and 8.8.3, submersion of study area caves below sea level 
during deglaciation has little effect, in the time available before uplift, on their speleogenetic enlargement. This 

argument may also be extended to submersion below sea level during glaciation. Although these submersion periods 
are probably longer than those for deglaciation, as discussed in section 8.1.3, they are not longer by orders of 
magnitude. Thus, in the absence of other evidence, it is concluded that marine inundation during glaciation also 
contributes little to karstic dissolution. 
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A special case is Langfjordgrotta (Z2), which has a resurgence entrance only 10m. above fjord level that leads to a 

sump fed from the lake Fjelldalsvatn (altitude 43m), some 1400m to the southeast. Most of this (mainly unexplored) 

system was below sea level for much of the Holocene. However, the flow of fresh water from the lake after it 

emerged above sea level at c. 640014Ca BP (Appendix D5.3) was sufficiently strong to restrict marine incursion. 

Hence, the conduit probably enlarged at a high wall retreat rate to a diameter of several metres. A similar process 
likely accounts for Olafs Kilden (Z1; section 8.4.3). The chemical breakthrough of even short inception fractures 

during the periods of total marine inundation also seems very unlikely, especially because, after the tidewater glacier 

melted completely, marine inundation commonly reduced the hydraulic gradients and flow velocities to low values. 

D4.13 Interglacial flow 
Interglacial conditions were briefly discussed in section 8.4.11. Phreatic, closed system, dissolution rates for the 
Scandinavian Caledonide metalimestones under meteoric environments during the Holocene and previous 
interglacials are assumed to equal more closely those of the standard Palmer and Dreybrodt conditions of 10°C and 
1% or 5% Pc02. The approximation is closest for lower-altitude fracture, conduit and cave systems below the tree- 
line (which was also some 200m higher during the Ika Boreal period: section 2.4.2). These have high vegetational 
Pc02 levels and organic acid concentrations. It may also remain fairly similar at higher altitudes above the tree-line, 
where a reduced mean annual temperature tends to counteract the reduction in calcite saturation concentration 
caused by a groundwater Pco2 that decreases to atmospheric levels. 

Breakthrough 
During interglacials, water seeps through the fracture network, driven by the local hydraulic gradient, whilst most of 
the flow is still along the surface. It is therefore assumed that allogenic stream sinks maintain constant heads for pre- 
breakthrough flows, for all considered apertures. Breakthrough times for the standard Palmer conditions of 10°C and 
1% Pco2 are shown in Figure 8.10, from which a fracture with an initial aperture of 0.001cm required a hydraulic 

ratio of c. 0.1 m' to reach breakthrough in the 1000014Ca available during the Holocene. This could be realised by, 

for example, vertical fractures (HG=1) that lie close to valley walls and are <10m long. (In these calculations, the 
difference with the 11560 cal. a duration of the Holocene, Stuiver et al., 1998, is not significant). Fractures with 
initial apertures of 0.01cm require hydraulic ratios of at least 10-3m'1 to reach breakthrough within the Holocene. 
This could apply to fracture systems with vertical ranges of 40m that have path lengths <200m, such as a system in 

vertical stripe karst with orthogonal fracture sets with an allogenic sink into a 40m vertical fracture leading via a 
160m horizontal fracture to an exit point. The same fractures with vertical ranges of 10m require path lengths 

shorter than 100m. Fractures with initial apertures as large as 0. lcm require a hydraulic ratio of only 5x10'm' to 
reach breakthrough in the same time. This could be achieved with fractures <1000m long with a vertical range as 
small as 5m. Thus, it is theoretically possible that most caves of the study area enlarged during the Weichselian 
deglaciation from 0.1cm-aperture fractures that achieved breakthrough during the Eemian interglacial, if these 
fractures were not eroded from the surface during glaciation. 

Phreatic enlargement 
The enlarged cave systems drained as they emerged above the levels of the lowering ice-dammed lakes, providing 
opportunities for rejuvenation as the water surface lowered to sea level or to the level of an inland lake. Phreatic 

enlargement was then only possible along the sumps of the active streamways of combination caves, and in the 
newly-forming mainly vadose caves. For the great majority of the relatively short active caves of the study area, 
which predominantly have allogenic catchments from non-carbonate rocks, both karst recharge and discharge 

remain highly unsaturated and aggressive despite autogenic recharge by percolation waters from overlying snow 
during the spring melt (Appendix A2.5). Hence, as in the glacial environments, it is assumed that dissolution occurs 
at maximum rates. During deglaciation, it is likely that flow was maintained at maximum rates when the air 
temperature was above freezing, perhaps for eight months of the year (as now). Holocene spring melts may reach 
similar flow rates sporadically, but are commonly only sustained for about one month per year. Indeed, some sumps 
dry out completely in winter, whereas others freeze partially. Hence, on an annual basis, Holocene wall retreat rates 
can commonly be expected to be a fraction of the 1 mma maximum rate that was calculated by Palmer (1991), and 
that was deduced for dissolution in various deglacial flow regimes. 
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From Appendix D2, most caves in the study area experienced interglacial conditions from 900014Ca BP at the latest, 

so that those active sumps that were not subject to changing water courses (probably the great majority) have 

remained in fairly constant hydrological conditions for at least 10000 calendar years. Estimates of the diameters of 

sump passages in the study area are difficult to check directly, because very few have been explored by divers. From 

cave surveys, the widths of sumps in mainly vadose caves lie almost invariably in the range 1-2m, with two thirds 
being c. 2m. Only Diiaranjueniehola (Z3) has an apparent sump width of 3m and it carries sustained high velocity 
flows from snow fields in summer months (although from a catchment area of only 0.5km2). Assuming that the 

width of a sump shown on a cave survey commonly approximates to the width or diameter of a square or circular 
tube, it is concluded that the annual Holocene wall retreat rates for sumps within MV caves lie in the range 0.05- 

0.10mmä'. This overlaps the `one month in twelve' scenario at which dissolution occurs at the maximum immaa' 

rate. Sustained flow or powerful mechanical erosion can increase the rate to 0.15mmä'. Any sumps with widths less 

than Im had probably not achieved breakthrough before the start of the Holocene. 

Most of the sump widths in combination caves lie in the range 2-6m, with frequencies of the sump widths noted on 

cave surveys being: <2m (13); 2m (20); 3m (11); 4m (6); 5m (8); 6m (3). Outside this range, the main'sump in 

Landbrua (KL) is 12m wide and the survey of Stor Grubblandsgrotta (KU) shows the width of the "sump lake" 

to be 24m (Appendix B 1.13). However, these sumps may have roof heights of only 4m and 2m, giving equivalent 
diameters of roughly 7m. (Because phreatic passages tend to maintain their cross-sectional areas as their shapes 

change, it is reasonable to take the diameter of an equivalent cylindrical tube when considering dissolution rates). 

Many of the 33 recorded sumps in combination caves with widths of 2m and less (some being less than lm) may 
have enlarged to this size within the Holocene, so that they probably display the same characteristics as those of the 

MV caves. Subtracting 2m from the widths of the other combination cave sumps leaves a range of 1-5m for the 

enlargement of pre-existing lowest level phreatic passages from extra `erosional' Holocene effects, from deglacial 

enlargement under IDLs, and possibly from enlargement that predated the Weichselian deglaciation. Section 8.6.2 

shows that deglacial enlargement was likely to account for width increases in the range 1-2m. Hence, sumps up to a 

total width of 4m can be explained by the additions of deglacial and `chemical' Holocene enlargements alone. 
Sumps with a width of 5m can gain the extra metre by a more sustained flow and high velocity Holocene erosion, 
from near-average catchment areas (as applies to all eight examples above). The sumps with widths (or equivalent 

widths) of 6m and 7m are all in caves in valley floor locations that are supplied by flows from catchment areas that 

are at least twice the mean study area size. For example, Landbrua (KL) and Stor Grubblandsgrotta (KU) have 

catchments of 42 and 19km2. Thus, these caves have probably sustained high velocity erosional flows from spring 

melts for much more than just one month of the year. For pre-existing passages of 2m initial diameter to enlarge to 

7m within the Holocene, a wall retreat rate of 0.25mm a' is required. As this is still well-within the theoretical 

maximum, it is not necessary, and probably not prudent, to consider any enlargement prior to the Weichselian 

deglaciation. Hence, it is estimated that the annual Holocene wall retreat rate for sumps within combination caves is 

also 0.05-0.10mmä' for the general case, which can be increased to 0.15mmä' by more powerful and more 

sustained mechanical erosion for caves with near-average catchment areas. Sustained, very high-power, spring melt 
from large catchment areas into valley floor caves can increase the rate to 0.20mma', and exceptionally, to 

0.25mma'. Because the highest magnitude seismic shocks that created inception fractures occurred at the time of 

maximum uplift (near the YD to Holocene transition) and followed the ice margin recession (section 8.1.10), it 

seems very likely that tectonic breakthrough and the start of new phreatic enlargement in mainly vadose caves and 
in combination caves occurred together at the same deglaciation event in each locality. 
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APPENDIX D5 APPLICATION OF THE TDMO MODEL 

The models derived in Chapters 6-9 are used in this Appendix to outline the development histories of five cave 
systems that lie west and east of the ridge that separates the Western and Vefsn catchment areas. Reference should 
be made especially to the deglaciation sequences presented in Appendix D3 (Figures D3. l-D3.9), the flow regimes 
discussed in section 8.4, the breakthrough and enlargement possibilities discussed in sections 8.6-8.9, and the 
timings of cave development considered in Chapter 9. Each system and its local landscape are commonly discussed 
by working backwards in time. Thus, active vadose elements are considered first, followed by any possible relict 
vadose elements, and phreatic passages are treated upwards in turn, from active to relict. The deglacial IDL that first 

enlarged the highest relict phreatic passage then constrains the time when deglacial seismicity produced the tectonic 
fractures that led to the oldest existing passages. In this Appendix, dates refer to '4Ca BP, unless stated otherwise. 

D5.1 Cave of the Cold Wind (Z3; GS=K; Appendix B 1.3: Figure B 1.4) 
Cave of the Cold Wind consists primarily of a single phreatic passage from the entrance (high on the side of the 
Overengbakk valley above Toerfjellhola) to a pair of avens up to 10m in height. The active vadose parts of the cave 
are small, immature, flow routes for misfit streams that only make brief appearances before resurging below the 
entrance. The water enters the cave at one of the tall avens that have acquired widths of c. 10m. However, in 
addition to these active vadose elements and fractures below the entrance that almost certainly derive from the 
Holocene, there are two small relict vadose inlet passages that join and lead to the end of the main passage from ice 
Hall. These may derive from the Eemian interglacial, although, because of their proximity to two streams that cross 
the phreatic passage, they could be abandoned Holocene passages. 

A pre-Eemian origin for the cave is also hinted at by the possibility of two enlarged entrance chambers in sequence. 
Thus, both the present entrance chamber and the inner Ice Hall (which is also close to the side of the valley) possess 
widened parallel walls of the type that signify enlargement when coincident with the surface of an ice-dammed lake 
(section 8.9.4). Ice Hall could therefore have enlarged near an entrance during the Saalian deglaciation, before the 
connection was made to the present entrance during the Weichselian deglaciation. However, it seems more likely 
that both chambers enlarged as the same (Weichselian) Tverrfjell IDL lowered past them, after the phreatic passage 
in the cave formed beneath the same IDL. The cave was submerged by this westward-flowing IDL to a maximum 
depth of 210m from 10700-10200 when the cave drained, an interval of 50014Ca or 900 cal. a (Stuiver et al., 1998, 
Figs. A7 and A8). Because the cave was probably in line with englacial conduits above the PBL for nearly all this 
time, dissolution was at a presumed rate of imma' (Appendix D4.7), so that the passage diameter widened by c. 
1.8m. Although sections and cross-sections have not been published for this cave, the plan passage widths are 
commonly less than 2m, suggesting that total enlargement during the Weichselian deglaciation was likely. 

If an englacial flow of 50cros' passed through the 160m-path length of the earlier cave fracture system, apertures of 
0.3cm would have been at breakthrough immediately (Figure 8.8). From these arguments, it is likely that Cave of 
the Cold Wind originated from tectonic fractures that were produced early in the Weichselian deglaciation, with 
phreatic enlargement beneath the large Tverrfjell ice-dammed lake. However, some prior conditioning during the 
Saalian deglaciation is also a possibility. 

D5.2 Toerfjellhola (Z3; GS=K; Appendix B1.3: Figure 131.3) 
The powerful summer main stream in Toerfjellhola (Photo 131.2) appears to be an overt, because the vadose 
entrenchments and waterfall recessions along the length of its streamway have dimensions that can be accounted for 
by normal Holocene erosion (sections 8.7.2 and 8.7.3). A Holocene headward capture process into an originally- 
phreatic conduit at White Water Passage progressively abandoned entrances and shafts situated SW of the present 
sink entrance. The keyhole cross-sections of the small active tributary that enters beyond here also show significant 
Holocene vadose entrenchments below phreatic roof sections, which continue down the main stream passage to the 

sump. None of the cross-sections in Figure 131.3 have a `double vadose' profile, suggesting that the present 
streamway did not function as an active vadose passage in any interglacial prior to the Holocene. 
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Most of the cave comprises a complex series of relict phreatic passages. Among these, Second Roof Series (Figure 
B1.3: cross-sections 7,8, and 9) and East-West Passage (cross-sections 17 and 18) have small, im-scale, relict 
vadose entrenchments at altitudes from 450-425m that indicate short-lived vadose flows. Because of their 

elevations, these are unlikely to be caused by present Holocene floods, although they could have acted as early 
Holocene flood overflow routes before the main streamway was enlarged to its present size. It is also just possible 
that they were carved as the Tverrfjell IDL lowered past them during the superflood that collapsed the Tosenfjord 

glacier at 9890±230 (Appendix D3.6), because the IDL was at an altitude of 450m at this 170m YD isobase at that 

time (section 8.1.4: Figure 8.2a). In either case, they confirm that all the relict phreatic passage elements were in 

existence prior to the start of the Holocene interglacial flow regime. Other relict vadose features include the wide 

sloping floors of Union Passage and Lower Union Passage (with clay-covered water-worn blocks) and possibly 
Sloping Chimney and The Ramp. The wide passages are quite distinct from the small relict keyhole passages 

mentioned above, and could have acted as inputs of the main stream during previous interglacials. The 10m Pitch 

below the Lower Entrance may have been enlarged as a vadose waterfall shaft in the earliest part of the history of 
the cave passages that remain at present. 

Section 9.7 concluded that the truncated phreatic passages developed as half loops under ice-dammed lakes, and not 

as complete phreatic loops that were later truncated by valley deepening. During the Weichselian deglaciation, the 

westward-flowing Tverrfjell IDL submerged the cave to a maximum depth of 465m that reduced to 65m from 10700 

until 9890, when the IDL collapsed dramatically. This duration was 81014Ca or c. 1600 cal. a (Siemers et al., 1998, 

Figs. 7A and 713). If the passages only enlarged in englacial flow when above a PBL that was 200m below the IDL 

surface (Appendix D4.7), this only lasted from 10100 (section 8.1.4: Figure 8.2a) until 9890 for the lowest passage 

at 385m altitude. This duration was c. 450 cal. a. For higher passages with outlets at 425m, this condition lasted for 

an extra c. 200 cal. a. Thus, at a maximum dissolution rate of lmmä', the diameter enlargements varied from 0.9- 

1.3m in these timescales. These are insufficient to account for the sizes of several passages below the Lower 

Entrance. Hence, passages enlarged in a circulatory flow regime whilst submerged by more than 200m (Appendix 

D4.9) and / or enlargement started under a deglacial IDL prior to the Weichselian. Cross-sections 11,12 and 13 

appear to have `double phreatic' profiles, hinting at enlargements of Trunk Passage at two different times, and there 
is probable enlargement upwards of relict phreatic elements from The Hall via Trunk Passage to Union Passage. 

A possible scenario for the cave's history is that deglacial seismicity at the end of the glaciation before the Elsterian 

created short fractures near the Lower Entrance that enlarged beneath an IDL into a short phreatic loop, with water 

emerging via conduits since removed above the Lower Entrance. At the same time, a separate phreatic loop formed 

down and up the deep shafts near the Main Entrance. During the following interglacial, the Overengbakk enlarged 
the l Om Pitch under vadose conditions, with a later capture via an aven to the north. The water left the cave via the 

highest relict phreatic passages at resurgences in the bed of the Overengbakk valley. The conduits near the Main 

Entrance remained relict. The process repeated at the Elsterian deglaciation, with the creation of a deeper loop via 
Union Passage and a longer loop from the Main Entrance to JoKe Exit. During the subsequent Holstein interglacial, 

the Overengbakk was captured farther upstream, and lowered and widened the floor of Union Passage (cross-section 

15), but the upper end of the cave remained relict. The Saalian deglaciation created the loop from the Lower Union 

Passage and Trunk Passage to a phreatic outlet slightly farther down the Overengbakk valley. At the same time, a 

much longer phreatic conduit connected the upper end of the cave via the Second and Third Roof Series into the 

Trunk Passage. Another capture of the Overengbakk brought allogenic water into Lower Union Passage during the 

Eemian interglacial, with Trunk Passage remaining as a sump. The Main Entrance to Toerfjellhola still did not 

capture an allogenic stream, and so most of the cave remained relict. The final Weichselian deglacial IDL created a 

phreatic conduit along the roof of the present stream passage that led to Trunk Passage, which enlarged again. After 

draining, the entrances below Main Entrance progressively captured a tributary to the Overengbakk, which 

entrenched the stream passage along its entire length during the Holocene, and deepened and widened a conduit at 

the lowest part of the cave to create The Hall. 

The path length of the fracture system that connected the upper end of the cave to Trunk Passage was some 200m 

long. If it was created with an aperture of 0.4cm and it experienced englacial flow at 50cros"', then it would 
immediately be at breakthrough and enlarge at the maximum rate (Figure 8.8), which seems feasible. The other, 
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earlier, fractures were shorter and therefore even more likely to enlarge at maximum rates from the outset. Thus, 

tectonic breakthrough at each stage of the development of Toerfjellhola could have been achieved early in the 
deglaciations considered above, and it is not necessary to postulate earlier glacial cycles to complete any chemical 
inception. From this analysis, Toerfjellhola, which appears to have developed over four glacial cycles, may contain 
the oldest surviving cave passages in the study area. 

D5.3 Neptune's Cave (Z2; GS=E; Appendix B1.2: Figure B1.2) 
Neptune's Cave was chosen for study because it contains unusual internal deposits, which the author arranged to be 
dated (Table A5.1), and because it is situated near the coast at only 126m altitude, where there was competition for 
deglaciation by flooding beneath an IDL or by recession of the ice margin and marine inundation. 

The active vadose elements of the cave that occupy its lowest level are small, immature and consistent with 
development within the Holocene. Relict vadose elements include headward erosion of the shaft entrances and 
entrenchments of the floors of Bone Passage and Scallop Hall. These likely developed as the surface of an IDL 
lowered through the cave. A previous entrance above Scallop Hall is now blocked. The relict phreatic elements 
comprise a major loop that connects two shaft entrances via Bone Passage and Cockle Way and include smaller 
subsidiary connecting loops at lower levels. Thus, the phreatic passages increase in cross-section upwards, although 
this may arise from the relict vadose enlargements. Unconsolidated sediments in the cave show no stratigraphy as 
they contain assemblies of marine shells and organic sediments, which are assumed to have entered the cave during 
a major bog-burst flood event in the Holocene (see below). They therefore do not provide information about earlier 
phases of the cave's development. The sparse population of dated barnacles attached to the roof and walls of the 
passage Barnacle Street lived in the cave when it was submerged below sea level at the start of the Holocene. The 
shells are not corroded (Appendix D4.12), proving that the phreatic passages were already fully formed at this time. 

A strict application of the reconstructed Grenlie formula (Figures 8.2a and b) would expose Grenlifjell (1.3km south 
of Neptune's Cave) as a nunatak above the icesheet at 545m altitude at its YD isobase of 145m at c. 10200, 

apparently the earliest time that the cave could have been submerged beneath a (nunatak) IDL. However, Figures 
D2.3 and D2.4 show that the ice margin passed Neptune's Cave at c. 10210, when the cave was inundated by the 
sea, giving little opportunity for phreatic dissolutional enlargement below a local IDL. This problem is resolved by 
the consideration that the ice melted much faster nearer the coast than predicted by the formula (section 8.1.4). The 
proposed extrapolation in Figure 8.2a indicates that Neptune's Cave could have been submerged by the IDL at c. 
10700, when the encroaching sea was about 10km to the west. The IDL likely became connected by Nye channels 
above a warm base to a meltwater subglacial waterway that eventually reached the sea (Figure 8.7f). Flow through 
such SGWs could reach 100cros" (Appendix D4.10), although scallop sizes are not recorded in Neptune's Cave. 
The period from 10700-10200 could equal 1000 cal. a (Stuiver et al., 1998, Figs. A7 and A8), giving a diameter 

enlargement up to 2m (assuming dissolution at lmmä'). This is sufficient to account for the size of most phreatic 
passages in the cave. 

The lengths of the inception fractures are <100m. At a flow speed of 100cros1, even 0. lcm apertures would be at 
breakthrough (Figure 8.8), so that Neptune's Cave probably formed totally during the Weichselian deglaciation. A 
similar development sequence could also apply to the adjacent and more complex Svartdalgrotta (Figure B 1.1). 

After Neptune's Cave was submerged below sea level at 10210, the approximate sea level curve (Figure 8.1 b) 

shows that the sea level fell from an altitude of c. 150m to 105m (where the barnacles lived) at later than 9500. 
However, the radiocarbon date for the barnacles of 9900±110 (Table A5.1) indicates the date of their demise, well 
before they became elevated above sea level. A probable explanation is that the barnacles died when the Tosenfjord 

glacier collapsed (dated at 9890±230) and fresh glacial meltwater flowed through the cave (Appendix D3.6). The 

unconsolidated mollusc shells recovered from Bone Passage died at 9610±100 (Table A5.1). These were likely 

washed onto a beach above the cave by a storm, and left undisturbed on the forest floor until brought into the cave 
by a major flood at 1780±7014Ca BP, the age of the organic material in the unconsolidated matrix. The mollusc shell 
age confirms that the main entrance to the cave at 120m was still below sea level at 9610, i. e. after the demise of the 
barnacles. This proposed Holocene history of Neptune's Cave will be amplified in a separate paper. 
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D5.4 Elgfjellhola (Z4; GS=L; Appendix B1.4: Figure B1.7) 
The narrow 1-2m entrenchment in the floor of the passage leading to the waterfall shaft in Elgfellhola, the 3.5m of 
depth of the shaft (Photo D 1.11) and the c. I Om retreat of its north wall are all compatible with vadose development 

entirely within the Holocene (sections 8.7.2 and 8.7.3). This also confirms the prior existence of the relict phreatic 

parts of the cave, which are presently being bypassed at the entrance by the `mainly vadose' inlet passage and below 

the Waterfall Chamber by a lower active conduit. Thus, the TDMO model applies even to Elgi jellhola with its 

relatively simple morphology. The fault gouge that protrudes 50mm at the sharp neotectonic movement of 11cm 

recorded in the face of a scallop 2m before the waterfall (Table 131.1, item 18, Photo 131.12) may result from 

extrusion or may indicate minor dissolution since this (assumed) seismic event, which therefore probably occurred 

after or soon before the cave was drained. (Section 8.1.10 and Appendix D5.5 deduce the former timing). The 

protruding fault gouge wafers observed north of the cave (Table D1.1, items 18 and 22) may indicate extrusion at a 

second (Holocene) tectonic event, or surface lowering by meteoric dissolution (section 6.3.3). 

The Weichselian deglaciation sequence for the Tosenfjord / Fiplingdal area (Appendix D3) indicates that the site of 
Elgfjellhola was inundated by an IDL that became backward-flowing with a reverse flow velocity of c. 20cros' 

(Appendix D4.4) at an altitude of 950m at about 10850. From the reconstruction in Figure D3.4, the roof of the high 

pressure SGR below the IDL may have collapsed at about 10200, the time of the transition to eastward-flowing, to 

create the very wide and deep Jordbruelv IDL with a surface altitude of 700m. Until this time, the water flowed 

mainly south at Elgfell, with occasional jökulhlaups and flow switches to the north. Thereafter, flow was 

consistently south as part of ice contact spillway flow and / or englacial flow at velocities from 20-50 cros'' 
(Appendices D4.6 and D4.7) until 10000, when the IDL lowered to 600m and started to drain the cave. The whole 
240m length of the passage (before the vadose shaft existed) was therefore subjected to turbulent phreatic flows for 

c. 85014Ca or 1400 cal. a (Stuiver et al., 1998, Figs. A7 and A8). During this time each wall probably retreated by. 

1.4m, at the maximum rate of lmma (section 8.5.2). Because the width and height of the passage vary up to 4-5m, 

it is unlikely that this phreatic enlargement phase occurred entirely within the Weichselian deglaciation, and a total 

enlargement during both the Saalian and Weichselian deglaciations is more likely. The (presumed) vertical inception 

fracture could have been created by early Saalian deglacial seismicity, but in this case it must have reached a 

minimum aperture of 1.2cm along its 240m length, to achieve tectonic breakthrough at a flow velocity of 20cros' 

(Appendix D4.4) prior to Saalian deglacial enlargement. More likely, a seismic event at the end of the Elsterian 

created the inception fracture with an initial aperture of c. 0.3cm, which then enlarged chemically to achieve 
breakthrough beneath an active Elsterian deglacial IDL, if that also submerged the Elgfjellhola fracture for c. 1400 

cal. a at a hydraulic ratio of I(Ts-sm' (Figure 8.10). 

Elgfjellhola commonly possesses a double phreatic profile. This is unlikely to have arisen from the two opposing 
flow directions through the cave when beneath the Weichselian backward-flowing IDL (Appendix D3.3). If the 

upper profile originally dated from the Saalian deglaciation, then vadose entrenchment during the Eemian 
interglacial was possible. There is no sign of a double vadose profile now, although an early vadose phase could 
have been completely removed by dissolution of the lower phreatic profile during the Weichselian deglaciation. 
However, it is more likely that the cave remained relict during the Eemian, with a sediment fill occupying the 
Saalian phreatic passage that also accounted for the lower profile. The Weichselian enlargement was then partly 
paragenetic above this fill, forming the final upper profile, until the fill was washed out of the cave during deglacial 

outflows at a later stage. Remnants of such a gravel fill are stuck to the walls of the upper part of the lower phreatic 
profile, upstream of the waterfall. The calcitic mud acting as glue likely dates from the Eemian interglacial. 

An issue to address is that any flow in the `forward' (southern) direction would be expected to `overwrite' the 

reverse flow scallops reported in Elgfjellhola and two other local caves (Appendix D3.3), especially if the walls 

retreated by 0.3m from 10200 to 10000, a period of 280 cal. a. Hence, perhaps the wall retreat rate under the 

backward-flowing Elgfjell IDL was somewhat greater than lmma I, being supplemented by the high erosional flow 

rates from the many jökulhlaups that occurred (Appendix D4.5). The succeeding forward-flowing IDL may then 
have remained essentially static, perhaps above a thermocline, at the `warmer' western end of the lake, whilst 
icemelt sank to its base and into a Nye channel at its eastern end. 
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D5.5 Etasjegrotta-Rockbridge system (Z4; GS=L; Appendix B IA: Figures B1.8 and B 1.9) 
Etasjegrotta is discussed in section 9.2 as the ultimate example of a cave in vertical stripe karst that illustrates the 
TDMO model. The dimensions of the active vadose elements along its lower levels are all compatible with 
enlargement within the Holocene from its below-average catchment area of 3km2. These include the 5m headward 

erosion at Twin Falls, the small size of the streamway between there and the phreas leading to the Surveyors Sump, 

and the minor captures occurring near and under the Entrance Chamber. A careful study of the survey section 
(Figure B1.8) also reveals several relict vadose features that include floor-lowering in Whichway Chamber, 
headward erosion below Ice Ledge Aven and steps in the floors of passages near the Explorers Sump, at Fall Aven 

and at the chamber above Eastwater Chamber. These may all represent vadose entrenchment as the Weichselian 
deglacial IDL slowly lowered through the cave (section 8.4.12), partly supplemented by the action of Holocene 

spring melt floods. At the resurgence end of the hydrological system (Figure B1.9), the only significant vadose 

passage is the steeply-inclined inlet to Invasjonsgrotta. This emerges at the roof of a relict phreatic passage, where 
the stream enters as a waterfall that has previously caused the drilling of two clean-washed potholes containing 

stones in the floor of the chamber Oddstue, at the base of which the stream is presently cutting a vadose channel that 

must eventually drain into Whybro Passage beneath. Again, these vadose developments probably occurred within 
the Holocene. Thus, there are no relict vadose passages indicative of Eemian entrenchment within the whole system. 

The next question to address is the size of Whybro Passage, the sums ;d passage that has been dived upstream for 
340m northwards from the Main Rising and Vatnhullet towards the Surveyors Sump in Etasjegrotta (which is 

160m farther north) and also towards the series of lakes formed by the. )rdbruely in the gorge leading to the Jordbru 
(Rockbridge) dry valley. The cross-section of much of this passage i larger than that of the inclined entrance to 
Vatnhullet that is some 10m wide by 3m high and larger than the 1 tssage at the Main Rising (6mx2m). Their 

relative positions show that the Main Rising (285m altitude) has captv 'ed the flow from a previous Vauclusian exit 

at Vatnhullet (300m altitude). From the discussion about phreatic interglacial enlargement (Appendix D4.13), it is 

likely that the Main Rising, which discharges all the flow from the 30km 2 catchment area of the upper Jordbruelv, 

achieved this capture soon after the Weichselian deglaciation, via an inception fracture 120m long, and enlarged to 
its present size during the Holocene. The face of the rising is a steephead, which has cut back some 15m from the 

main valley at the end of the Rockbridge, an amount that is also compatible with the period of the Holocene. 

The caves along the Jordbruelv valley were submerged beneath the backward- then forward-flowing IDL or its SGR 
from c. 10850-9450, a maximum time of c. 140014Ca (Appendix D3). This equates to 2200 cal. a (Stuiver et al., 
1998, Figs. A7-A9). If dissolution was at a maximum rate of 1 mma' for all this time (unlikely), passages could 
have enlarged to diameters of c. 4.4m, giving cross-sections of c. 15m2. Although sections 8.6.2 and 8.6.3 concluded 
that most relict caves and passages enlarged to their present size beneath an IDL, this cross-section is too small to 

account for the size of the Vatnhullet relict Vauclusian entrance, which must therefore have existed as a smaller 

conduit prior to the Weichselian deglaciation. The next earlier opportunity for this passage to have enlarged was the 
Eemian interglacial, assuming that deglaciation during Weichselian interstadials did not reach down to this altitude. 
From Appendix D4.13, the interglacial wall retreat rate of the Vatnhullet entrance was likely to be 0.25mma', 

giving a possible width enlargement of Sm if Eemian interglacial flow was sustained for 10000 cal. a. It is therefore 

concluded that the outlet at Vatnhullet existed as a post-breakthrough conduit at the start of the Eemian, and it 

reached its present size by dissolution during the Eemian interglacial (as a Vauclusian rising) and during the 
Weichselian deglaciation. Whybro Passage probably enlarged via connections from the Jordbruely lakes during the 
Eemian interglacial, the Weichselian deglaciation and the Holocene, and the Main Rising enlarged during the 
Holocene only. The present 300m altitude of the Vatnhullet entrance probably also indicates the minimum 

elevation of the floor of the adjacent Rockbridge area during the Eemian, because otherwise the flow at the initially- 

small Vauclusian rising would have been captured into lower fractures by the hydraulic gradient during the Eemian 
itself. This reasonably represents a lowering of the Jordbruelv valley by c. 12m during the Weichselian glaciation 

and by 3m during Holocene entrenchment. 

The next passage to consider is the higher-level c. 2m-diameter relict phreatic passage at an altitude of 300m that 

comprises Beehive Cave, the inner part of Cliff Cave and Sand Passage in Invasjonsgrotta (Figure B 1.9). Much of 
this is almost completely filled with stratified sandy sediments. These have been partly washed away by the 
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invading Holocene stream in Invasjonsgrotta to create the chamber Oddstue, where the 1.33m-high vertical 
northern exposure of the sand bank reveals cross-cut bedding that was sketched and sampled during the 2000 field 

trip (Photo D5.1). The sequence above bedrock in front of the sand bank comprises 20cm of large slabs below 40cm 

of angular and rounded cobbles and gravels. The southern part of the passage passes dried-out gour pools and has 
fine brown silt on the roof and 15cm-long scallops on the wall that point south to a silt choke. 

The stratified sediments consist of mainly dry light-grey micaceous sand, with centimetre-scale laminations. They 

effervesce in dilute HCI, indicating the presence of calcite. There are no rocks, organics or other materials visible to 
the naked eye within the sand, which is fairly consistent in texture throughout the whole deposit, except for several 
darker layers. The lowest 18cm is layered fairly horizontally, the next 94cm commonly dips at c. 30°W, and the top 
21cm consists of sub-horizontal, wavy, layers. The uppermost 2cm comprises a damp orange layer. Loss on Ignition 
(Lol) tests and grain size tests were undertaken at the University of Huddersfield on nine samples from the Oddstue 

sand bank, and on one sample (#64) of scrapings from the roof (Table D5 1) 

Photo D5.1 Sand bank in Invasjonsgrotta, Z4 
Sand bank at southern end of Sand Passage at entrance to Oddstue, Invasjonsgrotta (Figure 131.9). Water flow was 
from Sand Passage (which continues above top of sand bank) towards the camera. The dipping layers below wavy 
sub-horizontal laminations at the top are suggestive of seismic liquefaction of previously-horizontal laminations 
whilst still submerged beneath an ice-dammed lake, followed by continuing deposition and final vadose flow. The 
sand deposits in Oddstue were later removed by a different (vadose) stream in the Holocene. 

Apart from sample #64, the Lol tests show that the sands contain little organic material, as expected for deposition 
beneath an ice-dammed lake, although there is some correspondence between Lol (%) and the darkness and colour 
of the samples. From photographs taken at c. 40X magnification, the angular nature of the sand grains and small size 
of the darker (presumably organic) strands suggests that these deposits have been transported by ice. The grain size 
tests were undertaken using a Malvern Instruments Ltd. Mastersizer 2000 Version 5.21 machine and all samples 
gave an approximately log-normal distribution of particle size v. volume (%). Minimum sizes were in the range 0.4- 
43 gm (silts), modal values were in the range 0.06mm (very fine sand) to 0.22mm (fine sand) and maximum sizes 
were of medium sands, except for samples #31 and #167 (coarse sand) and #64 (very coarse sand). 

Sand and silt particles with the observed sizes are deposited at speeds below 5cros-' and eroded at speeds above 
20cros-' (Andersen and Borns, 1997, Fig. 3-31B). The sedimentation probably occurred annually, perhaps over a 
period of -133a, from the layering. There is no indication of any progressive trend in the flow velocity during this 
time. Because there is no paragenetic enlargement above the sediments and because these are calcitic, the 
contemporary chemical environment in Sand Passage was probably not dissolutional. At a presumed path length of 
200m and a passage radius of 100cm, Figure 8.8 shows that the dissolution could have been at a maximum rate at a 
flow velocity of >0.05cros 1, suggesting that the flow rate was, in fact, much less than this. The wavy, disturbed 
nature of the top 21 cm of the sediment, its change of colour at the top and the 40cm space below the roof (through 
which it is possible to crawl) indicates a later washing-out by water flowing at >20cros t for a short time. 
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Takle DS_1 Samnies from sand hank in In , Qainncn-++. 

Sample Height Lol Grain size Appearance Photographic appearance 
No. (cm) % Min. Mode Max. in situ under microscope 

m (U mm mm L at c. 40X magnification 

64 roof 32.89 3 0.22 = 1.4 Dark gritty Buff matrix with much larger 
* scrapings from roof brown angular and curved 

grams 
31 131 1.20 0.4 0.09 0.7 As #206, from Yellow angular grains with dark 
* orange wavy layer brown curved elongated strands 

118 124 0.32 0.5 0.77 0.3 As #206, from dark Yellow-brown angular grains 
wavy layer with some white angular grains 

and dark brown curved and 
elongated strands 

167 105 0.14 14 0.20 1.0 As #206 Similar to #118, with larger 
grains and more pink colour 

206 92 0.26 5 0.10 0.5 Dry grey very fine Similar to #118, but more pink 
sand with mica 

22 78 1.18 0.4 0.06 0.5 As #206, from Similar to #31 
darker la er 

52 65 0.13 As #206 Buff matrix with black 
elongated specks 

165 52 0.18 43 0.15 0.4 As #206 Similar to # 167 

37 30 0.17 6 0.12 0.4 As #206 Similar to #31 

216 15 0.33 0.4 0.07 0.4 As #206 Similar to #52 

urain size test aver seconas ultrasonic. utners after IU seconds sonic. All distributions are approximately 
lognormal. Laminations between 112 and 18cm height dip at c. 30°W. 

The above observations can be explained by considering that the original Beehive Cave-Cliff Cave- 
Invasjonsgrotta conduit enlarged towards its present size during the Saalian deglaciation. After the plastic 
behaviour limit (PBL) of the Saalian ice sheet lowered below Sand Passage, the cobbles on the floor of Oddstue 
were transported there by powerful englacial flows (Appendix D4.7). Enlargement then continued during the 
Eemian interglacial (by dissolution in unsaturated waters flowing at 25cros'', from the size of the scallops south of 
Oddstue), synchronously with the enlargement of the lower Whybro Passage conduit, when the bottom of the 
Rockbridge gorge was a little above the upper conduit level of 300m. The water flowed out via a resurgence pool 
north of Vatnhullet. Invasjonsgrotta was covered by ice for most of the Weichselian glaciation, when its 
resurgence entrance was almost blocked by debris, and the thin layer of brown silt was deposited from a subglacial 
lake whilst under warm-based conditions (section 8.4.2). When the large Jordbruelv IDL formed during the 
Weichselian deglaciation, the whole system initially experienced circulatory flow at «10 cros' (Appendix D4.9) 

and probably at <0.05cros' (above). After the IDL and the ice sheet lowered so that the PBL of the ice was below 
the level of the cave passages, most of the system experienced englacial flow, at a summer flow velocity of c. 
50cros" (Appendix D4.7). However, the summer flow velocity through Sand Passage remained <0.05cros'', because 
its outlet remained almost sealed, and the fine sand was deposited in chemically-saturated conditions. Powerful, 
aggressive, englacial flow through the open Cliff Cave part of the system at -50cros"' is demonstrated by the 
scalloping and gravel deposits (Photo D1.23). Any sand originally deposited in Whybro Passage was flushed out 
during this powerful flow regime, and that passage was subsequently kept clear because it remained active 
throughout the Holocene. The hydraulic gradient steepened and the speed of flow at Oddstue increased after the 
level of the IDL lowered to the level of Sand Passage, so that the top layers of sand were removed or disturbed into 
wavy layers as the cave drained in vadose conditions. 

The marginal valley development model for vertical limestone (Osborne, 1999, Fig. 16) would explain these features 
by assuming that a blockage at the southern end of Invasjonsgrotta caused the excavation of the Jordbru gorge, 
which in turn was abandoned by the creation of Whybro Passage along the same vertical inception fracture. 
However, such an explanation could only apply here during excessively prolonged interglacial conditions, and 
would ignore the effect of glacial erosion and sedimentation beneath an ice-dammed lake. 
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The dip of 30°W of most of the sediment in Invasjonsgrotta can be explained by seismic liquefaction and slumping 
during the same earthquake that caused the c. lm opening in the floor of Cliff Cave (section 6.3.3) and caused the 

other local tectonic movements (Photos Frontispiece land D1.22-D1.25), which are all within a few hundred metres 
of each other (Figure B 1.9; Table D1.1, items 28-32). Indeed, the timing of this earthquake is probably represented 
by the sharp transition from dipping to horizontal beds near the top of the sand bank, after which the horizontal beds 

continued to be deposited for perhaps 30 years without further seismic disturbance, until the IDL surface. lowered 

below the level of Sand Passage at 9500 (Appendix D3.7). This supports the conclusion in section 8.1.10 that the 
IDL remained above the level of these passages for some time after the earthquake. 

Because of its strength, it seems likely that the earthquake observed at Cliff Cave and Invasjonsgrotta is the same 
one that caused the movements in Elgfjellhola, Paradox Cave and on the surface of Elgfjell (section 6.3.3 and 
Appendix D5.4), which are 5km north. If this is the case, it occurred nearly 500"Ca after the Elgijjell caves were 
drained at 10000 (Appendix D3.6), and the protruding fault gouge wafers seen in Elgfjellhola (Appendix D5.4) 

were formed by extrusion rather than by dissolution of adjacent wall rock. 

Returning to the upstream end of the system, the Etasjegrotta tributary to the Whybro Passage phreas is commonly 

clean-washed, with no recorded sediments of fine sand comparable with those in Invasjonsgrotta. However, such 
deposits would have been expelled during Holocene floods (Appendix B2.2). From the survey section (Figure B1.8), 

the 40m depth of the Surveyors Sump below the entrance equates to the altitude of the Main Rising at 285m. 

Hence, all the rising phreatic limbs in Etasjegrotta are above the 300m altitude of Sand Passage in 

Invasjonsgrotta, hinting that the higher levels of Etasjegrotta also developed during the Saalian deglaciation. A 

more likely alternative is that all the relict phreatic loop passages in Etasjegrotta developed beneath the large 

Jordbruelv IDL during the Weichselian deglaciation after the local PBL descended below the level of the cave, with 

englacial flows into glacial conduits of sufficient velocity to permit rapid enlargement. After the upper parts of 

Etasjegrotta drained, its lower parts, including the present flooded connection to Whybro Passage, then enlarged 
during the Holocene, especially during floods. The dead-end fissures above the Surveyors Sump illustrate the effects 

of aggressive flood-water injections (section 3.1.16). The restricted nature of the underwater passage at both the 

Surveyors Sump and at the end of Whybro passage may indicate that this enlargement started later in the Holocene. 

The inception fractures of the upper Etasjegrotta phreatic loops have path-lengths less than 200m long, so that at 

flow velocities of 50cros t their aperture widths at breakthrough were less than 4mm (Figure 8.8). Such apertures 

may have been created directly from tectonic activity, and the complex nature of Etasjegrotta, with -20 tiers of 

passages, implies that it did achieve breakthrough very quickly (section 3.1.16). To enlarge the phreatic passages in 

Etasjegrotta to their common heights of <2m would take <1000 cal. a at a maximum rate of lmma1, a time interval 

that is less than the duration of the Jordbruelv IDL of c. 2200 cal. a (above). It is therefore not necessary to postulate 

that the relict and vadose parts of Etasjegrotta existed as conduits prior to the Weichselian deglaciation. Indeed, if 

the relict passages had also enlarged during the Saalian deglaciation, they could be much larger. 

The Etasjegrotta fractures, including those that connect to the caves at the Rockbridge, were probably created 

during Saalian deglacial seismicity. This total path length is c. 700m and the head to the Vatnhullet entrance is c. 

25m, providing a hydraulic ratio of 5x10"5m'. From Figure 8.10, a lmm aperture would take <200a to achieve 

breakthrough in these interglacial conditions. Thus, chemical inception could have occurred either in the Eemian or 

early in the Holocene, still leaving time for Holocene enlargement to present passage sizes between the lower part of 

Etasjegrotta and Whybro Passage in Vatnhullet. 

Because the present depth of the gorge below the Jordbruelv waterfall is some 35-40m beneath the gentler slope of 
the hillside, and as it was deduced that the gorge deepened by c. 15m during the last glacial cycle, it follows that the 

gorge has probably only existed for two complete cycles. This provides supporting evidence that the deeper 

passages of the immediate area probably postdate the Elsterian glaciation, because before that the depth of the valley 

was too shallow to provide sufficient hydraulic gradient to drive chemical inception and interglacial enlargement. 
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APPENDIX D6 OTHER CALEDONIDE TERRANES 

This Appendix explores the extent to which the models derived in Chapters 5-9 apply to karsts within the other 
glaciated terranes of the Caledonides. The method used is to construct a cave database for most of these regions 
from the best available information, to the same format as used for central Scandinavia, but with a restricted set of 
parameters identified for each cave. These data are then compared with those of the main study area, and 
summarised in sections 10.1-10.5. 

D6.1 The Scandinavian Caledonides 

For convenience, the Scandinavian Caledonides are divided into three parts. 

D6.1.1 Northern Scandinavia 

That part of Scandinavia north of the Helgeland Nappe Complex is known to contain a large number of karst caves, 
mainly in the Norwegian county of Nordland and the Swedish county of Norrbottenslan. Several of these are much 
longer and / or deeper than any in central Scandinavia. To analyse the varying tectonic structures, the 
geomorphology, the glacial history, and the scattered references to caves for this large region would be a task greater 
in magnitude than that for the main study area. Instead, one, hopefully representative, karstic valley will be 
considered, together with a few of the longest and deepest systems. It is assumed that, in general, the range of 
external settings of the caves is comparable to that of central Scandinavia. 

The karst valley chosen for review is GratAdal in Beiarn, some 70km north of Ranafjord, a place with which the 
author is familiar. A Grätädal cave database was constructed from St. Pierre (1966) and later references (Appendix 
C6). It includes the few caves in the adjacent valleys of Beiardal and Tollädal. The local Beiarn Nappe occupies an 
uncertain tectonic structural position in the Uppermost Allochthon, probably within the RNC. The caves commonly 
lie in very long, linear, N-S aligned, outcrops of amphibolite grade metalimestones that occur along the valley floors 

and their lower, commonly western, slopes. The foliation is steeply angled (commonly dipping to the west, i. e. into 
the west side of the valley), or vertical. Low angle karst is absent (Table D6.1). The outcrop width varies up to 
some 700m, so that, although cave trends are commonly strike-aligned, passages also exploit orthogonal joint 
systems. The setting is therefore similar to that of some of the western zones of the HNC, except that the western 
edge of the prime metalimestone outcrop is along a thrust internal to the Beiarn Nappe, and the mountains to the 
west are permanently glaciated. Some Tkm of passages in 42 caves are reported in this area, which is characterised 
by large, almost `over fit', underground streams, which are sporadically too powerful to permit complete 
exploration. Key parameters for each cave type and hydrological class are listed in Tables D6.2 and D6.3. 

By comparing with Table 5.5, the caves in GrAtAdal have mean dimensions considerably greater than those in central 
Scandinavia for most cave types, although types e and h do not occur, perhaps because of the relatively small 
sample size. The overall mean length and vertical range are twice as great, and mean cross-section some four times 
as great. These differences mean that the set of caves in GrAtAdal would not fit comfortably within the zones of the 
main study area. However, the deepest cave, the Renllihullet system at 140m, is still within the one-eighth 
relationship proposed for the main study area, as it lies in a valley some 1100m deep that extends from the GrAtAtind 
peak (1354m) to a floor at 180m. The valley wall also slopes down above the cave, reducing its maximum 
subsurface cave distance to c. 30m. 

There are roughly equal numbers of caves in each of the three hydrological classes, and MV caves replace 
combination caves as the most numerous class, in comparison with central Scandinavia (Table 5.25). The MV 

proportion of total cave length is 20%, compared with 9% in the main study area. Of the three classes, the relict 
caves are the most similar to those in central Scandinavia. Although they have about twice the mean length and 
cross-section, the mean vertical range is less, and they only have slightly more entrances per cave (c. f. Table B2.1). 
On the other hand, the combination caves have twice the mean length, vertical range, and cave streams per cave, 
more entrances per cave, five times the mean cross-section but only have about half the mean number of sumps. The 

mainly vadose caves follow similar trends, although they have four times the mean length but a similar number of 
cave streams per cave. 
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Table D6.1 Gr$tMdi) tnnrthnrn Nnrwnvl ICorat Tvrwa 

Karst Type V A L C X ALL 
Count 11 30 1 42 
°/. of caves 26 72 2 100 
Total cave length (m) 4497 2815 50 7362 

of total cave length 61 38 1 100 
Mean cave length (m) 409 94 50 175 
Mean cave VR m 32.1 10.9 3.0 16.3 
Mean cave XS m 14.5 13.4 2.0 13.4 

Table D6.2 Gr$t$dal lnnrthern Nnrwavl (`nvn Tvnna 

Cave 
Type 

No. 
of 

caves 

% of 
caves 

Total 
cave 

length 
m 

% of 
total 
cave 

length 

Mean 
cave 

length 
m 

Mean 
cave 
VR 

m 

Mean 
cave 
XS 
m2 

Mean 
cave 

volume 
m 

S 6 14 
w= 
26 0.3 

mom 
4 4.3 46.2 219 

a 13 31 162 2 12 3.2 5.6 150 
b 8 19 1404 19 176 15.3 12.1 1334 
c 4 10 237 3 59 4.0 2.3 120 
d 5 12 2102 29 420 25.6 7.3 4258 
e 
f 1 2 390 5 390 13.0 2.0 780 

4 10 2990 41 748 71.5 5.8 5685 
h 
H 

J 
M 
R 
T 1 2 51 0.7 51 51 45 2295 
ALL 42 100 7362 100 175 16.3 13.4 1465 

Table D6_3 Gr; t$dal (nnrthern Nnrwnvl ( vn (gnat rmmnarianne 

INTERNAL CAVE 
TRIBUTE 

RELICT 
CAVES 

COMBINATION 
CAVES 

MV 
CAVES 

ALL 
CAVES 

UNITS 

ount 13 14 l5 42 No. 
/° of caves 31 33 36 100 % 
otal cave length 963 4925 1474 7362 m 

/o of total cave length 13 67 20 100 % 00 
Mean cave length 74 352 98 175 m 

can cave VR 4.7 33.6 10.2 16.3 m 
can cave XS 6.3 24.9 8.8 13.4 m 

Mean cave Volume 168 3372 808 1465 m 
verage of SE 0.00 0.71 0.80 0.52 No. per cave 
verage of RE 0.00 0.29 0.73 0.36 No. per cave 
verage of DE 1.62 1.07 0.67 1.10 No. per cave 
verage of all entrances 1.62 2.07 2.20 1.98 No. per cave 

verage of CS 0.00 2.21 1.00 1.10 No. per cave 
verage of SP 0.00 0.43 0.20 0.21 No. per cave 

The explanation for the greater mean vertical range in GrAtAdal is that, according to four pieces of evidence, this 

area was subjected to greater seismic and aseismic tectonic movements at the end of each glaciation than most parts 

of the main study area. Firstly, the valley is much deeper than any valley with karst outcrops in the study area. 
Secondly, the seismic shocks accompanying the isostatic rebound immediately after deglaciation probably re- 

activated the internal thrust at the western edge of the limestone outcrop (which displays sharp slope changes along 
the skyline, diagnostic of differential uplift), magnifying the production of tectonic fractures. Thirdly, the existence 

of the 51m- and 22m-deep shafts of Penkekjelen (in Beiardal) and the shaft called La Fen@tre into ßvre 
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Svartvannsgrotta could be explained by differential uplift (St. Pierre, 1966, p25). Fourthly, the nearby postglacial 
1 Om-deep, 4m-wide, sackung trenches on the ridge between Beiardal and GrAtAdal (e. g. Olesen, et al., 1995; Olesen, 

et al., 2004, Fig. 6) demonstrate seismic or aseismic movements in the vicinity. 

The reason for the much greater passage sizes in Grätßdal, especially in the active caves, lies in their recharge from 

permanent glaciers around the summit of Grtind. In the main study area, it was assumed that the spring melt 
throughout the Holocene provided a maximum discharge for about one month per year. In valleys below glaciers, 
high discharge rates are maintained when the air temperature at the glacier remains above freezing. In the case of 
GrAtAdal, this is for about 6-8 months per year. Thus, Holocene vadose floor lowering rates and (probably) phreatic 
wall retreat rates are higher by factors in GrAtAdal compared with regions without permanent glaciers. 

Relict vadose passages were established as a probable diagnostic for Eemian vadose entrenchment in Chapter 8, and 
a total of seven caves with such passages are recorded in the Grätidal cave database. Most of these passages are of a 
`normal' size, i. e. up to about 6m high and lm wide, and are therefore assumed to indicate purely vadose 
development in the Eemian. Three of these occur in caves that are relict, creating three relict vadose caves, in 

contrast to the main study area that has none. These passages may have become choked during the Weichselian 

glaciation, so that they did not enlarge further in paragenetic deglacial conditions, or else they developed and 
became abandoned wholly within the Holocene. Just one internal relict vadose passage in a combination cave (the 
Hestilga system) has a large size (10m high by 2m wide), but the present stream passage is relatively small, 
suggesting that in this case, it does represent a capture during the Holocene. 

The deglaciation marine limit in this area reached into Beiardal, beyond its junction with GrAtAdal, to an altitude 
approaching 140m. However, the floor of GrAtAdal rises steeply above the confluence to about 180m, so that none of 
its caves were inundated by the sea. This is in agreement with a finding from cave surveys, that none of the cave 
entrances appears to have been enlarged by marine action, to the criteria established for the main study area. The 

enlarged entrances to Unnamed Cave and the adjacent Smiths Cavern, with parallel walls, and large, fallen blocks, 

were probably enlarged by ice wedging as an ice-dammed lake lowered past their level. In contrast to the main study 
area, many narrow bands of Beiarn Nappe marbles (RNC equivalents) pass beneath the Svartisen ice cap, south of 
GrAtAdal. Their future study might confirm some of the glacio-hydrogeological relationships deduced in this thesis. 

The deepest system in northern Europe is Rigge Javre Raige (RJR). It is contained in angled to vertical stripe karst 
(ASK to VSK) of the Fauske Nappe. This underlies the Beiarn Nappe tectonically, in the lower part of the 
Uppermost Allochthon, but has a medium metamorphic grade (Roberts et al., 2002). The system has an upper 
entrance at an altitude of 580m, just 100m from the edge of the sloping wall of Hellemoijjord (Levlie et al., 1995; 
Lauritzen et al., 1991; Figures D6.1 and D6.2). Despite its vertical range of >580m (including its submarine 
resurgence), the commonly steeply-sloping shafts and passages in the cave remain within 173m of the fjord wall, 
indicating the role of tectonic inception in the cave's development. Local peaks rise to c. 1200m above the fjord that 
has a maximum depth of 455m, so that the system remains within the limit of the one-eighth relationship, if the fjord 

depth is included in the calculation. Sub-horizontal relict `half-loop' (section 9.7) phreatic passages at altitudes that 
include 3m, 47m?, 80m, 127m, 535m and 560m pass from the predominantly vadose main shaft system towards the 

surface, some providing lower entrances to the fjord wall. Without undertaking a detailed study, it appears that the 

system has developed downwards in conjunction with the deepening of the fjord during successive glaciations, with 
each of the phreatic passages indicating the approximate level of the lowest submarine resurgence during each 
deglaciation. Thus, the present rising below fjord level is an outlet that developed during the Holocene, the 
Fjordgrotta entrance at 3m was the lowest outlet at the end of the Weichselian, a possible passage at 47m led to an 
early Eemian outlet, the passage at 80m was likely the Holstein outlet, and the passage at 127m the likely Cromerian 

outlet. Outlets between 127m and 535m, at intervals that decrease from c. 45m to c. 25m, probably await discovery. 

From the above discussion, the cave has followed ever-deeper inception fractures created by successive deglacial 

seismic shocks at the end of each major glaciation, in the manner described by the TDMO model (section 9.2.4). A 

crude estimate for the first inception and enlargement of present passages indicates an age of 1.2Ma for the highest 

passages in the system, if sub-horizontal outlets, at a mean interval of 35m, represent some 16 major glacial cycles 
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(at 41 ka intervals prior to the Mid Pleistocene Revolution, and at I00ka intervals thereafter). Even older passages 
may have existed above the present cave, before these were removed by the lowering of the plateau surface. 
Additionally, the present relict sub-horizontal passages probably extended farther north, before being shortened by 
the widening of the fjord. About ten deep, parallel, relict, inclined shafts in the centre of the cave also provide clues 
to the glacial history, as they may indicate progressive captures during successive interglacials, supplementing 
information about the inferred missing outlet levels. The shafts are some 3-12m wide, and would therefore have 

taken some 3-12ka to grow to their full extents (at I mma "). Some of these times may equate roughly to an 
interglacial period. Others may indicate captures within an interglacial period. 
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Figure D6.1 Rigge Javre-Raige and Hellemofjord. From Levlie et al. (1995) 

A fuller treatment of the development of the cave would need to consider the rates of fjord lowering and widening. 
The evolution must be more complex than the above simplified picture: making the crude assumption that the 

orthogonal fjord wall retreat distance between interglacials equals the difference in elevation of the two phreatic 

outlets, by about the third previous glacial, the known passages would be further from the surface than allowed by 

the one-eighth relationship. Hence, the unknown continuations of the horizontal levels probably lead to more shaft 
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(at 41 ka intervals prior to the Mid Pleistocene Revolution, and at 100ka intervals thereafter). Even older passages 

may have existed above the present cave, before these were removed by the lowering of the plateau surface. 
Additionally, the present relict sub-horizontal passages probably extended farther north, before being shortened by 

the widening of the fjord. About ten deep, parallel, relict, inclined shafts in the centre of the cave also provide clues 

to the glacial history, as they may indicate progressive captures during successive interglacials, supplementing 
information about the inferred missing'outlet levels. The shafts are some 3-12m wide, and would therefore have 

taken some 3-12ka to grow to their full extents (at lmma "). Some of these times may equate roughly to an 
interglacial period. Others may indicate captures within an interglacial period. 
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Figure D6.1 FUgge Javre-Raige and Hellemotjord. From Leviie et a!. (1995) 

A fuller treatment of the development of the cave would need to consider the rates of fjord lowering and widening. 

The evolution must be more complex than the above simplified picture: making the crude assumption that the 

orthogonal fjord wall retreat distance between interglacials equals the difference in elevation of the two phreatic 

outlets, by about the third previous glacial, the known passages would be further from the surface than allowed by 

the one-eighth relationship. Hence, the unknown continuations of the horizontal levels probably lead to more shaft 
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systems closer to the fjord wall, which were formed within their contemporary one-eighth relationship. The explored 
passages were later directed towards the bases of these shafts (again, in accordance with the TDMO model) during 
the many deglacial periods when the cave was submerged beneath a Hellemofjord ice-dammed lake. Levlie et a!. 
(1995) reported sediments dated from 10900-1020014Ca BP at an elevation of 560m. These were presumably 
deposited during the time of the last IDL, after any pre-existing deposits had been flushed out. There are no reports 
of sand deposits in the lower parts of the cave, which could have been inundated with sea water up to the level of the 
YD isobase at 140m (Sorensen et al., 1987). This suggests that deglacial outflows through the cave remained 
sufficiently strong to withstand inflowing tidal water. Direct exploration of the `missing' relict passages via the 
many unclimbed shafts could enable RJR to become the best example in the world of a karst cave that has its 
development directly related to the glacial evolution of its local topography, over a very long timescale. An analysis 
of the presence or absence of relict vadose passages at the higher levels could also verify the suggestion in section 
8.7.4 that vadose entrenchment was less important during interglacials prior to the Holocene. 

The next deepest system is Tjoarvekrajgge, in Serfold. This is also the longest cave in Scandinavia, with a present 
survey length of nearly 17km. The cave has formed in an E-W limb of south-dipping low angle karst, also in the 
Fauske Nappe. Several entrances at altitudes around 600m lead via down-dip phreatic passages (some with active 
vadose trenches) towards an active vadose series with many sumps and unexplored sections, giving it a total vertical 
range of 502m. A looping series of strike-tending larger phreatic passages (with minimum dimensions of Im high by 
3m wide) connect the inlet series together, to create a system of great size and complexity. As represented on an 
unpublished survey, the cave morphology comprises an inclined rectilinear maze with N-S and E-W passage 
elements, supplemented by a meandering mainly vadose streamway at its lowest (southerly) level. All the upper 
passages are coated with a very fine slippery clay deposit on all surfaces, as observed during a visit made by the 
author in June 2000. The coating probably occurred when the cave was submerged beneath a warm-based subglacial 
lake at a glacial maximum but was not washed out again during deglaciation, perhaps suggesting that a deglacial 
IDL in the adjacent Bonn& valley remained static as it lowered past the upper levels of the cave, but leaving open the 
question of how the cave passages enlarged to their present sizes. The depth of Bonnidal is some 600m, but as the 
cave reaches a maximum depth of some 300m below the surface, it is clear that it does not fit within the constraints 
of the one-eighth relationship that applies to caves in VSK and ASK. Considerable study would be required to 
unravel the evolution of Tjoarvekrajgge within the context of the evolution of its local geomorphology. 

The second longest cave is the Okshola / Kristihola system, near Fauske. It has also formed in a low angle karst of 
the Fauske Nappe, with a near-horizontal foliation. This system has a surveyed length of 11km and a vertical range 
of 185m, and resurges near the sea at an altitude of only 2m. Two very large entrances (30m x 30m and 15m x 15m) 
at altitudes of about 160m lead into a predominantly-phreatic maze series of passage near Okshola, and, directly 
from Kristihola, into a huge streamway that varies in size from 15m high x 5m wide to 30m high x 10m wide. 
Above the lower part of the Ilan-long streamway and its six sumps is a descending rectilinear series of well- 
decorated (despite the distance to the surface above) phreatic passages with diameters up to c. 15m that maintain an 
elevation of some 50m above the floor of the adjacent stream. From the survey, the end of the cave appears to pass 
200m below a 220m-high ridge. However, the nearest peaks are only at c. 800m, and as far away as 6km to the NE. 
Thus, this system also does not follow the one-eighth relationship, although draughting openings, at possible higher- 
level relict resurgences, and the probable capture of the interglacial stream from the Kristihola entrance to a point 
just before the Okshola entrance, indicate that it may follow the TDMO model. Because of the size of most of its 
large phreatic galleries, this cave must have a long and complex history of development, spanning several complete 
glacial cycles. The vadose streamway seems very unlikely to have developed to its enormous size only during the 
Holocene, despite the large present recharge. Thus, each of the phreatic and vadose elements of the cave probably 
represent enlargement under successive deglacial and then interglacial regimes, although paragenetic modification 
of the streamway is not obvious from the survey cross-sections. 

Another major system in northern Norway comprises the two adjacent caves Greftkjelen and Greftsprekka at 
Serfjord, which are parts of the same system that are unconnected physically. The system has some Tkm of passages 
and a VR of 315m, from entrances at 350m and 340m altitudes down to the incompletely-explored main streamway 
at 35m. The resurgence is at about 25m. It has formed in a complexly-folded, N-S aligned, stripe karst with an 
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apparently high metamorphic grade in the Beiarn Nappe (RNC). The deep Grefkjelen entrance shaft trends north 
in marble with a vertical foliation, but the continuing passage swings to the SW, across an anticline. The northward 
trend is resumed at the next syncline (Holbye, 1983a, b, c; Ford and Williams, 1989, Fig. 2.12, p40). The explored 
cave is dominated by vadose development at higher levels, with large, abandoned, vadose galleries overlying 
smaller, and more recent, meandering streamways. Phreatic development only seems dominant below about 120m 

altitude, where a relict passage reaches to within about 200m of the resurgence, at an altitude of 63m. Thus, 

Greftkjelen does not exhibit the upside-down morphology of higher-level phreatic passages overlying a single 
vadose channel. Because Greftkjelen reverses direction, and both caves have deep internal shafts, passages exist 
that are 300-400m from the surface at the dry valley between the entrances, or at the ridge to its west. Local peaks 
presently only reach to about 600m, and Serfjord is only 207m deep, so that the depths of inception fractures in this 

system cannot be constrained by the one-eighth relationship that applies in central Scandinavia. A partial 

explanation was provided by Holbye (1983a), who described joints up to 130m deep that have formed at the crests 

of the anticlinal folds. 

A complex, multi cycle, theory of cave development was proposed by Holbye (1983c; section 3.3.3), reinforced by 

the dating of stalagmites from elevations of c. 100m and c. 225m at c. 190000 and c. 178800a BP (Holbye and 
Lauritzen, 1983). An interesting feature of Greftkjelen is the presence of sand banks in and below the Low Level 

Gallery, at a maximum altitude of c. 110m, and at a distance of some 500m from the present resurgence. According 

to Sorensen et al. (1987), the YD isobase at Smrfjord is at 100m altitude and the sea invaded at c. 1000014Ca BP. 

Therefore, the sea initially reached an altitude of 100m and there is likely to be a blocked lower entrance to the cave, 
into which the sea had easy access at the start of one or more interglacial, after the main deglacial flushing had 

ceased. The sand deposition at the highest level may have been at the start of the Eemian, rather than the start of the 
Holocene, when the deglacial marine limit was at a higher altitude (section 8.1.2). However, this seems unlikely, as 

all pre-Weichselian unconsolidated sediments were probably washed out during the final deglaciation. Thus, the 
difference between 110m and 100m probably represents tidal range, storm effects and mapping errors, allowing the 

sand banks to be of early Holocene age. The observation about phreatic development below about 120m may mean 
that large, pre-existing, vadose shafts and passages sent deglacial meltwaters down to this level, to create a short 
meltwater subglacial waterway. This would have been at a late stage of each deglaciation, but before marine 
incursion breached the Serfjord tidewater glacier. Previous to this, the cave was submerged well-above 120m 

altitude by the local ice-dammed lake, but perhaps in fairly static water. 

D6.1.2 Central Scandinavia 

This is the main study area of this thesis. Refer to Chapters 4-9. 

D6.1.3 Southern Scandinavia 
The southern Scandinavia area comprises the whole of Norway and Sweden that lie within the Caledonide nappes 

south of the main study area. The widely-scattered metacarbonate outcrops fall into four groups: the Kali Nappes of 

the Upper Allochthon, which lie in a belt from Molde on the northern coast of southern Norway to Snässavatn, some 
15km south of the main study area; the Lower Allochthon (Norway), which variously crops out in the centre of 

southern Norway, particularly at Dummdalen in the Jotunheimen mountain range; the Seve Nappes of the Upper 

Allochthon in Sweden; and the Lower Allochthon (Sweden). The two Swedish groups lie adjacent to each other, 

near the villages of Are and Ange, west of Ostersund. Karst caves have not been reported in the Seve Nappes in 

southern Norway, nor in the Middle Allochthon anywhere in southern Scandinavia. Caves in primarily sedimentary 
limestones, which occur at Oslo, Drammen and Skrimfjell in southern Norway, at Scania in southern Sweden and on 

the Swedish island of Gotland, have not been considered. Neither have caves that are sporadically described in the 
SSF magazine Grottan as lying within the Precambrian metacarbonates of the Baltic Shield. 

The caves of southern Scandinavia are among the most poorly documented of all the Caledonide terranes, as caving 

reports commonly only give rough lengths, and few other details. Cave surveys are still awaited for many caves, or 

are inaccessible. The author has visited some of the caves in Dummdalen. A database of 47 caves (Appendix C7) is 

summarised in Tables D6.4-D6.7. Within this database, some gross estimates of altitudes, vertical ranges and cave 
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cross-sections are included. Because of this and the small sample size, the data quality is less than in the tables for 

the other Caledonide areas. 

Table D6.4 Southern Scandinavian Karst Types 

Karst Type V A L C X ALL 

Count 17 22 8 47 

ofcaves % 36 47 17 100 
Total cave len hm 2117 2035 86 4238 

of total cave length 50 48 2 100 
Mean cave length m 125 93 11 90 
Mean cave VR m 7.5 3.6 9.1 
Mean cave XS m 

L5. 
2.7 1.4 3.5 

Table D6.5 Southern Scandinavian Cave Tunes 
Cave 
Type 

No. 
of 

caves 

% of 
caves 

Total 
cave 

length 
(m) 

% of 
total 
cave 

length 

Mean 
cave 

length 
m 

Mean 
cave 
VR 
m 

Mean 
cave 
XS 
m2 

Mean 
cave 

volume 
m3 

S 4 9 30 1 8 6.5 2.3 19 
a 10 21 95 2 10 2.8 3.2 37 
b 11 23 404 9 37 4.9 2.3 116 
c 4 9 178 4 45 3.0 1.8 87 
d 7 15 1267 30 181 11.4 5.5 1641 

e 3 6 239 5 80 15.7 1.3 199 
f 

5 11 1742 41 348 31.2 8.4 3480 
h 1 2 210 5 210 20.0 4.0 840 
H 1 2 43 1 43 3.0 2.0 86 

J 
M 
R 1 2 30 1 30 4.0 2.0 60 
T 

ALL 47 100 4238 100 90 9.1 3.5 692 

Table D6.6 Southern Scandinavian Cave Class comuarisons 

NTERNAL CAVE 
TTRIBUTE 

RELICT 
CAVES 

COMBINATION 
CAVES 

MV 
CAVES 

ALL 
CAVES 

NITS 

oust 11 16 2 4 0. 
/o of caves 23 34 43 1 /o 

otal cave length 117 3454 66 423 
% of total cave length 3 81 161 10 /o 

can cave length 11 216 33 9 

can cave VR 5.7 17.6 4.3 9.1 
can cave XS 2.0 5.9 2. 3.5 

can cave Volume 18 1902 9 69 

verage of SE 0.00 0.50 0.6 0.45 o. per cave 
verage of RE 0.00 0.31 0.2 0.21 o. per cave 
verage of DE 1.27 1.94 0.5 1.1 o. per cave 
verage of all entrances 1.27 2.75 1.4 1.83 o. per cave 
verage of CS 0.00 1.38 1.0 0.8 o. per cave 
verage of SP 0.00 1.13 0.3 0.53 o. per cave 

None of the caves occur in vertical stripe karst. In central Scandinavia, VSK occurs primarily in the Uppermost 
Allochthon, which is absent in southern Scandinavia. The caves in southern Sweden are probably all in low angle 
karrt. However, because of the scarcity of cave surveys, few conclusions can be reached about internal cave 
morphology. The total length of passage in the 47 adequately-documented caves is only some 4200m. To this can be 
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added perhaps 1600m from a further 27 inadequately-reported caves. The longest caves have lengths c. 400-500m: 

Gaulstadgrotta (Ogndal) and Trollkyrkegrotta (near Molde), both probably in the Koli Nappes; 

Kvarnbäckslabyrinten (including Övre and Nedre caves) in the Seve Nappes; and Svre Elvegrotta (Dummdalen) 

in the Lower Allochthon. Both KvarnbAckslabyrinten and ßvre Elvegrotta have a vertical range of some 46m. 

All caves lie at altitudes well above marine limits. 

Table D6.7 Southern Scandinavian Caves and Tectonostrati¢raphy 

Alloch- Nappes 
thon 

No. 
of 

caves 

% 
of 

caves 

Total 
cave 

length 
m 

% of 
total 
cave 

length 

Mean 
cave 

length 
m 

Mean 
cave 
VR 
m 

Mean 
cave 
XS 
m2 

Mean 

cave 
volume 

m 

Upper Koh (Norway) 13 28 1853 
mmý44 143 11.8 3.9 1145 

Upper Seve (Sweden) 5 11 423 10 85 10.8 1.8 89 
Lower (Norway) 15 32 1420 33 95 11.8 5.4 1074 
Lower Sweden 14 30 542 13 39 3.3 1.8 79 

ALL 47 100 4238 100 90 9.1 3.5 692 

The mean length of the caves is some 90m, varying from 143m in the Kali Nappes to 39m in the Lower Allochthon 

in Sweden (Table D6.7). If the lengths of some 29 extra, inadequately reported, caves are included, the mean lengths 

of caves in each of the four groups all reduce, giving a total mean of 79m. Neither value is very different from the 

mean length for the main study area (85m). Similarly, the mean cave cross-section (3.5m2), the mean cave volume 
(607m3, adjusted for the over-representation of length) and the mean cave vertical range (9.1m) are also comparable 
(c. f. Table 5.5). However, the caves in the Lower Allochthon in Sweden are significantly smaller in most 
dimensions compared with those in the other three groups. The reason can be deduced from the extents of local 

relief differences at each major site in the Keli, Seve, Lower (Norway) and Lower (Sweden) groups, which are 

roughly 900m, 1000m, 1200m and 300m, respectively. Hence, whereas all the caves lie well inside the one-eighth 

relationship for their subsurface cave distance, there is a very strong suggestion that the mean depth of a group of 

caves is also determined by the local relief, perhaps equalling roughly 1% of the depth of the local valley. The data 

also hint that the relief difference also determines the mean length of the local caves. 

The approximate distribution of the caves amongst the relict, combination and mainly vadose hydrological classes is 

shown in Table D6.6 (which should be treated with caution). As in central Scandinavia, the dimensions of the 

combination caves are significantly greater than those of the other two classes. The mean cross-section of the caves 
in the Lower Allochthon (Norway) is also much higher than the overall mean. These caves predominantly lie in 

Dummdalen in the mountains of southern Norway, and they are almost all combination or mainly vadose active 

caves. Although not fed directly from glaciers, the area has a high winter snowfall, so that the large stream that 
flows through some of the caves persists throughout the summer and autumn, giving a large vadose entrenchment 
throughout the Holocene. The proportions and rankings of entrance types, cave streams and sump pools are also 
fairly similar to those of the main study area (Table B2.1). 

D6.2 The Laurentian Caledonides 
The main area of interest in northern America is the northern Appalachian part of the Caledonides, along the 

western side of the New England states of Vermont, Massachusetts and Connecticut. 

D6.2.1 New England carbonate geology 
The structural geology of New England is more complex than that of central Scandinavia, because the area 

comprises a collage of some ten Caledonide terranes that have over-thrust older, Grenville-age, rocks of the 

Canadian Shield that crop out in New York state and in Canada. The thrust slices culminate in the Taconic 

Allochthons along the western extremity (Keppie, 1985). Some of these terranes and basement inliers contain karstic 

metacarbonates. These are commonly highly dismembered into lenses and merokarsts, with low angles of dip, rather 

than into long N-S aligned stripe karsts. Faulting, jointing and thrusting at a local scale also dominate. Individual 

metacarbonate blocks were sporadically transported across more competent rocks, and unconformities between rock 

types are sharply delineated. For example, it is sporadically possible to insert a hand between the upper surface of a 

metalimestone and an overlying phyllite. Metamorphism varies from high to low grade, in a S-N direction, and 
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intrusions are common at higher grades. The ages of the metacarbonates vary from Precambrian to Middle 

Ordovician. Some (short) caves are recorded in Winooski and Dunham "Dolomites" (Quick, 1994), although it is 

not known whether these refer to dolomitic limestones or to pure dolomite. Surface relief is rather subdued, with 

shallow valleys extending from altitudes below c. 200m up to vegetated ridges and peaks above 1000m. 

D6.2.2 New England glacial history 
The glacial history of the area is rather similar to that of central Scandinavia (sections 2.3 and 2.4). The Wisconsin 

glaciation also appears to have had less magnitude than the previous Illinolan and Kansan glaciations (Andersen and 
Borns, 1997, p40). [For example, Schroeder and Ford (1983) discussed three phases of varved sequences in 

Castleguard Cave, Canada, which they interpreted as depositions under full glacial conditions. As the youngest of 
these dated to 140ka, they suggested that the cave was not inundated during the Wisconsin]. At the LGM, the 

icesheet presumably extended over many areas of warm-based glaciation with subglacial lakes. According to Dyke 

et al. (2002) and Marshall et al. (2002), icesheet thickness increased from zero off the coast at Boston, via 1500- 

2500m across the Caledonides, to >3000m above Hudson Bay. 

Wisconsin deglaciation was probably complete in New England by c. 1300014Ca BP (Andersen and Borns, 1994) 

and the impact of YD cooling was much attenuated inland (Cwynar and Spear, 2001). The author is unaware of any 
detailed models of deglaciation that equate to the work of Grenlie (1975), but assumes that similar processes 

applied. The top-down melting of ice from mountain ridges to create IDLs, and a warming-front from the Atlantic 

that moved, in this case, from SE-NW, were confirmed by Stone and Borns (1986, Fig. 1) and by LaRocque et al. 
(2003). The Holocene uplift for the area varies from c. 60m in the south to c. 180m in the north (Andersen and 
Borns, 1997, p 18). Rubin et al. (2002) discussed possible evidence of raised sea levels (including elevated sea caves, 

sea stacks and boulder beaches) on Mount Desert Island, Maine. The Atlantic coast contains many non-carbonate 

sea caves at and above the present sea level. However, they all have entrances that are only a few metres high. The 

complete absence of littoral caves with very tall entrances (Rubin, pers. comm., 2002) may indicate that the sea 
froze here before there was significant isostatic depression at the onset of the Wisconsin glaciation. In this case, 
there was no glaciation marine limit equivalent to the one suggested for north central Norway (section 8.1.3). 

However, as the karst areas are c. 180km from the coast at elevations >200m, probably none' of the caves were 
inundated by the sea during either glaciation or deglaciation events, and the construction of isobase maps is less 

relevant to an understanding of cave development. The well-documented existence of many `tectonic fissure' or 
`fracture' caves and of many `talus' caves in a variety of metamorphic rock types provides evidence that this area 

also experienced many severe seismic shocks following rapid deglaciation and uplift. The seismicity in northern 
New England was probably greater than that in the main study area, because, being nearer to the centre of the 
icesheet (in a position more comparable to eastern Sweden) the thickness of ice removed was even greater. 
However, the majority of the karst caves are located in the southern part of New England. 

D6.2.3 New England karst caves 
A brief study of the karst caves was undertaken by extracting information from Quick (1994) and from the NE 

Caver magazine into a North American Caledonides cave database (Appendix C8). The database is incomplete, 

because location and altitude information is commonly suppressed in northern America (to protect the interests of 

property owners). However, the recording of karst type, cave type, cave class, main dimensions, entrances and 
hydrology was achieved, mainly by a study of the well-presented cave surveys and descriptions. It is anticipated that 

these data are representative of the present state of knowledge. The completeness of exploration may, on one view, 
be higher than in the main study area, because groups of active cave explorers live locally. On the other hand, many 
karst outcrops and potential cave entrances are covered by extensive vegetation and glacial till. The author made 
brief field trips to the area in November 1996 and June 2002, visiting five of the 153 listed caves. Tables D6.8- 

D6.10 list some key parameters for the karst caves of the North American Caledonides. 

The cave surveys for the area do not have the same ̀ feel' as those in the Helgeland Nappe Complex of central 
Scandinavia. The reason is apparent from Table 1)6.8, which shows that 52% of the caves occur in low angle karst 
(commonly monoclinal, with dip <30°). Some 12% are in angled karst (<_80°), and none occur in vertical stripe karst. 
It is not easy to deduce the karst type for 37% of the caves, but many of these (shorter) caves in unknown karst types 
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are probably also in low angle karst. As a consequence, cave surveys are commonly less linear than in the main 

study area, and it is more difficult, and less relevant, to assign the caves to the cave type structure chosen for central 
Scandinavia. For example, only one cave is given cave type e (vertically tiered linear passages, Table D6.9), and, 

with the strong faulting and jointing, some caves fall into "fissure network" patterns (Palmer, 1991). 

Table D6.8 New F, nQland Karat Tvnes 

Karst TvDe V A L C X ALL 

Count 18 79 56 153 
% of caves 11.8 51.6 36.6 100 
Total cave length m 1370 6332 1385 9087 
% of total cave length 15.2 69.7 15.2 100 
Mean cave length m 76 80 25 59 
Mean cave VR m 9.7 11.2 6.4 9.3 
Mean cave XS m 1.6 3.0 3.1 2.9 

Table D6.9 New England Cave Tuna 

Cave 
Type 

No. of 
caves 

% of 
caves 

Total 
Cave 
length 
m 

% of 
total 
cave 
length 

Mean 
cave 
length 
m 

Mean 
cave 
VR 
m 

Mean 
cave 
XS 
m2 

Mean 
cave 
volume 
m3 

S 8 5.2 196 2.2 25 14.0 4.5 118 
a 56 36.6 842 9.3 15 4.0 2.6 60 
b 33 21.6 1121 12.3 34 5.6 2.5 109 
c 17 11.1 1172 12.9 69 4.6 2.3 148 
d 13 8.5 851 9.4 65 12.5 3.1 251 
e 1 0.7 42 0.5 42 3.0 1.0 42 
f 14 9.2 1893 20.8 135 18.9 3.4 510 

3 2.0 578 6.4 193 39.0 4.3 781 
h 4 2.6 2277 25.1 569 58.0 5.3 2993 
H 
1 4 2.6 115 1.3 29 10.0 3.6 160 
J 
M 
R 
T 

ALL 153 100.0 9087 100.0 59 9.3 2.9 234 

Table D6.10 New England Cave Class comnarisons 
INTERNAL CAVE 

TTRIBUTE 
RELICT 
CAVES 

COMBINATION 
CAVES 

MV 
CAVES 

ALL 
CAVES 

UNITS 

Count 81 52 20 153 No. 
to of caves 53 34 13 100 % 

otal cave length 1998 6189 900 9087 m 
to of total cave length 22 68 10 100 % 

can cave length 25 117 45 59 m 
can cave VR 5.3 14.8 10.7 9.3 m 

Mean cave XS 2.6 3.1 3.4 2.9 m 

Mean cave Volume 75 473 237 234 m 
Average of SE 0.00 0.38 0.80 0.24 No. per cave 

verage of RE 0.00 0.21 0.20 0.10 No. per cave 
verage of DE 1.16 0.68 1.00 0.97 No. per cave 
verage of all entrances 1.16 1.27 2.00 1.31 No. per cave 
verage of CS 0.00 1.23 1.15 0.58 No. per cave 
verage of SP 0.00 0.47 0.15 0.18 No. per cave 

With a mean length of only 59m, the caves are commonly shorter than those in the main study area: the longest 

(Aeolus Bat Cave, vT) is only 900m long. The mean cave cross-section (2.9m2) and volume (234m) are 
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correspondingly smaller. Mean cave dimensions tend to increase with cave type (Table D6.9) and only four caves 
are assigned the most complex cave type, h. However, at 9.3m, the mean vertical range is remarkably similar, and 
deeper caves also occur in karsts with lower dip angles. The deepest (Purgatory System, VT) has a VR of 82m and 
a maximum subsurface cave distance of c. 40m. The passage with the greatest distance to the surface (68m) is in a 
deep sump in Morris Cave (VT). This is situated in a glaciated valley whose floor is at c. 210m, between peaks 
above 1000m. Thus, the known distance of its deepest passage from the surface is well-within the one-eighth 
relationship that was proposed for the creation of inception fractures in central Scandinavia (section 6.5.2). 

The caves also commonly contain large amounts of breakdown on chamber floors away from entrance areas, and 
anecdotal reports indicate that there are not any chambers with smooth floors, also suggesting that caves were 
subjected to large seismic shocks. The author's 2002 visit to Nickwackett Cave and Chaffee Mountain No. 2 Cave 
(VT) revealed evidence of recent tectonic movements along joints, visible inside the caves, and commonly parallel 
to passage directions. [Isostatic rebound only triggers earthquakes at some postglacial faults in eastern Canada if 
they are in pre-stressed regions (Olesen, 1988)]. Cave passages sporadically occur at junctions of two marble 
lithologies, as at Eldons French Cave (MA) and at Morris Cave. 

From Table D6.10, over half the caves are relict, a third are combination caves, and 13% are mainly vadose. This 
represents a much larger proportion of relict caves and a much smaller proportion of combination and MV caves 
than in central Scandinavia, suggesting that Holocene vadose development was less important than deglacial 

phreatic development in New England. However, although combination caves commonly have the largest 
dimensions, the small sample of MV caves commonly has larger mean dimensions than the short and extremely 
epigean relict caves, whose mean VR is only 5.3m and which may not contain many examples of longer multi cycle 
caves. Entrance occurrences decrease in combination caves in the order DE to SE to RE, as in central Scandinavia, 
but with smaller mean frequencies. Both combination and MV caves have slightly more cave streams per cave, but 
far fewer sump pools. Whereas relict and combination caves have mean cross-sections 16% and 31 % smaller than in 

central Scandinavia (Table 5.25), the relatively few MV caves are 62% larger. The reason for the greater 
development of the active vadose parts of caves is probably that interglacial conditions started at c. 1300014Ca BP, 
thus lasting longer than in central Scandinavia. They may also have larger catchment areas and shorter periods of 
winter freezing (not studied). However, there are no glaciers to provide sustained meltwater recharge in summer. 

As expected from their elevations above probable marine limits (Appendix D6.2.2), the caves do not contain 
entrances that were obviously enlarged by marine action. This evidence provides more support to the hypothesis that 
caves in Norway with enlarged, tapering, entrances were enlarged by marine action. Only the entrance to Skinner 
Hollow Cave (VT) and the two entrances at the resurgence of Horse Farm Road Cave (VT) appear to be enlarged 
by IDL ice wedging, indicating their existence prior to final deglaciation. However, many entrances in northern 
America are vertical shafts into lower passages, or are themselves steep, shattered, passages. Although an analysis of 
variation with altitude has not been attempted, it seems likely that carbonate outcrops, cave occurrences and cave 
dimensions are primarily independent of altitude. The absence of reports of entrances situated very near peaks or 
ridge summits suggests that, as in the main study area, few caves exist in the `uppermost' glacial situation (i. e. one 
that was only submerged by a static nunatak ice-dammed lake during deglaciation). However, as the metalimestone 
outcrops commonly dip at rather low angles, their vertical distribution may not be as random as in central 
Scandinavia, and an absence of very high altitude caves could arise from a corresponding lack of limestone at such 
elevations. 

A study of the cave surveys found only six relict vadose passages in the whole area, which is even less 
proportionately than in central Scandinavia. As none appear to lie above subsequently-formed phreatic passages, 
they provide no evidence that any combination caves started their enlargement prior to the fmal, glacial cycle. Only 
one occurs in a relict cave (Bat's Den Cave, MA), and so relict caves were predominantly formed phreatically, and 
therefore before the final deglaciation. There is no reported dating of speleothems to give any non-geomorphological 
indication of passage age, and significant speleothems are rare. The only indication of possible multi-cycle cave 
development may be the diameter of some passages. The entrance passage size of Aeolus Bat Cave (VT, 8m wide 
by 6m high above a floor of shattered limestone) does seem larger than most in this respect. However, northern 
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America has apparently experienced several deglaciation / reglaciation phases since the Laurentide LGM, as 

discussed in section 2.3.3. Thus, the caves were probably flooded under several deglacial IDLs for longer periods of 

time than occurred in Scandinavia, providing the opportunity for prolonged dissolution to produce larger diameter 

passages. Anecdotal reports indicate that some caves contain five or six cycles of rhythmic deposition of clay 

sediments and larger material. It is possible to speculate that these deposits were laid down during the N-S flow- 

switching that occurred as the Great Lakes region alternately melted and froze between the LGM and the Holocene 

(e. g. Clark er al., 2001). This author's observation of two sizes of scallops in Nickwackett Cave (c. 10 and 30cm), 

giving approximate flow-rates of 40 and 13cros"1 (both southwards) are similar to the flow rates deduced for 

englacial flow and reverse flow beneath ice-dammed lakes in central Scandinavia (Appendices D4.7 and D4.4). 

D6.2.4 Caves in the Adirondack Mountains of New York State 

Although significant caves also occur in the metalimestone outcrops of the Canadian Shield, these have been not 

been included in the New England Cave Database, as they lie outside the Caledonide terranes. However, visits in 

1996 and 2002 to six of the marble caves in the Adirondack Mountains, which are situated in 1-1.3Ba Grenville-age 

crystalline marbles with very large grain sizes, support a conclusion that marble caves in the Canadian Shield also fit 

within the conceptual Caledonide models described in this thesis. For example, Crane Mountain Cave contains 

many large dykes and sills, presumably of amphibolite (as does Browns Cave), and one of these forms the roof of 

the downstream sump. Although the cave is primarily in a low angle karst, with a dip of c. 30°NE, the first two 

waterfalls occur where the rock is folded complexly. A vertical fracture at the entrance shows tectonic movement, 

apparently with broken calcite, and at the base of the second waterfall is a fault with slickensides 15cm long, 

weathered to black. The commercial "Natural Stone Bridge and Caves" consists of a large stream captured by a 

large, complex, phreatic series of sumps beside a normally-dry limestone gorge. This has small rockmills in its floor, 

indicating formation during deglacial outflows. Rusty Stove Cave has an obvious tectonic movement along a 

fracture on the left side of its entrance. The cave itself has formed along a dyke wall, which is breached at an inner 

chamber. The nearby Burroughs Cave has two moved joints orthogonal to the entrance passage that are c. lOm 

apart. It contains the large Breakdown Chamber, formed by upward stoping of collapsed blocks, with no dissolution 

evident above its lowest level. The karrt cave with the greatest vertical range is Crane Mountain Cave (c. 30m), 

and these caves also fit within the one-eighth relationship for depth of exploited fractures. The local presence of 

large numbers of talus and fissure caves also supports the concept of fracture generation by postglacial seismicity. 

D6.2.5 Newfoundland 
The island of Newfoundland forms a tectonic structural link between the northern Appalachians and the British 

Caledonides (van Staal et al., 1998, p213), comprising an assemblage of some six terranes with similarities to those 

of Britain and Ireland. However, the Dalradian Supergroup of the British Isles, with its metamorphic carbonate 

outcrops, appears to narrow considerably in Newfoundland, either within the Notre Dame Subzone or in its outlying 

Fleur de Lys Supergroup. These subzones do not appear to contain significant metacarbonates, and no karst caves 

are reported there. The scattered outcrops of the Taconic Allochthons on the west of the island mainly consist of 

igneous and plutonic rocks. The Humber Zone on the St. Lawrence promontory contains large outcrops of 

sedimentary carbonates of Cambrian and Ordovician age, similar to the Durness Group limestones of northern 

Scotland (RA Gayer, University of Cardiff, pers. comm., 1998). Higham (2001) reported a 780m-long karst cave in 

this limestone, together with other exokarst features. He also noted the existence of many sea caves from all over the 

island, with entrances up to 15m high, but not elevated above sea level. 

D6.3 The Caledonides of the British Isles 

The Caledonide terranes of the British Isles comprise the Dalradian Supergroup in Scotland, Ireland and the isles of 

Shetland, which all contain metacarbonate outcrops. 

D6.3.1 Scottish Dalradian Supergroup carbonate geology 
The places of interest in Scotland are in the Grampian Caledonides, which lie between the Great Glen Fault and the 

Highland Boundary Fault (Stephenson and Gould, 1995). The whole area stretches from the Isle of Islay and the 

Mull of Kintyre at the Atlantic coast, via the Grampian Highlands mountain range, to the North Sea coast between 

the Moray Firth and Aberdeen. With an area of some 25,000km2, it is over half the size of the main study area in 
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central Scandinavia. The scenery is among the most dramatic in Britain, and includes Ben Nevis (1322m), which is 
near both the coast and the Great Glen Fault, and the central Cairngorm massif, which rises to 1289m. 

The Grampian Caledonides are commonly described stratigraphically as the Scottish Dalradian Supergroup (e. g. 
Gibbons and Harris, 1994). The Supergroup consists of the Grampian, Appin, Argyll and Southern Highland 
Groups, in a sequence that very roughly `youngs' from NW-SE. Metacarbonate outcrops occur mainly in the Argyll 
and Appin Groups, but karst caves have only been recorded in the Tayvallich Subgroup of the Argyll, and in the 
Blair Atholl and Ballachulish Subgroups of the Appin. The Ballachulish Subgroup itself contains stratigraphically 
separate formations that are described as the Appin Limestone Formation (AA) and the Ballachulish Limestone 
Formation (AB), in both of which significant caves are located. 

The ages of the original Dalradian sediments were thought to vary from the Grampian Group of Grenville age 
(1100Ma), via the Appin Group at c. 750Ma, to the Late Proterozoic age (670-57OMa) of the Argyll and Southern 
Highland Groups (e. g. Stephenson and Gould, 1995). The Appin and Argyll Groups are separated by a major 
unconformity (marked by the 670Ma Port Askaig tillite), which may correlate to the Varanger Ice Age observed in 
northern Norway. However, Thomas et al. (2004) compared 87Sr/86Sr data from Dairadian metalimestones with 
available data of Neoproterozoic seawater 87Sd86Sr ratios. They concluded that the limestone diagenesis was wholly 
within a marine environment and that the whole Dalradian Supergroup was younger than previously reported, with 
all Grampian, Appin and Argyll deposition occurring probably from 700-600Ma. 

The Groups were later subjected to subduction, folding and metamorphism during the Grampian (Caledonide) 
Orogeny, from the Cambrian to the Early Devonian. Metamorphic grade follows the stratigraphy, from upper 
amphibolite facies in Grampian Group rocks, down to greenschist facies in Southern Highland Group rocks. The 
metacarbonates commonly form stripe karst outcrops that look very similar to those in central Scandinavia when 
seen on maps, in the field, and in the hand. In particular, the metalimestones of the Appin Group (Blair Atholl and 
XA Subgroups) are similar to those of the Helgeland Nappe Complex of north central Norway, as they display 
attractive light-coloured foliations in stream passages and commonly contain intrusive dykes and sills that form 
underground waterfalls. The Appin Group (? Subgroup) metalimestones are commonly black, with discontinuous 
white veins, in which intrusions have not been noted by the author. 

The Dalradian Supergroup abuts the rocks of the Moine Succession that lie north of the Great Glen Fault and that 
have a broadly similar age range (Johnstone and Mykura, 1989). The only carbonates in the Moine Succession are 
small slivers of marbles contained in inliers of the much older Lewisian Complex, in which no -caves are reported. 
Both the Moine and Dalradian sequences were overthrust across Cambrian sedimentary rocks. These include the 
karstic Durness Group sedimentary limestone, which is beyond the scope of this study. 

D6.3.2 Scottish glacial history 
The glacial history of the area followed the pattern of central Scandinavia (sections 2.3 and 2.4), but, being situated 
to the south in a more oceanic setting with smaller ice caps, the glaciations were less intense, more responsive to 
climate change, more difficult to interpret, and not necessarily synchronised with Scandinavian events. According to 
Stephenson and Gould (1995, p183), only an Anglian (480ka) and a Wolstonian (Saalian equivalent) glaciation are 
known to be represented in the Grampian Highlands prior to the stadials of the Devensian (Weichselian equivalent) 
glaciation. The main Late Devensian glaciation (the Dimlington Stadial) was thought to have lasted from 26- 
1314Cka BP, reaching a maximum at 1814Cka BP, when most of the area was covered by ice. McCabe et a!. (1998) 
showed that there was widespread deglaciation of the British icesheet at coastal zones from 16.7-14.714 Cka BP, 
followed by ice advance from 14.7-14.014Cka BP, when a maximum was reached that coincided with Heinrich 
event 1 and was nearly as extensive as the previous maximum. Rapid deglaciation occurred after 13.714 Cka BP 
when the icesheet disappeared, except in the western mountains (the Windermere Interstadial). A major re-advance 
occurred at the Loch Lomond (YD) Stadial from 11-1014Cka BP. 

Icesheet thicknesses were less than in Scandinavia, and the coast of NE Scotland was incompletely covered by ice, 
even during glacial maxima (Stephenson and Gould, 1995, p181). Ballantyne et al. (1998) showed, in a 
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comprehensive study, that a single high-level weathering limit on 71 mountains in NW Scotland is a periglacial 
trimline, cut along the flank of former nunataks by the last Devensian (warm-based) ice sheet at its maximum. 
Erratics <140m above this were emplaced by a much earlier and thicker ice sheet [Wolstonian or Anglian? ]. The 
ice-shed during the Devensian was situated above Rannoch Moor (SE of Ben Nevis), where the ice reached an 
elevation of some 1000m, but it reduced to sea level at the northern coast of the Grampian Highlands. Hence, the 
higher peaks probably remained above the icesheets as nunataks. Glacial erosion was mainly concentrated in the 

valleys, creating a radial pattern of lochs, glacial troughs and bedrock erosional forms in the western Grampians 
(e. g. Thorpe, 1987), and reduced from W-E (Glasser, 1995; Appendix A3.5). At the Loch Lomond re-advance, the 

smaller ice cap reached 700m altitude at Rannoch Moor (Payne and Sugden, 1990; Ballantyne, 1997, Fig. 4). 

The icesheet retreated into valley glaciers during deglaciation, and the effects of IDLs and / or jökulhlaups can be 

recognised (e. g. at the Parallel Roads of Glen Roy: Dawson et al., 2002, and in the Cairngorm Mountains: Brazier et 
a1., 1998). Isostatic depression by glaciation allowed the sea to inundate the coast up to 40m altitude prior to their 
subsequent elevation. However, as the lowest karst cave altitude is 75m, none could have been modified by marine 
action. As expected, none show the enlarged, rocky, tapering, entrances observed in many caves in north central 
Norway that lie below the deglaciation marine limit, providing more support to the hypothesis that such caves in 
Norway were, indeed, enlarged by marine action. Only Uamh na Duilean Briste (Bealach; 1. A) and Heifer's 
Outwash Cave (Glen Stockdale; kB) (both in Argyllshire) appear to have slightly enlarged entrances with parallel 
walls, indicative of enlargement by ice wedging and dissolution at the surface of ice-dammed lakes (section 8.9.4). 

Davenport et al. (1989), Ringrose et al. (1991) and Stephenson and Gould (1995, p202) discussed Scottish 

seismicity, which they attributed to the reactivation of old faults during deglaciation and later. The Great Glen Fault 

Zone, the west coast of the area and Comrie near the Highland Boundary Fault are some of the most seismically 
active parts of Great Britain, with earthquakes recorded up to 5.2 magnitude. Several `tectonic fissure' or `fracture' 

caves in a variety of metamorphic rock types supports the evidence that this area also experienced seismic shocks 
and tectonic movements following rapid deglaciation and uplift at the start of both the Windermere Interstadial and 
the Holocene. Thus, the cave inception processes are probably similar to those in central Scandinavia. 

D6.3.3 Scottish Dalradian Supergroup karst caves 
Information was extracted from four regional cave guidebooks and from various issues of the Grampian 

Speleological Group Bulletin to create a Scottish Dalradian Supergroup cave database (Appendix C9). Karst type, 

cave type, cave class, main dimensions, entrances and hydrology were recorded from the comprehensive cave 

surveys and descriptions. It is anticipated that these data are a complete representation of the present state of 
knowledge. The completeness of exploration is, in some areas, higher than in the main study area, because of the 

activity of Scottish cave explorers. The Scottish Highlands were extensively deforested for sheep grazing in recent 

centuries, making the task of finding cave entrances commonly easier than in central Scandinavia. This has resulted 
in some karst outcrops being exhaustively searched and reported, whereas others have (so far) apparently been 

ignored. However, reforestation by the introduction of plantations is now sporadically obscuring entrances, 
including those that are already known. The author has made brief field trips to the area, and has visited 21 of the 

152 listed caves. Tables D6.11-D6.14 list some key parameters for the karst caves of the Scottish Caledonides. The 

cave surveys for the area commonly have the same `feel' as those in the Helgeland Nappe Complex of central 
Scandinavia. The reason is apparent from Table D6.11, which shows that the majority of the caves occur in angled 

or vertical stripe karrt, and none are known to occur in low angle karst. Although the foliation angles are unknown 

in 41% of cases, the outcrops are narrow, and are unlikely to have low dip angles. As a consequence, cave surveys 

are commonly quite linear, as in the main study area. 

With a mean length of only 28m, the caves are much shorter than those in the main study area: the two longest, Poll 

Seomar (Chamber Pot, in Coire Mulrooney; ? ), and Uamh nan Claig-sonn (in Bealach; a) (both in Argyllshire) 

are only 340m and 280m long. The mean cave cross-section (2.1m2) and volume (84m3) are correspondingly 

smaller. Mean cave dimensions tend to increase with cave type (Table D6.12), but commonly remain smaller for 

every cave type than the means in central Scandinavia (Table 5.5). Only Poll Seomar is assigned the most complex 
cave type, h. The mean vertical range of 5.9m is only about two thirds that of the main study area. The two deepest 
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caves are Uamh nan Claig-ionn and Poll Seomar at 48m and 40m, with similar maximum distances to the surface. 
The first of these is situated near Salachan Glen, whose floor is some 375m below adjacent peaks. The second lies in 
Glen Creran, which has peaks to its east almost at 1000m. Thus, the subsurface cave distances of the deepest 
passages are within the one-eighth `limit' for the creation of inception fractures in central Scandinavia (section 
6.5.2), although the depth of Sump 2 in Uamh nan Claig-ionn approaches it. 

Table D6.11 Scotfsh Dalradian Suneraroun Karat Tvnnc 

Karst TV A L C X ALL 
Count 17 72 63 152 
% of caves 11 47 41 100 
Total cave length m 646 2624 955 4225 
% of total cave len h 15 62 23 100 
Mean cave length m 38 36 15 28 
Mean cave VR m 6.7 7.2 4.2 5.9 
Mean cave XS (m) 1.8 2.3 1.9 2.1 

Table D6.12 Scottish Dalradian SuoergrouD Cave Tvnes 
Cave 
Type 

No. of 
caves 

% of 
caves 

Total 
cave 

length 
m 

% of 
total 
cave 

len h 

Mean 
cave 

length 
m 

Mean 
cave 
VR 
m 

Mean 
cave 
XS 
m2 

Mean 
cave 

volume 
mý 

S 28 18 299 7 11 6.7 2.3 24 
a 51 34 626 15 12 3.2 1.9 31 
b 34 22 870 21 26 4.8 2.0 58 
c 13 9 595 14 46 5.4 2.4 191 
d 12 8 465 11 39 5.8 1.7 75 
e 6 4 447 11 75 15.8 3.2 226 
f I 1 38 1 38 10.0 2.5 95 

6 f 545 13 91 16.2 2.8 393 
h 1 1 340 8 340 40.0 4.0 1360 
H 
I 
J 
M 
R 
T 

ALL 152 100 4225 100 28 5.9 2. l 84 

Table D6.13 Scottish Dalradian Supergroup Cave Class comparisons 
INTERNAL CAVE 
ATTRIBUTE 

RELICT 
CAVES 

COMBINATION 
CAVES 

MV 
CAVES 

ALL 
CAVES 

UNITS 

Count 42 55 55 152 No. 
% of caves 28 36 36 100 % 
Total cave length 745 2736 744 4225 m 
% of total cave length 18 64 18 100 % 
Mean cave length 18 50 14 28 m 
Mean cave VR 5.9 8.9 2.9 5.9 m 
Mean cave XS 1.9 2.8 1.6 2.1 m 
Mean cave Volume 44 175 25 84 m 
Average of SE 0.00 0.55 0.49 0.37 No. per cave 
Average of RE 0.00 0.22 0.44 0.24 No. per cave 
Average of DE 1.21 0.71 0.29 0.70 No. per cave 
Average of all entrances 1.21 1.48 1.22 1.31 No. per cave 
Average of CS 0.00 1.25 1.04 0.83 No. per cave 
Average of SP 0.00 0.47 0.25 0.26 No. per cave 
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The caves contain few significant chambers, apart from shaft bases at waterfalls, and none exceed c. 4m in any 
dimension. Internal chambers that do occur have breakdown on their floors, suggesting that they were subjected to 

seismic shocks. The author's 1999 visit to Uamh Steall na Burich (in Glenamuchrach, Argyllshire; ? LA) showed a 
small neotectonic movement along a horizontal joint, visible at the west wall of the entrance passage. During visits 
to Poll Seomar (whose chamber and upper passages formed by dissolution at a wide inclined fracture zone), Uamh 
Coire Sheileach (Coire Mulrooney; AB) and Draught Caledonian (Glen Duror, Argyllshire; AA) in 2004, many 
tectonic movements of up to 15cm were observed along sub-horizontal (e. g. Photo D6.1) and near-vertical fractures, 

with several passage elements aligned along two orthogonal fracture sets not directly related to the foliation. 

Using the hydrological cave classification (Table D6.13), just less than one third of the caves are relict, just over a 
third are combination caves, and just over a third are mainly vadose. This distribution is quite similar to that in 

central Scandinavia. Furthermore, all the mean dimensions of combination caves are much greater than those of 
relict and mainly vadose caves, and the rank order for all mean dimensions is always combination: relict: mainly 
vadose, as it is in the main study area. 

Photo D6.1 Tectonic movement in Poll Seomar 
Movement of --10cm after the formation of the passage 
in angled stripe karst. Both photos by Ivan Young. 

When comparing the mean cross-sections of caves in each of the hydrological classes (Table D6.13) with those of 
the caves in central Scandinavia (Table 5.25), it is found that they are all smaller. Combination caves are reduced 
from 4.8 to 2.8m2 (42%), relict caves from 3.1 to 1.9m2 (39%), and mainly vadose caves from 2.1 to 1.6m2 (24%). A 

reduction in the timescale for phreatic enlargement is easy to understand. Because the smaller ice cap melted faster 

than would be expected from an application of the same reconstructed Grenlie formula (section 8.1.4), the IDLs that 
inundated inception fractures in Scotland were probably more short-lived than in central Scandinavia, despite 

coastal sites being deglaciated three times in the Late Devensian (Appendix D6.3.2). However, the vadose phase 
should have lasted for a similar duration in the Holocene in both countries, suggesting that Scottish caves experience 
less erosion during a shorter spring melt than occurs in the main study area. As in central Scandinavia, entrance 
occurrences of combination caves decrease in the same order from DE to SE to RE, but all hydrological classes have 

about 0.2 less DE per cave, probably because of the shorter mean lengths. Both combination and mainly vadose 
caves have similar numbers of cave streams per cave, but fewer sump pools (which is anomalous). 

Several cave entrances lie in each of the 100m altitude ranges from 100-700m. Thus, it seems likely that carbonate 
outcrops, cave occurrences and cave dimensions are primarily independent of altitude. However, there are no 
recorded karrt caves lower than 75m, despite several metalimestone outcrops extending down to sea level at the 
coast. The reason is assumed to be the same as discussed in section 8.1.10, i. e. that deglacial earthquakes were 
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muffled and reduced in magnitude when the sea encroached towards the deglaciation marine limit. The highest cave, 
Cave of the High Ground (Inverness-shire; XB), at an altitude of 895m, is below the level of a col to its south, 
suggesting that no caves exist in the `uppermost' glacial situation (i. e. one that is above the level of the highest local 
col, and therefore only supporting static nunatak ice-dammed lakes during deglaciation). 

A study of the cave surveys found no relict (fully) vadose passages in the whole area, meaning that the relict caves 
were predominantly formed phreatically and therefore before the completion of the final deglaciation. However, 
there are relict keyhole-shaped passages in the two combination caves Poll Seomar and Draught Caledonian, 
indicating vadose entrenchment before other passages formed at lower levels. Although these could represent early 
pathways in the Holocene, it is also possible that the vadose flows originated in the lpswichian (Eemian) 
Interglacial, after prior phreatic enlargement during the Wolstonian (Saalian) deglaciation. There is no reported 
dating of speleothems to give any non-geomorphological indication of passage age, and stalagmitic flowstones are 
rare. The upper levels in Poll Seomar contain stalagmite bosses (Photo D6.2), but their sizes are too small to 
indicate growth over a longer timescale than just the Holocene. The small passage diameters of nearly all the caves 
in the Grampian Caledonides also argue against multi-cycle cave development. 

The sediments in Poll Seomar and Draught Caledonian, which vary in size up to cobbles, are worthy of study, but 
they were probably deposited at late stages of the Devensian. For example, a sequence on the lower wall of the 
lower streamway in Poll Seomar has 10cm of gravels overlain by 5cm of clay that, in turn, is overlain by 10cm of 
gravels. The lower gravels could have been deposited during the deglaciation that preceded the Windermere 
Interstadial at 13.74Cka BP (Appendix D6.3.2), with the clay settling out during warm-based periods of the 
Younger Dryas re-glaciation. The upper gravels could then have been deposited during the YD deglaciation at the 
start of the Holocene. The present small stream is eroding these deposits. 

Table 06i4 Seottich DAlrndinn f ovaa and 

Group Subgroup No. % Total % of Mean Mean Mean Mean 
of of cave total cave cave cave cave 

caves caves length cave length VR XS volume 
m length m m m2 m' 

Argyll Tayvallich 33 22 481 11 15 4.6 2.2 35 

Appin Blair Atholl 40 26 658 16 16 3.4 1.3 25 

Appin Ballachulish 29 19 982 23 34 7.8 2.5 105 
ýA 

Appin Ballachulish 50 33 2100 50 42 7.6 2.6 152 
_"e 

ALL 152 100 4225 100 28 5.9 2.1 84 

n, A Danacnunsn Ouogroup, Appm Lunestone Formation 
XB Ballachulish Subgroup, Ballachulish Limestone Formation 

Table D6.14 shows the distribution of caves across the Scottish Dalradian Supergroup metalimestones. Although 
roughly similar numbers of caves are recorded in each of the four main limestone formations, they clearly fall into 
two groups. The caves in the Tayvallich and Blair Atholl Subgroup limestones have mean dimensions that are much 
less than those in the Ballachulish Subgroup (%A and 4) limestones, which contain all caves longer than 100m. The 
reason for this is not immediately obvious. The lengths and widths of outcrop types seem to range over similar 
values. If the one-eighth relationship applies, then caves up to 50m depth might be expected over much of the whole 
area. However, the Ballachulish Subgroup (XA and XB) outcrops all lie fairly close to the glaciation spreading centre 
at Rannoch Moor, where the icesheets were the thickest, and the deglacial seismic shocks were the strongest. The 
Tayvallich and Blair Athol] Subgroups are widely scattered across the Grampian Caledonides, and thus include 
caves in places where the ice thickness reduced towards the coasts (Appendix D6.3.2), the out-lying land remained 
exposed at relatively high elevations, the one-eighth relationship may be too generous in describing the maximum 
depth of fractures created there during deglaciation, and IDLs survived for less time. 
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D6.3.4 Ireland 
The Dalradian Supergroup continues from Scotland into the Irish Caledonides in the NW part of Ireland, north of 
the very karstic Irish Carboniferous sedimentary limestones. The thrust boundaries and individual outcrops 
commonly run from SW-NE in the three separate areas of North Mayo, Donegal / Tyrone / Londonderry, and 
Antrim (with younging to the SE), and from W-E in the displaced and more complexly-folded terrane of 
Connemara (Wilson, 1972). The total area measures some 6000km2. Metacarbonate outcrops, with a stripe karst 

appearance, occur within the Argyll Group in all four areas, and within the Appin Group in all areas except Antrim, 

as correlated with the Scottish rocks by Gibbons and Harris (1994). Only some 12 karat caves, with a total length of 
only 418m, are recorded to date. Few caves have been surveyed adequately, and only two caves are more than 30m 
long. The caves have only been found within the Argyll Group (Easdale Subgroup) in Connemara, and in the Appin 

Group (Blair Atholl Subgroup) in Connemara and Donegal. Faulkner (2000d) provided a more complete description 

of the caves and metacarbonate outcrops. 

Ireland was probably covered by a mobile icesheet at the LGM, whose centre moved south during its growth, and 
north during its decay. Ballantyne et al. (1998) showed the maximum edge of this icesheet near the coast of Donegal 

and Connemara, with approximate thicknesses of 300m at Gweebarra Bay, 500m at Donegal Bay, and 700m at the 
Ox Mountains and Connemara. The western mountains may have acted as glaciation initiation centres. Ireland was 
also overrun by Scottish ice, forming a single British icesheet (McCabe et al., 1998; McCabe and Clark, 2003) with 
three episodes of Devensian deglaciation (Appendix D6.3.2). Knight (1999) reported tectonic activity in NW Ireland 
during glacial unloading that led to metre-scale fault re-activation. 

The longest cave explored to date is Pollnapaste. This is contained within the Falcarragh Limestone Formation of 

the Blair Atholl Subgroup, near Gweebarra Bay, Donegal (Parkes et al., 1999). It is a combination cave with a 

relatively large sink entrance, 15m above sea level. The cave has formed in marble that, in places, is tightly folded 

and intruded by large dykes, within an overall vertical stripe karst setting. It has a length of c. 220m and a vertical 

range of c. 25m (including a steep inlet passage that rises above the entrance). The hills that overlook the Gweebarra 

valley from the south rise to about 300m, so that they were probably completely covered by ice at the LGM. Thus, 

the Pollnapaste inception fractures fall within the one-eighth relationship that governs the maximum depth of 
fractures caused by deglacial seismicity in central Scandinavia. 

The entrance to Pollnapaste is intriguing, because, from this author's personal observation, it appears to have 

suffered marine enlargement. However, the thickness of Pleistocene icesheets over Ireland and local relative sea 
levels are still matters of dispute between `thin ice' models based on the glacio-isostatic adjustment of the British 

Isles and observations of apparent Irish raised sea levels. Thus, according to Lambeck and Purcell (2001), there is a 

common absence of raised shorelines along the west coast of Ireland and their Fig. 2 shows that isostatic depression 

at Gweebarra Bay was exceeded by even lower eustatic sea levels at all times since the LGM, denying an 

opportunity for the sea to invade the Pollnapaste entrance. On the other hand, McCabe (1997, Fig. 2) reported sea 
level indicators from 19-13k14Ca BP that are some 80-40m higher in eastern Ireland than predicted by an earlier 

version of the glacio-isostasy model. McCabe and Clark (2003) reported a sea level raised to 30m in Donegal at the 

deglaciation of LGM1 at 17k14Ca BP and an ice sheet re-advance from 15-14k"Ca BP [coincident with LGM2 in 

Scandinavia? ], giving a sea level at +7m at one site. Thus, it seems likely that at least the first of these events caused 

some enlargement of the Pollnapaste entrance. 

Another answer to the puzzle may be provided by Bowen et at. (2002). By using the new 36C1 technique for dating 

the first exposure of glaciated rock surfaces to cosmic radiation, they suggested that the `LGM' was not the largest 

Devensian icesheet in the British Isles. Instead, a combined British and Irish icesheet was in contact with the 

Scandinavian icesheet at about 40ka, and this icesheet fluctuated several times until the LGM at c. 22ka, apparently 
in association with Heinrich events. The `Earlier Devensian Glaciation' apparently reached a maximum size at 
Heinrich 4, when the icesheet extended to the edge of the Irish continental shelf. After the deglaciation of the LGM, 

the icesheet surged forward to cover more than half of Ireland again during the Heinrich I event, although the 

Younger Dryas stadial does not appear to have created ice caps in Ireland. 
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The above scenario provides opportunities for the creation of tectonic inception fractures during glacial unloading at 

each fluctuation, and for subsequent phreatic enlargement beneath ice-dammed lakes. Thus, the phreatic passages in 

Pollnapaste could have enlarged beneath successive Devensian IDLs formed behind tidewater glaciers in 

Gweebarra Bay. If the `Earlier Devensian Glaciation(s)' were larger than the so-called LGM, their ice thicknesses 

and isostatic depressions would be greater than modelled by Lambeck and Purcell (2001), allowing the sea to invade 

to higher levels along the west coast. The raised shorelines produced were probably eroded by the LGM glaciation, 
although McCabe et al. (1986) reported the existence of glaciomarine sequences <80m above sea level along the 

north coast of County Mayo, 60km south of Pollnapaste. Hence, the Pollnapaste entrance could have been 

enlarged by the sea during the un-modelled onset or decay of one or more of the `Earlier Devensian Glaciations', but 

after the prior enlargement of phreatic passages. The lower, vadose, passages enlarged during the various 
interstadials, and especially during the Holocene. The absence of relict vadose passages in Polinapaste suggests that 

enlargement does not pre-date the previous interglacial. The existing cave passages probably represent a single cycle 
of development, and comply morphologically with the TDMO model. This sequence contrasts sharply with that 

proposed by Parkes et al. (1999), who concluded that the cave developed mainly during the Holocene, when the 

upper phreatic passages enlarged until they were drained by the breaching of a metadolerite dyke inside the cave. 

The second longest cave is Kelly's Cave, County Galway, in the Connemara Marble Formation, also in the Blair 
Atholl Subgroup (Faulkner, 2000d). This is a 70m-long, Ilm-deep, relict cave, at an altitude of 310m, with 
rectilinear passages that run parallel to a low cliff. It has formed phreatically in marble with a foliation dip of c. 20° 
into the cliff, below a mica schist roof. The adjacent ridge rises to about 600m. The cave therefore fits the model of 
development below a deglacial lake, which perhaps existed above the line of loughs that lie south of the Maumturk 
Mountains. Table D6.15 summarises the attributes of the 12 recorded caves. None have been assigned to the mainly 
vadose class, perhaps because of the author's lack of familiarity with some of them. Despite the small sample size 
and the sparse written record, the approximated mean cave dimensions are commonly of the same order as those in 

the Scottish Caledonides. 

Takle D6.15 Irish Dalradian SunerQroun Cave Class eomnarisons 

INTERNAL CAVE 
ATTRIBUTE 

RELICT 
CAVES 

COMBINATION 
CAVES 

MV 
CAVES 

ALL 
CAVES 

UNITS 

Count 8 4 12 No. 
% of caves 67 33 100 % 
Total cave length 142 276 418 m 
% of total cave length 34 66 100 % 
Mean cave length 18 69 35 m 
Mean cave VR 5.6 12.5 7.9 m 
Mean cave XS 2.8 5.1 3.6 m 
Mean cave Volume 70 314 151 m 
Average of SE 0.00 0.75 0.25 No. per cave 
Average of RE 0.00 0.50 0.17 No. per cave 
Average of DE 1.13 0.00 0.75 No. per cave 
Average of all entrances 1.13 1.25 1.17 No. per cave 
Average of CS 0.00 1.50 0.50 No. per cave 
Average of SP 0.00 1.00 0.33 No. per cave 

D6.3.5 Shetland 
The rocks of the Dalradian Supergroup also continue northward from Scotland, to the islands of Shetland, where 
they crop out east of the Walls Boundary Fault that is probably a continuation of the Great Glen Fault, in a total area 
of some 900km2 (Mykura, 1976). Here, the Appin, Argyll and Southern Highland Groups are aligned N-S, forming 

ridges and glaciated valleys, with younging to the east. The Grampian Group is not represented (Gibbons and Harris, 
1994). Metalimestone outcrops, 22km in length and <lkm in width, occur primarily in the Tayvallich, Easdale and 
Islay Subgroups of the Appin Group. Where exposed at the surface, they commonly have a vertical stripe karst 

appearance, reminiscent of the HNC in Norway (Photo D6.3). In particular, the scenery at the western coastal 
outcrops is similar to that of the coastal limestone islands in Z1 of the main study area. None of the metacarbonates 
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has been identified as dolomite. However, there is a complete lack of a written record of karst activity in Shetland, 
despite the long and easily accessible marble outcrops, without forest cover, and despite the visits of cave explorers 
to sea caves, peat caves and copper mines in the 1960s. Small metacarbonate outcrops also occur west of the Walls 
Boundary Fault. 

The paucity of both exokarst and endokarst development was confirmed during geological mapping (Flinn, pers. 
comm., 1997) and by the author during a one-week field trip to Shetland in August 1999, when c. 20km of limestone 

outcrops at some 20 sites were visited (Faulkner, 2000b). The Ordnance Survey maps for the area do not show any 
sinks or risings coincident with limestone outcrops, and only small seeps were found. Much of the limestone is 

covered by blanket peat that is 2m thick. There are very few dolines, and the largest are only 2m deep. Tiny streams 
that sink into these dolines seem to flow only along conduits in the peat. Where streams run across limestone 

outcrops, they do not go underground, but cut gorges up to 3m deep in the manner described by Osborne (1999, Fig. 
13). The largest `karrt conduit' seen on Shetland is fist-sized. 

D6.4 The Arctic Caledonides 
The Arctic Caledonide areas, which are presently permafrosted to varying depths, have not been visited by the 
author, and neither has he fully studied their glacial, isostatic uplift, and seismic histories. There are relatively few 
references to karst features. Smith (1972) measured a present surface denudation rate of only 2mmka' (Table A2.5) 
in sedimentary limestones in a broadly comparable climate at Somerset Island, Canada. 

D6.4.1 Central East Greenland 
The Greenland Caledonides are represented in three separate terranes that formed on the western side of Iapetus 
(Barker and Gayer, 1985), which are discussed from south to north. The area from 70-76°N comprises an Upper 
Riphean limestone-dolomite series overlain by Vendian (latest Proterozoic) age (Varanger) tillites that were 
themselves overlain by Early Cambrian to Mid Ordovician shelf carbonates (limestones and dolomites). These rocks 
were deformed, sporadically metamorphosed up to amphibolite fades, and thrust westwards in N-S aligned nappes 
over the Greenland Archean basement and its early Proterozoic and Grenville age cover sequences during the East 
Greenland / Ny Friesland (Caledonide) Orogeny, in the Early Silurian,. The basement rocks were also incorporated, 
to form the so called "crystalline region". Later in the Silurian, the rocks cooled and were then covered by Devonian 
sandstones and a succession of younger sediments, including Carboniferous and Cretaceous. The facies equivalence 
of Vendian dolostones from this terrane with dolostones from the Argyll Group, Islay Subgroup, on the isle of Islay, 
Scotland, was described by Fairchild (1989). Both formations lie above Varanger / Port Askaig tillites. The area 
from 76-80°N consists primarily of basement gneisses. Trevor Faulkner Page D 80 June 2005 
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D6.4.2 North East Greenland 
The area from 80°N to Danmark Fjord has a tectonic history similar to that of Central East Greenland, but the 
Varanger tillites do not occur, and there was no deposition during the Cambrian (Smith et a!., 1999). Ordovician- 
Silurian carbonates were deposited in the (western) foreland, prior to the East Greenland / Ny Friesland Orogeny, 

which only produced lower-grade metamorphism in this area. Folds commonly have gently-dipping eastern limbs 

and steep or overturned western limbs, with dislocations in carbonates. The Devonian `red beds' are also absent. 

This is the only terrane in the Greenland Caledonides in which karst caves are reported. These all occur near Lac 
Centrum, Kronprins Christians Land (Davies and Krinsley, 1960; Loubiere, 1987). A French expedition in 1983 
covered an area of 1000km2 of deglaciated massive Silurian (with some Ordovician) sedimentary carbonates, 
revisiting caves near Grottedalen, some 30km north of the lake, and finding a new cave, Grotte des Quatre, 8km to 
its south. Permafrost reaches a depth of 200m in this area, although 70 days were recorded with temperatures from 
0-15°C. However, snow persisted on north-facing slopes and above 700m altitude. Relative humidity is only 20% 

and the precipitation is only 200mmä 1. 

Twelve caves are located in a 450m-deep side valley to Grottedalen, at altitudes of 500-520m, 610-630m and 
700m, i. e. they share the same three sub-horizontal limestone beds. These beds may lie above impermeable Silurian 
dolomites. The caves all appear to have developed phreatically, with some breakdown. According to Davies and 
Krinsley (1960), the passage diameters range from 5-12m, and lengths from 10-60m. The caves above 600m 
altitude are terminated by fills of ice and frozen orange / yellow and red silts, which in one cave are capped by a 
10cm-thick flowstone. Caves below 600m are partly filled with glacial moraine, causing Davies and Krinsley to 
suggest that the latest ice advance down the valley was below this altitude. Grotte des Quatre lies at an altitude of 
c. 450m, and has formed in limestone with an almost vertical dip (but unknown metamorphic grade). The diameter 

of the main entrance is about 9m. This reduces in size to a passage to two small entrances, with a side passage to a 
fourth entrance. The total length is c. 70m and vertical range c. 14m (Loubiere, 1987, Fig. 3). The main entrance has 
clearly formed at a tectonic movement between near-vertical strata (ibid., Photo 5). Dating of reworked stalagmite 
fragments using the ESR method apparently indicated an age around 1.0-1.4Ma. Additionally, microscopic fungus 
in one stalagmite acts as a climatic marker to suggest an early Pleistocene age, when the warmer local climate may 
have supported open boreal forest, and prevented the formation of ice caps, as evidenced from other research in 
northern Greenland. In the main study area, the tapering main entrance would be interpreted as being enlarged by 
marine activity, probably by a rising sea level at the onset of glaciation. In this case, its present altitude of 450m is 
partly indicative of the extent of erosional unloading during the Pleistocene. 

Smith et al. (1999) reported the existence of palaeoendokarsts in Riphean-age stromatolitic, sub-horizontal, 
dolostones at three places around Lac Centrum, as exposed in valley sides. Phreatic conduits at shallow depths (up 
to c. 12m) below an unconformity surface range in size up to 5m high by 15m across. In one place, the conduits are 
connected by vadose channels to the upper surface, suggestive of an epikarst. At another, wide and steep vadose 
channels have truncated from above, to reach below the phreatic conduits, indicating a fall in base-level subsequent 
to the phreatic enlargement (and, incidentally, complying with the TDMO model of Chapter 9). All these conduits 
and channels are infilled by Vendian sandstones. The lower part of the unconformable lithology above comprises 
dolomitic sandstones of Ordovician age, either directly, or above the same formation of Vendian sandstones. The 
authors considered that soon after their formation in meteoric conditions (with no hydrothermal influence), the 
conduits and channels were infilled without causing collapse, and survived subsequent Caledonide tectonism. 

D6.4.3 Northern Greenland Fold Belt 
In northern Greenland, a fold belt trends E-W along the north coast into Ellesmere Island (Canada). It is very 
different to the East Greenland belts, and the main deformation post-dated the Caledonide Orogeny, taking place in 
the Devonian to Early Carboniferous. The Precambrian and Lower Palaeozoic rocks, folded and metamorphosed in 
the north, are unconformably overlain by Carboniferous deposits, but in central and south Peary Land, unfolded 
shelf deposits occur, overlain by Cambrian to Silurian carbonates. Major thrusting, crystalline basement, and 
granitic intrusions are absent in this belt. 
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D6.4.4 Spitsbergen 
The semi-glacial archipelago of Svalbard lies at latitudes 76-80°N. The largest island is Spitsbergen. Although it is 

generally considered that the whole area is Caledonide (belonging to the eastern side of the former Iapetus Ocean), 

this is only definite for the eastern terrane that comprises Ny Friesland and Nordaustlandet. This has affinities with 

Central East Greenland (Harland, 1985). The central terrane probably also formed during the Caledonide Orogeny, 

outboard of North East Greenland, but the western terrane belongs to the northern Greenland fold belt, so that the 

whole island probably only came together completely during the Carboniferous (Barker and Gayer, 1985). 

Commonly, Precambrian metamorphic Hecla Hoeck lithologies, including marbles (with grades up to sillimanite 

facies), are overlain by Palaeozoic sediments that include limestones and dolostones (some with affinities to the 

Durness Group limestone of Scotland) in all terranes, as in East Greenland (but unlike in most of the other studied 

Caledonide areas). It appears from the large sizes of the sedimentary and metamorphic limestone outcrops that dip 

angles are small, creating low angle karst rather than stripe karst (section 5.3.1). The existence of both short karst 

caves and endokarstic drainage in some metamorphic limestones is well known (e. g. Corbel, 1957; Lauritzen, 1998), 

although, because of their remoteness, knowledge of all the karst outcrops has remained sparse. 

Despite the ameliorating effect of the Gulf Stream, the exposed parts of Spitsbergen presently experience continuous 

permafrost to variable depths down to 450m. Precipitation is limited to about 400mmä', and surface runoff at sea 

level is limited to the four summer months when the atmosphere is above freezing. A consequence is that none of 

the explored dissolutional caves are active: they consist of relict passages with lengths up to 17m in cave C5, on the 

karst island of Blomstrandsaya in Kongsfjorden. Phreatic cross-sections vary up to 6m2, but caves are blocked by 

permafrozen sediments and plugs of ice. The relict caves on Blomstrandseya commonly, but not universally, occur 

below 100m altitude, and C5, at least, appears to have been enlarged by marine action. Strandflats here reach 

altitudes of 300m. Raised beaches also occur in Ny Friesland (R. Gayer, pers. comm., 1998). Many sea caves have 

also formed along the exposed limestone cliffs of Blomstrandseya near the present sea level, at which freshwater 

springs sporadically emerge. This led Lauritzen (1998) to propose a hybrid speleogenesis, with mixing corrosion at a 

sub- or supra-permafrost groundwater / seawater halocline supplementing wave and ice action. 

Lauritzen (1998) mentioned reports of palaeokarsts of various ages in Spitsbergen, including fills of Devonian Old 

Red Sandstone in cliff caves on Blomstrandseya. Their proximity to the present surface suggests that there has been 

little glacial erosion of the metalimestones on this island, previous glaciations presumably only just removing the 

Palaeozoic strata above the Precambrian. Thus, caves that contain Devonian sediments may have prior, origins. 

Alternatively, they were injected with this surface material during Quaternary glaciations. 

A characteristic in Spitsbergen that is unique in the Caledonides is the process of hydrothermal karstification. This 

is evidenced by the guidance of passages along hydrothermal calcite veins, and by the presence of calcite spar 

around the walls of tubular dissolution cavities, both at Blomstrandsoya and at Hornsund in the south of Spitsbergen 

(Lauritzen, 1998). This thermal activity continues to the present, as numerous hot springs occur along the west 

coast, from several types of aquifer (including karstic), as a result of young volcanism associated with the spreading 

of the Atlantic sea floor. Apart from small summer springs from superficial layers above the permafrost, the 

thermoglacial karst springs arise from glacial recharge into deep, sub-permafrost, conduits with flows that can vary 

up to 70m3s"'. They have an exotic water chemistry that includes H2S, brine and organics, at temperatures up to 

27°C. There is no record that the morphology of any of these karstic springs has been studied by diving. 

D6.4.5 Bjr rnoya 
The small island of Bjorneya, which lies between Spitsbergen and Norway, has low angle karst sedimentary 

limestone outcrops of both pre-Caledonide age (at the southern tip) and post-Devonian age, but there are no reports 

of caves there (Corbel, 1957, p61). According to the tectonic reconstruction of Smith (2000), Bjomoya remained 

part of the North East Greenland terrane of Laurentia until the Eocene, whereas Svalbard had amalgamated its 

separate terranes north of Greenland by the end of the Caledonide Orogeny. Svalbard and Bjerneya subsequently 

moved together to their present positions under the influence of Atlantic spreading and the evolution of various 

Greenland Sea fracture zones. 
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