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APPLICATION OF DATA ENVELOPMENT ANALYSIS

Hubert P. B. Virtos, Chris J. Savage, Will Maden, Alan Slater, Colin G. Bamford
University of Huddersfield – School of Applied Sciences – Transport
Email: hvirtos@gmail.com,

Introduction

The transport industry is a very competitive environment constrained by ever complex regulations and
smaller margins. In such environments, measuring performance is essential in order to ensure
resources are best used so that the organisation can stay competitive. Due to fleets’ complex
operations, fleets’ performance can be improved in many different ways. Freight Best Practice (FBP,
2005) mentioned that fuel costs for commercial vehicles operators could be as high as 30 to 40% of
all their expenditure. Furthermore, fuel has been shown to be a highly variable budget on which
improvements are generally possible (Wilson, 1987). The use of fuel is also intrinsic to any industry
using vehicles. In addition, and as mentioned by McKinnon (1993), fuel consumption can be improved
in many different ways. Consequently, it seems potentially easier and more beneficial to concentrate
first on improving companies’ fuel efficiency rather than on other operational areas. Finally, because
vans have a bigger market share than HGVs (68.1 billion vehicle kilometres for the former and 28.7
for the latter in 2008 - DfT, 2009, p.130) and that van fuel efficiency measurement is rather different
from HGV’s, this study will primarily focus fuel efficiency improvement in the van industry.

Improving the design of a supply chain can for example have huge repercussions on fuel
consumption although potential savings on fuel might be outweighed by other costs thus this
approach would not be ideal. Conversely, many different fuel saving interventions exist. Amongst
these are diesel or oil additives, energy efficient tyres and aerodynamic kits. Technologies like
CANbus (Controlled Area Network Bus, a bus on the vehicle which allows different electronic units to
share information such as wheel speed or fuel used) can provide an accurate driver’s mpg along with
detailed information on each driver’s behaviour. Although this cannot alone lead to improvement in
fuel efficiency, more accurate information and measurement can help fleet managers making better
informed decision which could ultimately lead to improvements in fuel efficiency. Yet, even though
most of these interventions can demonstrate a Return On Investment (ROI), they all represent an
investment which some companies might not be able to afford.

On the other hand, because fuel cards are omnipresent in the industry, improving fuel efficiency
measurement based on fuel card data could indirectly improve fuel efficiency without requiring this
extra investment. Besides, mpg, the industry-standard fuel efficiency measure, has several limitations
which should be addressed (these will be detailed in the next section). This study will consequently
concentrate on improving fuel efficiency measurement based on fuel card data.

Background

As seen above, mpg suffers from several limitations. These are detailed below:

 The measure does not include parameters necessary to its interpretation (e.g. ‘vehicle
weight’, ‘vehicle age’).

 The measure does not reflect pence per mile (ppm) efficiency.

 The measure is often misused in the industry. This happens when mpg is calculated per
period (e.g. monthly) when not all vehicles refill at the beginning and end of the period.

In order to improve van fuel efficiency measurement, these limitations have to be addressed.
To do so, traditional benchmarking approaches would combine mpg and ppm together through the
use of weighted averages. However, average is a measure of a central tendency that is a
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representative value only when data demonstrate a low variability which might not always be the
case. The choice of the weights is also often open to debate as no entity is likely to be best ‘across all
areas’ (Sharif, 2002). Besides, this method does not provide mechanism to incorporate external
parameters such as ‘vehicle weight’.

These weighting limitations were addressed by several outranking methods successively developed
by Roy and Bouyssou and Pomerol and Barba Romero ((Bouyssou and Roy, 1993), (Barba-Romero
and Pomerol, 2000) cited in (Laise, 2004)). However, these methods tend to be best at ranking
entities rather than at providing a score or measure.
All these limitations are addressed by another benchmarking method called Data Envelopment
Analysis (DEA) first introduced by Charnes Cooper and Rhodes (Charnes et al., 1978). DEA
evaluates an entity’s performance by calculating its respective score. This score is determined by
comparing the entity’s weighted input to weighted output efficiency ratio against all the other entities’
efficiency ratio values. This concept of efficiency ratio is illustrated below:

Figure 1: Total factor productivity ratio

A linear mathematical process is then carried out for each entity. This process optimises the
performance ratio by finding the best set of weights whilst being constrained by the all the other
entities’ inputs and outputs values. Following this process, DEA determines the following:

 Whether the unit is efficient, i.e. a best in class (the set of efficient units define the efficient
frontier, the line which represent best empirically observed performance).

 If not efficient, how much input reduction (whilst keeping output levels constant) is necessary
in order to reach efficiency (or vice versa. This is called the ‘technical or radial inefficiency’).

 Any potential slack on all input or outputs (this is called the ‘mix inefficiency’).

 For inefficient units, the list of all the efficient units that represent the local best practices.

This study uses DEA to improve van fuel efficiency measurement as this technique can address the
first two limitations of mpg as listed above. The last limitation, in regards to the misuse of mpg will be
addressed by a separate smoothing algorithm detailed in the following section.

Data Cleansing and Volume Smoothing

Three companies participated in this study. Their fuel card data was collected for the same period
(April to June 2009) along with information regarding their vehicles (e.g. amongst others vehicle
registration, vehicle make, model and description, type of operations, vehicle gross weight). The three
companies use telematics services thus the distance used in the models was obtained from the
tracking units. As DEA is sensitive to measurement error and exogenous influence (Avkiran and
Thoraneenitiyan, 2009), a study was independently conducted for each company to avoid having a
company’s environmental factors biasing the results.

An algorithm was developed to cleanse the fuel card data. This algorithm tried to match fleet
registrations details with registrations found on the fuel card file. The algorithm first tried to match the
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registrations discarded from any space. If unsuccessful, a series of phonetic mismatch were then
considered. For example FO08 FNX could be misspelled as F008 FNX or FOO8 FNX based on the
mispronunciation of ‘0’ as ‘O’. Because the companies all used telematics services, telematics
information was also used to further cleanse the results (e.g. check whether the vehicle was at a
petrol station at the time of refill). Finally, mpg performance was calculated between transactions so
that any vehicle showing an unrealistic mpg was individually appraised and potentially discarded from
the dataset (if missing a fuel transaction for example).

When measuring fuel efficiency based on fuel card data, fuel consumption can only be accurately
measured between refills and only if refills are always made up to the top of the tank. This way, the
fuel consumption can be calculated because the distance between the two refills is known (using
telematics or odometer readings), and the volume of fuel used to cover this distance corresponds to
the volume of the second refill. However, most fleet managers need to compare fuel efficiency
performance for all vehicles/drivers during the same period (generally a week or a month). Yet, it is
hardly ever possible to have all vehicles filled up at the exact beginning and end of the measurement
period and many would simply use the volume refilled during the period as the volume used – even
though this is sometimes blatantly inaccurate.

In order to address this issue, this study developed another algorithm which calculates the volume of
fuel used during the period. This is illustrated by the figure below:

Figure 2: Measuring fuel efficiency over a period of time

The ‘Smoothed volume’ is the sum of the exact volume used between the first refill and the last refill
within the period, and an estimation of the volume used between the beginning of the period and the
first refill and of the volume used between the last refill and the end of the period. These last two
volumes are estimated with the mpg calculated between the first and last refill. This is illustrated
below:

Figure 3: Formula for the smoothed volume

This smoothed volume corrects inaccuracies created by advantageous refills (i.e. just before the
beginning or straight after the end), resulting in an artificially high mpg, or disadvantageous refills
resulting in an artificially poor mpg performance. This is illustrated below:
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Figure 4: Results of the smoothing algorithm

This smoothed volume is used in the fuel efficiency model described below and this addresses the
last limitation aforementioned of ‘misused measure’. It is important to observe that without telematics
distance information, this algorithm also requires the odometer reading to be taken at the beginning
and end of the period (not just at the refills).

Fuel Efficiency Model

In order to address the two other limitations (i.e. that mpg does not incorporate the cost dimension
and does not include parameters necessary to its interpretation), the fuel efficiency DEA model was
originally designed with the following inputs and outputs:

Figure 5: Fuel efficiency model

This model relates to the mpg measure as it stills uses ‘fuel used’ as an input and the corresponding
‘mileage’ as outputs. ‘Fuel cost’ is added to the model as an input (so that vehicles could be mpg
efficient but ppm inefficient and vice versa). Similarly categorical variables such as ‘vehicle weight’
and ‘vehicle age’ are also added as inputs of the model.

This model is tested independently with each company’s data using a step by step approach. This
implies the first model solely consists of ‘fuel used’ and ‘miles travelled’ as this simple model can be
easily compared to mpg. To allow an accurate measurement of the impact each variable has on fuel
efficiency, ‘vehicle weight’ and ‘vehicle age’ are added one variable at a time.

Because each variable in the fuel efficiency model should be free to change independently from the
others (or more precisely in what is called a non-radial manner), the Slack Based Model model (Tone,
2001) was retained for this study. However, since ‘vehicle weight’ and ‘vehicle age’ are ‘non-
modifiable’ variables (known as non-discretionary), a specific non-discretionary adaptation of the SBM
was developed for this study (named SBM-ND-I for Slack Based Model Non-Discretionary Input
oriented). This adaptation allows slacks on all variables but only the slacks corresponding to the
discretionary variables enter in the calculation of efficiency.
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Results

The results of the basic model with ‘fuel used’ and miles travelled were highly correlated with the mpg
measure (the very small discrepancies were only due to rounding operations in the DEA model
calculations). This suggested that DEA could effectively be a relevant alternative to fuel efficiency
measurement with mpg.

Adding the cost to the model did not significantly impact the results both in terms of efficiency status
or ranking position. Furthermore, the results of the ‘fuel cost’ and ‘miles travelled’ model were similar
to both those of the ‘fuel used’ and ‘miles travelled’ model and to the ‘fuel used’, ‘fuel cost’ and ‘miles
travelled’ model. As there was no change in the efficiency status between all these models, and that
the ranking position was not significantly affected, this suggests no vehicle was simultaneously mpg
efficient and ppm inefficient or vice versa. There is consequently no interest in adding ‘fuel cost’ to the
fuel efficiency model and only the ‘fuel used’ variable was retained in the model.

Incorporating the vehicle gross weight in the fuel efficiency model required further data processing as
for the model to behave logically in relation to ‘vehicle weight’, the ratio ‘vehicle weight’ to ‘miles
travelled’ had to be unique within a ‘vehicle weight’ category. This was essential as otherwise the
impact of ‘weight’ for vehicles within the same weight category would be different in regards to the
number of miles travelled – which is logically not a desired characteristic. Consequently ‘fuel used’
was normalised in regards to number of miles travelled so that each vehicle had virtually travelled
1,000 miles and used a proportional amount of fuel to cover this distance. However, vehicle weight
was left untouched so that the ratio ‘vehicle weight’ to ‘miles travelled’ was effectively unique within a
‘vehicle weight’ category. Finally, the weight was also transformed into an isotonic variable by
subtracting the ‘vehicle weight’ variable to a bigger number K (Dyson et al., 2001). This is because in
DEA it is assumed that an increase in inputs should result in an increase in outputs (and a heavier
vehicle would logically demonstrate a worse mpg performance thus the weight ‘direction’ needs to be
reverted).

This model results were consistent and logical as within each weight category, vehicles with the best
mpg performance demonstrated the best DEA scores. This is illustrated in the figure below where the
vehicle weight was made isotonic using K = 3,501 and the mpg and score column highlighted with a
R.A.G. colouring (green represents good performance, red poor performance):

Figure 6: Model results with ‘fuel used’, ‘vehicle weight’ and ‘miles travelled’
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It is essential to observe that in some cases, some vehicles can be best in class (in regards to mpg) in
their respective weight category but are nonetheless evaluated inefficient. This is because the model
uses data from all weight categories when evaluating any vehicle’s efficiency. In this specific case,
some vehicles in different weight categories demonstrated a better performance than these best in
class vehicles. Thus, despite the fact these vehicles are best in class in their weight category; the
model evaluated them as inefficient. This concept is illustrated in figure 7 with the two vehicles 66 and
68. These vehicles are the best in class in their respective weight categories and in relation to mpg
but not evaluated efficient by the model (thus not on the efficiency frontier represented by the blue
line). This is illustrated in the figure below where best fuel performance is represented by a smaller
number on the x axis and heavier vehicles are at the bottom of the graph:

Figure 7: graphical representation of the results

Finally, adding ‘vehicle age’ to the model further segmented the results in such a way that the fleet
managers mistrusted and were confused by the results. For this reason, and although it seems logical
from a theoretical point of view to include ‘vehicle age’ in fuel efficiency, this variable was discarded
from the fuel efficiency model.

Conclusion

As explained earlier, the fuel information used in this study was collected from fuel card data.
Although this was ideal for this proof of concept – fuel cards are nearly omnipresent in the industry –
there are a few limitations attached to it. For example, this model is of limited use if the fuel efficiency
measure cannot be related to a driver which is case if several drivers share the same vehicles during
the measurement period. This limitation can however be addressed if driver fuel information is
retrieved directly from the engine electronic systems.

Further research could focus on applying this method to the HGV segment. As the vehicle’s load
weight will need to be taken into account, it might be possible to look at scoring each journey or using
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an average load weight during small periods instead of using the vehicle gross weight. The smoothing
algorithm can also be improved and more exception rules could be developed in order to increase its
robustness (e.g. like appraising the likeliness of the refill to be up to the top of the tank).

This study demonstrated it is possible to improve van fuel efficiency measurement based on fuel
cards through the use of the cleansing and smoothing algorithms and of the SBM-ND-I DEA model.
The companies’ fleet managers appreciated this model and the fact the efficiency scores provided by
the model could be compared across all their van fleet without having to know each vehicle’s weight.
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