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ABSTRACT 

The concept of Minimum Depth of Cut (MDC) is that the depth of cut must be over a certain critical 

thickness before any chip is formed. It is actually a major limiting factor on achievable accuracy in 

nanomachining, because the generated surface roughness is primarily attributed to the ploughing process 

when the uncut chip thickness is less than the MDC. This paper presents an analysis of a cutting process 

where a sharp pointed diamond tool with an edge radius of an atom acts on a crystalline copper work-

piece. From the molecular dynamics (MD) simulation results, the phenomena of rubbing, ploughing and 

cutting were observed. The formation of chip occurred from the depth of cut thickness of 30.0 Ǻ (3nm).  
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1 INTRODUCTION 

The Minimum Depth of Cut (MDC) is defined as the minimum undeformed chip thickness that can be 

removed stably from a work surface at a cutting edge under perfect performance of a machine tool (Ikawa 

et al 1992). The concept of MDC is that the depth of cut must be over a certain critical thickness before 

any chip is formed. This phenomenon of MDC leads to a rising of slipping forces, burr formation and sur-

face roughness (Ducobu et al 2009). Conventionally, the tool- workpiece material interface has been con-

sidered to be homogeneous and continuum mechanics are used in the analysis of the MDC. In 

nanomachining, analysis is based on discrete atoms whose interactions are governed by appropriate in-

termolecular potentials. The understanding and the accurate prediction of the MDC is very crucial in im-

proving the ultra-precision metal removal technologies, as this would assist in the selection of appropriate 

machining conditions and optimal geometry design. 

 The significance of MDC has been a topic of research in metal cutting mechanics since the last cen-

tury (Sokolowski 1955 and Brammertz 1961). Subsequently, there has been a lot of focus on the estima-

tion of the MDC in micromachining.  The relationship between cutting edge sharpness and the MDC was 

analyzed by Yuan et al 1996. They obtained MDC in the range of 0.05µm – 0.2µm for diamond tool cut-

ting edge radii of 0.2µm – 0.6µm, using the equation (1); 
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Where minλ is the MDC, r is the tool edge radius, xF is the horizontal force, 
yF is the vertical force and 

µ is the coefficient of friction. 

 Weule et al 2001 observed the MDC effect in micromilling process. The cutting experiments were 

carried out with tungsten carbide tools edge radii of around 5µm, on SAE 1045 steel. The minimum chip 

thickness to edge radius ratio of 0.293 was obtained for micromachining.  

 A Finite Element (FE) model has been used to determine the MDC for the single-phase ferrite and 

pearlite phases at micromilling length scales (Vogler et al 2004a). The edge radii of 2µm and 7µm with a 

range of chip thickness of 0.1µm -3 µm were used. Results showed that the MDC value for ferrite is 

greater than for pearlite. Similarly, the effect of MDC on the cutting forces in micromilling was studied 

by (Vogler et al 2004b). It was concluded that the MDC requires two separate force models to be able to 

handle the situations of chip and non-chip formations. Also, it was found that the frequency spectra of the 

forces contain a component that is a subharmonic of the tooth-passing frequency at feed rates less than the 

MDC and appears as a stepping behaviour of the forces in the time domain. 

Son et al 2005 proposed an ultra precision cutting model in which the tool edge radius and the friction co-

efficient are the major factors for the determination of the MDC with a continuous chip. The model was 

based on equation (2). 
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Where 
minλ is the MDC, r is the tool edge radius and β  is the friction angle between a tool and an uncut 

workpiece passed under the tool. 

 From the model, MDC obtained for aluminium, brass and Oxygen Free High Conductive (OFHC) 

copper were in the range 0.09µm -0.12µm. It was noted that surface quality was best and continuous chip 

was generated when cutting was at the minimum thickness. Liu et al 2006 developed an analytical model, 

based on the molecular-mechanical theory of friction, for the prediction of the normalized chip thickness 

(λn) for 1030 steel and Al6082-T6. The λn was defined as the ratio of the minimum chip thickness to the 

tool edge radius. The model was based on the Kragelsky-Drujuanov equation (Kragelsky et al 1982) (see 

equation 3). 
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Where minh is the limiting depth of penetration of an indenter and it is equivalent to the minimum chip 

thickness mintc  in micromachining, nr is the radius of indenter and it is equivalent to the rounded cutting 

edge radius er , σ  is the effective flow stress of strain-hardened bulk material, aτ  is the shear strength of 

the adhesive junction of chip/tool interface.  

 It was found that λn increases as the cutting velocity and tool edge radius increases when machining 

carbon steels. On the other hand, the λn remains constant over a range of cutting velocities and tool radii, 

when machining Al6082-T6. 

 On nanomachining, the Ikawa group in Osaka did a lot of work on the MDC, with the aim of achiev-

ing machining nanometric accuracy (Ikawa et al 1991, Ikawa et al 1992 and Shimada et al 1993). A 2-D 

simulation of copper atoms machined by a diamond tool, with edge radius of 5 to 10nm was used for the 

MD studies. Using the Morse potential and a cutting speed of 200m/s, initial stage of chip removal was 

observed for depth cut larger than 0.3nm and the MDC increased to 0.6nm with a larger edge radius of 

10nm. From their studies, they proposed that the MDC in nanocutting would be about 0.5nm to 1nm, 

(which is 0.05 to 0.1 of the edge radius). 
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 The different approaches for the determination of the MDC include the Molecular Dynamics ap-

proach (Shimada et al 1993), experimentation (Yuan et al 1996), FEM approach (Vogler et al 2004) and 

analytical approach (Liu et al 2006). The experimental method for the estimation of the MDC would be 

very tedious and expensive (it is not feasible presently for nanometric cutting) and the accuracy will be 

strongly affected by experimental uncertainties (Liu et al 2006). The Finite Element Method (FEM) ap-

proach is also not suitable, because nano machining phenomena take place in a small limited region (tool 

– workpiece interface), usually the surfaces containing few atoms or layers of atoms and it is not continu-

ous as assumed by continuum mechanics. Also, the analytical approach to nanomachining would be very 

difficult, as the basics would be in quantum mechanics. The Molecular Dynamics (MD) lends itself to the 

solution of this problem, as the dynamics of the material removal process can be modelled in the simula-

tion. 

 

2 MD SIMULATION METHODOLOGY 

The workpiece consists of 16000 atoms with perfect FCC copper lattice. It includes 3 kinds of atoms 

namely; boundary atoms, thermostat atoms and Newtonian atoms. The boundary atoms are kept fixed to 

reduce edge effects. The thermostat atoms conduct the heat generated during the cutting process out of the 

workpiece and the Newtonian atoms obey the Newton’s equation of motion. 

The tool consists of 912 atoms with perfect diamond lattice structure, and it is modelled as a rigid body. 

The atomic interactions in the simulation are the following, namely; 

Cu-Cu : interactions between copper atoms 

Cu-C   : interactions between copper atoms and diamond atoms 

C-C    : interactions between the diamond atoms (treated as rigid) 

 

Parameters Used: 

 

The Morse Potential was used for the simulation (see equation 4) 

 

                                (4) 

For Cu-Cu interactions: (Girifalco and Weizer(1959); Pei et al (2006)) 

 

 

For Cu-C interactions: Hwang et al (2004) 

 

 

 Other parameters used was viz; Bulk Temperature -293 K, Cutting Direction-[100], Cutting Speed -

150m/s, Time Step - 0.3fs, Run - 100000steps, Cut-off distance - 0.64nm and LAMMPS MD software 

(Plimpton 1995) was used for the simulations. A sharp pointed diamond tool with an edge radius of an 

atom (2.45 Ǻ) was used on the crystalline copper atoms workpiece. MD computational experiments were 

conducted, by using the above parameters and then varying the depth of cut from a base point of 0.0Ǻ. 

Initially, the increment of 0.1 Ǻ depth of cut was used and then 0.5 Ǻ, 5 Ǻ and 10 Ǻ. 

3 RESULTS AND DISCUSSIONS 

MD simulation results show that from the depth cut of 0.1 to 1.5Ǻ, rubbing phenomena are observed; 

where no atoms are moved from their original positions after cutter passes them. Ploughing, referred to 

atoms been displaced permanently, initiates from around 3Ǻ depth of cut, with a transition phase between 

1.6Ǻ to 2.5Ǻ. With the onset of ploughing, the pile-up of atoms begins from one atom up to seven layers 

of atoms. The cutting phenomena (or chip formation) start to occur around 30Ǻ (See Table 1). The above 

phenomena are shown in Figures 1-4, with the associated cutting forces. As the cutting depth increases, 

nmrnmeVD e 2866.0,)(13588.0,3429.0
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the variation of the cutting forces is shown in Figure 5. It can be seen that the cutting force increases 

gradually with the depth of cut, albeit the variation of the force is significant. This is because the force 

acting on the individual atoms depends on their positions and velocities in the simulation. 

 

Table 1: Summary - Minimum Depth Cut 

 

Depth of cut (Ǻ, angstroms) Build-up/Pile-up Phenomena Comments 

0.0 – 1.5 None Rubbing/Elastic Deformation 

1.6 - 2.0 None Rubbing/some few atoms were 

displaced-removed from the edge 

surface 

2.5 None Rubbing/ploughing - some atoms 

were displaced 

3.0 One atom Ploughing 

3.5 Few atoms Ploughing 

4.0 – 4.5 One layer of atoms Ploughing 

5.0  Two layers of atoms Ploughing 

10.0 Four layers of atoms Ploughing 

15.0 Five layers of atoms Ploughing 

20.0 Seven layers of atoms Ploughing 

30.0 Eight layers of atoms Ploughing/cutting 

35.0 Nine layers of atoms Cutting 
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Figure 1: Depth of Cut and Cutting Forces for Depth of Cut - 0.1 Ǻ 

 

Cutting Forces for Depth of Cut of 5 Angstroms
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Figure 2:  Depth of Cut and Cutting Forces for Depth of Cut – 5.0 Ǻ 
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Cutting Forces for Depth of Cut of 30 Angstroms 
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Figure 3:  Depth of Cut and Cutting Forces for Depth of Cut – 30.0 Ǻ 
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Figure 4: Depth of Cut and Cutting Forces for Depth of Cut – 35.0 Ǻ 

  

Variation of Cutting Forces (Fx) with Depth of Cut
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Figure 5: The Variation of Cutting Forces with Depth of Cut 
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4 CONCLUSION 

 

From the MD simulation results, the phenomena of rubbing, ploughing and cutting are observed, with 

the formation of chips occurring  from the depth of cut thickness of 30.0 Ǻ (3nm). So it can be suggested 

that the extreme accuracy attainable or MDC for copper atoms workpiece, machined with extremely sharp 

diamond tool with edge radius of 2.45Ǻ is around 30.0 Ǻ to 35 Ǻ (3-3.5nm). 
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