
University of Huddersfield Repository

Yang, Su

PC-Grade Parallel Processing and Hardware Acceleration for Large-Scale Data Analysis

Original Citation

Yang, Su (2009) PC-Grade Parallel Processing and Hardware Acceleration for Large-Scale Data
Analysis. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/8754/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

PC-Grade Parallel Processing

and Hardware Acceleration for

Large-Scale Data Analysis

Yang Su

A thesis submitted to the University of Huddersfield in partial

fulfilment of the requirements for the degree of Doctor of Philosophy

School of Computing and Engineering

University of Huddersfield

October 2009

I

Acknowledgments

I would like to thank the School of Computing and Engineering at the University

of Huddersfield for providing this great opportunity of study and facilitating me

throughout this project. I wish to thank my colleagues at the Computer Graphics,

Imaging and Vision (CGIV) Research Group and the Centre of Precision

Technology within the University of Huddersfield for their continuous and

consistent help and support to the project and myself.

First and foremost, I would like to express my sincere gratitude to my director of

studies, Dr Zhijie Xu, for his exceptional support and guidance throughout the

project. Having Dr Xu as an adviser has been an amazing experience. He was

willing to take a chance on my research from the beginning, and has always

pushed me to fill in that one last detail to elevate the level of my thinking and my

work.

Great appreciation also goes to my second supervisor, professor Xiangqian

Jiang, whose help and support has been of significant benefit to me during the

project.

A great deal of consideration and thanks must go to my family. My parents,

ChengXiang and Sufen Su, continue to be my role models for living life with

passion, creativity, and hard work. More than anyone else, however, I want to

thank my wife, Li Ma, and son, Jiayao Su, for their patience and support

throughout this very long journey, at least, that is how I felt. They have sacrificed

many days without me, yet all of this would be for nothing without them.

ii

Abstract

Arguably, modern graphics processing units (GPU) are the first commodity, and

desktop parallel processor. Although GPU programming was originated from the

interactive rendering in graphical applications such as computer games,

researchers in the field of general purpose computation on GPU (GPGPU) are

showing that the power, ubiquity and low cost of GPUs makes them an ideal

alternative platform for high-performance computing. This has resulted in the

extensive exploration in using the GPU to accelerate general-purpose

computations in many engineering and mathematical domains outside of

graphics. However, limited to the development complexity caused by the

graphics-oriented concepts and development tools for GPU-programming,

GPGPU has mainly been discussed in the academic domain so far and has not

yet fully fulfilled its promises in the real world.

This thesis aims at exploiting GPGPU in the practical engineering domain and

presented a novel contribution to GPGPU-driven linear time invariant (LTI)

systems that are employed by the signal processing techniques in stylus-based

or optical-based surface metrology and data processing. The core contributions

that have been achieved in this project can be summarized as follow. Firstly, a

thorough survey of the state-of-the-art of GPGPU applications and their

development approaches has been carried out in this thesis. In addition, the

category of parallel architecture pattern that the GPGPU belongs to has been

specified, which formed the foundation of the GPGPU programming framework

design in the thesis. Following this specification, a GPGPU programming

framework is deduced as a general guideline to the various GPGPU

programming models that are applied to a large diversity of algorithms in

scientific computing and engineering applications. Considering the evolution of

GPU’s hardware architecture, the proposed frameworks cover through the

transition of graphics-originated concepts for GPGPU programming based on

legacy GPUs and the abstraction of stream processing pattern represented by

the compute unified device architecture (CUDA) in which GPU is considered as

iii

not only a graphics device but a streaming coprocessor of CPU. Secondly, the

proposed GPGPU programming framework are applied to the practical

engineering applications, namely, the surface metrological data processing and

image processing, to generate the programming models that aim to carry out

parallel computing for the corresponding algorithms. The acceleration

performance of these models are evaluated in terms of the speed-up factor and

the data accuracy, which enabled the generation of quantifiable benchmarks for

evaluating consumer-grade parallel processors. It shows that the GPGPU

applications outperform the CPU solutions by up to 20 times without significant

loss of data accuracy and any noticeable increase in source code complexity,

which further validates the effectiveness of the proposed GPGPU general

programming framework. Thirdly, this thesis devised methods for carrying out

result visualization directly on GPU by storing processed data in local GPU

memory through making use of GPU’s rendering device features to achieve real-

time interactions.

The algorithms employed in this thesis included various filtering techniques,

discrete wavelet transform, and the fast Fourier Transform which cover the

common operations implemented in most LTI systems in spatial and frequency

domains. Considering the employed GPUs’ hardware designs, especially the

structure of the rendering pipelines, and the characteristics of the algorithms, the

series of proposed GPGPU programming models have proven its feasibility,

practicality, and robustness in real engineering applications. The developed

GPGPU programming framework as well as the programming models are

anticipated to be adaptable for future consumer-level computing devices and

other computational demanding applications. In addition, it is envisaged that the

devised principles and methods in the framework design are likely to have

significant benefits outside the sphere of surface metrology.

iv

List of Publications

1. Yang Su, Zhijie Xu (2009) “Parallel Implementation of Wavelet-based

Image Denoising on Programmable PC-grade Graphics Hardware”.

Signal Processing, ISSN: 0165-1684, In Press, Corrected Proof.

2. Yang Su, Zhijie Xu and Xiangqian Jiang (2009) “Real-time VE Signal

Extraction and Denoising Using Programmable Graphics Hardware”.

International Journal of Automation and Computing, ISSN: 1476-8186, Vol.6,

Issue 4, pp.326-334.

3. Yang Su, Zhijie Xu, Xiangqian Jiang and J. Pickering (2008) “Discrete

Wavelet Transform on Consumer-Level Graphics Processing Unit”.

Proceedings of Computing and Engineering Annual Researchers’

Conference 2008, ISBN 978-1-86218-067-3, UK. pp. 40-47.

4. Yang Su, Zhijie Xu and Xiangqian Jiang (2008) “Stream-Based Data

Filtering for Accelerating Metrological Data Characterization”.

Proceedings of the 14th International Conference on Automation &

Computing, ISBN 978-0-9555293-2-0, September 2008, London. pp. 81-85.

5. Yang Su, Zhijie Xu and Xiangqian Jiang (2008) “GPGPU-based Gaussian

Filtering for Surface Metrological Data Processing”. Proceedings of the

2008 12th International Conference Information Visualisation, July 2008,

London. pp. 94-99. ISSN:1550-6037.

v

List of Figures

Figure 2.1 Different stage overlap of instruction pipeline in RISC machine 9

Figure 2.2 Models of a MISD architecture .. 11

Figure 2.3 Models of a SIMD architecture .. 11

Figure 2.4 Models of a MIMD architecture .. 12

Figure 2.5 Abstract graphics pipeline defined in PHIGS ... 16

Figure 2.6 Abstract graphics pipeline between in 1995 and 1998 18

Figure 2.7 Abstract graphics pipeline (integrated T & L) at late 1990s 19

Figure 2.8 The enhanced GPU capability ... 20

Figure 2.9 A 3D head rendered by vertex shader and fixed-function graphics pipeline

respectively ... 21

Figure 2.10 The animation effect produced by pixel shader ... 21

Figure 2.11 Hardware abstracts of GPUs with programmable vertex and pixel shaders . 22

Figure 2.12 Model of the graphics pipeline of GPU released in 2004-2005 24

Figure 2.13 Vertex shader model of Nvidia GeForce 6800/7800 released in 2004-05 24

Figure 2.14 Pixel shader model of Nvidia GeForce 6800/7800 released in 2004-05 25

Figure 2.15 Workload unbalance in traditional rendering pipeline 26

Figure 2.16 Workload allocation in unified pipeline .. 27

Figure 2.17 Architecture of unified shader arrangement .. 28

Figure 2.18 PC graphics API architecture ... 30

vi

Figure 3.1 Stream and kernel in GPGPU programming ... 41

Figure 3.2 Data storage in RGBA textures ... 43

Figure 3.3 GPGPU’s Stream Model .. 53

Figure 3.4 Streams in GPUs ... 53

Figure 3.5 The configuration for Z-Cull in the first pass .. 58

Figure 3.6 The process of particle simulation using Z-Cull ... 59

Figure 3.7 1D array packed into 2D textures .. 60

Figure 3.8 Storing a 3D array with separate 2D slices ... 61

Figure 3.9 A banded sparse matrix ... 64

Figure 3.10 Store a banded sparse matrix on the GPU .. 64

Figure 3.11 Pack more nonzero into diagonal vector ... 65

Figure 3.12 Encode to the nonzero element in the random sparse matrix 66

Figure 3.13 The process tree of Divide and Conquer pattern ... 72

Figure 3.14 Demonstration of the Merge-Sort algorithm .. 74

Figure 3.15 Coordination between Pipes-and-Filters in the push method 76

Figure 3.16 Coordination between Pipes-and-Filters in the pull method 76

Figure 3.17 Coordination between Pipes-and-Filters where both two filers are active 77

Figure 3.18 Communicating sequential elements pattern .. 78

Figure 3.19 The Processor Farms pattern .. 79

Figure 3.20 Cell CPU Architecture .. 80

Figure 4.1 The relationships of GPGPU’s parallel architectural pattern, programming

framework and models. .. 84

Figure 4.2 The framework of virtualized parallel systems ... 89

vii

Figure 4.3 The conventional GPGPU architectural pattern .. 92

Figure 4.4 The new GPGPU architectural pattern with embedded unified pipeline 94

Figure 5.1 The convolution operation ... 103

Figure 5.2 Sequential program for the convolution operation ... 103

Figure 5.3 GPGPU programming model for filtering algorithms 105

Figure 5.4 The codes for data mapping .. 106

Figure 5.5 Fragment program to implement convolution operation 107

Figure 5.6 Data scatter through render-to-texture .. 108

Figure 5.7 Data splitting and storage in Framebuffer object ... 109

Figure 5.8 Convolution operation on the first part of metrological data shown in Fig5.7 110

Figure 5.9 Convolution operation on the)1)1((+−nn th part of metrological data ... 110

Figure 5.10 A primitive surface profile .. 111

Figure 5.11 Result of Gaussian filtering issued by MATLAB simulations 112

Figure 5.12 Result of GPGPU-based Gaussian filtering ... 112

Figure 6.1 Multi-level DWT and IDWT .. 119

Figure 6.2 The square decomposition scheme ... 124

Figure 6.3 The operational model of the GPGPU and wavelet-based denoising 125

Figure 6.4 The symmetrical periodic extension scheme ... 126

Figure 6.5 FP for edge extension .. 126

Figure 6.6 OpenGL instructions for controlling filtering and downsampling 127

Figure 6.7 Corresponding fragment program for filtering in horizontal dimension 128

Figure 6.8 OpenGL commands that implement upsampling along the vertical dimension

 .. 129

viii

Figure 6.9 Fragment program for upsampling along vertical direction 130

Figure 6.10 The effect of upsampling ... 130

Figure 6.11 Noisy night-sky cityscape .. 131

Figure 6.12 Coefficients at decomposition level 1 .. 132

Figure 6.13 Coefficients at decomposition level 2 .. 132

Figure 6.14 Coefficients at decomposition level 3 .. 133

Figure 6.15 Noisy image (1024×960) ... 133

Figure 6.16 Denoising effects using the Db4 wavelet ... 134

Figure 6.17 Denoising effects on the image of night-sky cityscape 135

Figure 6.18 The noisy image of a sunflower ... 135

Figure 6.19 Denoising effects on the image of sunflower ... 136

Figure 7.1 Profiles of structured surface characterized by step and grooves 143

Figure 7.2 The optical path in a interferometer ... 144

Figure 7.3 Illustration of 2pi phase ambiguity ... 145

Figure 7.4 Intensity curve of interference signal at a scanned point 147

Figure 7.5 Intensity curve with different length of wavelength segment 148

Figure 7.6 Pack of grayscale image at various wavelength .. 150

Figure 7.7 Phase distribution in the wavelength segment .. 151

Figure 7.8 The curve of 2π phase shift ... 151

Figure 7.9 The curve of phase shift within chosen wavelength segment 152

Figure 7.10 Grid of thread blocks .. 155

Figure 7.11 The memory spaces in device memory and their relationships between

threads .. 157

ix

Figure 7.12 Heterogeneous programming in CUDA applications 158

Figure 7.13 The intensity of interference signal at a specific wavelength 163

Figure 7.14 FFT on different pixels ... 164

Figure 7.15 Flow of CUDA-based data processing in OSSI ... 169

Figure 7.16 The surface profile (wavelength number=64) .. 174

Figure 7.17 The surface profile (wavelength number=128) .. 175

Figure 7.18 The surface profile (wavelength number=300) .. 175

Figure 7.19 The surface profile (wavelength number=400) .. 175

Figure 8.1 Diagram of linear time-invariant system .. 179

Figure 8.2 LTI system’s flowchart in the time and frequency domain 179

x

List of Tables

Table 2.1 Key specifications of Shader Models (SM) ... 35

Table 3.1 Architectural patterns classification... 71

Table 5.1 Processing time of GPGPU program and MATLAB simulation 112

Table 5.2 Processing time of solutions with data dividing and without dividing 113

Table 6.1 Runtime comparisons on different image size (in ms) 137

Table 6.2 Breakdown of computational time (in ms) ... 138

Table 6.3 Runtime of key steps in thresholding (in ms) .. 138

Table 6.4 Proportional benchmarking of GPU-CPU data transfer latency 139

Table 6.5 Runtime of sub-stages on various image sizes using Wong’s method (in ms)

 .. 139

Table 6.6 Runtime comparisons on different image size (in ms) 141

Table 7.1 Data types in CUFFT .. 159

Table 7.2 API functions in CUFFT .. 160

Table 7.3 Multi-thread and Multi-stream Performance Comparison 174

Table 7.4 The maximum difference in absolute value .. 176

xi

List of Abbreviation

AI Artificial Intelligence

ALU Arithmetic Logic Unit

API Application Programming Interface

ARB Architecture Review Board

ASIC Application-Specific Integrated Circuit

ASMP Asymmetric Multiprocessing

CFD Computational Fluid Dynamics

Cg C for Graphics

CMT Chip Multithreading Technology

COM Component Object Model

CPT Centre of Precision Technology

CWT Continuous Wavelet Transform

CUDA Compute Unified Device Architecture

D3D Direct3D

DMA Direct Memory Access

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

EIB Element Interconnect Bus

FBO Frame Buffer Object

FBS Filter Bank Scheme

FFP Fixed Function Pipe-line

FFT Fast Fourier Transform

FP Floating-Point

FPGA Field Programmable Gate Array

xii

GDI Graphics Device Interface

GE Geometry Engine

GKS Graphical Kernel System

GL Graphics Library

GLSL OpenGL Shading Language

GPU Graphics Processing Unit

GPGPU General-Purpose Computing on GPU

GRF Gaussian Regression Filter

GUI Graphics User Interface

HLSL High-Level Shading Language

HP Hewlett-Packard

HPC High Performance Computing

IC Integrated Circuit

IDWT Inverse Discrete Wavelet Transform

IPPS Integrated Parallel Processing Systems

LTI Linear Time-invariant

MAD Multiply and Add

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MPI Message Passing Interface

MSE Mean Square Error

OpenCL Open Computing Language

OpenGL Open Graphics Library

OPD Optical Path Difference

OSSI Optical Spectral Scanning Interferometry

Pbuffer Pixel buffer

PDE Partial Differential Equation

xiii

PFP Programmable Function Pipeline

PHIGS Programmer's Hierarchical Interactive Graphics System

PPE Power Processing Element

PSNR Peak Signal-to-Noise Ratio

PVM Parallel Virtual Machine

RC Resistor and Capacitor

R & D Research and Development

RGBA Red, Green, Blue and Alpha

RISC Reduced Instruction Set Computer

SDK Software Development Kit

SGI Silicon Graphics Inc.

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SM3 Shader Model 3.0

SM4 Shader Model 4.0

SMP Symmetric Multiprocessor

SMT Simultaneous Multithreading Technology

SNR Signal to Noise Ratio

SPE Synergistic Processing Elements

SSE Streaming SIMD Extensions

T & L Transform and Lighting

VBO Vertex Buffer Object

VLSI Very-Large-Scale Integration

VTF Vertex Texture Fetch

xiv

Table of Contents

Acknowledgments ... I

Abstract………………….. ... ii

List of Publications .. iv

List of Figures……………. ... v

List of Tables………… ... x

List of Abbreviation ... xi

Chapter 1 Introduction ... 1

1.1 Research Motivation ... 2

1.2 Research Questions and Evaluation Strategy .. 4

1.3 Outlines .. 6

Chapter 2 Review of Related Work .. 8

2.1 Levels of Parallelism .. 8

2.2 Types of Parallel Hardware .. 12

2.2.1 Multicore Structure ... 13

2.2.2 Symmetric/Asymmetric Multiprocessor Structure 13

2.2.3 Cluster Structure .. 14

2.2.4 Grid Structure .. 15

2.3 Overview of GPU Architecture .. 15

2.3.1 The Origins of Graphics Processing ... 15

xv

2.3.2 Evolution of GPU’s Hardware Architecture ... 17

2.4 Graphics APIs and Shading Languages ... 29

2.4.1 The Direct3D Route ... 30

2.4.2 The OpenGL Route .. 32

2.4.3 Dedicated GPU Languages -- Cg and HLSL 33

2.4.4 Evolution of Shader Models ... 34

2.5 Languages for General-Purpose Computations .. 35

2.5.1 Brook for GPUs .. 36

2.5.2 CUDA – “Compute Unified Device Architecture” 36

2.5.3 CTM – “Close-to-the-Metal” ... 37

2.6 Summary .. 38

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing ... 40

3.1 Foundational Function Blocks: Streams and Kernels 41

3.1.1 Data Streams ... 42

3.1.2 Instruction kernels .. 43

3.2 GPGPU Task Computing ... 44

3.3 Render-to-Texture .. 48

3.4 Embedded Parallelism in GPGPU .. 51

3.4.1 The Stream Programming Model ... 52

3.4.2 Flow Control... 55

3.4.3 Data Structure .. 59

xvi

3.5 Optimization of GPGPU in Linear Arithmetic Operations 63

3.5.1 Representation of Banded Sparse Matrices 63

3.5.2 Optimized Implementation on Random Sparse Matrix 65

3.5.3 Further Discussion ... 67

3.6 Process Decomposition in Parallel Computing ... 68

3.7 Classification of Parallel Architectural Patterns ... 70

3.7.1 Divide-and-Conquer ... 72

3.7.2 Pipes-and-Filters .. 75

3.7.3 Communicating Sequential Elements .. 77

3.7.4 Processor Farms ... 79

3.8 Summary .. 81

Chapter 4 General Programming Framework of GPGPU Applications 83

4.1 GPGPU’s Parallel Architectural Pattern .. 83

4.2 Implementations in Programming Framework for Parallel Systems 85

4.3 GPGPU’s Programming Framework ... 90

4.3.1 Programming Framework for Conventional Graphics Pipeline 91

4.3.2 Programming Framework for Unified Pipeline 93

4.3.3 Programming Model Design ... 95

4.4 Summary .. 96

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling 98

5.1 Filtering Algorithms for Stylus-based Surface Metrology........................... 98

xvii

5.2 Filtering Algorithm Analysis .. 102

5.3 Hardware Acceleration for Filtering Algorithms 104

5.3.1 The GPGPU Programming Model .. 105

5.3.2 Implementation Details .. 105

5.4 Test and Performance Evaluation .. 111

5.4.1 Test Results ... 111

5.4.2 Performance Evaluation ... 113

5.4.3 Accuracy Analysis .. 114

5.5 Summary .. 115

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising .. 116

6.1 Wavelet-based Denoising ... 116

6.1.1 Analysis of the Wavelet Transform ... 117

6.1.2 Thresholding Strategy .. 119

6.2 Wavelet-based Denoising on GPU ... 122

6.3 Technical Specifications of the GPU Implementation 125

6.3.1 Decomposition ... 125

6.3.2 Thresholding .. 128

6.3.3 Reconstruction ... 129

6.4 Test and Performance Evaluation .. 131

6.4.1 Results of Decomposition .. 131

6.4.2 Quality Analysis ... 133

xviii

6.4.3 Evaluation on Computational Efficiency ... 136

6.5 Summary .. 141

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry .. 142

7.1 Surface Metrology Using Optical Spectral Scanning Interferometry 142

7.1.1 The Principle of Surface Metrology Using Monochromatic

Interferometry .. 143

7.1.2 The Principle of Optical Spectral Scanning Interferometry 145

7.2 Data Processing in Optical Spectral Scanning Interferometry 148

7.3 Compute Unified Device Architecture (CUDA) .. 152

7.3.1 Thread Hierarchy ... 153

7.3.2 Memory Hierarchy.. 156

7.3.3 Host and Device .. 158

7.3.4 The programming API -- CUFFT .. 159

7.4 CUDA-based Data Processing in OSSI .. 162

7.4.1 Initialization .. 162

7.4.2 FFT and Inverse FFT ... 163

7.4.3 Computing the Absolute Phase Shift .. 165

7.4.4 Visualization of Processed Results .. 169

7.5 Performance Evaluation ... 173

7.6 Summary .. 176

Chapter 8 Experiment Analyses and Discussions 178

xix

8.1 GPGPU-based LTI Systems Analysis ... 178

8.1.1 Time Domain Analysis on GPGPU-based LTI Systems 178

8.1.2 Frequency Domain Analysis on GPGPU-based LTI Systems 182

8.2 Final Discussions ... 183

Chapter 9 Contributions and Future Works .. 186

9.1 Contributions .. 186

9.2 Future Works .. 188

References………. ... 191

Appendix A: Hardware Acceleration Prospects for High Performance Computing

 ... 206

Chapter 1 Introduction

1

Chapter 1 Introduction

High Performance Computing (HPC) has been a widely studied topic in scientific

research and engineering applications since the appearance of modern

computers in the 1940s. A straightforward approach to this goal is to continually

increase the processors’ processing speed through technological innovations

such as scaling CPU’s frequency. However, a processor’s frequency is limited to

its power consumption for the reason that the core’s power usage is scaled to its

frequency (Rabaey, 1996). The limitation of power consumption actually

hampered the trend of continuously increasing of CPU’s processing power for

HPC.

Another obvious approach to the goal is through better “structuring” of the

process and data to maximize the efficiency of the computer. The fact that

massive amounts of data can often be processed by the same function

simultaneously; and/or many tasks can be performed concurrently for scientific

computations had encouraged the extensive researches on the so-called

“parallelism” in contemporary computer architectures. Generally speaking, the

parallelism in computer architectures evolves along two directions -- a single

computer with multiple cores or multiple processors such as supercomputer; or

multiple computers working together on similar tasks through structures such as

computer clusters or computer grids (Ian Foster, 1995; Sinnen, 2007). Both

solutions have raised the issue of the cost of building those parallel computers,

which often results in a dilemma between the computational performance and the

hardware cost. In the past, parallel computers were often restricted to high profile

government funded major scientific projects across the globe.

In recent years, an ever increasing number of consumer grade applications, in

such areas as multimedia and graphics, have been pushing the performance

boundary in between professional and amateur computers. For example, modern

computer games have seen a big increase in the demand for computational

power to cope with advanced graphics and Artificial Intelligence (AI) processing.

Chapter 1 Introduction

2

This situation had resulted in the innovation and production of the so-called

consumer-level parallel processors; the best representative of which are today’s

Graphics Processing Units (GPUs). With a peak-speed performance over 933

Gigaflops (GFLOPS), the computation capacity of the latest GPUs dwarf today’s

commodity CPUs in terms of speed and cost. With the increasing

programmability-empowered flexibility of modern GPUs, many researches and

development projects have been focusing on the conception of general-purpose

computing on GPU (GPGPU) with the aim of tacking computationally intensive

tasks previously only processed on CPUs. Many traditional parallel computing

paradigms and techniques have been mapped to GPGPU, including grid and

cluster, synchronous and asynchronous processes.

This research project explored the concept of stream computing within the GPU

design and programming paradigms. It then devised a programming framework

for GPGPU applications, specifically for handling data intensive metrological

analyses, on the basis of the inherent parallel architecture patterns of GPUs. The

devised programming framework is then used for design the algorithm mapping

models for GPGPU-based signal and image processing tasks.

1.1 Research Motivation

The main motivation of the research reported in this dissertation originates from

the demand for real-time massive data processing power in a practical

engineering domain – surface metrology. Metrological data often comes in huge

volumes, and its visualization and profiling produce a serious problem for

computational efficiency that has long been a bottleneck for surface analysis

(Stout and Blunt, 2000). In general, the framework for processing surface

metrological data is equivalent to a linear time-invariant (LTI) system, from which

many signal processing algorithms originated (Blunt and Jiang, 2003). In this

research, the main focus has been to explore the feasibility of adopting a

consumer grade GPU to achieve data and process parallelism for generic LTI

Chapter 1 Introduction

3

systems, and to benchmark its hardware acceleration factors as well as the

corresponding realization criteria.

In detail, the motivations of using the GPU for surface metrological data

processing can be detailed as follows:

• A GPU is one of the most cost-effective, easily accessible forms of hardware

available for implementing parallel processing among many existing parallel

architectures (Owens et al., 2007). A typical GPU, equipped with several

hundreds of arithmetic processing cores, will cost only a fraction of the price

for a multiprocessor array with equivalent numerical processing power.

• Most researches reviewed in this project only focused on the segregated

performance of algorithms run on GPUs. In practice, the GPU is still only a

coprocessor of the CPU despite its amazing computing speed, i.e., a complete

GPGPU program must also include settings and tasks run on CPU. Therefore,

the performance evaluation of GPGPU implementations should also take into

account the tasks performed on the CPU and the corresponding overhead of

data communication in between the two. The ambiguity on this point has

raised doubts on the GPGPU’s practical values in engineering domains. This

research tackles the challenges through exploring the performance of

GPGPU-based surface metrological analysis/tasks in a comprehensive range

of practical settings.

• For GPGPU researchers, there exists the challenge of how to effectively and

efficiently represent computational resources and tasks on a GPU. The

challenge is rooted in the fact that GPUs were initially developed to facilitate

graphics rendering rather than general computational tasks (e.g., numerical

modelling, linear computing, or signal processing (Owens et al., 2007).

Traditional graphics Application Programming Interfaces (APIs) employ the

GPU as a graphics device for dealing with elements such as textures,

triangles, and pixels. To map an algorithm in terms of those primitives is not a

straightforward operation, even for those developers who are familiar with

computer graphics. The result was complex and entangled programming

approaches, which often hindered the overall effort of harnessing the potential

Chapter 1 Introduction

4

of GPUs as mainstream computing devices. The experiments designed in this

work aligned themselves to the target of obtaining a clear conception and

practical approach to GPGPU programming. In addition, this effort is

accompanied by the main GPU vendors such as ATi and Nvidia corporation,

who have managed a continuous evolvement of GPU hardware architectures,

for example, a uniform platform for the GPU programming. The research also

investigated the influence of the GPU’s hardware evolution on the future

GPGPU programming framework.

• A rich and advanced body of work is also documented in this report on the

architecture patterns developed for GPUs in the last decade. These centred

around the parallel architectures, stemmed from CPU paradigms. The work

aimed to investigate the architectural patterns of various GPUs, to form a

generic guideline for the future design of application frameworks for GPGPU

programming.

Driven by above goals and targets, the research works in this project were

designed and developed around a practical engineering domain, the surface

metrology. This was carried out in collaboration with the Centre of Precision

Technology (CPT) at the University of Huddersfield, which is a centre research

on surface metrology. The outcome of the research is expected to have potential

value for the wider engineering and scientific communities.

1.2 Research Questions and Evaluation Strategy

Although sporadic researches in GPGPU domain have been carried out in recent

years, those researches were normally focusing on a specially tailored

application, which requires extensive and intricate considerations on the

hardware feature of the employed graphics card that possibly resulting in different

GPGPU solutions which are difficult to carry out performance evaluation. This is

due to the fact that the hardware structure of GPUs and their programming

platforms have evolved dramatically in the last decade and created many

Chapter 1 Introduction

5

diversions. Therefore, it is of vital importance to define common principles or

rules to guide the GPGPU application design, so those principles can be

extensively applied to cover the different generations of hardware and software

tools. Therefore, this is the first question that needs to be tackled within this

thesis.

As stated in the aforementioned research motivations, the thesis is based on the

practical engineering applications for data analysis and processing in surface

metrology. The ultimate task of surface metrology is to profile a surface using the

measured and processed data, to which the ideal solutions are to increase the

number of samples and to employ more sophisticated algorithms to achieve

higher data accuracy, but often with the deteriorating computational efficiency as

a cost. Therefore, the challenge of data analysis in surface metrology is largely

attributed to the dilemma of data accuracy and computational efficiency. The

second challenge faced by this research is whether the GPGPU concept and

existing techniques can sufficiently support a flexible solution to the complex

processes normally involved in metrological data operations. The feasibility and

practicality of the solution will be evaluated by two vital parameters - the speed

up factors and data accuracy of the deployed GPGPU programs. It is noted that

the result of the evaluation will determine the validity of the designed GPGPU

programming models

Normally, a complete GPGPU program comprises three parts, the tasks need to

be implemented on CPU in serial mode, the tasks can be deployed on GPU in

parallel, and the interface instructions between CPU and GPU. It is noticed that

many researches of GPGPU emphasize the acceleration on tasks implemented

on GPU, which doesn’t adequately reflect the GPGPU’s overall promotion on

computational efficiency. How to consider the impact of the first and third part of a

program on the overall performance of an application is another question that this

thesis will discuss. It is anticipated that the solutions to this question will vary with

the variant nature of different applications. In the case studies, the

communication or data exchange in between the CPU and GPU pairs has been

treated as the core issues. The validation of the devised solutions will be

Chapter 1 Introduction

6

validated through testing the run time of data visualization and its weightings in

the overall application time.

1.3 Outlines

The research method deployed in this thesis follows a typical research pipeline

involving research motivation clarification, research question definition, domain

review, concept formulation, model development, experiment, and result analysis

and performance evaluation with real application data. After introducing the

research motivation and research questions in Chapter 1, the dissertation began

in Chapter 2 with a review of different types of parallelization, the recent

development of GPU hardware, related graphics API, and corresponding high

level shading languages and shader models. In Chapter 3, the conception and

computational models of GPGPU are reviewed by highlighting some classical

applications in GPGPU. The architectural patterns for parallel computing are also

reviewed in Chapter 3 with the aim to link the specific type of parallel architectural

pattern to GPGPU programming. Chapter 4 presented the general GPGPU

programming framework that is devised based on the work in chapter 3and

explained in details various GPGPU programming models for implementing

different algorithms in LTI systems and their evaluation approach in terms of the

speed up factor and the data accuracy. Chapter 5 reports the result from testing

the GPGPU programming model and its software prototype for various filtering

algorithms in 3D surface profiling. A classical Gaussian filter was chosen for its

popularity in the designe of the GPGPU programming model to evaluate its

acceleration performance. The case study in Chapter 5 represented the research

findings on a simple LTI system in the spatial domain. Chapter 6 presented the

programming model for accelerating a computational expensive process of

wavelet-based denoising. The designed model ensured most of the computations

of the discrete wavelet transform were performed on the GPU rather than the

CPU for the maximum speed gain. The algorithm tested in this experiment is a

cascaded LTI system in the spatial domain. Chapter 7 has followed another

Chapter 1 Introduction

7

approach to realizing the GPGPU’s parallel processing framework. It was applied

to the data analysis tasks in an optical spectrum scanning interferometry system,

which has been used for nano-level surface metrology in the CPT Centre at the

University of Huddersfield. This proposed model employs the Compute Unified

Device Architecture (CUDA) as the new programming tool for realizing a LTI

system in the frequency domain. Further theoretical and technical discussions

were recorded in Chapter 8, as well as the conclusions of the study. The

contributions and the anticipated future works were presented in Chapter 9.

Chapter 2 Review of Related Work

8

Chapter 2 Review of Related Work

Parallel processing is a form of computation in which data are either being

processed by the same group of functions simultaneously; or multiple tasks are

carried out on the same input concurrently. There are four levels of parallelism in

contemporary computers at bit, instruction, data, and task levels (Sinnen, 2007).

In this chapter, the 4 levels of parallelization are reviewed and an overview on the

evolution of GPU hardware structures and their parallel programming tools are

also provided. As a coprocessor, a modern GPU achieves data-level parallelism

through its own dedicated memory (DRAM) and columns of arithmetic cores,

each consists of a group of registers, shared memory, caches, etc. The

innovative design and its continuous evolution led to the raw processing ability of

GPUs exceeded that of CPUs by the start of the New Millennium. The latest

Nvidia Tesla C1060 GPU released in 2008 could sustain up to 933 Gigaflops

(GFLOPS1) while the Intel Pentium4 CPU appeared on market approximately

same time can only manage 104 Gigaflops when assisting SSE (Streaming SIMD

Extensions) instruction set were employed (Nvidia Corporation, 2009). At the

same time, the improvement on GPUs has ensured its flexibility, which is backed

up by the programmability, continuous renovation and update of GPU’s hardware

structure. It has achieved an amazing annual updating rate of 2.8 since 1993

(Owens et al., 2007).

2.1 Levels of Parallelism

Parallelism in computing is generally classified into bit-level, instruction-level,

data-level, and task-level which are closely related to processors’ architectures

(Almasi and Gottlieb,1990).

1
 1 GFLOPS means 10 billion floating-point operations per second.

Chapter 2 Review of Related Work

9

The bit-level parallelism was the first form of parallel computing and was

introduced by the first appearance of the very-large-scale integration (VLSI)

based fabrication technology of integrated circuit (Sina et al, 2003). The concept

was driven by the demand for doubling computer word sizes that represents the

amount of information the processor can execute per cycle (EI-Rewini and Abd-

El-Barr, 2005). Chronologically, 4-bit processors were substituted by 8-bit ones,

and then 16-bit to 32-bit and 64-bit ones nowadays. Although the concept of bit-

level parallelism is quite simple, it is essential for many advanced extensions and

applications.

Instruction-level parallelism reorders instructions in a computer program and then

combines them into groups that can be executed in parallel without altering the

ultimate result. In modern processors, an instruction is implemented through a

multi-stage instruction pipeline, in which each phase corresponds to a different

processor’s action (Berkovich, 1998). Different stages of variant instructions can

therefore be overlapped to achieve instruction-level parallelism. For example, a

Reduced Instruction Set Computer (RISC) processor has a five-stage pipeline

which consists of fetch, decode, execute, memory access, and write back

operations (Steve, 1995). The instruction-level parallelism is achieved through

the following canonical orders, where the grey column stands for:

Figure 2.1 Different stage overlap of instruction pipeline in RISC machine

In addition, some processors which are known as superscalar processors can

implement multiple instructions simultaneously if these instructions have no data

dependency between them (Goossens, 2001).

In contrast, data parallelism is a more rigid form of parallelization in which all the

elements in a data set are processed simultaneously by the same instructions.

Data parallelism is often embedded in program loops, so it is also referred as

Chapter 2 Review of Related Work

10

loop-level parallelism. Based on the relationships between instructions and data

streams, Flynn summarized in 1972, four categories of common computing

architectures, known as Flynn’s taxonomy (Foster, 1995):

• Single Instruction Stream, Single Data Stream (SISD)

• Multiple Instruction Stream, Single Data Stream (MISD)

• Single Instruction Stream, Multiple Data Stream (SIMD)

• Multiple Instruction Stream, Multiple Data Stream (MIMD)

Among those, data parallelism is classified as a form of SIMD, which is normally

achieved in a multiprocessor system, for example, consider a dual-core CPU unit

carrying out a matrix addition operation. At runtime, the first core of that CPU

adds all elements from the top half of the two matrices, while the second core

adds all elements from the bottom half of the matrices. With the two cores

working in parallel, the matrix addition will take half the time it would have if

operations were performed in serial on a single-core CPU.

Compared with data parallelism in which the same instruction is implemented on

multiple data sets, the task parallelism invokes a parallel program which issues

independent calculations on either a single or multiple data streams (Rastello et

al., 2003). Based on this definition, the aforementioned MISD and MIMD are both

belong to the genre of task parallelism. However, some workers (Schneider and

Rossignac, 1995; David et al., 1994) argue that MISD is actually a type of

instruction-level parallelism, since the data streams processed by the instructions

are the same as indicated in Figure 2.1. In a multi-processor system, task

parallelism is realized when each processor executes a different thread (or

process) on the data. The threads may execute the same or different instructions.

In the general case, different threads communicate with each other through

passing data from one thread to the next as part of a workflow (William and

Rajeev, 2007).

It is obvious according to the definition of parallel computing and computing

architecture, the MISD, SIMD and MIMD modes can all be employed for various

degree of parallel computing. In these computing architectures, instructions are

the control signals sent or received by processors or control units, while data

Chapter 2 Review of Related Work

11

streams are the output or input of memory. The hardware structures of the MISD,

SIMD and MIMD are shown in Figure 2.2 to Figure 2.4 respectively.

Figure 2.2 Models of a MISD architecture

Figure 2.3 Models of a SIMD architecture

Chapter 2 Review of Related Work

12

Figure 2.4 Models of a MIMD architecture

2.2 Types of Parallel Hardware

Memory units are a key element in all computing devices, where initial,

intermediate, and resulting data are stored temporarily for further processes.

Global memory in a parallel computing architecture can be a shared memory

which is accessed by all processing elements in the same memory address; or a

distributed memory in which each processing element has its own local address

space (Foster, 1995). The term “distributed” means the memory is either logically

distributed, or physically distributed. A shared and distributed memory is an

integration of the two forms, in which every processing element has its own local

memory as well as the ability to access memories on other non-local processors

(Huang et al., 2004). Access to local memory is normally faster than to non-local

memories.

A modern parallel computer often consists of a number of state-of-the-art

processors, for example, vector, RISC, X86, IA-64, where these processors can

be arranged into various forms of shared memory modules. A number of those

modules can be further integrated into distributed memory-based parallel

computers, such as a cluster machine. If required, multiple parallel computers

can be connected into a synchronous or asynchronous network.

Chapter 2 Review of Related Work

13

2.2.1 Multicore Structure

There are multiple execution units called cores in a multicore processor. The

style of the instruction implementation in a multicore processor is different from

that in a superscalar processor. A superscalar processor can implement several

instructions per clock-cycle from one instruction stream - the so-called thread. In

contrast, a multicore processor can implement several instructions per clock-

cycle from several instruction streams (Thomaszewski et al., 2008). Recent

hardware advancement has proven that actually each core in a multicore

processor can act as a superscalar one as well, i.e., each core implements

several instructions from one instruction stream on every cycle (Steven et al.,

1997).

In terms of actual production, the Intel's Hyper-Threading (Intel Corporation,

2007) is one of the best known simultaneous multithreading machine which is an

early form of pseudo-multicoreism, while Intel's Core and Core 2 processor series

are the true-meaning multicore architectures (Intel Corporation, 2008). The latest

IBM's Cell CPU is another representative form of the multicore technology

(Gschwind, 2007).

2.2.2 Symmetric/Asymmetric Multiprocessor Structure

Multicore processor systems employ a single processor that has multiple

pipelines for integer and floating-point operations. Multiple identical processors

can also be connected to a single shared main memory to form a symmetric

multiprocessor (SMP), in which the processors are capable of accessing the

same shared memory through a bus or crossbar switch (Kaya, 2005). The SMP

system allows any processors to carry out any task simultaneously. Based on

properly designed operating system, a SMP system is able to readily transfer

tasks across processors to distribute the workload evenly.

However, in implementation, the bus contention for enabling more than one

processor to allocate data on the bus simultaneously can be a bottleneck and

Chapter 2 Review of Related Work

14

limits the scale of the processor numbers in a SMP system, which results in the

fact that the processors in a SMP system is normally less than 32. The alternative

solution for the SMP is an asymmetric multiprocessing (ASMP) structure in which

a group of separate specialized processors are employed for specific tasks

(Robert et al., 1998). In contrast to the SMP of assigning all of the tasks in the

system identically, an ASMP system only assigns specific tasks on specific

processors. The common ASMP structure is a kind of clustered multiprocessors

in which just a portion of the entire memory can be accessed by all processors

(Cai et al., 2004).

2.2.3 Cluster Structure

As indicated above, ASMP structures can practically be categorized as the

cluster structure according to Flynn’s taxonomy that can be viewed as a way of

building low-cost and distributed-memory MIMD computers. Gene Amdahl from

IBM, who put forward Amdahl's Law for parallel computing, defined the distinction

between the multiprocessor computing and the cluster computing in

1967(Moncrieff et al., 1996). Stated simply, the main difference is the

communication modes where in multiprocessor computing it is issued inside the

computer through internal bus structures, while in cluster computing it is based

on the outside network such as local network, wide access network(WAN), or the

Internet.

Based on the packet switching networks invented in 1962 (Natalia and Victor,

2006), the first commodity network employing computer cluster theory was

presented by the ARPANET project in 1969 (Douglas, 2009). As the ARPANET

evolved into the Internet, the original computer cluster connected by a Packet

switching network also grew into the “proper” cluster in which the

communications between the nodes uses the TCP/IP protocol, based on the

Ethernet network framework (Thomas and Zsolt, 2007).

The first successful commercial clustering product was the VAXcluster released

by DEC in 1984 (Thomas and Zsolt, 2007). Besides supporting parallel

Chapter 2 Review of Related Work

15

computing in general terms, the VAXcluster also support the shared file systems

and the peripheral devices. Following the success of VAXcluster, various

commercial clusters were released in turn, such as the Tandem Himalaya and

the IBM S/390 Parallel Sysplex, both released in 1994 (Thomas and Zsolt, 2007).

With the growing maturity of cluster computers, the parallel computing ethos has

encouraged further development into techniques such as grid computing where

more focus has been put into the throughput of a computing utility rather than

running a deliberately designed, optimized, and tightly-coupled jobs.

2.2.4 Grid Structure

In grid computing, a number of computers (irrespective of their individual

architectures) are loosely connected via a network. In the most extreme case,

each machine (including the properties of connections between them) is

assumed to be different. This makes for an extremely heterogeneous system,

which requires the coarsest level of parallelization since the work must be divided

into independent units that can be completed on different computers at different

speed, and returned to the main solution coordinator at any time and in any order

without compromising the integrity of the solution (Thomas and Zsolt, 2007).

Although there are tasks that are naturally amenable to this level of

parallelization, a broader applicability of this approach requires much further

research and infrastructure development. Successfully tested cases so far has

been focused on the analysis of very large sets of independent data blocks, in

which the problem lies in the total size of data to be analyzed.

2.3 Overview of GPU Architecture

2.3.1 The Origins of Graphics Processing

In the 1960s and 70s, graphics devices were just viewed as a kind of output

equipment for computers. Limited to the hardware status, developers commonly

considered the criteria for Graphics User Interface (GUI) from the view of

Chapter 2 Review of Related Work

16

software capacity and adaptability. The Graphical Kernel System (GKS)

(Hopgood et al., 1983; Enderle et al., 1984) and Programmer's Hierarchical

Interactive Graphics System (PHIGS) (Howard et al., 1991) were representative

standards. A typical graphics pipeline is defined by those standards as depicted

in Figure 2.5.

Figure 2.5 Abstract graphics pipeline defined in PHIGS

In the early 1980s, “new” graphics processors, that had been inspired by the

innovative geometry engine (GE), were launched by various manufacturers.

Graphics cards developed at this stage were dominated by graphics processor,

which was an integrated chip on the computer motherboard with built in

geometrical functions. The core of a GE is the support for floating point number

computation between any 4-component vectors (Clark, 1982). These

computations were used for coordinate transformation, blending and projection. A

complete three-dimensional (3D) graphics pipeline can be accomplished by 12

such geometrical elements. James Clark, the designer of the geometry engine,

then setup Silicon Graphics Inc. (SGI) in 1981 on the basis of GE technology

(Watt, 1999). SGI had a significant influence on the development of computer

graphics in the following decade; Graphics Library (GL) and the subsequent

OpenGL became the industry standard of GUI for graphics processing.

As stated earlier in this section, the two key performance indications for modern

graphics devices are the raw processing speed and the flexibility – the ability to

adapt or customise. From 1980s to 90s, some basic functions of graphics

processing could be accessed by lower-end graphics cards, attributing to the

performance enhancement of the GE core. However, most of the applications of

3D graphics were still only manageable by higher-end workstations. At most

stages of the graphics pipeline flow, functions were still actually accessed and

executed by the CPU. Although the notation of GPUs appeared before 1995,

Chapter 2 Review of Related Work

17

they were only viewed as graphics accelerators, instead of as a programmable

core and a flexible processor. In the era of CPU dominance, a prominent event

was the adoption of Single Instruction Multiple Data (SIMD) for fragment

operations in 1992. SIMD is a technique traditionally employed by parallel

computing applications to achieve data-level parallelism. In 1980, a research

group at the University of North Carolina in USA first employed SIMD in their

graphics software, Pixel-Planes (Fuchs and Poulton, 1981; Fuchs et al., 1989)

and Pixel-Flow (Molnar et al., 1992), which marked the take-off of dedicated

vector-computation -- though still at the software level and driven by CPU.

2.3.2 Evolution of GPU’s Hardware Architecture

The evolution of post-90s GPUs can be divided into 5 stages, display adapter,

transform and lighting (T & L) chip, programmable shader, CineFX engine,

GPGPU unit, and multi-core.

• Stage 1 – mid 1990s

Before 1995, the graphics core was mainly functioned as a “display adapter”. The

graphics hardware were developed by main stream manufactures like Intel and

AMD for desktop displays with occasional 2D acceleration ability. With the

emerging of 3D computer games, the conception of “3D acceleration” began to

take more shares in the design of graphics hardware. The 3DFX VooDoo series

from Nvidia were first released in 1995 and were widely viewed as the market

pioneers of the new generation of graphic cards with “3D acceleration” functions.

To achieve the innovative 3D acceleration, the 3DFX VooDoo series were first

equipped with two remarkable features, Z-buffer and texture mapping. The prior

Z-buffer, also called depth buffer, resolves the visibility problem in 3D scenes

through storing the depth information of a generated pixel (the z-coordinate) in a

reserved buffer (Blasquez and Poiraudeau, 2004). The latter, texture mapping,

renders the detail of an object’s surface through applying textures, or colours to

all projected pixels of a computer-generated 3D model (Pharr et al., 2005). The

two major players of the commercial graphics device market, Nvidia and ATI, also

Chapter 2 Review of Related Work

18

released their graphics cards that had similar functions of 3DFX VooDoo, the

Nvidia Riva TNT and ATI Rang series.

Although a great leap from the earlier graphics software based graphics

processors, the key problem of the products at the time was that the actual

geometry processing was still carried out on CPU, which presented a heavy

burden on CPU efficiency and seriously implicated the real-time performance of

many 3D applications such as computer games. The abstract of the mid-90s

graphics pipeline is depicted in Figure 2.6.

Figure 2.6 Abstract graphics pipeline between in 1995 and 1998

• Stage 2 – late 1990s

Followed the success of Riva TNT2, Nvidia released GeForce 256 and GeForce

2 successively which were viewed as the first “true” GPUs because the

computations for geometric transformation and lighting (T & L) were embedded in

the core of the graphics cards. Hence graphics functions were carried out on the

independent graphics cards (Seitz, 2006). At about the same time ATI published

their counterpart that has the approximate functions equivalent to the Nvidia’s

GeForce 256 —the ATI Radeon 7500 (ATI Corporation, 2007). Thus the year

1999 was widely viewed as a new era in the evolution of GPUs for distinctively

separating GPU and CPU functions. The abstract of the graphics pipeline at the

time is shown in Figure 2.7.

Chapter 2 Review of Related Work

19

Figure 2.7 Abstract graphics pipeline (integrated T & L) at late 1990s

The shifting of the T&L from CPU to GPU was a great boost to the real-time

polygon/vertex processing capacity, while the idealised local illumination models

– directional, point, and spot – had simplified the computation and greatly

increased the final rendering quality. Figure 2.8(a) and (b) highlight the enhanced

GPU capability on polygon numbers and lighting.

 (a) Rendered polygon on GeForce 256

Chapter 2 Review of Related Work

20

 (b) Lighting effect of GeForce 256

Figure 2.8 The enhanced GPU capability (Courtesy to Nvidia Corporation)

In contrast to a previous generation GPU -- Riva TNT2 which had just 2 parallel

rendering pipeline, GeForce 256 has provided 4 parallel rendering pipelines.

Each pipeline has a dedicated texture unit to access textures in parallel in each

rendering pass (Nvidia Corporation, 2009). However, most of the GPU functions

of this generation were still largely hard-wired in the physical IC chips and

provided little flexibility for customization.

• Stage 3 – early 2003

In 2001, Nvidia released the GeForce 3, one of the first to integrate a

programmable vertex shader. Vertices, points in a 3D space, marking the

intersection of edge, are the most primitive elements in 3D geometry. However,

they are also the most important “bricks” for forming line segments, polygons,

and meshes (wireframe models). The vertex shader is a compiler for generating

vertex information which includes attributes such as coordinates and colours. The

evolution of the programmable vertex shader from the original fixed-function-only

graphics pipeline enabled modellers and programmers to have more space to

design and render detailed 3D models according to specific application scenarios

– a vital feature for modern computer games. Figure 2.9(a) shows a rough and

jumpy skin surface rendered by a programmable vertex shader in comparison

Chapter 2 Review of Related Work

21

with a less detailed smooth surface rendered by a fixed-function graphics

pipeline.

 (a) (b)

Figure 2.9 A 3D head rendered by vertex shader and fixed-function graphics

pipeline respectively (Courtesy to Nvidia Corporation)

In 2002, Nvidia released its GeForce 4 series in which the programmable vertex

and pixel shaders were both available. The GeForce 4 series added the static

and dynamic flow control in its design, which was absent in the GeFoece 3. While

the vertex shader controls the vertex attributes, the pixel shader manipulates

each pixel’s colour fill-up that is issued by certain transfer functions. In a demo

rendered clip released by Nvidia, as shown in Figure 2.10, the intricate details of

the mermaid’s hair and the minute tail shift are controlled by specific pixel

shaders and polynomial transfer functions designed by graphics programmers.

Figure 2.10 The animation effect produced by pixel shader (Courtesy to Nvidia

Corporation)

Chapter 2 Review of Related Work

22

As well as exploiting the newly introduced programmable vertex and pixel

shaders of the graphics cards at the time, the processing speed was further

accelerated by the continuously expanding of the number of parallel rendering

streams. For example, up to 16 textures can be processed simultaneously in the

GeForce 4 series, which had become the technical foundation for high-definition

graphics. ATi corporation, another heavy-weight GPU vendor, has also had its

flagship product – the Radeon 8000 series – pushed to the market around the

same period with the programmability as the key selling point (ATI Corporation,

2007). Generally, the hardware architecture of GPUs at this stage can be

summarized as in Figure 2.11.

Figure 2.11 Hardware abstracts of GPUs with programmable vertex and pixel

shaders

• Stage 4 – mid 2000s

Accompanied by the gradual maturing of the shader technology, Nvidia further

developed the CineFX engine in its GPU product in the mid-2000s aiming to

produce the cinematic visual effects. ATi soon followed up with its own

SmartRender technology similar to the CineFX. CineFX is now in its 4th

generation and is consisted of three cores -- vertex shader, pixel shader, and

intellisample texturing. The version upgrade of CineFX has largely reflected the

underlying shader model evolution which expands the available instruction set.

For example, CineFX 3.0 employed Shader Model 3.0 (SM3) while CineFX 4.0

has deployed Shader Model 4.0 (SM4) which will be explained in detail in Section

2.4.4. Since the trade off between graphical quality and computational efficiency

Chapter 2 Review of Related Work

23

will always be a problem for GPU designers, the CineFX engine has introduced

the intellisample technology to alleviate this dilemma. The intellisample

technology is formed by two key parts – Colour Compression and Dynamic

Gamma Correction, which are integrated in GPU’s IC chips. Colour Compression

ensures image quality through the so-called lossless compression, while the

Dynamic Gamma Correction boosts the image vividness through using the

adaptive texture filtering technology.

After the short market presence, CineFX 1.0 and 2.0 were quickly replaced by the

CineFX 3.0 which was widely viewed as a matured technology and welcomed by

fans of high-definition graphics. CineFX 3.0 was first embedded in Nvidia’s

GeForce 6800 released in 2004, the counterpart from ATi is RADEON X800.

Both the GeForce 6800 and the RADEON X800 supported high-level shading

language (HLSL) – a C-like programming language such as OpenGL Shading

Language (GLSL) and C for Graphics (Cg) for vertex shader and pixel shader

development. In addition, the Shader Model 3.0 (SM3) employed by the device

supports 32-bit float-point precision that results in fewer artefacts (Nvidia

Corporation, 2009). Another distinctive feature of SM3 is its ability enabling the

vertex shader access to textures at runtime, which is crucial for performing GPU-

driven simulations. It was common for GPUs of this generation to support 64-Bit

colour depth at the stage of pixel shading. On the IC chip design and

manufacturing side, the GeForce 6800 contains 222 million transistors that

ensured a theoretical peak up to 40 GFLOPS in contrast to 6 GFLOPS for a 3

GHz Intel Pentium4 SSE unit released in the same period (Pharr et al., 2005).

Only 6-month later, Nvidia released the GeForce 7800 GTX and ATI had its

RADEON X1800 released, which has seen the GPU raw power almost

quadrupled to 160 GFLOPS (Owens et al., 2007). The abstract model of the

graphics pipeline of this generation is drawn as in Figure 2.12 – notice the

highlight is on the mutually available texture memory in comparison to previous

generations of GPU (see Figure 2.6, 2.7 and 2.11).

Chapter 2 Review of Related Work

24

Figure 2.12 Model of the graphics pipeline of GPU released in 2004-2005

Since this project will largely based on the new found power of vertex/pixel

manipulation of this generation of GPUs and beyond, it is useful to explain the

actual workflow of it. The logic flow of vertex shader embedded in the GeForce

6800/7800 series is depicted in Figure 2.13 (Collange et al, 2007). Its working

order can be simplified into the following phases: the host memory on CPU side

sends the vertices’ information across the CPU/GPU border, a vertex shader is

then initiated to perform transformational (translation, rotation, and scaling)

operations and local illumination calculation. Most of the computation will be

based on arithmetic terms such as Multiply and Add (MAD), Exponential

functions (exp, log), Trigonometric functions (sin, cos) and Reciprocal functions

(1/x and1/ x) to form physics equations, while the innovative texture memory

access has enabled vivid rendering effect and real-time simulations such as

shape deformity.

Figure 2.13 Vertex shader model of Nvidia GeForce 6800/7800 released in 2004-

05(Courtesy to Collange)

Chapter 2 Review of Related Work

25

The workflow of the pixel shader can be depicted as in Figure 2.14 (Collange et

al, 2007). There are two floating-point (FP) unit appended with a Mini Arithmetic

Logic Unit (ALU) that promotes the computation efficiency of FP numbers. The

first FP unit can carry out up to 4 MAD operation at a time and accessing textures

via the texture unit. The result is then sent to the second FP unit for up to 4

further MADs. A pixel shader of this model also includes a level-1 texture cache

for rapid data accessing.

Figure 2.14 Pixel shader model of Nvidia GeForce 6800/7800 released in 2004-

05 (Courtesy to Collange)

• Stage 5 – current trend

With the evolution of shader technologies, the concept of General-Purpose

computing on the GPU (GPGPU) has become more and more popular, with the

aim of addressing problems based on data-level parallelism. The earliest GPGPU

programs in 2001 (Owens et al., 2007) was mainly focused on the areas of tailor-

made applications such as image processing and matrix operations, while the

latest GPGPU development has seen its extension into the applications of pattern

recognition, signal processing, and physics simulation (Owens et al., 2007).

Although it has long been reorganized that GPUs can be treated as a parallel co-

processor rather than mere graphics accelerators, the traditional GPU rendering

pipeline had brought problems and challenges to researchers and developers in

the past. Firstly, each discrete step of the accelerated algorithm need to be

strictly mapped to the exact part of the rendering resources in the pipeline, which

Chapter 2 Review of Related Work

26

is a tedious work for developers who are unfamiliar to graphics programming.

Secondly, sometimes serious waste can occurred when work is distributing

between vertex and pixel shader. The first problem requires intensive

mathematical skills, while the second one demands knowledge of computer

hardware, which are often unfamiliar to application developers.

The GPU’s parallel computational capability is largely determined by the number

of rendering pipelines available. The number of vertex and pixel shaders

available in traditional graphics pipelines is determined by the anticipated ratio of

the need for the functions during rendering. For example, the Radeon X1800 has

8 vertex shaders and 16 pixel shaders (ATI Corporation, 2007), and the GeForce

7800 has 8 vertex shaders and 24 pixel shaders (Nvidia Corporation, 2009); the

ratio is 1:2 and 1:3 respectively. The workflow in a GPU for transforming 3D

geometries into 2D graphics follows the order of vertex shader, pixel shader, and

then to the framebuffer. Thus the actual number of parallel streams is limited by

the narrower section of the pipeline, in this case, the number of vertex shaders.

However, most of the GPU vendors advertise the number of rendering pipelines

by emphasizing on the number of pixel shaders only, for marketing reasons.

Some might argue that most of the successful GPGPU showcases are

implemented on pixel shaders alone. Though the matter of fact is, without careful

and pains-takingly tedious balancing of the workload, a problem can arise in

which either all the vertex shaders are heavily working while most of the pixel

shaders are idle, or vice versa. This situation can be illustrated by the following

figure.

Figure 2.15 Workload unbalance in traditional rendering pipeline

Chapter 2 Review of Related Work

27

To solve the problem of workload imbalance between dedicated pixel shaders

and vertex shaders, Nvidia and ATI released Geforce 8800 (Nvidia Corporation,

2009) and Radeon HD2000 (ATI Corporation, 2007) successively in 2006. These

two GPUs have employed a brand-new framework which adopted a unified

pipeline architecture without a distinctive vertex and pixel shader borderline, as

depicted in Figure 2.16.

Unified shader

Pixel

workload
Heavy geometry workload

Heavy pixel workload

Vertex workload

Unified shader

Vertex

workload

Pixel workload

Figure 2.16 Workload allocation in unified pipeline

The employment of unified shader has made the Geforce 8800 and Radeon

HD2000 into intrinsic parallel stream processors. The GeForce 8800 contains

128 unified shader units which are consisted of 681 million transistors and can

sustain up to 518.4 GFLOPs at peak (Nvidia Corporation, 2009). An abstract view

on the architecture of this generation of GPUs is shown in Figure 2.17.

Chapter 2 Review of Related Work

28

Figure 2.17 Architecture of unified shader arrangement (Courtesy to Nvidia

Corporation)

In this design, the 128 unified shaders are clustered into 8 groups. Each group

therefore consists of 16 unified shaders for accessing 8 texture units and a

number of level 1 and level 2 caches. It is also apparent in this design that each

unified shader can export the processed data to be “recycled” by other streams

and practically forming the loop of thread processors. This GPU architecture

guaranteed it can operate as a SIMD parallel processor with high efficiency. All

the GPUs of this generation support IEEE754 double precision floating-point

number arithmetic standard.

Following the first appearance of unified pipeline in 2006, Nvidia further released

its mini-supercomputer series in 2008, Tesla computing solutions, which enable

an energy efficient parallel computing framework with the improved precision to

be built. The Tesla C1060, Tesla S1070 and Tesla Personal Supercomputers are

the lower, middle, and higher end of the series and are all capable of meeting the

challenges from data intensive, high performance computing (Nvidia Corporation,

2009). The Tesla C1060 architecture involves 240 cores and supports double

precision floating-point computation with the peak rate up to 933 GFLOPs (Nvidia

Corporation, 2009). Both the Tesla S1070 and the Tesla Personal

Chapter 2 Review of Related Work

29

Supercomputers have equipped with 960 cores for larger scale applications

(Nvidia Corporation, 2009).

2.4 Graphics APIs and Shading Languages

The vision of implementing general-purpose algorithms on computer graphics

hardware for extra speed was first introduced in 1990, when Lengyel et al. used a

rasterization device for robot motion planning, 4 years later Cabral et al.

accelerated tomographic reconstruction on the VGA device (Blasquez and

Poiraudeau, 2004). However, most of the early experiments had been designed

for proof-of-concept and were never intended nor applicable for the mass PC

market. The situation changed significantly with the introduction of programmable

commodity graphics hardware in 2001 that boosted the popularity of this

approach for wider application domains. Shortly after, the acronym GPGPU

(“general-purpose computations on GPUs”) was coined for this new research and

development (R & D) domain. As stated in Section 2.3.2 that prior to 2006 the

only way to access the raw power of graphics hardware was via the detour of

graphics APIs and shading languages since no explicit GPGPU development

tools where available. As a consequence, most of the work and research carried

out before the date were focused on the implementation techniques and know-

how rather than the core algorithms involved. While this has changed lately with

the debut of the unified pipeline and Compute Unified Device Architecture

(CUDA), this section still decides to present a broad overview of GPU

programming solutions including both graphics APIs and shading languages. The

text will describe OpenGL and DirectX (APIs), and Cg and HLSL (shading

languages), with reference to the architecture of conventional PC graphics

software, sketched in Figure 2.18.

Chapter 2 Review of Related Work

30

Figure 2.18 PC graphics API architecture

2.4.1 The Direct3D Route

The functionality of Microsoft’s DirectX Application Programming Interface (API)

is wrapped in the form of Component Object Model (COM) and managed code

interfaces. DirectX constitutes graphics, audio, input, and network cores,

depending on the version (Adams, 2003). Among the components, DirectDraw

(prior to version 8) is for defining 2D graphics directly on the screen space and

the Direct3D (D3D) is for handling 3D graphical task (Adams, 2003). Prior to

DirectX, OpenGL was the dominant API on the market for consumer level

rendering tasks. The situation finally changed with the formal publication of

DirectX 7 by Microsoft in September 1999 after a prolonged trial period of its

earlier versions.

A prominent feature of the Direct3D API in DirectX 7 is the new addition of the

Transform and Lightning (T & L) pipeline hard-wired on the graphics card, which

first conjoined the speed and quality of the computation of expensive lighting and

geometrical calculations. The flagship off-the-shelf product at that time was

Nvidia’s GeForce 256. Although the joint force of the DirectX 7 software and the

GeForce 256 hardware brought PCs into the GPU era, the pattern of Fixed

Function Pipe-line (FFP) only allowed limited number of graphical and

geometrical algorithms to be accessed in the configuration style, rather than

programmed to specification.

The Programmable Function Pipeline (PFP) under which developers can have a

degree of flexible control over vertex and pixel processing was realized by

DirectX 8 released in November 2000 (Parberry, 2001). From then on, the

Chapter 2 Review of Related Work

31

hardware-routed T & L in Direct3D 7 was formally substituted by vertex and pixel

shader techniques in Direct3D 8, which made the GPU a true programmable

processor. However, in Direct3D 8 shaders have to be programmed in assembly

language, which is hard to master for most application-level programmers. The

Direct3D 8 series introduced shader models 1.0/1.1/1.3/1.4 successively with the

early Nvidia GPU products supported Shader models 1.0/1.1/1.3, and its ATI

counterparts supported all versions of shader model 1 series (Szirmay-Kalos et

al., 2008).

In December 2002 Microsoft released its most famous and successful Direct3D 9

API which supports improved shader model 2.0 and 3.0 (Szirmay-Kalos et al.,

2008). Shader model 2.0 added static flow control to the vertex shader, and

Shader model 3.0 enabled static and dynamic flow control of both the vertex and

pixel shaders. Apart from the extension of the supported shader instructions, the

most prominent feature of Direct3D 9 is its support for the 64-bit RGBA color in

pixel shading, and the 128-bit precision (32-bit for each colour channel) floating-

point computation (Luna, 2003), which further improved the visual effect and

rendering quality.

The latest version of DirectX is the DX10 with the elementary graphics module

Direct3D10 (D3D10) that was released in November 2006. It was designed

around the new driver model in the Windows Vista operating system and

supports shader model 4.0. The notable difference between D3D10 and the

previous versions is that it employed a so-called geometry shader in its graphics

pipeline (Walsh, 2008), which executes after the vertex shader with the whole

primitives and/or their adjacency information as inputs to the process. When

operating on triangles, all three vertices will become the geometry shader's input,

and the output might emit zero or more primitives, which are then rasterized and

passed on to the pixel shader. The benefit of the geometry shader is that it allows

the manipulation of meshes on a per-primitive basis, that is, vertices can be

treated as a single vertex array, a line segment (two vertices), or as a triangle

(three vertices).

Chapter 2 Review of Related Work

32

2.4.2 The OpenGL Route

Another identical route to access the GPU feature set is through the OpenGL.

OpenGL (Open Graphics Library) was originated from the IRIS GL that was

developed by the high-end workstation manufacturer Silicon Graphics (SGI). The

steering group of this API – the OpenGL Architecture Review Board (ARB), which

was formed by peoples from companies such as SGI, Intel, IBM, NVIDIA, ATi,

Microsoft, Apple, was founded after the SGI’s first release of OpenGL 1.0 in July

1992. One of the key tasks of the OpenGL ARB is producing an industry standard

for OpenGL, and its tool kits, through common agreements among the ARB

members. The approved standards are then published as specifications based on

the C programming language. Only those APIs that passed all the tests regulated

by the specification can be referred as official OpenGL. The first product of this

process, OpenGL 1.1, was formally released in 1995 (Hill, 2001).

The original OpenGL specification serves two main purposes (Hill, 2001):

1) To insulate the complexities of interfacing with various 3D graphics

accelerators, including GPUs, by exposing to programmers a single and

uniform API;

2) To encapsulate the varying capabilities of hardware structures through

enforcing all implementations to support the full OpenGL feature set.

As a graphics API, OpenGL's basic function is to process primitives such as

points, lines and polygons, and convert them into pixels. The overall operations

are carried out by the OpenGL state machine that is specified since the OpenGL

1.1 (Silicon Graphics Inc., 1996). Divergences of the OpenGL ARB partners,

caused the first few releases of OpenGL APIs to be rather slow comparing with

DirectX. Prior to version 1.5, the updates for OpenGL mainly focused on the

minor modifications to the precious release. This situation had lasted for nearly a

decade till July 2003. When the OpenGL ARB formally released its version 1.5

with the major innovation of the embedded “OpenGL Shading Language”, known

as GLSL (Kessenich et al, 2006). Since its debut in 2003, GLSL has become one

Chapter 2 Review of Related Work

33

of the popular shading languages to develop interactive graphics and

visualisation applications across operation systems from UNIX, Macintosh,

Microsoft Windows, to Linux. This interchange ability enabled programmers to

easily transfer their programs across most major commercial operating systems

and hardware platforms.

In 2004 3Dlabs, a UK semiconductor company, substituted the dominant role of

the SGI in the OpenGL ARB and unleashed the OpenGL 2.0 on the basis of

OpenGL 1.5. It greatly improved the efficiency for some common operations from

the previous versions and also added new features on creating photo-realistic,

real-time 3D graphics that can be referred on SGI’s website (Silicon Graphics

Inc., 2005). The latest development has seen OpenGL 3.0 becoming widely

available with roughly equivalent features and powers to D3D10.

2.4.3 Dedicated GPU Languages -- Cg and HLSL

The earliest form of shading languages is constituted by assembly instructions

such as ‘mov’ and ‘mod’. Although high on operating efficiency, in practice they

are difficult to use and maintain. With the growth of the complexity of shader

programs, the limitations of the assembly language approach were becoming

more evident for the following reasons (Owens et al., 2007):

� Programs written in shader assembly language are difficult to program and

debug;

� The number of instructions in an assembly shader is limited;

� Some flow control instructions are hard to issue in a shader assembly

language, e.g., the loop instruction.

To better explore the new found computing power of GPUs, it is essential to

employ a convenient shading language for GPU programming. Developers from

the GPU giant NVIDIA defined and implemented a new shader language in late

2001, working in close collaboration with Microsoft. It was the earliest effort from

Nvidia and Microsoft to devise a uniform specification for all GPU languages. The

Chapter 2 Review of Related Work

34

results were two languages, NVIDIA's “C for graphics” (Cg) and Microsoft's “High-

Level Shading Language” (HLSL). Although the two languages share identical

syntax and semantics, they differ by ideology: Cg was designed as an additional

layer on top of all popular graphics APIs, i.e. OpenGL and Direct3D, with a small

performance penalty; while the HLSL offers a cleaner interface to applications

through a tighter integration into the dedicated Direct3D framework.

In contrast to the early shading languages such as the Renderman Shading

Language from Pixar Animation Studios and the Stanford Real-Time Shading

Language, Cg and HLSL evolved on all aspects of graphics. Many functions have

been added to address the functionality of the newly released GPUs; control flow

operators were being supported; vectors with up to four scalars, and matrices up

to 4 × 4 in size were supported; and some object-oriented techniques have been

included. Changes can also be found in their software architecture design, for

example, though the concept of the “programmable pipeline” still exists, it is

combined with the idea of a virtualized machine that leads to the concept of

language profiles. Cg is currently still under active development, with most of the

changes applying to the architecture, rather than the language itself. In contrast,

Microsoft seems has decided to break the compatibility of the two languages with

the release of Direct3D10 which supports “geometry shaders”.

2.4.4 Evolution of Shader Models

As briefly mentioned in Section 2.3.2 and 2.4.3, before the release of CUDA in

2006, the main stream shading languages for GPU programming included HLSL

from Microsoft, GLSL for OpenGL, and the Nvidia’s Cg. Although these shading

languages differ in their designs, they actually follow a common uniform

specification – the Shader Model that is defined by the aforementioned CineFX

engine proposed by Nvidia described in Section 2.3.2. The CineFX engine

regulates the specifications for vertex shader and pixel (or fragment) shader in

accordance with the GPU’s hardware structure, e.g., number of stream processor

and register, shader clock, memory amount. Table 2.1 lists the key specifications

of the 3 major Shader Models.

Chapter 2 Review of Related Work

35

Table 2.1 Key specifications of Shader Models (SM)

 SM 2 SM 3 SM 4

Max of Vertex Instruction Executed 65536 65536 65536

Length of Pixel Instruction 512 65536 unlimited

Constant Registers in Vertex Shader ≥ 256 ≥ 256 16×4096

Constant Registers in Pixel Shader 32 224 16×4096

Temp Registers in Vertex Shader 13 32 4096

Temp Registers in Pixel Shader 32 32 4096

Loop count register in Pixel Shader No Yes Yes

Static Flow Control in Vertex Shader Yes Yes Yes

Dynamic Flow Control in Vertex Shader Yes Yes Yes

Dynamic Flow Control in Pixel Shader Yes Yes Yes

Vertex Texture Fetch No Yes Yes

2.5 Languages for General-Purpose Computations

Up till now, this chapter has been focusing on types of graphical processing and

data parallelism enabled by the GPU. However, most data intensive computation

from wider world of application domains don’t describe their tasks in the terms of

vertices, polygons, and pixels. The aforementioned APIs and shading languages

devised for graphics applications limit the wider acceptance of GPGPU in real-

world applications because of the extra demand for graphics knowledge. For over

a decade, the aforementioned approaches were the only way to develop

applications on the GPU, however this has changed lately. This section provides

a brief review on 3 GPU-based programming languages that are not mapped to

the graphics route.

Chapter 2 Review of Related Work

36

2.5.1 Brook for GPUs

The Brook language from the Stanford University in USA is one of the first

substantial efforts in simplifying GPGPU application development. It was initially

designed primarily as a programming language for “streaming processors” (Dally

et al., 2003). Buck et al. (2004) adapted Brook to harness the capabilities of

computer graphics hardware; making it the first general-purpose language for the

GPU (Buck et al., 2004). Brook extends the C programming language by inducing

the concept of streams, a collection of elements, where each element will be

manipulated by the same computations. Streams are different to arrays in

conventional serial computing because there is no index operation and the

element dependencies are forbidden. The functionality that is applied to each

stream element is called a kernel, which is comparable to a “shader”.

The application development in Brook is a two-phase process; first the task is

coded and compiled to a set of C++ files, and then the C++ files are loading and

execution on the host machine. One major drawback of this approach is the

target operating system, that is the graphics device specifications and the

graphics API, has to be specified in advance.

2.5.2 CUDA – “Compute Unified Device Architecture”

Echoing the hardware architecture evolvement, Nvidia has devised a new

generation parallel programming tool set. The Compute Unified Device

Architecture (CUDA), enables simplifies the application development tasks to a

C-programming job.

The CUDA GPGPU toolkit was published by NVIDIA at the end of 2006. Similar

to Brook, its syntax and semantics follow the standard ANSI C style, and also

support stream types and their corresponding operations (Nvidia Corporation,

2009). In contrast to Brook, the CUDA toolkit can generate executable

instructions on both the CPU and GPU without the need of any intermediate C++

files. In addition, CUDA does not need any graphics back-ends for storing and

Chapter 2 Review of Related Work

37

displaying computational results. The current CUDA version supports unique

features such as branching, looping, pointers, large kernels, and multiple threads.

In addition to the intrinsic functions, the CUDA framework also includes extra

utility libraries for operations such as linear algebra and the fast Fourier transform

(FFT) that are important for applications like digital signal processing. The

detailed programming specification in CUDA will be further discussed in Section

7.3 in combination with a case study.

With the release of the unified shader architecture and the CUDA-based

computing model, data-parallel processing on GPU has extended from the

earliest graphics applications to other scientific and engineering domains such as

signal processing, physical simulation, computational biology and even

computational finance.

2.5.3 CTM – “Close-to-the-Metal”

At about the same time of NVIDIA’s release of CUDA, its main market rival ATI

(now part of the giant micro-processor manufacturer AMD) introduced the CTM

platform -- a data-parallel virtual machine that allows direct communication with

ATI graphics devices (Segal and Peercy, 2006). Similar to the CUDA

architecture, many features are imposed by this approach, including the ability to

read, modify, and write memory in a single program, to directly access host

memory, or to cast between formats without explicitly copying the data. CTM is

distributed as a library that allows “managed connections” to one of the three

units of the graphics hardware to be opened, used, and closed: 1) The “command

processor”, which is programmed via an architecturally independent language. 2)

The “data-parallel processor” that is programmed via a native (architecturally

dependent) instruction set. 3) The “memory controller” which allows direct access

to the graphics and the main memory.

As the name implies, CTM is used to access graphics hardware at a very low

level, close to the machine code. It was designed for manual fine tuning of

programs, and for exploring the GPUs horse power, but not for every-day use on

Chapter 2 Review of Related Work

38

ordinary applications. Furthermore, a CTM application is responsible for all

problems occurring at debugging, which increases the development complexity

and cost.

2.6 Summary

Based on Leslie Lamport’s (Sinnen, 2007) definition, there are multiple levels at

which parallelization can occur in a computational platform; the simplest micro-

parallelization takes place inside a single processor and usually does not require

the intervention of the programmer to implement. The so-called medium-grained

parallelization for its intermediate repetitive core is normally associated with the

host language’s semantics, and often appears in the form of advanced

computational tasks, loop level parallelization. While efforts had been made in

automating this level of parallelization with optimized compilers in the past, the

results of those attempts were only of moderate success (Sinnen, 2007). For

more advanced computational tasks, coarse-grain parallelization is often

deployed which requires distributed memory parallel computers and are almost

exclusively coded by the specially-trained programmer – not the application

developers.

In practical engineering applications, there exist extensive specific processing

procedures, such as reconfigurable computing and linear algebra matrix

operations, which are implemented in specialized parallel devices, such as DSP,

field programmable gate array (FPGA). Often, the key for the success of those

devices is the cost, hence the invention of the term consumer-level or

commodity-grade parallel processing. The majority of the attempts to date have

focused on low-level data parallelism, but the recent trend has witnessed the

interest shift to higher level parallelism, including instruction and task parallelism.

As an outstanding representation of this trend, GPU has been hotly pursued to

become a “hardware accelerator” for software algorithms. Modern GPUs, and

their application development tools, have undergone multiple generations of

development as reviewed in this chapter. It is noted in this review that GPU is a

rendering device in which a computational model distinct from those in CPU

Chapter 2 Review of Related Work

39

programming is employed. Therefore it is essential to introduce conventional

notations and programming methods that map to the graphics concepts in

GPGPU, which will be the focus in Chapter 3.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

40

Chapter 3 General-Purpose Computing on

Graphics Card and Architectural Pattern

in Parallel Computing

GPU’s rapid evolution on its hardware design, coupled with the enhancing

programmable capacity, has made GPGPU widely applicable in various domains

of scientific computing, e.g., computational geometry, physically-based

simulation, linear systems solution, partial differential equation, and database

queries (Owens et al., 2007). Between 2001 and 2006, limited to the GPU

pipeline structures that normally included vertex, rasterization, and pixel stages,

the key GPGPU tasks had been focusing on how to efficiently implement an

algorithm in the fixed rendering pipeline through mapping general-purpose

computations to graphics hardware resources. Therefore, the key question to the

GPGPU efforts was what types of computations map well to GPUs as briefly

discussed in Chapter 2. Simply speaking, two key attributes of computer graphics

computations, data parallelism and independence, will determine the outcomes

and levels of success in a GPGPU application.

In this chapter, key GPGPU concepts and techniques will be discussed in terms

of CPU-GPU analogies that refer to terminology such as stream, kernel, scatter,

gather, task computing, render to texture, and multi-passes. Comparing to serial

programming, parallel programming is more complex to realize due to the greater

degrees of freedom involved. Serial programming normally only involves a single

thread or time divided task tablets (multi-threads) of computation at any one time,

while parallel programming involves multiple threads of computation which also

need to communicate and synchronise with each other. It is essential for

computer scientists to design a fixed set of high-level constructions for capturing

common computational patterns from the parallel computer platforms (Flynn,

1966). Extensive researches have been carried out since the very beginning of

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

41

PC-grade parallel programming with this aim in mind. Based on these

researches, four general classifications of parallel architectural pattern have been

presented in this chapter, which are namely, divide and conquer, Pipes-and-

Filters, communicating sequential elements, and processor farms.

3.1 Foundational Function Blocks: Streams and

Kernels

For GPGPU applications, there are two essential components, stream and

kernel, that distinguish data and instructions passed through the pipeline. A

stream in GPGPU can be defined as the collection of data sets that need to be

operated by the same computation. Multiple streams expose the so-called data

parallelism due to the fact that all the data can be processed in parallel

simultaneously. A kernel is the function or functions designed to perform the

computations on each stream element. GPU’s parallel processing ability appears

not only in guaranteeing multiple stream elements being processed in parallel,

but also on ensuring multiple kernels being executed in parallel (Marziale et al.,

2007). The concepts of the stream and kernel in GPGPU computing are sketched

in Figure 3.1.

Figure 3.1 Stream and kernel in GPGPU programming

As indicated by the diagram and above discussions, both the vertex and pixel

processing stages satisfy the parallel processing definitions through forming

kernels and streams, however, since the pixel stage is located at the rear end of

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

42

a graphics pipeline and chosen to the temporary storages such as the frame

buffer, it is more commonly used to issue complex algebraic computations.

Actually, as a matter of design principle, the number of pixel shaders in a modern

GPU often a few folds more than that of vertex shaders, which results in pixel

shaders become much more powerful parallel processors than vertex shaders

(Owens et al., 2007). Therefore, it is a common practice implementation details

can be found in Chapter 5 and 6 in a GPGPU application that raw data are

formed into pixel streams corresponding to textures stored in the GPU memory to

be processed by instructions coded in pixel shaders. The following two

subsections provide the analogies between CPU and GPU for the streams and

kernels.

3.1.1 Data Streams

The native data layout on CPUs is a 1-dimensional (1D) array. A higher-

dimension array can be accessed through offsetting coordinates into a separated

1D array. For example, the element a[u][v] of a 2D array of the size M×N can be

mapped into a[u*M+v], assuming array indices begin from 0.

The native data layout for a GPU, however, is a 2D array in the form of textures

or texture samplers. For example, in the graphics API -- OpenGL, a texture can

be created by the instruction glGenTextures() (Microsoft, 2006), whilst its size and

data type can be specified by the instruction glTexImage2D()(Microsoft, 2006). In

addition, since a pixel can have four colour channels -- red, green, blue and

alpha (RGBA), if all are utilised to store elements of a vector, then a texture of the

size N×N can support the maximum vector length of 4×N×N. Figure 3.2 shows a

vector of 16 elements being stored in a piece of 2×2 texture with all 4 RGBA

channels employed. In general, for an array with N elements, when mapped to a

texture unit, the texture size can be expressed as:

;4)]qrt (N/erBorder[sHeight=Low

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

43

;4 Height])/(double)ouble)(N/rBorder[(dWidth=Uppe

Except 4D colour textures, another type of texture, the luminance texture, often in

greyscale uses only one channel which is also extensively used in GPGPU

programming (Victor et al., 2005).

Figure 3.2 Data storage in RGBA textures

3.1.2 Instruction kernels

In the CPU programming paradigm, if all elements in a vector need the same

operation, a loop would be used to iterate over these elements; in this case, the

instructions inside the loop is the kernel. In contrast, in a common GPGPU

program, the instructions on data are written in a shader program rather than

being enclosed in a loop. The multi-stream processors of a GPU will act as

computational workhorses to perform the kernel computations on data streams.

The programmable parts of the GPU, vertex and pixel/fragment shaders, consist

of a number of parallel processing units. In most of the reported GPGPU

implementation cases, unlike the theoretical usage of vertex shaders for

computation, fragment programs are more commonly employed for the “loop”

cases since they provide more parallel channels. All the information exposed

about the process is the "address" -- the texture coordinates in which the

components of data streams reside. Therefore all works are carried out in parallel

without any data interdependence.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

44

3.2 GPGPU Task Computing

To implement a task on the pre-2006 GPUs (the latest model will be discussed in

Chapter 4 and 7), it is essential to invoke the instructions from a specific graphics

API (i.e., DirectX or OpenGL) to access the fragment program that is written in a

particular shading language. The orders of the process are as follows:

1. The application task is analysed and divided into independent processing

elements. Each element is mapped to a kernel and being abstracted as a

fragment program with one or more data streams as the program’s input and

output. The input and output data streams are normally reside in a GPU’s texture

memory. The instructions in a kernel can then be implemented on each data

component in parallel.

2. To activate a kernel at runtime, the computational range (or the area of the

“output stream”) need to be specified. In a typical GPGPU implementation, this

can be issued through drawing a quad by invoking API instructions such as

glQuad() and glVertex2f where glQuad() is for drawing a quadrilateral rectangle on

the image plane. The size of the quad is specified by the instruction glVertex2f()

(Pharr et al., 2005).

3. The rasterizer, 3D-to-2D transformer, then creates fragments for every pixel

located in the quad, producing enormous large amount of 2D fragments. The next

step will see each fragment being processed by the activated kernel programs.

4. The kernel programs access the arbitrary locations in a GPU’s memory

through predetermined coordinates of the texture that stores the actual data. In

another expression, the computational domain will be specified in the input

texture through configuring texture coordinates, which is followed by the process

of drawing a quad on the image plane.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

45

5. The output of a kernel program, in contrast to the multi-data vertex shader

output, is a vector of values, often used in conventional graphical application as

colours. It can be the ultimate results of an application, or the intermediate results

stored as a texture in the framebuffer to be used by other kernel programs.

Furthermore, some practical applications involve a series of passes (“multipass”),

re-visit to the pipeline, to complete.

Based on the above operational break-downs, it is clear that the key to a

successful GPGPU application is the usage of textures, thus the investigation in

this part of the research is on how to access textures, read and write the GPU’s

memory. It is well-known that the CPU program often access complex data

through pointers, however, the pointer is not supported by the fragment program.

The actual read and write operations to access GPU memory is rather indirect,

which are referred as scatter and gather.

As defined by Owens et al. (Owens et al., 2007), a scatter process is equivalent

to the operation in C-like language in the form of: x[i] = z. In contrast, a gather

operation is equivalent to the C expression z = x[i]. In other words, the gather

operation actually corresponds to GPU’s texture fetch which is further influenced

by the projection style in the pipeline and the specified rendering area where a

quad is drawn. In this project, textures are accessed by using OpenGL functions

such as glTexCoord2f(), glMultiTexCoord2f() (Microsoft, 2006), and glVertex2f(), the

instruction tex2D() or texRECT().

In contrast, the scatter operation can not be directly implemented as the gather

operation since all fragment addresses in the frame buffer can not be explicitly

expressed. The solution for this problem is through either using a specific

program to classify the location of a given fragment in the framebuffer, or using

another texture to perform the write operation. However, such solutions can not

be supported by the pre-2006 GPUs. GPGPU programmers at the time had to

make use of various programming techniques to alleviate this problem. In

OpenGL, these techniques include binding a texture to a Pixel buffer (Pbuffer) or

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

46

a Frame Buffer Object (FBO). The data in the texture can therefore be updated

through rendering the Pbuffer or FBO. Therefore, in many GPGPU programs, the

scatter operation is also referred as “Render-to-Texture”.

As stated earlier in the section that a GPGPU task needs to be manually divided

into several independent parallel sections before kernel definition can start in the

form of shader programming. As a normal practice, each input parameter and

output/return variable will be assigned with a data type, as well as a specified

semantic symbol to identify a particular parameter’s state. List 3.1 shows a

general form of a kernel in the shading language Cg.

List 3.1 Parameter’s semantic binding in a kernel

In the kernel that named as minimum, parameters tex0 and tex1 are all bound to

the semantic TEXUNIT to identify their nature as textures, parameters left_top,

right_top, left_bottom, and right_bottom are all bound to the semantic TEXCOORD

to identify that they are texture coordinates used for texture fetch operations.

According to the definition in Cg, the output variable must be bound with type

COLOR in accordance with the pixel display. If multiple parameters are bound

with the same variety of semantic symbol, they will be differentiated by various

index such as TEXUNIT0, TEXUNIT1, and TEXCOORD0, TEXCOORD1. For

multi-pass GPGPU application, the so-called ping-pong manner is adopted for

the transform between the texture read and write modes. Therefore, if a texture is

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

47

used for read-only in the current rendering pass, then it will be employed for

write-only process in the next rendering pass, and then transformed back again.

To execute a fragment program on a GPU, it should be first loaded and activated

by the graphics API instructions. For example, the OpenGL instructions for

loading a Cg program are cgCreateProgram() and cgGLLoadProgram(); while the

instructions for OpenGL activating a Cg program is cgGLBindProgram() . After the

activation, the fragment program is issued on the GPU through the instruction of

rendering a suitable geometry, usually by drawing a quad. The operation of

drawing a geometry will generate fragments from the input geometry through the

rasterizer. These fragments become output pixels after processing by fragment

program (Shirley, 2005). Before drawing a geometry to trigger the fragment

program, the essential initialization for operations on transformation matrix, such

as the matrix mode specification, must be implemented. Following the matrix

mode specification, the area of corresponding viewport must be configured as

well, which determines the maximum output region at different stages in the

rendering pipeline. These essential initialization steps are shown in List 3.2.

List 3.2 Configuration for transformation matrix mode

After the initialization, the actual running of the fragment program is triggered by

the process of drawing a quad which also specifies the computation range and

the texture fetch scope in the fragment program. It is achieved by setting up the

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

48

x- and y- coordinates of the four corners of the drawn quad and the specific

texture, as shown in List 3.3.

The input vertices and the vertex shader determine which group of pixels are

generated. Through specifying four vertices coordinates of a quad issued by the

OpenGL instruction glVertex2f(), the output range of the computation is directly

under control. As shown in List 3.3, individual texture-pixel (texel) is sampled

according to an 1:1 or 1:X mapping proportion between pixels and texels. A

simple example is to find the maximum/minimum value in a n-element vector by

the “sort” computation of “parallel reduction”, which is to be introduced in the

following section.

List 3.3 Specification of computation range and texture fetch in a fragment

program

3.3 Render-to-Texture

For the GPU-based applications requiring multiple rendering passes, data stored

in the texture memory can be updated in the process of loops. However, as

discussed in previous sections, legacy GPUs don’t allow direct scatter operation

on texture memories. The refreshment of texture memory can be archived by

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

49

techniques such as rendering to texture in which a texture is bounded with a Pixel

Buffer (PBuffer) or a Frame Buffer Object (FBO) and then being updated by

rendering to the PBbuffer or the FBO. Both medias are the so-called off-screen

buffers that are accessible by specific OpenGL functions (Oat, 2005; Persson,

2007). These temp-storage mechanisms allow programmers to generate complex

procedural images in video memory that can then be in turn bound as textures or

even being read back into CPU’s memory. It has resulted in the extensive

applications of the PBuffer and FBO in almost all GPGPU pilot projects before

2006.

For the sake of their flexibility and adaptability, as well as their implications on the

PC-grade parallel processing frameworks (Chapter 4), the PBuffer’s and the

FBO’s usage are briefly explained at here. PBuffers are implemented as a

Windows Graphics Library extension on the Microsoft Windows OS. The usage of

PBuffer includes the following steps (Oat, 2005):

• PBuffer setup and initialization;

The creation of PBuffer can be issued by the OpenGL instruction

glGenBuffers(). This instruction creates either a single PBuffer or multiple

buffers in the form of arrays. Since every OpenGL-based GPGPU application

has at least one object called a GL context which involves device context and

render context, creating a PBuffer requires the programmer to have good

knowledge on the current device context and render context associated with

the application.

• Rendering to the PBuffer;

When rendering to the PBuffer begins, the program need to specify that any

frame buffer operation is now targeted to the created PBuffer. In the same

way, a PBuffer can be used as a data source for any read commands such as

glReadPixels() by setting the current context. Once a PBuffer is set as the

current “write” context, the program will render the results to this PBuffer.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

50

Once the rendering is finished, the “write” context should be returned back to

the frame buffer.

• Binding the PBuffer as a texture;

If a PBuffer is bound with a texture object, rendering with a PBuffer bound to a

texture object is exactly the same as rendering with a normal texture object.

• Freeing the PBuffer.

It is a common practice as a PBuffer finished its task, it will be dynamically

destroyed so that the memory associated with this PBuffer will be returned to

the computing platform for other processes. In this case, the PBuffer will first

be confirmed to decouple with the current texture by calling the instruction

wglReleaseTexImageARB(). Then, the render context associated with the

PBuffer will be deleted and the corresponding device context released. Finally,

the PBuffer is deleted by calling wglDestroyPbufferARB().

PBuffer also exposed some problems in the practical applications, for example,

each PBuffer requires a unique GL context (Persson, 2007). Thus the application

has to keep the track of all PBuffer states, which brings a heavy workload to the

processor since the operation of context switching is time-consuming, especially

when there are multiple PBuffers being employed by an application. In addition,

each PBuffer has its own color, depth and stencil buffers that are “internal” only.

These problems are caused by the hardware design and graphical-oriented

idealism. To overcome those problems, the Framebuffer Object (FBO) has been

introduced in GPGPU applications. Comparing with the PBuffer-based approach

for enabling intermediate result storage, the FBO has the following features:

• A FBO can be integrated directly with a regular texture

• Multiple FBOs can share the same GL context

• Independent from operating systems

• Rendering to the target device without needing a colour buffer

• Allow sharing across depth, stencil and colour buffers

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

51

The usage of the FBOs has the same process flow as the PBuffers, including:

• Create an FBO;

• Attach the colour buffer or the depth buffer to a texture;

• Render the texture with a fragment shader;

• Freeing the FBO.

The detailed instruction sets operating on a FBO will not be discussed here. It is

noted that a single FBO can bind with multiple textures. The number of bound

texture is determined by the number of colour buffer and depth buffer that the

GPU hardware can obtain (Persson, 2007). For example, the Nvidia GeForce

7800 GPU can obtain 4 colour buffer and 2 depth buffer, so that it can bind with 6

textures in total, among them, the 4 textures can be bound to the colour buffers

by the following OpenGL instructions.

Where GL_COLOR_ATTACHMENT is the parameter that represents colour buffer.

For example, if texture[3] will be rendered to device, the write target will first be

specified with the instruction glDrawBuffer(GL_COLOR_ATTACHMENT3_EXT).

Then the next step is to invoke the fragment shader to render the colour buffer

with index 3. The operations on the depth buffer are the same with those for

colour buffer.

3.4 Embedded Parallelism in GPGPU

So far this thesis has provided a general overview to the GPU hardware and the

GPGPU concept with the intention to convert the computational problems into the

notations of computer graphics to issue parallel computing on GPU. Generally

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

52

speaking, a GPGPU task is carried out by the stream programming model

equipped on all modern GPUs, in which data are represented as streams and the

computations on them are performed by kernels. Comparing with CPU

programming, GPGPU has two key features that need to be recognized –

evolving dynamic flow control and vector-based data structures which are largely

determined by the chosen GPU’s hardware characteristics. For the convenience

of further discussion, it is essential to first map the graphics pipeline to the stream

programming model, then these two features will be analysed focusing on the

programming model.

3.4.1 The Stream Programming Model

As stated in Section 3.1, all data running through a modern GPU can be

represented as streams which are either input or output of a kernel program. The

data types for streams can be of the simple ones such as integer or floating-point

number or the more complex ones such as triangles or transformation matrices.

Since the processing on separate stream elements within a kernel is

independent, it guarantees the feasibility of mapping a series of kernel

calculations onto a data-parallel hardware, i.e., an application can be realized by

cascading several kernels together. The aforementioned Render-to-Texture has

provided a mechanism to store the intermediate results in GPU’s memory for the

chaining process.

In fact, resources along the graphics pipelines are a good match for this

cascaded structure in the GPGPU programming. The creation of a graphics

imagery on computer’s display involves the whole processes of developing a

vertex program kernel, a triangle assembly rasterizer kernel, a clipping kernel,

and then forwarding the output to the pixel kernel. Figure 3.3 shows the entire

graphics pipeline being mapped onto the stream model. The arrows represent the

transient stages making the communication between kernels explicit. This in turn

ensures the data locality between kernels inherent in the graphics pipeline.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

53

Figure 3.3 GPGPU’s Stream Model (Courtesy to Shirley)

In a typical setting of GPUs between 2001 and 2006, the texture stream, vertex

streams, and framebuffer streams are accessible to GPU programmers through

assembly-style or high level shading languages (HLSL). Figure 3.4 highlights

these three streams and their relationships. As shown in Fig. 3.3 and Fig. 3.4,

vertex streams are stored in vertex buffers and being used as input streams for

vertex programs. When shifted from the CPU main memory, it holds a list of

vertex positions and a variety of per-vertex attributes such as colours, normals,

and texture coordinates. Early graphics APIs did not allow GPUs to write to

vertex streams directly (Owens et al., 2007), which had brought the problem of

heavy overhead to the following fragment shaders due to the extra diversion

needed for storing the intermediate results produced by a vertex shader to be

stored at the rear-end graphics memory, the frame buffer.

Figure 3.4 Streams in GPUs (Courtesy to Owens et al.)

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

54

As a relative recent development, the programming standards, Shader Model 3

and 4, have made it possible for the GPU internal processes to write to vertex

streams, as indicated by the bold dot line in Figure 3.4. In general graphical

application developers’ eyes, this operation can be accomplished by either “copy-

to-vertex-buffer” or “render-to-vertex-buffer” (Dally et al., 2004). These two terms

for writing to vertex streams are actually achieved by the so-called Vertex Buffer

Object (VBO) in Integrated Circuit (IC) chip designers’ views, which will be further

discussed in Section 7.4.4 through a case study on parallel data processing in

the Optical Spectral Scanning Interferometry system. In addition, many significant

simulations on the vertex displacement have been carried out by jointly using the

VBO and the method of vertex texture fetch (VTF). For example, Losasso Frank

and Hugues Hoppe of Microsoft Research have used them for a highly efficient

terrain-rendering algorithm (Losasso and Hugues, 2004) which avoided the

overloading of the GPU even as it shifts most of the repetitive and recursive work

onto the GPU. Hagen and Hjelmervik have used the VBO and the VTF together

to perform texture fetches at the vertices of a complex mesh to perform true

displacement mapping on the water surface (Hagen et al., 2005).

The Frame-buffer streams are written by the fragment processor. As a long-

lasting graphics resource (back buffer) comparing with the other two, they have

traditionally been used to hold pixels for display onto the screen. The modern

GPU design has seen frame buffers being used to hold the intermediate results

from the pixel shader in multiple-pass rendering, which has been explained in the

technique of Rendering-to-Texture in Section 3.4.

The texture streams are stored as arrays of texture properties in the graphics

memory. Before the release of the GPUs with unified pipeline structure such as

Nvidia’s GeFoece 8, 9, and GTX 200 series, textures are the only GPU memory

that is randomly accessible by fragment programs and vertex programs. If

application programmers need to randomly index into a vertex or frame-buffer

stream, the data must be first converted into a texture. For the convenience of

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

55

data access, textures in GPU can be declared as 1D, 2D, or 3D streams and

being addressed with a 1D, 2D, or 3D address.

Corresponding to the stream programming model as introduced above, two

common forms in CPU programming, flow control and data structure, have also

appeared in GPGPU. However, their implementation are very different from their

counterparts on CPU.

3.4.2 Flow Control

It is well-known that the flow control is essential and vital in modern

programming. It can be presented in the graph form of branching and looping

corresponding to the if-then-else, for, and while instructions in serial programming

models. Legacy GPUs did not have native branching of this form, so other

strategies were adopted to emulate these operations, which increased the

complexity to GPGPU. The latest GPUs, from the releasing of NVIDIA GeForce 6

Series, have supported branching in vertex and fragment programs (Nvidia

Corporation, 2009). Their native features of graphical functions can be used for

non-graphical applications to maintain the speed-up performance. After all, GPU

is intrinsically a SIMD processor and within a SIMD group, if multiple operations

evaluate the branch conditions differently, then all branches must be evaluated

carefully to avoid deteriorating performance caused by variant branching

conditions on different data block in a stream when invoking a kernel program

(Tomov et al., 2005). Therefore, other strategies and techniques need to be

devised to reduce the cost of branching on GPUs. Most of the reported attempts

have been focusing on a common strategy -- moving the evaluation of branch

conditions outside the graphics pipeline, or even cross the GPU/CPU boundary.

1. Static Branch Resolution

The aim of adopting the static branch resolution is to avoid the expensive

branching operation inside of the inner loops within the vertex or fragment

programs, which normally requires the division of a stream into substreams. For

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

56

example, a task computation is divided into several sub-computations through

accumulative fragment programs, but actually just one brand is issued

simultaneously when the specific logic condition is satisfied. A classical

application of the static branch resolution is the solving of a partial differential

equation (PDE) on a discrete spatial grid (Krüger and Westermann, 2003). In that

application, the whole GPGPU solution for this type of problems is mainly

comprised of two fragment programs: one is used for processing the interior cells

of the grid, while the other one working on the boundary edges. Therefore, the

computational range of the fragment program for processing interior cells will

exclude the outer one-pixel edge when drawing the quad; while the range for

processing boundary cells will just include the outer single-pixel edge when

drawing the quad.

In general, it seems that there is no any branching operation in the GPGPU

solution that uses the static branch resolution. In fact, most of the surveyed

GPGPU solutions were decomposed into several vertex or fragment programs

which had the same or different kernels with variant compute ranges, which were

allocated manually. The implementation order of those vertex and fragment

programs have also been specified through graphics API instructions in advance.

That is why the term “static” has been used in the name of the style.

Based on the above observation and analysis, it is concluded that the suitable

occasion for employing static branch’s is when the operations employed by each

branch corresponding to the constant condition over the complete input domain.

From the view of computer graphics, this is certainly the case when an

application will ultimately form a fixed image on the screen after the computation.

Except solving a PDE, many linear algebraic operations can be classified into this

category (Hagen et al., 2005).

2. Pre-computation

Pre-computation is often used in the scenario when the results of each branch is

a constant in a fixed period of time or a number of iterations of a computation

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

57

(Owens et al., 2007). Once the results are subject to change, the operations

corresponding to the branch evaluation will be triggered and the intermediate

results are stored for use over subsequent iterations.

The GPGPU-based fluid simulation reported by Zhao et al. (Zhao et al., 2006)

has extensively utilized this technique to avoid branching when computing

boundary conditions at the edges of arbitrary obstacles in the flow field. In this

setting, fluid cells with no neighbouring obstacles can be processed normally, but

cells with neighbouring obstacles require more complex processes, for instance,

these cells must check their neighbours to figure out in which direction the

obstacle lies before using the directions to look up more data to be used in the

computation. This operation for obstacle change will be implemented only when

the user program “draws” them. Therefore, the offset directions can be pre-

computed and be stored in an offset texture to be reused when the user changes

the obstacles again.

From the view of computer graphics, the occasions that the pre-computation

technique can be adopted corresponding to the applications in which the image

on the screen changes slowly, that is, if divided into smaller intervals, the image

is basically fixed or changed very little so that the change will not be aware of by

human’s eye.

It is clear that there is no explicit branching operation in existing GPU instructions

to control the stream flow in the forms of static branch or pre-computation. The

compromised solutions were brought in by shielding branching through manual

interference. For the simulations involving rapid particle movements such as

collision, a Z-Cull solution was made available thanks to the hardware evaluation

of modern GPUs.

3. Z-Cull

Z-cull is a technology employed by modern GPUs in the stage of pixel processing

to determine a pixel’s visibility. The letter Z refers to the Z axis of the 3D viewing

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

58

space (Mitchell and Sander, 2004). The principle of Z-cull is of comparing the

depth value (Z) of an input block of fragments with the depth values of the

corresponding block of fragments stored in the Zbuffer (see Section 2.3.2). Only

those fragments that pass through depth test will be further processed by pixel

shader to form their pixel colour. In contrast, those fragments failed on the depth

test will be discarded before the process of pixel shader. Therefore, the valuable

GPU processing capacity saved.

Referring to the particle simulation discussed above, the current pressure status

of a particle is first determined before the subsequent computation, which is then

performed by pre-evaluating this particle’s neighbours’ pressing on it. If the

particle receives all the press from its top, bottom, left-hand, and right-hand

neighbours, then this particle will be treated as in the “balance” status. So that it

can be ignored when computing all particle’s movement direction in the next time

slot. In this case, the “balance” status of this particle will be pre-marked as failing

in the depth test in the Z buffer. This design has ensured “failed” fragments are

directly discarded when the fragments are calculated by the fragment processor

(Simon et al., 2007; Liu et al., 2008). Suppose the particle receiving the pressure

from one direction can be represented by 1 (otherwise by 0), the process of pre-

evaluation can be issued by a fragment program in the first pass, as depicted

below:

Kernel Pre-evaluation()

{ Set a vector named as marker with four components – x, y ,z and w;

marker.x = the pressure from the top neighbour;

marker.y = the pressure from the bottom neighbour;

marker.z = the pressure from the left-hand neighbour;

marker.w = the pressure from the right-hand neighbour;

Add the x, y, z, w value of marker up;

If the sum is equal to 4

then set the value of depth test in depth buffer as failure;

}

Figure 3.5 The configuration for Z-Cull in the first pass

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

59

After Z-Cull is set up, the whole process of particle simulation is simply

demonstrated as follow:

Figure 3.6 The process of particle simulation using Z-Cull

In the particle simulation carried out by Li (Li, 2004), if the particles in the

“balance” status are fairly large, then much work can be saved by passing

processes for those particles. Therefore, the Z-Cull is a powerful method for

skipping unnecessary work based on the hardware features of GPUs. Although

the “if-then” style instruction has been introduced in vertex and fragment

programs from the releasing of NVIDIA’s GeForce 6 series and the shader model

3.0, there are researches demonstrate that the Z-Cull is more efficient than

directly issuing conditional instructions in shader languages when implementing

complex computations involving large computational ranges (Han et al., 2005;

Xie et al., 2008).

3.4.3 Data Structure

In CPU programming, the basic data structure is based on multi-dimensional

array. The memory address can be accessed easily by using pointer or directly

indexing the array’s coordinates along various dimension. In contrast, the 4-D

vector style texture memory is the dominant form of local memory in GPU

programming. Although there are various formats such as 1D and 3D textures,

the physics memory of GPU is actually of the 2D texture. Restricted by the

capacity of 1D textures and the number of slices in 3D textures that can be

accessed when issuing a rendering pass, there are dimensional conversions

such as 1D-to-2D and 3D-to-2D in GPGPU when storing various dimensional

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

60

array into a 2D texture. In GPGPU programming, data access is implemented

through indexing the texture coordinates, therefore the key task for describing the

data structure in GPGPU is to index a texel through the memory address

translation process (Owens et al., 2007).

1. Address translation from 1D array to 2D texture

Data from a 1D array can be stored in a 2D texture by packing the data into that

texture, as shown in Figure 3.7.

Figure 3.7 1D array packed into 2D textures

When the packed array is accessed from a vertex or fragment program, the 1D

array address must be converted to the 2D texture coordinates, which can be

implemented by a fragment program. For example, suppose an array size is N,

which means the 1D array address denoted by an integer variable 1D_Addr is

within the range [0, N). If the texture size is X and Y along x- and y- direction,

then the 2D texture coordinates, denoted by variable tex_cord.x and tex_cord.y can

be computed by the following equations that are issued by a kernel embedded in

a fragment program.

tex_cord.x = 1D_Addr % X (3-1)

tex_cord.y = 1D_Addr / X (3-2)

2. Address translation from 3D array to 2D texture

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

61

According to modern GPU’s data architecture design, a 3D array may be stored

in one of the three ways: in a 3D texture (with each slice stored in a separate 2D

texture), packed into a series of 2D texture, or packed into a single 2D texture

(Lefohn et al., 2006).

In the first case, no address translation is required because the x, y, z

components of texture coordinates can be directly indexed. It seems very

convenient but the problem is that GPUs can only update limited slices of the

volume per rendering pass – thus might requiring many passes to write to the

entire array (Lefohn et al., 2004).

In the second case, as shown in Figure 3.8, multiple 2D textures can be updated

through binding the textures with different colour buffers and depth buffers, as

discussed in Section 3.3.

Figure 3.8 Storing a 3D array with separate 2D slices

Based on Owen’s review (Owens et al., 2007), the problem of this approach is

that the volume can no longer be truly randomly accessed because each slice is

a separate texture stored at separate addresses. The programmer must know the

exact slice numbers to access before the kernel execution since the fragment

and vertex programs cannot dynamically compute which texture to access at

runtime. As a result, the process of address translation between 3D array and 2D

texture is needed to solve the problem, where two scenarios must be considered.

It is known the common representation of a 3D array is a[x][y][z] that

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

62

demonstrates the 3D array’s coordinates on x-y plane and in z axis respectively.

If the texture size along x- and y- dimension is same as the size of a 3D array on

x-y plane, the address translation is comparatively simple. The programmer can

acquire the indices of slices through the z component. However, the possibility

that the size of texture in 2D texture slices is different from the 3D array’s size on

the x-y plane must be considered. Suppose the 3D array’s size on x-y plane is

denoted by X3D and Y3D respectively, the texture size is X2D and Y2D, for element

a[x][y][z] in 3D array, the address translation to one of the 2D texture slices can

be implemented by a fragment program that demonstrate the algorithm as follow

(Owens et al., 2007):

Now consider the last case of 3D array being packed into a single 2D texture. It is

actually a special case of the 3D array being stored in slices on separate 2D

textures. In this case, once the texture size is large enough, just one texture is

needed other than several slices for the storage. Therefore, the address

translation of 3D array to slices of separate 2D textures is similar to that of 3D

array being packed into a single 2D texture with an amendment of erasing the

Step 2 of the aforementioned algorithm.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

63

3.5 Optimization of GPGPU in Linear Arithmetic

Operations

As stated in Section 3.1, the GPGPU programme is consisted of two key

elements – stream and kernel that distinguish the CPU programming in the term

of SIMD. Like in CPU programming, there also exists the demand of program

optimization in GPGPU. The principle for optimizing the kernel is to alleviate

unnecessary operations or instruction calls in vertex and fragment programs

through using techniques such as the Z-Cull to issue the branch operations. The

key for optimizing stream is to erase the non-essential data sets in stream to

reduce the size of kernel’s input and easing GPU’s memory burden.

It is widely accepted that linear algebra is the basis of almost all mathematical

applications, in which the data (streams) are often consisted of vectors that

corresponds to various dimensional 1D arrays and matrices. The basic

operations on the data (kernels) are normally composed of arithmetic and bit

shifting operations. When there are a large number of zero components in the

vectors and matrices involved in a multiplication operation, a matrix can be

categorized as the dense matrix in which there are little zero value or the sparse

matrix possessing a large number of zeros. How to efficiently store a sparse

matrix in the GPU memory and to implement it on the optimized matrix or vector

is a vital issue in linear algebraic based GPGPU applications.

3.5.1 Representation of Banded Sparse Matrices

The so-called banded sparse matrices is the sparse matrices that exhibit a

regular pattern of nonzero elements, such as diagonal matrices, upper-triangle

matrices, and lower-triangle matrices (Kincaid and Cheney, 2002). A banded

sparse matrix can be depicted as follow.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

64

− nnnn aa

aa

aaa

aaa

aa

1

4443

343332

232221

1211

00

000

00

00

000

K

OOM

L

L

L

L

Figure 3.9 A banded sparse matrix

When storing the large size diagonal matrices or the banded sparse matrices that

have the analogous structure like the former on GPU, an effective style is to first

transform the diagonal elements into several vector formats, and then packing

the transformed vector into various 2D textures. Following this pattern, the

storage of the matrices as shown in Figure 3.9 can be processed in the style as

shown in Figure 3.10.

− nnnn aa

aa

aaa

aaa

aa

1

4443

343332

232221

1211

00

000

00

00

000

K

OOM

L

L

L

L

−

−−−−−

1

2,1

32

21

1,1

33

22

11

,1

34

23

12 0

0 nn

nn

nn

nnnn

a

a

a

a

a

a

a

a

a

a

a

a

a

MMM

Matrix 3 Vectors

3 2D textures

Figure 3.10 Store a banded sparse matrix on the GPU

Considering there are some zeros added in the diagonal vector to fit the texture

size, the more efficient storage can then be implemented by combining the two

opposing diagonals into one vector. It means a full matrix in the diagonal format

can be stored in several textures without wasting a single byte of these textures’

space. An example of this case is demonstrated by Krüger and Westermann

(Krüger and Westermann, 2003) as shown in Figure 3.11.

As defined in classical linear algebra, the multiplication between a matrix and a

vector can be expressed as follow

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

65

∑
=

=⇒

=

n

j

jiji

nnnnn

n

bay

y

y

y

x

x

x

aa

a

aaa

1

2

1

2

1

1

21

11211

MM

L

OM

M

L

 (3-3)

Figure 3.11 Pack more nonzero into diagonal vector

If a matrix is packed into a 2D texture directly, then the row and column indices of

the matrix elements can directly correspond to the texel’s coordinates, so there is

no need for any coordinate transformation in the kernel. However, if using the

diagonal format to represent a matrix, it is unavoidable to have the coordinate

transformation in the kernel to guarantee the multiplication between the correct

elements in the matrix and the vector. The coordinate transformation is

comparatively simple in this case because it only need some regular shifts on the

x and y texture coordinates to ensure the regular distribution of the diagonal

vector in the banded sparse matrix.

3.5.2 Optimized Implementation on Random Sparse Matrix

For random sparse matrices, a small quantity of nonzero elements are scattered

randomly in the matrices. When issuing the matrix-vector product as indicated by

Equation (3-3), how to establish the relation of the row and column indices

between the texture coordinates is much more sophisticated than that in the case

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

66

of the banded sparse matrix-vector product. Krüger and Westermann (Krüger and

Westermann, 2003) have devised an efficient encoding method to solve this

problem.

A close inspection on Equation (3-3) can reveal that the row index i influences

the final position of the result yi, while the column index j specifies what values of

the vector X are to be combined with aij. This pattern has stimulated the thought

to use the vertex to include the information of yi, for example, employing the

vertex position to encode the row index. When rendering a vertex, the indexed

can be bound with multiple texture coordinates, then the column index is

encoded in these texture coordinates. The XYZW components of a texture

coordinate are all float-point type and can be manually set by the programmer to

indicate the coordinates, thus a special texture coordinate can be specified to

contain the value of nonzero entries in the matrix by using its XYZW components.

Based on this encoding principle, a series of vertex array need to be created in

which the row index is included in the vertex position, and the column index and

the value of the nonzero elements are included in the several texture coordinates

that are bound to a vertex, as sketched in Figure 3.12. Every four nonzero

elements that are in the same row are grouped. If there are several groups, these

groups are stored in various vertex arrays, therefore a series of vertex arrays are

created to store the vertices that have the same position.

Figure 3.12 Encode to the nonzero element in the random sparse matrix

(Courtesy to Krüger and Westermann)

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

67

After the encoding on the random sparse matrix, its production with a vector can

be issued by rendering the vertices, which is actually implemented by a vertex or

fragment program that involves multiple rendering passes. Each single pass is to

render a vertex array and each pass actually does part of the multiplication as

indicated in Equation (3-3), the results of each pass are stored in the vertex or

frame buffers as the intermediate value. After all the rendering passes have been

implemented, all the intermediate values can be added up to obtain the ultimate

result, i.e., vector Y in Equation (3-3). It is noted that the number of rendering

passes is determined by the row that has the most nonzero elements in its

sparse matrix. Suppose the most nonzero elements in that row is m, then the

number of rendering pass in the vertex/fragment pass is equivalent to 4/m .

3.5.3 Further Discussion

From the above discussions, it can be seen that the optimization measures of

GPGPU-based linear algebraic operations have been focusing on the

improvement of GPU’s memory usage. Hence it is of great values for

applications, such as meteorological data processing, in which some matrices

have enormous sizes and are difficult to be directly packed into the GPU memory

such as 2D textures. The above encoding techniques can enable and accelerate

the product operations on those matrices performed on GPUs. In the mean time,

it is also observed in the review that on the current solutions the GPGPU

strategies and implementations actually require a researcher in an engineering

field be able to map the domain knowledge onto graphics concepts, such as

vertex array establishment, fragment specification, texture coordinates binding,

intermediate data storage in vertex/frame buffer, as well as multi-passes and

rendering.

Most of the above discussed “optimized” GPGPU strategies seem pointing to the

direction of larger GPU memory size, however, the uncontrolled increase of GPU

memory can also lead to the increased cost on rendering passes in a GPGPU

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

68

application. Since multiple rendering passes are implemented in serial, it

unavoidably brings the negative impact on GPU’s acceleration performance.

From this point, it can be argued that a balance need to be struck on the efficient

use of GPU’s existing memory and the complexity of the vertex and fragment

programs.

3.6 Process Decomposition in Parallel Computing

The aforementioned Flynn taxonomy (see Section 2.1) categorizes the computing

architectures as of the SISD, MISD, SIMD, and MIMD models based on the

relationships of instruction and data streams. No matter which architectural

pattern is eventually being adopted for a parallel programming task, the first job

of the development cycle is always to decompose the input and process

specifications to achieve parallelism. In general, three methods for decomposing

programs for potential parallelism are summarized based on a large spectrum of

existing approaches, functional decomposition, domain decomposition, and

activity decomposition (Foster, 1995; Carrieroand and Gelernter, 1988). These

methods are conceived from the partitioning policy for data and/or algorithms

through establishing three different forms to articulate parallelism, and,

henceforth, to design parallel programs.

Each one of these methods can be categorized in terms of the characteristics of

a parallel pattern as described below:

1. Functional decomposition. It is also known as task decomposition or specialist

decomposition, which focuses on the decomposition of the algorithm (Foster,

1995; Carrieroand and Gelernter, 1988; Chandy and Taylor, 1992; Pancake,

1996). Its objective is to divide the algorithm into discrete tasks, which are

capable of being executed simultaneously. Once being divided into separate

tasks, the data requirements of each task (input data and output data) will be

examined. If the data requirements for each task is also discrete, then process

divisions can be formed. In contrast, if the data requirements overlap

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

69

significantly, then intensive communication becomes unavoidable to replicate

data.

During the functional decomposition, all tasks will start simultaneously with

most of them waiting for the arrival of data initially (Pancake, 1996). Different

tasks may carry out different operations for accomplishing an algorithm as a

whole. Once under way, different tasks will operate on different pieces of data

in a discrete fashion. The main idea behind this is to allow the execution of

tasks, even with overlapping, proceeding simultaneously (Carrieroand and

Gelernter, 1988). Each task under this design is normally assigned to perform

one specific type of operation, until the natural restrictions order and

precedence imposed by the problem occur.

2. Domain decomposition. It is often referred as data decomposition attributing to

its operations on decomposing the data associated with the problem (Foster,

1995; Carrieroand and Gelernter, 1988; Chandy and Taylor, 1992; Pancake,

1996). If applicable, the data will be divided into smaller pieces of

approximately equal size. Then, the algorithm is divided through associating

each task with the data it operates on. This divisional operation will yield a

number of tasks, each comprised by some data and a set of operations on

that data. At runtime, an operation may require data from several tasks and

move data between tasks.

Similar to functional decomposition, in domain decomposition, all tasks also

start simultaneously up to the point until the work on a piece of data cannot

proceed until another is finished (Carrieroand and Gelernter, 1988; Pancake,

1996).

3. Activity decomposition. Activity decomposition (also known as agenda

decomposition) requires partitioning both the data and the algorithm

(Carrieroand and Gelernter, 1988; Pancake, 1996). As a hybrid operation of

the above two, different pieces of data are operated on by different tasks.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

70

Each task can be considered as a “worker”, capable of grabbing some data

and performing part of the algorithm on it before returning a result.

In activity parallelism, all tasks also start simultaneously as there is no special

commitment to any part of the data. All tasks are able to operate

independently (occasionally there can be a sequence of actions). However,

tasks still need to coordinate when operating on a same piece of data to

assemble a single and final result. In simple terms, each task will be assigned

to pick a piece of data, operate on it, produce a result and repeat until the

whole data has been processed.

The boundaries between these three models can sometime be blurred, and

often, their elements are mixed in order to deal with a particular application. For

example, a functional decomposition may use an activity decomposition

operation at an intermediate phase. However, as pointed out by Carriero and

Gelernter (Carrieroand and Gelernter, 1988), the above approaches represent

distinctive way-of-thinking and problem-solving strategies. In the following

sections, these three decomposition techniques will be re-assessed through

classifying and selecting the architectural patterns for various parallel

programming tasks.

3.7 Classification of Parallel Architectural Patterns

Except the decomposition criteria explained in Section 3.6, the nature of

processing components can also be used for classifying parallel systems. It is

clear that all components of a parallel system perform certain type of coordinating

and processing activities. Parallel systems can therefore be classified as

homogenous systems or heterogeneous systems according to the features of

coordination among the processing components (Sinnen, 2007). A homogeneous

system is consisted of components coordinated in the same rules based on the

fact that they are processed in the same style. The operational switches among

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

71

these components need not any special communication mechanisms. In

homogeneous systems, the communications among the components are issued

through data exchange. In contrast, a heterogeneous system is consisted of

multiple groups of components processed by various functions. The operations of

the heterogeneous systems rely on the distinctions between different groups of

components. Within the same group, the coordination between components is

similar to homogeneous systems, i.e., employing data exchange. However, the

coordination between components located in different groups must be through

specialized communication mechanisms in the form of function calls.

Based on the two sets of classification criteria highlighted in Section 3.6 and

Section 3.7, four general architectural patterns have been deduced by Goswami

(Goswami et al., 2002) for parallel programming systems as: Divide-and-

Conquer, Processor Farms, Pipes-and-Filters, and Communicating Sequential

Elements. The relationship of those patterns and the aforementioned criteria can

be in the form of Table 3.1.

Table 3.1 Architectural patterns classification

Functional

Decomposition
Domain

Decomposition
Activity

Decomposition

Heterogeneous
processing

Pipes-and-

Filters

Homogeneous
processing

Divide-and-

Conquer

Communicating

Sequential Elements

Processor

Farms

These four architectural patterns have been deduced from the existing parallel

systems that cover practices such as computer clusters, grid computing, GPU

and game consoles, as well as pervasive and mobile applications.

Following subsections will briefly explain these architectural patterns, their

relationship with the GPGPU idealism, and the perceived application domains.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

72

3.7.1 Divide-and-Conquer

The Divide-and-Conquer pattern breaks a computational task into multiple sub-

tasks that are similar to the original one but smaller in size. It then solves the sub-

tasks recursively, and finally combines those solutions to create an overall

solution to the original problem (Rabhi, 1995; Darlington et al., 1993). This

architectural pattern is inherent in computer clusters in which pieces of

computation snippets of a large application are assigned to the nodes through

the middleware such as Message Passing Interface (MPI) or Parallel Virtual

Machine (PVM).

The process tree of the Divide-and-Conquer pattern can be shown as in Figure

3.13, which represents a 3-level Binary Divide and Conquer pattern.

Figure 3.13 The process tree of Divide and Conquer pattern

A classical example of the Divide-and-Conquer pattern in parallel computing is

the Merge-Sort algorithm that is an O(nlogn) comparison-based sorting process

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

73

invented by John von Neumann -- the father of modern computer -- in 1945

(Cormen et al., 2001). At runtime, for a data list, the Merge-Sort algorithm

employs Divide-and-Conquer approach and works as follows:

1. If the list is empty or has just one component, then no further sorting

operation is needed for this list, otherwise:

2. Continue dividing this list into two sub-lists of half the original size.

3. Implement sorting function on each sub-list recursively by re-invoking the

Merge-Sort core.

4. Merge the two sub-lists back into one sorted list.

The Merge-Sort algorithm integrates two different functions to improve the

computational efficiency, which reflects the intrinsic principle of the Divide-and-

Conquer pattern to decrease computational complexity:

1. A smaller list can take fewer steps for sorting comparing to a larger one.

2. If using two sorted lists, then fewer steps are taken to form a sorted list than

using two unsorted lists, because each sorted list needs to be traversed

just once if they are already sorted.

The following classic example from the renowned “The Art of Computer

Programming” written by Donald (Donald, 1998) explains the principle of Divide-

and-Conquer-based Merge-Sort algorithm in detail. Suppose there is an array

a[1…n], the Merge-Sort algorithm splits the array into two sub-arrays, and then

recursively implementing the sorting function on each sub-array. It then merges

the two sorted sub-arrays to generate the result as shown in the following

pseudo-codes which includes two programs merge-sort() and merge() employing

various input variables:

Program merge-sort (u[1…s])

Input: u[1…s]

Output: u
’[1…s] that is the sorted u[1…s]

if s > 1:

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

74

return merge(merge-sort (2/...1[su), merge-sort (ssu ...12/[+))

else:

return u

function merge(p[1 … r], q[1 … t])

if r= 0: return q[1 … t]

if t = 0: return p[1 … r]

if p[1]≤ q[1]:

return p[1] O merge(p[2 … r], q[1 … t] // O denotes concatenation

else:

return q[1] O merge(p[1 … r], q[2 … t])

From the above pseudo-codes, it is clear that function merge-sort () issues the

divide process and function merge () issues the solve and combine process (the

top and bottom half of the Figure 3.13). Suppose array u[1…s] now corresponds

to real number [9, 2, 11, 5, 8, 4, 3, 13], the flowchart of the Merge-Sort algorithm

sorting can be depicted as in Figure 3.14.

Figure 3.14 Demonstration of the Merge-Sort algorithm

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

75

3.7.2 Pipes-and-Filters

The Pipes-and-Filters pattern is a parallel processing structure in which a filter

function is a process that pusher or pulls data stream to the adjacent processing

unit through a data pipe (Darlington et al., 1993; Goodeve, 1994). Building

families of related systems can be achieved by combining filters. By definition in

this design, a filter is similar to a parallel processor that comprises of multiple

processing steps. In contrast, the functions of a pipe are much simpler and

mainly focusing on transferring data flow between filters. The tasks of a filter

operating on the input data can include enriching, refining or transforming

through adding information, collecting or distributing information, and

transforming data by delivering it in certain specific representations.

The Pipes-and-Filters pattern originated from the applications in which a number

of computational tasks are implemented orderly but independently, which is

similar to a queue of time-step operations, on ordered data. In this case, the

output stream of the first computational task becomes the input of the next task.

The achievement of parallelism in this form can be obtained by overlapping

operations on different pieces of data through time. A typical example of the

Pipes-and-Filters in practice is to use it for managing the arithmetic units in a

supercomputer (Meunier, 1995) where each arithmetic unit is equivalent to a

filter.

To maintain consistent synchronization, the Pipes-and-Filters pattern sets the

activity through triggering in between neighbouring filters with adaptable buffering

mechanisms for storing intermediate data. A filter task can be activated by one of

the following events as defined by Meunier (Meunier, 1995):

1. A request from the subsequent pipe indicating to pull data stream from the

current filter as its output.

2. An instruction from the previous pipe requiring to push data stream to the

current filter as its input.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

76

3. Both the neighbouring two filters are activated where one filter sends out data

stream to the pipeline, while the other receives data from the pipeline.

There are various communication styles between a pipe and a filter,

corresponding to the three methods above, to coordinate the synchronization

process. Figure 3.15 shows the case of the push method. In this case, filter A

actively and continuously pushes data out to the adjacent pipe until an overflow

indication from the pipe is received; once acknowledgements (ACKs) from the

pipe is received, the pushing activity of filter A will be triggered again; the

received data in pipe will also be sent to filter B where it just passively receives

data stream and sends the notifications or the overflow signal to control the

operation.

Figure 3.15 Coordination between Pipes-and-Filters in the push method

(Courtesy to Meunier)

The pull method depicted in Figure 3.16 is analogous to the push method in

Figure 3.15 except that notifications for data stream transferring are actively

required by filter B, while in the case of push method, the same requests are

originated from the pipe.

Figure 3.16 Coordination between Pipes-and-Filters in the pull method (Courtesy

to Meunier)

Figure 3.17 shows the case in which both two neighbouring filters are active,

which can be simply viewed as the synthesis of push and pull methods. This

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

77

hybrid structure provides maximum flexibility in ensuring the efficiency of the

asynchronized communication.

Figure 3.17 Coordination between Pipes-and-Filters where both two filers are

active (Courtesy to Meunier)

3.7.3 Communicating Sequential Elements

As illustrated by Table 3.1, the Communicating Sequential Elements pattern

belongs to the category of domain parallelism, therefore each processing element

actually implements the same instructions on different pieces of data sets

(Chandy and Taylor, 1992; Christopher et al., 1994). On the other hand,

implementions in each processing element also need partial results from

neighbouring elements. Commonly speaking, the communication or data

exchange between the adjacent processing elements is based on internal buses

or external networks, which is dependent on the hardware platform.

Communications between processing elements of this pattern utilize fixed and

predictable paths. This feature can be illustrated more clearly by a dynamics

problem typified by Christopher (Christopher et al., 1994): “the data represents a

model of a real system, where any change or modification in one region

influences areas above and below it, and perhaps to a different extent, those on

either side. Over time, the effects propagate to other areas, extending in all

directions; even the source area may experience reverberations or other changes

from neighbouring regions. If this simulation was executed serially, it would

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

78

require that computations be performed across all the data to obtain some

intermediate state, and then, a new iteration should begin”.

Comparing to the features of domain parallelism, parallelism under

communicating sequential elements pattern has introduced multiple participating

concurrent elements with each of them capable of issuing a number of

instructions to a data subset independently. An element can access the results

processed by other elements, which is achieved by exchanging data through

communication channels. An element can communicate in various formats, for

instance, synchronised or asynchronised, single data set or multiple data objects

in 1-to-1, 1-to-many, many-to-1 or many-to-many modes.

As shown in Figure 3.18 (Arjona, 2006), in communicating sequential elements

pattern, the functions of each sequential element implement a set of instructions

on its private data subset through sending or receiving messages across the

unified interface, while communication channel stands for a medium between

concurrent sequential elements for synchronization.

Figure 3.18 Communicating sequential elements pattern (Courtesy to Arjona)

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

79

3.7.4 Processor Farms

The Processor Farms pattern, sometimes also referred as Manager-Workers

pattern or Master-Slave pattern (Buschmann et al., 1996), represents a simple

strategy to parallelize problems consisting of one computation to be executed on

a collection of initial data (tasks). In this pattern, a collection of processors that

work together to process several specific pieces of data. Tasks are distributed, or

"farmed out", by one "farmer" processor to several "worker" processors which

then execute those tasks independently, and information and results are then

sent from these "worker" processors back to the "farmer" processor (Shaw,

1995), as depicted in Figure 3.19.

Figure 3.19 The Processor Farms pattern

The Processor Farms pattern is suitable for applications which can be partitioned

into many separate and independent tasks. The parallelism is then activated by

processing several tasks concurrently. In this case, each “worker” repeatedly

seeks a task to perform till the program is finished. Each “worker” executes its

own task independently. If tasks are distributed at run time, a crucial problem of

the structure is to achieve load-balance (Goodeve, 1994). Another problem need

attention is the communication costs between “farmers” and “workers”.

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

80

One of the first consumer-level “parallel” CPUs that compiles the Processor

Farms pattern is the so-called Cell CPU released by the alliance of Sony

Computer Entertainment, Toshiba Corporation, and IBM (Gschwind, 2007). The

Cell CPU aims to bridge the gap in between the conventional CPUs and the more

specialized high-performance processors such as GPUs. It is designed as a

stream processor that consists of a controlling processor -- Power Processing

Element (PPE), and multiple SIMD coprocessors -- Synergistic Processing

Elements (SPEs) with independent program counters and instruction memory to

form an innovative structure for applying multiple instructions on multiple data

sets. In this architectural design of Cell CPU, the PPE, that acts the role of

“farmer”, has control over the SPEs and can trigger, end, break off, and schedule

subtasks implemented by the SPEs. The PPE can also access the main memory

and the private memory of all SPEs through the standard load/store instructions.

Each SPE is a RISC processor that is equipped with a 256 Mb embedded SRAM

for instruction and data, called "Local Storage" which can be accessed directly by

PPE. The PPE and SPEs are linked together by an internal high speed bus

called "Element Interconnect Bus" (EIB) that is the internal communication

system. Cell CPU can have a number of different configurations, the standard

configuration is composed of 1 PPE and 8 SPEs (1 farmer and 8 workers)

(Gschwind, 2007), which is shown in Figure 3.20.

Figure 3.20 Cell CPU Architecture (Courtesy to Gschwind)

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

81

Referring back to the Figure 3.19 that shows the processor farms pattern in the

form of a single layer, the practical applications are often come in the form of

multiple layers which results in the fact that some components in the intermediate

layers will act in the hybrid role of “farmer” and “worker” at the same time

(Wagner et al., 1997). In addition, after task and data are distributed among all

“workers”, these components can execute in the pattern of communicating

sequential elements to provide domain parallelism. Based on these behavioural

patterns, processor farms can be seen as a container for the pattern of

communicating sequential elements.

3.8 Summary

This chapter has provided a broad review on GPU programming methods,

techniques, and GPGPU concepts and practices. Since the early appearance of

GPU was intrinsically a graphics device, the programming methods of GPGPU

were purely based on the conceptions of graphics pipeline such as vertex shader,

rasterizer, and fragment shader. This has largely determined that the core of

GPGPU on the legacy GPUs was on how to map the implementation of a

computational task for data parallelism to the operations and resources in the

graphics pipelines. Stream and kernel are the basic elements to describe the

concepts of data sets and operations on the data collection. Since the stream is

the input and output of a GPU, for this reason, a GPU is also referred as a stream

processor. Kernels are consisted of user-defined programs written in assembly or

high level shading languages to enable the implementation of parallel operations

on the data stream.

The activation of the implemented kernels on a GPU is normally accomplished by

the instructions of graphics APIs such as OpenGL and Direct3DX. These

instructions can trigger operations such as texture fetch, computational range

setting and domain specification. The data storage and access are facilitated by

Chapter 3 General-Purpose Computing on Graphics Card and Architectural

Pattern in Parallel Computing

82

the introduction of the Pixel buffer and Frame Buffer Object that correspond to

off-line rendering capacity in a graphics device.

In addition to the review on basic conceptions and methods in GPGPU, two key

differences between GPU programming and CPU programming, flow control

based on branching operations and data structures based on physical memory,

have been discussed in detail. In a GPGPU practice, the ordinary branching

instructions readily available in CPU programming, i.e., the “if-then” instruction,

has to be implemented in great care due to the extra computational cost. Various

techniques that include making use of GPU’s hardware feature have been

developed with variant degree of success in solving the flow control problem. In

contrast to CPU programming where data set or vector are often stored in various

dimensional arrays, GPU adopts its basic physics memory in the form of 2D

textures. Communication between these two distinctive data structures requires

memory address translations between array and texture. A series of advanced

GPGPU techniques, based on the example of optimization for GPGPU-based

linear algebraic operations, have been analysed to reveal their merits and

dilemma in facilitating GPU’s parallel processing effort.

The rapid evolution of GPU hardware and GPGPU development tools have

exposed the need to better understand the parallel patterns on a PC-grade

parallel processing system. Following the review of the GPGPU theories and

practices, Chapter 3 also discussed the generalized architectural patterns of

parallel programming, i.e., divide and conquer, Pipes-and-Filters, communicating

sequential elements, and processor farms. Through careful analysing these four

patterns, it becomes clear that the development trend for consumer-level parallel

systems would ideally engaging efforts in devising and improving both the

hardware designs and the supporting software models and programming tools.

The roles of CPU and GPU in an integrative parallel architecture will be

discussed in the next chapter with the aim to obtain general guidelines for

GPGPU programming when facing different generation of GPUs and their

development tools.

Chapter 4 General Programming Framework of GPGPU Applications

83

Chapter 4 General Programming

Framework of GPGPU Applications

The evolution of architectural pattern of parallel processing, that is, from the early

Divide-and-Conquer pattern to nowadays Processor Farms pattern, reflects the

renovation trend of hardware design in parallel computing. This trend has also

resulted in the dramatic change of software tools for parallel computing. As a kind

of consumer-level parallel processor, the hardware structure of GPUs generally

experienced the period from the traditional graphics accelerator which is still

based on the conception of graphics adaptor to the latest multi-core processor

which commonly employs the unified shader.

The rapid pace of development on GPU hardware and the corresponding

programming languages within the last decade have also brought in confusions

to researchers and application developers devoted in spreading GPGPU powers

to wider areas when they are facing to different generations of GPUs in the real

world. Therefore, it is essential to establish a general GPGPU programming

framework which is capable of encompassing the variety of GPU’s hard features

and program instructions that can be readily utilised for individual GPGPU

program design. Following the contents in previous chapter, this chapter

analyses the general GPGPU programming framework and its detailed functions.

4.1 GPGPU’s Parallel Architectural Pattern

Comparing with the basic concepts and methods in GPGPU programming, as

introduced in Chapter 3, the procedures for implementing a conventional parallel

programming system are more complex, which often involves constructing and

encapsulating the integration of parallelism, communication, synchronisation and

Chapter 4 General Programming Framework of GPGPU Applications

84

embedment (Berrington et al., 1993). It is these procedures that characterized the

various parallel architectural patterns.

Although the practical GPGPU applications are fairly difficult to develop, the

flexibility of development can be achieved through establishing its general

programming framework to guide the detailed programming model design. This

GPGPU programming framework must rely on the GPGPU’s parallel architectural

pattern because the functions of its components are ultimately determined by the

style of the employed architectural pattern. Based on a specific general

programming framework, various GPGPU programming models which actually

apply individual algorithms in applications can then be designed effectively.

Broadly speaking, the relationship of the parallel architectural pattern, the

GPGPU’s programming framework, and the programming models can be

depicted by Figure 4.1, which also represents a focalized approach of the

researches carried out in this thesis.

Figure 4.1 The relationships of GPGPU’s parallel architectural pattern,

programming framework and models.

From the introduction in Section 3.7.3, it can be concluded that, for GPU itself, its

internal processing pattern follows the so-called Communication Sequential

Elements. For the early generation of GPUs that uses vertex and pixel shader

functions as the graphics accelerator, the multiple rendering pipelines existed in

the vertex and pixel streams act as the sequential elements, and the registers act

as the communication channel (as depicted in Figure 3.18) between these

rendering pipelines. For the pipelines in a vertex shader, the inputs are vertices

and the outputs are projected polygon assembles, while for the pipelines in a

Chapter 4 General Programming Framework of GPGPU Applications

85

pixel shader, the inputs are fragments produced by the rasterizer through

fragmentation and the outputs are pixels. For the latest GPU that employs unified

pipelines and function as real-meaning parallel processor, the unified shader,

now also called “core”, is of the sequential element, while the shared memory

acts as communication channels.

However, a complete GPGPU application includes CPU routines, API

instructions, and kernels that actually run on the GPU. Although a GPU has

substantial parallel processing ability, it is after all just a co-processor. As stated

above, there is no doubt that GPU works in the pattern of communicating

sequential elements. But considering the role of CPU and GPU in GPGPU

applications, it is clear that a complete GPGPU application actually follows the

Processors Farms pattern in which CPU schedules tasks and GPU acts as

worker who has parallel processing capability. It means the GPGPU

programming framework must follow the function specifications of “farmer” and

“workers” pattern that have been introduced in Section 3.7.4. For the detailed

analysis, any practical implementations should be referred to the actual parallel

processing pattern and be standardized to deduce the confusion when deploying

the GPGPU’s parallel programming framework. Four implementation stages -

tasks and data streams, partitioning, communication, agglomeration and mapping

- are to be analysed in the following section.

4.2 Implementations in Programming Framework for

Parallel Systems

No matter which aforementioned parallel architecture patterns is to be adopted

for a system, four detailed implementations -- partitioning, communication,

agglomeration and mapping – need to be specified for the processing (Culler et

al., 1997). Among them, the partitioning and communication are focused on

scalability and concurrency characteristics, while the agglomeration and mapping

aim to shift locality and other performance-related events.

Chapter 4 General Programming Framework of GPGPU Applications

86

In addition, these four implementations are overly determined by the specific

hardware they are running on. Therefore, it is sensible to analyse the effects of

these implementations in combination with the GPU’s hardware structure.

1. Partitioning

Partitioning in all parallel programming assignments is consisted of two aspects:

task specification and data partitioning. The responsibility of task specification is

decomposing an application into a set of operations. These operations are

hierarchically defined and related in accordance with their dependency. Whether

an operation should be carried out on CPU or GPU is a typical responsibility of

the task specification mechanism, which is often determined by the dependency

and the complexity of the state in this operation. In simple terms, any tasks that

can be described by a state machine through explaining the relationships among

the states can be referred as an operation. Therefore, through some kind of

computerized analysis on the states involved, a judgement can be made on

whether an operation can be issued on GPU. For operations being issued on

GPU, the communication cost in between CPU and GPU is another major factor

to be assessed. The responsibility of the data partitioning process is to determine

the size of streams based on the size of the original data set and the GPU’s

memory capacity. If the size of the data set is larger than the GPU’s memory

capacity, it will then be divided into ordered sections through partitioning.

2. Communication

The parallel architectural pattern adopted by most GPGPU applications follows

the processor farms pattern with communications deployed to coordinate the

operations between the farmer and worker. Messages are exchanged between

the farmer and worker, which are often in the form of instructions from specific

APIs (i.e., OpenGL and DirectX). The key of those messages are status

parameters returned from each operation that indicates status of data

consumption of the workers and the dynamic task allocation.

Chapter 4 General Programming Framework of GPGPU Applications

87

As the individual “worker” of GPGPU application, GPU works in the pattern of

Communicating Sequential Elements, as explained in Section 4.1, the stream

processor in GPU exchanges partial computational results with its neighbours

through a set of registers or shared memories.

3. Agglomeration

Although there are task and data partitioning at the initial stage of most parallel

systems, performance and implementation costs need to be carefully balanced

throughout an application’s lifecycle, particularly when implementing

agglomeration based on data partitioning. A good design will allow the size of

data chunks to be changed when agglomeration takes place, which means data

pieces can be integrated or partitioned into larger or smaller ones to promote

computational efficiency or to reduce the overhead from the communication. In

the Processor Farmers pattern, the granularity is adjusted with the aim of

allocating the data set among the workers evenly to avoid the phenomenon that

some workers are idle since small amount of data are received while the others

remain busy trying to serve the farmer’s requests. Many parallel programming

languages have the function of agglomeration, but often the programmer can

also implement the agglomeration manually to achieve more optimal

performance. For example, there are memory hierarchy that involves global

memory, constant memory, texture memory, and shared memory in the now

unified-pipeline of a GPU, the shared memory allows faster access rate than the

rest. By transferring data from global memory to shared memory through

optimization, higher GFLOPs can be obtained when executing certain algorithms

than those implemented by the CUBLAS tools (a library released by CUDA for

basic linear algebra routines) (Baskaran et al., 2008).

4. Mapping

For a GPGPU application in the past, the responsibility of task mapping resides

with the application developer to segregate and map each part of an application

to the GPU’s hardware structure such as the transformation and lightening (T&L)

pipeline. For the job of data mapping, the key task is to transform data into sizes

Chapter 4 General Programming Framework of GPGPU Applications

88

that are suitable to the particular GPU’s memory. This style has changed

significantly since the arrival of CUDA and the unified-pipeline-equipped GPUs

that will be the focus of next section and Chapter 7.

In fact, except GPGPU applications, as indicated in Section 3.7, the recent

evolutional trend has seen many parallel systems moving toward the processor

farms pattern due to its hybrid functional and domain decomposition features. In

addition, the demand for fine-granularity parallel processing has stirred up the

research into parallel hierarchies, i.e., nested parallelism, which is further

evidenced by the appearance of the unified-pipeline-structure GPU in latest and

the release of CUDA (Nvidia Corporation, 2009). Furthermore, the

aforementioned Cell CPU from IBM aims to make the CPU functioned like a

stream processor with software support. The concept and practices of the so-

called field-programmable gate array (FPGA) further assists the programmable

reconfiguration ability for electronic circuit design that will enable future video

game consoles to maintain real-time and interactive rate (Kolks et al., 2009).

Although individual parallel processor might has different structure and

supporting software, a framework of virtualized parallel system based on

processor farms pattern is presented in this section, as depicted by Figure 4.2.

Chapter 4 General Programming Framework of GPGPU Applications

89

Figure 4.2 The framework of virtualized parallel systems

In Figure 4.2, a practical application is represented as the combination of

functions and data sets. During functional decomposition, some independent

operations will be assigned to the sub-task pools for parallel processing, while the

other functions will have to be issued by the farmer processor in a serial mode

due to their inherent correlation. For a SIMD processor such as the GPU, the

tasks in the subtask memory will be operated upon by a single program.

Similarly, any independent data will be sent to the stream pools that correspond

to the memory of the co-processors such as the texture memory in GPU. The

process of dynamically assigning data to the stream pools is sometimes referred

Chapter 4 General Programming Framework of GPGPU Applications

90

as data mapping that determines the size and format of data stored in the co-

processor’s memory. For example, in OpenGL, transferring data into a stream

pool is issued by the instruction glTexImage2D(), while in CUDA it is realized by

the instruction cudaMemcpy() that copies an array stored in the host memory to a

device memory. The function of synchronization in a parallel system is to control

the pace of the execution of multiple threads to coordinate the memory access

activities. Synchronization in real system implementation is commonly achieved

by setting up a barrier at which all threads in a coprocessor must wait before any

are allowed to proceed, as depicted in Figure 4.2. The output of the parallel

region in Figure 4.2 is stored in a data repository through the process of

integration that might either be an intermediate processing result that will be used

for the next step of processing, or the final result that will be collected by the

result farmer.

This virtualized parallel system aims to locate partitioning, communication,

agglomeration, and mapping on different parts of the system through shielding

the hardware distinctions of various parallel processors. If using Figure 4.2 as the

blueprint and to integrate a specific GPU’s hardware into its corresponding parts,

then the general GPGPU programming framework that is built on these four

implementations can be deduced.

4.3 GPGPU’s Programming Framework

As explained in Section 4.1, a complete GPGPU programme is a hybrid

application of instructions run on both the CPU and the GPU. From the stand of

architecture pattern of parallel programming, the relationship between a CPU and

a GPU is a farmer-and-worker pair. The CPU schedules the task and the GPU

acts as coprocessor to operate in the SIMD mode. If only considering the

operations implemented on the GPU, it works in the pattern of communicating

sequential elements where sequential elements are pipelines in the vertex or

pixel shader formats. Although the terminologies and programming methods for

Chapter 4 General Programming Framework of GPGPU Applications

91

GPGPU have been examined in detail from Section 3.3 to 3.5, it is yet to see a

general guideline for the GPGPU’s programming framework design based on the

Processor Farm pattern explained in this chapter. As stated in the foreword of

this chapter, a framework will be used to guide the design of corresponding

GPGPU’s programming model when various generations of GPU have to be

involved in practical applications. For this sake, based on the blueprint depicted

by Figure 4.2 and the feature of GPU’s hardware architecture as introduced in

Chapter 2, two conceptualized GPGPU’s programming frameworks are devised

at here, which address the application procedures by using the traditional GPUs

equipped with distinctive vertex and pixel shaders, and the new generation GPU

with unified-pipeline and shaders.

4.3.1 Programming Framework for Conventional Graphics

Pipeline

The GPGPU’s programming framework based on conventional GPU, that is, the

GPU employing traditional vertex and pixel shader, is shown in Figure 4.3.

Referring to the virtualized parallel system depicted in Figure 4.2, it is certain that

the CPU acts as farmer processor and the GPU is the worker processor in this

case. The worker’s role is played by the vertex shader and/or pixel shader, while

the GPU’s memory such as the framebuffer or textures are the stream pools to

the store data sets. Vertex or pixel shader, which is the kernel executor, is the

sub-task pool to contain the sub-tasks that can be implemented in parallel. The

vertex buffer or framebuffer, which corresponds to data integration, is the data

repository to store the intermediate or ultimate results.

Except agglomeration that is controlled by GPU’s own hardware mechanism, the

partitioning, mapping, and communication operations are all issued by the

corresponding graphics API instructions. which explains the the fact that for a

single application there could be different GPGPU solutions in which different

strategies might be employed on task allocation and data mapping.

Chapter 4 General Programming Framework of GPGPU Applications

92

Figure 4.3 The conventional GPGPU architectural pattern

As the workers in GPU, both the vertex shader and the pixel shader have the

ability of processing data in parallel. The challenge is that GPU can only allocate

tasks to them in order with vertex shader at front. In addition, if only vertex

shaders are utilised, the results will still need to be transmitted through the stage

of pixel shader to be acquired since the vertex shader is only treated as a

geometry transformer, while the pixel shader is designed for more intensive

algebraic computation with a lot more pipelines. This legacy structure will result in

the problem of workload balance as highlighted in Section 2.1.2. This is also the

main motive of the major GPU vendors to propose and release the unified

pipeline structure, which is regarded by the consumer-grade parallel processor

researchers as a significant breakthrough to the traditional conception of PC

computers. The distinctive advantage of unified pipeline over the old design is

Chapter 4 General Programming Framework of GPGPU Applications

93

that task can be distributed across all pipelines evenly, therefore, erasing the

“unfairness” existing of free workers vs. heavy-burden workers.

4.3.2 Programming Framework for Unified Pipeline

The GPGPU’s programming framework based on latest GPUs that employed the

unified pipeline structure, is shown in Figure 4.4. GPU memories such as the

global memory or textures are the stream pools to store data sets in this case.

Comparing with the legacy GPUs using vertex and pixel shaders, the new stream

pools can directly store arrays, which is more convenient for data mapping. The

unified shader units, or “cores” in GPU, are combined together to be used as the

sub-task pool in which a task is further decomposed into multiple thread blocks.

The implemented result of each thread is integrated to the global memory that is

equivalent to the data repository in Figure 4.2.

Similarly, task or data partitioning, mapping, and communication between CPU

and GPU are controlled by developers through API instructions such as CUDA

functions. The data agglomeration can also be controlled by developers through

specifying the location of synchronization in programs.

Chapter 4 General Programming Framework of GPGPU Applications

94

Figure 4.4 The new GPGPU architectural pattern with embedded unified pipeline

Corresponding to the above programming framework, the Compute Unified

Device Architecture (CUDA) and its corresponding programming APIs have been

released in accompany of the invention of the unified pipeline architecture as its

supporting software. In contrast to the legacy programming framework depicted

in Figure 4.3, the key difference of the new one is the blur of the vertex and pixel

shader border and the availability of the commonly accessible local memory by

all “thread blocks”.

Chapter 4 General Programming Framework of GPGPU Applications

95

4.3.3 Programming Model Design

In this thesis, the concept of architectural patterns is used for categorizing the

parallel processing, while the GPGPU programming framework which is based on

a specific architectural pattern - Processor Farms - is used as a general guideline

to develop GPGPU applications where GPGPU is viewed as a branch of parallel

computing. For a single GPGPU application, there should be a programming

model to devise its solution. Basically, the programming model is originated from

the programming framework, which has been depicted by Figure 4.1 that also

represents a gradually more focusing research pipeline involved in this thesis.

After the identifying the architectural patterns and the programming frameworks,

the GPGPU programming model design is becoming the next focus of this study.

Referring to Figure 4.2, it is clear that any application can ultimately be divided

into the combination of tasks and streams which are contained in its own

container, task pool and stream pool, respectively. The four aforementioned

implementations, partitioning, communication, agglomeration, and mapping, are

then used for each components in the task and stream pools. Through the

analysis on GPGPU’s programming framework depicted by Figure 4.3 and 4.4, it

is concluded that communication, agglomeration are generally fixed, that is, they

have common instructions and constant implementation orders for most GPGPU

applications. For example, data agglomeration is normally achieved by GPU’s

hardware, it is not transparent and programmable to developers, i.e., it can’t be

directly controlled by developers. Although issued by API instructions, the

communications between CPU and GPU are also relatively straightforward as

depicted in Figure 4.2 to 4.4.

The objects involved in partitioning and mapping include task and data, while

data partitioning and mapping are ultimately determined by the task specification.

In another term, the complexity of a parallel processing system increases with the

amount of parallel tasks employed and the agreements on “handshaking”

protocols to maintain the synchronisation (or asynchronisation). Since GPU is a

SIMD parallel processor, the maintenance of synchronisation or asynchronisation

Chapter 4 General Programming Framework of GPGPU Applications

96

is not as sophisticated as that one in MIMD systems. Therefore, for a specific

GPGPU application, its programming model design will have to subject to strict

task “re-specification” based on the GPGPU framework and the software-to-

hardware mapping to transform the serially implemented functions into the

kernels that can be operated in parallel, which will be tested in the case studies of

the models in the following chapters.

The task re-specification and mapping are based on the analysis of the

principles, rules and algorithms involved in the application. Therefore, it is

essential to carry out pre-analysis on an application before trying to establish the

programming model for compiling programs. The project in this thesis is to be

applied to surface metrology operations, so the methods or algorithms in surface

metrological data processing will be analysed in the following chapters.

Another essential task in the project is to validate the effectiveness of the

designed model. The evaluation strategy has focused the computational

efficiency and practicability of the devised program models. For the validation of

computational efficiency, the speed up factor of GPGPU programs is treated as

the key to evaluate the GPU’s acceleration performance, which is tested through

comparing the run-time of GPGPU programs and its CPU-based solutions. For

the validation of the practicability, the data accuracy of GPGPU programs has

been analysed through comparing the deficiencies of the results of the GPGPU

programs and the CPU-based solutions. Both the absolute discrepancies and the

relative errors have been evaluated at the numeric level.

4.4 Summary

Following the review of the GPGPU theories, practices, and architectural patterns

of parallel processing in Chapter 3, this chapter has analysed the architectural

pattern which GPGPU relies on. By integrating the discussed GPU’s hardware

and software factors, a general programming framework for GPGPU applications

is provided with the aim to obtain a guideline for the detailed GPGPU

Chapter 4 General Programming Framework of GPGPU Applications

97

programming model design. The framework covers the legacy GPU with

traditional graphics pipeline and the latest products with unified pipeline. The

work has also focused on the common operations that need to be considered as

essential elements in the design of a parallel processing system and/or

application such as task and data partitioning, communications in between CPU

and GPU, task and data mapping, and data agglomeration.

Based on the proposed programming framework, the development of a GPGPU

programming model for a specific application is discussed. Generally speaking,

for a detailed GPGPU application, the development will experience through

phases such as principles/algorithms analysis, programming model design,

solution implementation, and result evaluation. This development route will be

examined in Chapter 5, 6, and 7 through 3 real application case studies

encompassing from surface metrology to image processing.

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

98

Chapter 5 Accelerated Filtering Algorithms

for Surface Profiling

Based on the devised GPGPU frameworks discussed in Chapter 4, this chapter

focuses on a practical problem-solving case study in accelerating the processes

involved in surface characterization. The proposed solution employs legacy

GPUs with vertex and pixel shaders. The main algorithm acceleration was

accomplished by developing and adjusting fragment programs. It is well known

that before the era of unified-pipeline-based GPUs, direct data “scatter”

operations were not supported for GPU’s memory, which had to be issued

through the mechanism of rendering-to-texture. This investigated case illustrates

how to improve the usage of textures by binding them with the Framebuffer

Object (FBO) that is an off-screen rendering technique introduced by OpenGL.

Past GPGPU attempts suffered from massive data transportation from GPU to

CPU, which is a bottleneck that seriously undermined the acceleration

performance of GPGPU applications due to the limited bandwidth of earlier AGP

and PCI buses. Data splitting is realized in this case study by following the

designed framework to efficiently overcome the shortcoming. The performance of

the proposed GPGPU programming model is validated through the

implementation of a classical 2D Gaussian filter that are extensively used in

surface metrology and then comparing it with the performance from a CPU-only

MATLAB program for the same function.

5.1 Filtering Algorithms for Stylus-based Surface

Metrology

According to which kind of measurement instrument is employed, surface

metrology can be classified into two categories as stylus-based measurement

and non-touchable systems (Blunt and Jiang, 2003). For stylus-based

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

99

measurement system, form, waviness and roughness are three main factors. The

task of stylus-based surface metrology is to extract these factors to characterize

a surface. It is noted these three factors correspond to different frequency

segment if they are transformed into the frequency domain for analysis. For

example, the roughness corresponds to high frequency components, the

waviness corresponds to medium frequencies, and the form corresponds to low

frequencies (Raja et al., 2002). Therefore, filtering technologies are extensively

used in stylus-based measurement system.

The earliest filter used for surface characterization is a 2RC network which is a

series of two RC filters that are built from a resistor and a capacitor (RC). The

2RC analogue filter was formally recommended a “standard wave filter” in ISO

3274-1996 (ISO 3274, 1996), which has the following impulse response:

)exp()2(
1

)(
RC

t

RC

t

RC
th −−= (5.1)

where t is a time axis.

The main disadvantage of 2RC filter is its nonlinear phase which causes some

waveform distortion due to phase shift. To overcome the problem of phase

distortion, 2RC phase-corrected digital filters were developed by adding

weighting factors in Equation (5.1) to correct the phase offset.

In 1994, the Gaussian filter was made into the standard filter used for stylus-

based surface measurement, which is described in ASME B46.1(ASME B46.1,

1995) and ISO 11562 (ISO 11562, 1996) respectively. The recommended

Gaussian filter includes two types, 1D and 2D filters. The 1D Gaussian filter is

used for establishing a mean line while 2D Gaussian filter is used for establishing

a mean surface. ISO11562 defines the impulse response of 1D Gaussian filter in

the time domain, and the corresponding amplitude-frequency response function

in frequency domain as follow:

])(exp[
1

)(2

cc

t
th

αλ
π

αλ
−= (5.2)

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

100

])(exp[)(2

λ

αλ
πλ cG −= (5.3)

where λc is the cut-off wavelength, ISO11562 regulates that when λ= λc, the value

of G(λ) should be 0.5 so that 4697.0/2ln == πα .

A 2D Gaussian filter is the integration of two 1D Gaussian filters which are

implemented in the x and y directions respectively. Its impulse response in spatial

domain is defined as

]})()[(exp{
1

),(22

ycxcycxc

yx
yxh

λλβ

π

λβλ
+−= (5.4)

Its corresponding amplitude-frequency response function is

])()[(exp{),(
22

y

yc

x

xc
yxG

λ

λ

λ

λ
πβλλ +−= (5.5)

where ycxc λλ , are the cut-off wavelengths along x and y directions respectively,

and παβ /2ln2 == , which guarantees the filter has an attenuation ratio of 50%

at
xcx λλ = with ∞=yλ or ycy λλ = with ∞=xλ .

The distinctive characteristic of Gaussian filter is its feature on linear phase which

is a great promotion for surface metrological data processing in contrast to 2RC

filter. The Gaussian filter is therefore extensively used for establishing the mean

surface in stylus-based surface metrology. A problem of Gaussian filter is the

boundary distortion, which also exists in 2RC filter. The boundary distortion

results in the consequence that the mean line or surface at the boundary region

can not be correctly evaluated. Therefore, the Gaussian regression filter (GRF)

(Brinkmann et al., 2000) was developed as an enhanced version of the Gaussian

filter for more precise evaluation on a whole surface profile. For example, the 1D

GRF is defined as a series of recursive steps, which can be written in the

following discrete form

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

101

 ∑
=

→∆−
n

l
w

klkl
k

Minxswz
1

2)((5.6)

where z is the profile ordinate; w the mean line ordinate; n the number of sample

points; k the index for the location of the impulse function; l the index for profile

points and s is the impulse function as given by

}]
)(

[
2ln

exp{
2ln

1 2
2

cc

kl

xlk
S

λ

π

λ

∆−
−= (5.7)

In the regression phase, the impulse function is calculated for every sampled

point on the surface and a minimal objective function is employed to locate the

ordinate on the mean line w. Generally, GRF can be further classified as zero-

order GRF, second-order GRF, and robust GRF, which can be referred in Raja’s

publications (Raja et al., 2002).

As well as the 2RC and Gaussian filters, the Rk filter is another commonly used

filter for surface evaluation, which was recommended by DIN standards and has

the following amplitude-frequency response (DIN 4776, 1990).

)(sin)(1)(22

λ

παλ

παλ

λ
λ c

c

G −= (5.8)

where λ represents the wavelength and 44294647.0=α .

It is noted that although various filtering algorithms have been designed for

surface characterization and formed a series standard, the serious problem of

efficiency of data processing has become more stringent, a feature due to the

development of measurement instruments that can sample more point on an

surface and the requirement of high accuracy (Yanagi and Hara, 2003). How to

efficiently process the enormous measurement data, as a result, accelerating the

filtering algorithms is becoming a problem for stylus-based measurement

systems.

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

102

5.2 Filtering Algorithm Analysis

If an input signal u(t) passes through a filter with impulse function h(t), its output

O(t) can be computed either in the spatial domain or the frequency domain.

Suppose the amplitude-frequency responses of u(t), h(t), and O(t) are W(λ), H(λ),

and V(λ) which can be obtained through Fourier transform, then

V(λ)= W(λ)•H(λ) (5.9)

In spatial domain, O(t) is equivalent to the convolution between u(t) and h(t),

which is expressed as follow.

∫
+∞

∞−
−= ξξξ dhtutO)()()((5.10)

For signal processing system, convolution is the common operation used for

computing the filtered signals. Equation (10) describes the continuous and infinite

form of filtering. Its discrete and finite form is written as

mnmjhujO
m

mk

kki +−=∆= ∑
−=

− ,...,)(ξ (5.11)

where n is the number of sample point on u(t), 2m+1 is the number of sample

point on h(t), and ξ∆ is the sample interval on h(t).

If u(t) and h(t) are two-dimensional signal, then the discrete form of O(t) is

nqnsmpmiyxhyxuyxO
m

mk

n

nj

yxjkjskisi +−=+−=∆∆⋅= ∑ ∑
−= −=

−− ,...,...,),(),(),(ξξ

 (5.12)

Where p and q are the number of sample point on u(x, y) along x and y direction,

2m+1 and 2n+1 are the number of sample point on h(x,y) along x and y direction

respectively. The discrete form of u(x,y) and h(x,y) thus can be represented by

two matrices with the sizes of p×q and (2m+1)×(2n+1). Sometimes they are also

called as data window and filter window. m and n are called as the filter radius of

filter window in x and y directions. In a mathematical view, convolution is a scalar

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

103

product of two functions u and h, producing a third function O that is typically

viewed as a modified version of one of the original functions. This is

demonstrated below in Figure 5.1.

Figure 5.1 The convolution operation

In Figure 5.1, we can see that the sequential program that produces the output

O(xi, ys) from Equation (5.12) can be written in the following way, it is noted that

the area of filter window is expressed in the form from (-m, -n) to (m, n) in

Equation (5.12), so that the coordinates of the centre of the filter window is (0,0).

But in actual computer systems, the area of window must be expressed in the

form from (0, 0) to (2m, 2n). In this case the coordinates of the centre of the filter

window becomes (m, n), so there should be –m and –n offset along x- and y-

direction in the program.

Figure 5.2 Sequential program for the convolution operation

Since all elements O(xi, ys) in the output O(t) must be processed in the same way

in the above program, we can see that the scalar product in the convolution

operation is actually a SIMD computing operation, ideally suited to computation

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

104

on SIMD processors such as GPUs. In addition, although increasing the number

of sample points increases the accuracy, it also produces much more data for

analysis, and hence more time is required to implement the convolution

operation. Improved accuracy therefore raises the problem of the computational

efficiency of filtering algorithms, which was stated in previous section. For

example, when a surface that was measured with 1024×1024 sampled data

points is filtered by a 2D Gaussian filter window with a radius of 50×50, it takes

the MATLAB-based multithreaded program about 5 seconds to complete the

process on a 2.6GHz PC with 2GB memory. Based on the research findings

detailed in Chapter 3 and Chapter 4, the following sections will implement the

GPGPU framework targeting on accelerating the common filtering algorithms

used in the stylus-based surface metrology and to evaluate the acceleration

performance.

5.3 Hardware Acceleration for Filtering Algorithms

The hardware used for GPGPU programming is based on the conventional

GPU’s structure prior to 2007 (see Section 2.3.2) that are equipped with vertex

and pixel shaders. Since the convolution operation is a form of numerical

processing, the pixel shader is selected for the extra parallel processing ability

over the vertex shader on the convolution computation. Generally, the whole

application can be divided into 4 tasks:

1) Reading the original metrological data;

2) Constructing filtering window;

3) Issuing filtering algorithms on GPU;

4) Outputting the filtered data for visualization

Referring to the farmer-worker model for general GPU programming that is

shown in Figure 4.3 in Chapter 4, it can be seen that the first step of the

application is to allocate tasks to the “farmer” – CPU and the “worker” – GPU.

Among the above four tasks, the first two, data reading and filtering window

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

105

establishing will be carried out on the CPU, the filtering operation is carried out on

the GPU, and the data outputting will be carried out jointly by CPU and GPU.

5.3.1 The GPGPU Programming Model

According to the task allocation on CPU and GPU, the GPGPU programming

model for filtering algorithms in surface metrology is described in Figure 5.3.

Figure 5.3 GPGPU programming model for filtering algorithms

There are two data sets involving in the computation on GPU, the original

measurement data and filter window, which means at least two texture memory

units are used to store these two data streams. In addition, GPUs based on

traditional vertex and pixel shaders lack efficient “scatter” memory operations.

Hence storing the results of convolution operation in a dynamic store unit and

transferring them back to CPU are the problems for the presented framework.

These details will be discussed in the following section.

5.3.2 Implementation Details

1. Data mapping

Data mapping is directed by the OpenGL instructions, the code in Figure 5.4

illustrate how to map the data in CPU’s memory to a texture.

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

106

Figure 5.4 The codes for data mapping

The code in Figure 5.4 is used to create a texture named as Data on a GPU and

transfer data from CPU memory, the data being stored in the array original_Data

as a texture. A texture has four channels available, red, green, blue and alpha to

store data. Here we just use the channel red to store the original data, which is

specified by parameter GL_RED in the instruction of glTexImage2D().

2. Task allocation on GPU

For the vertex and fragment shaders, since just one can be chosen for running a

parallel programme, it is necessary to specify which kind of shader will be used.

There are API instructions to specify the worker on a GPU. For example, the

parameter profile in OpenGL’s instruction cgCreateProgramFromFile(context, type,

file, profile, entry, args) indicates whether the programme will run on a vertex

shader or a pixel shader.

3. Fragment program for convolution operation

Referring to the sequential program for the convolution operation shown in Figure

5.2, the fragment program written in Cg, which is a kind of high level shading

language released by Nvidia corporation, is shown in Figure 5.5.

4. Data scatter

The last instruction, return v in Fig. 5.5, is a scatter operation that is similar to C-

like code x[i]=j. Unfortunately, scatter is not as straightforward to implement in a

GPU fragment program, since fragment processors are incapable of memory

scatter (Owens et al., 2007). Various tricks are resorted to achieve the data

scatter, the most common method in GPU programming is to bind a dynamic

texture to a Pixel buffer (PBuffer) or Framebuffer Object (FBO), and then change

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

107

the value of pixel in Pbuffer or FBO through render-to-texture. In contrast to

PBuffer, FBO is a more cost-effective solution. Each Pbuffer requires a unique

GL context that includes both the device context of graphics device interface

(GDI) and the rendering context (Oat, 2005). The problem of recording the states

of all the GL contexts is a tedious work for programmers when facing a large-

scale application. FBO requires no extra GL contexts and allows depth, stencil

and color buffers to be shared among framebuffers which is impossible for a

PBuffer-based approach. Based on these advantages, FBO was chosen as the

solution to data scatter. Another reason for choosing FBO was that FBOs have a

set of attachment points to which various textures can be attached. This is

convenient for partitioning the result, which is vital for efficiently transferring

massive data from GPU to CPU, a problem that will be discussed later. The

attachment points are COLOR[n], DEPTH and STENCIL (Persson, 2007). To

receive the results of a convolution operation, a dynamic texture is created and

attached to an established FBO. The corresponding OpenGL instructions are

shown in Figure 5.6.

float Filtering (uniform samplerRECT data : TEXUNIT0, // the metrology data

uniform samplerRECT filter: TEXUNIT1, // the filter window

uniform int window_width, // filter window width in x- direction

uniform int window _height, // filter window height in y-direction

uniform float2 offset, // offset in x- and y-direction

float2 pos : TEXCOORD0 // texel position in TEXUNIT0

) : COLOR

{

float v = 0;

for(int y=0; y< window _height; y++) {

for(int x=0; x< window _width; x++) {

float weight=texRECT(filter, float2(x, y)).r;

v += texRECT(data, pos + float2(x, y) + offset).r * weight;

}

}

return v;

}

Figure 5.5 Fragment program to implement convolution operation

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

108

// Create a FBO

glGenFramebuffersEXT (1, &fbo);

// Create texture to store the results of convolution operation

glGenTextures(1, &result);

glBindTexture(GL_TEXTURE_RECTANGLE_NV, result);

glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_FLOAT_R_NV, Width/4,

Heigh/4, 0, GL_RGB, GL_FLOAT, NULL);

// Bind the FBO and attach result texture to it

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT,

GL_TEXTURE_RECTANGLE_ARB, result, 0);

Figure 5.6 Data scatter through render-to-texture

5 Data splitting

For visualizing the filtered data, the computational results need to be transferred

from the GPU’s memory back to the CPU’s memory, and stored in vertex array to

form the 3D coordinate of each vertex, which was illustrated in Fig. 5.3. Although

GPU has powerful parallel processing ability, this process possibly creates a

bottleneck for applications and produces negative effects on GPU’s acceleration

performance (Geys and Gool, 2007). For example, it has been tested in our

research that to transfer a 1124×1124 single precision floating-point data block

from Nvidia’s 7900 GPU back to CPU took nearly 5 seconds.

To partially resolve this problem, the framework shown in Fig. 5.3 splits that splits

the result of filtering algorithm into several smaller blocks to speed up data

transfer to CPU. The idea is mainly based on the principle of the Divide and

Conquer pattern, described in Section 4.2.1. According to this principle, better

performance will be produced when a large problem or data set is divided into

several problems or several blocks of data set smaller in size. Thus data splitting

works as follows: firstly, the primitive metrological data is split into n parts, where

n is constrained to square of an integer to guarantee the normal texture lookup in

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

109

fragment program; Then n parts of data are convolved with the filter window

respectively and the filtered data is stored in n dynamic textures, which are all

bounded with a same Framebuffer object. Finally, the data in n dynamic textures

will be read back to vertex array in CPU. The detailed process of splitting on the

primitive data with the original size of W×H and storing mechanism for the filtered

data in the form of n dynamic textures is shown in Fig.5.7.

n

n

n

((1) 1)n n − +

Figure 5.7 Data splitting and storage in Framebuffer object

6 Invoking GPU’s task

How to carry out task computing on a GPU has been described in Section 3.2,

also a process of data partitioning by specifying the vertex and texture

coordinates when drawing a quad has been described. Considering the

aforementioned data splitting illustrated in Fig.5.7. The computation on the first

part of metrological data shown in Fig5.7 is implemented as shown in Fig. 5.8.

Processing the n th, …,)1)1((+−nn th, and nth part of metrological data is

similar with that on the first part of metrological data, only the texture coordinates

of the four corner of the quad need to be adjusted. For example, the configuration

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

110

of the texture coordinate for computing)1)1((+−nn th part of metrological

data is written as shown in Fig. 5.9.

Figure 5.8 Convolution operation on the first part of metrological data shown in Fig5.7

glBegin(GL_QUADS);

glTexCoord2f(0, 1)1(+−nn);

 glVertex2f(0, 0);

 glTexCoord2f(RENDERBUFFER_WIDTH, 1)1(+−nn);

 glVertex2f(RENDERBUFFER_WIDTH/ n, 0);

glTexCoord2f(RENDERBUFFER_WIDTH, RENDERBUFFER_HEIGHT+

1)1(+−nn);

 glVertex2f(RENDERBUFFER_WIDTH/n, RENDERBUFFER_HEIGHT/n);

 glTexCoord2f(0, RENDERBUFFER_HEIGHT+ 1)1(+−nn);

 glVertex2f(0, RENDERBUFFER_HEIGHT/ n);

glEnd();

Figure 5.9 Convolution operation on the)1)1((+−nn th part of metrological data

7 Data transferring back to CPU

Since the result has been split into n parts and stored in n textures that are

attached to the n colour attachments in the FBO, these split results will be read

back to CPU in sequential. If the data in nth texture need to be transferred back,

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

111

the instruction of glReadBuffer(GL_COLOR_ATTACHMENTn_EXT) is firstly

invoked to point to the nth colour attachment in a FBO as shown in Fig.5.7. Then

invoking the instriction of glReadPixels() will transfer the data in n
th colour

attachment to an array in CPU’s memory.

5.4 Test and Performance Evaluation

A primitive surface that is sampled at 1024×1024 points, and has 2D Gaussian

filtering applied was used to validate the acceleration performance of the

proposed GPGPU framework. The window radius of 2D Gaussian filter along x

and y directions are both 50, so, the width and height of Gaussian filtering

window is 101×101. The graphics card used for test is Nvidia’s GeForce 7900

GTX. Figure 5.10 shows the primitive measured surface.

Figure 5.10 A primitive surface profile

5.4.1 Test Results

Fig.5.11 and Fig.5.12 show the results obtained by MATLAB simulation kit and

the developed GPGPU programming respectively, from which it can be seen that

GPGPU program obtains the same surface profile obtained from MATLAB

simulations. It is noted that the filtered surface has the size of 1124×1124.

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

112

Figure 5.11 Result of Gaussian filtering issued by MATLAB simulations

Figure 5.12 Result of GPGPU-based Gaussian filtering

To verify computational efficiency of the developed GPGPU programming

framework, the run time of the main stages of the GPGPU framework and the run

time of the MATLAB simulation programs, running on the same computer are

listed in Table 5.1. It is noted since GeForce 7900 GPU supports the maximum of

4 colour attachments in a FBO, the measured data of primitive surface is

therefore split into 4 blocks to be processed by Gaussian filtering when the 4 data

blocks are transferred back to CPU sequentially.

Table 5.1 Processing time of GPGPU program and MATLAB simulation

 GPGPU MATLAB

Data from CPU to GPU 426ms Not specified

Convolving with Gaussian filter 410 ms 4940ms

Data from GPU to CPU 973ms Not specified

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

113

Table 5.2 lists the comparison of run time between the solutions using no data

splitting and when dividing the measured data into 4 blocks for processing. The

solution of no data splitting means just a dynamic texture is used to store the

whole result of filtering, so, just one of the colour attachments in a FBO is used.

Table 5.2 Processing time of solutions with data dividing and without dividing

 Data splitting No data splitting

Data from CPU to GPU 426ms 426ms

Convolving with Gaussian filter 410 ms 403 ms

Data from GPU to CPU 973ms 4986ms

5.4.2 Performance Evaluation

Although there is often a degree of latency for data transfer between the CPU

and GPU, the proposed GPGPU solution is still proven an effective computing

platform for accurately profiling a filtered surface defined in stylus-based surface

metrology. If just considering the convolution operation carried out on GPU, the

proposed GPGPU framework can achieve a 12× speed-up factor. As a whole

application, the data transfer between CPU and GPU should also be considered

and the cost of these operations should also be taken into account for

performance evaluation. It can be seen from Table 5.2 that transferring massive

data (e.g., data in a texture with size of 1124×1124) from GPU back to CPU to

visualize the filtered data is a bottleneck in the proposed GPGPU framework.

This is caused by the limited bandwidth of PCI/AGP bus. This problem is partially

solved by dividing the data into several blocks to compute and transfer. Its

feasibility is validated from the test results shown in table 5.2. It can be seen that

the time for transferring data back to CPU has decreased from 4986ms to 973ms

since the strategy of data splitting is employed, which therefore improves the

speed-up factor of the whole GPGPU framework. For example, it is observed in

table 5.1 that the GPGPU framework, that includes the stages of data transferring

between CPU and GPU, achieves a speed-up factor of 2.73 comparing to the

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

114

Matlab-based simulation software. It is believable that with the increase of

bandwidth of PCI/AGP bus (the bandwidth of new generation of PCI-Express bus

is up to 6Gb/s), the proposed GPGPU framework can achieve a greater

acceleration performance.

5.4.3 Accuracy Analysis

Although Fig.5.11 and Fig.5.12 prove that the developed GPGPU programs can

obtain the same surface profile as the one obtained by MATLAB simulations, it is

essential to evaluate the accuracy gap between the computation results of CPU

programs and GPU programs. For the Matlab programs, the minimum value of

filtered data is -3.0152e-007 while the maximum value of filtered data is 5.3329e-

007. If expressed in the form of absolute value, then the minimum and maximum

values are 3.2637e-013 and 5.3329e-007.

The accuracy evaluation is issued by the following two forms:

• The maximum difference of the results obtained by Matlab program and the

proposed GPU program in the term of absolute value.

• The maximum difference in the term of percentage that is expressed by

%100
Re

ReRe
×

−
=

programMatlabofsult

programMatlabofsultprogramGPUofsult
Gap (5.13)

The latter is more meaningful because the results in this case study is up to the

level e-013, thus the maximum difference in the term of absolute value can’t

efficiently evaluate the accuracy of the results of GPU’s program. It has been

proved that the maximum difference in the term of absolute value is 3.2305e-012

and the maximum difference in the term of percentage is 8.58%. The latter gap

shows that the proposed GPU program can obtain a satisfactory accuracy when

processing the data with much small values.

Chapter 5 Accelerated Filtering Algorithms for Surface Profiling

115

5.5 Summary

The devised GPGPU framework for legacy graphics cards and shader models

have been tested and evaluated in this chapter. The application comes from a

real-world demand on faster processing speed for issuing the filtering algorithms

in stylus-based surface metrology. The developed solution is built on the basis of

the analysis over the characteristics of filtering algorithms and their breakdown

components. The implementation details such as using fragment programs for

filtering, data scattering, and massive data splitting were discussed thoroughly in

terms of functions, routines, syntax and semantics. The developed solution has

been specifically tested on the 2D Gaussian filtering operation which is a

classical process used in 3D surface topography analysis. The test results show

that comparing with the runtime of the MATLAB simulation program on a fixed

sized of data, the entire GPGPU solution (that is including data loading and CPU

to GPU cross-border operations), still achieves a near 300% speed-up factor. If

only measures the actual computation part, the speed-up factor will reach 15x. At

the same time, the mean errors between the GPGPU program and its “C-

language” counterpart is well within the data accuracy specifications. Therefore,

the compiled GPGPU program speeds up the filtering process substantially while

maintaining the filtering quality, which proved the practicability and validity of the

proposed programming model for filtering algorithms used in surface metrological

data processing. Chapter 6 will tackle another important application area, image

denoising, using the GPGPU framework to assess its flexibility.

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

116

Chapter 6 Parallel Implementation on Wavelet-

based Image Denoising

The discrete wavelet transform (DWT) has been extensively used for image

compression and denoising in image processing and computer vision. However,

the intensive computation required by the DWT due to its inherent multilevel data

decomposition and reconstruction operations, brings a bottleneck that drastically

reduces its performance and implementations for real-time applications when

processing large size digital images and/or high-definition videos. Although

various software-based acceleration solutions, such as the lifting scheme, have

been devised and achieved a higher performance in general, the pure software

accelerated DWT still struggle to cope with the demands from real-time and

interactive applications.

Following the previous case study, this chapter presents another application of

the devised GPGPU programming framework to obtain a parallel computing

solution for the wavelet-based image denoising operation. The proposed solution

can be readily incorporated with different forms of DWT by customising the

parameter of the wavelet kernel in the form of pixel shaders. Experiment results

show that the developed GPGPU solution gains applicability in data parallelism

and satisfaction performance in acceleration.

6.1 Wavelet-based Denoising

Fourier transform expresses a signal as the sum of a series of sines and cosines

of the so-called Fourier expansion, so that the amplitude of different sines and

cosines represents the signal’s energy distribution in the frequency domain. This

is the fundamental reason that Fourier transform is predominantly used to

analyse a signal in frequency domain, i.e, to obtain frequency resolution for signal

analysis and processing. The filtering algorithms investigated in Chapter 5 are

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

117

actually based on the Fourier transform. However, the main limitation of the

Fourier transform is that it only retrieves the solutions of signal processing in the

frequency domain but not in the time domain. As a result, although one solution

based on Fourier transform can generate the information of all the frequencies

existed in a signal, it will be impossible to tell when they are incurred. To

overcome this problem, wavelet transforms have been discovered and improved

in the past 5 decades, which are capable of representing a signal in both the time

and the frequency domain at the same time.

The wavelet transforms are usually classified into two categories, continuous

wavelet transform (CWT) and discrete wavelet transform (DWT). Due to its

feature of obtaining multi-resolution analysis results both in the frequency and the

time domain, wavelet transforms, especially the DWT, have become an important

tool in image processing such as image denoising. When the DWT is applied in

image denoising, implementation involves the following three processing phases

(Bovik, 2005):

1) Decomposition

Select a suitable base wavelet and a decomposition level to generate the

approximation and detail coefficients of a noisy image at the chosen level.

2) Thresholding

For each level, to generate a threshold and implement it through hard/soft

thresholding on the detail coefficients.

3) Reconstruction

Re-calculate for reconstructions using the modified coefficients of various

levels.

6.1.1 Analysis of the Wavelet Transform

For a continuous, square-integrable function f(t), its continuous wavelet transform

(CWT) is defined as the sum over all time of the signal multiplied by scaled,

shifted versions of the wavelet function ψ (Ocak, 2008):

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

118

∫
+∞

∞−
= dttntranslatioscaletfntranslatioscaleC),,()(),(ψ (6.1)

CWTs operate on every possible scale and translation over a signal spectrum.

However, the calculation of coefficients at every scale and translation is a

substantial body of work that often generates a huge amount of data. In addition,

the signal processing instructions implemented in computer programs must divide

the continuous signals into a series of discrete signals for the digitalized

processing. The discrete wavelet transform (DWT) uses a specific subset of scale

and translation values where the chosen scale and translation are based on the

powers of two, which is the so-called dyadic scales and translations. In this case,

the wavelet analysis is much more efficient but just as accurate. When it is

implemented, the DWT of f(t) is calculated by passing f(k) that is the discrete

expression of f(t) through a series of low-pass (LP) and high-pass (HP) filters

respectively. Following the low-pass and high-pass filtering, the output signal of

each filter will then be downsampled according to the ratio of 2, which produces

the approximation and the detail coefficients of the input signal respectively. The

approximation coefficients represent the high-scale and low-frequency element in

a signal, and the detail coefficients represent the low-scale and high-frequency

element (Ocak, 2008). The decomposition process can be iterated, with

successive approximation coefficients being generated in turn so that a signal

can be decomposed into many lower resolution elements.

The inverse discrete wavelet transform (IDWT) is used for reconstructing the

original signal. It involves two distinctive operations of upsampling and filtering.

Upsampling is the process of lengthening a signal component by inserting zeros

between samples. The filtering part of the reconstruction process also consists of

a series of LP and HP filters which are associated with the decomposition filters

in DWT. These form a system of what is called the quadrature mirror filters to

guarantee reproducing the original signal accurately. Fig.6.1 illustrates a multi-

level DWT and IDWT of a signal with bandwidth F (Ocak, 2008).

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

119

Figure 6.1 Multi-level DWT and IDWT

6.1.2 Thresholding Strategy

A noisy signal f(k) is commonly modeled as the following form:

)()()(kekskf += (6.2)

where s(k) is the true signal which is often a low frequency or stationary

component in the practical implementation. e(k) is the actual noise, which is

usually a high frequency term that contains many high frequency details. As

stated by Bovik (Bovik, 2005), the general wavelet denoising procedure consists

of three steps: forward transformation of the signal to the wavelet domain;

modifying the wavelet coefficients; and inverse transformation to the native

domain. The wavelet coefficients modification is determined by a thresholding

strategy that has been extensively researched. The most practical thresholding

methods were mainly initiated by the work of Birgé and Massart (Birgé and

Massart, 1997; Barron et al, 1999), and Donoho and Johnstone (Donoho and

Johnstone, 1995; Donoho and Johnstone, 1998; Donoho et al, 1995).

Based on the work of Birgé and Massart, the thresholding methods used in

practice can be classified into the following two categories:

• Scarce High, Medium, and Low (SHML)

• Penalized High, Medium, and Low (PHML)

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

120

The SHML methods work as the follows: for a noisy signal that is decomposed to

a level J, the approximation coefficients at level J are kept; for a random level i

from 1 to J, the ni largest coefficients are kept in the form stated as formula (6.3).

ai
iJ

M
n

)2(−+
= (6.3)

In the above equation, the value of the parameters a and M are determined by

the practical applications. The SHML methods can be further classified by the

value of parameter a.

For the PHML, a threshold T applied to the detail coefficients for the wavelet case

can be generalized as:

*)(tcT = (6.4)

with

],...,1));log((2}),({min[arg* 2
nt

t

n
avttkkcsumt =++<−= (6.5)

In equation (6.4) and (6.5), c(.) is all the detail coefficients of DWT, the

coefficients c(k) are sorted in decreasing order of their absolute values, where v

is the noise variance. The value of a that corresponds to PHML are in the range

of 2.5≤a<10, 1.5<a<2.5, and 1<a<2 respectively.

Regarding the issue of denoising, Donoho and Johnstone have devised four

different thresholding options (Donoho and Johnstone, 1995; Donoho and

Johnstone, 1998; Donoho et al, 1995; Hector et al, 2002):

1. Rigrsure

Rigrsure is an adaptive threshold selection approach using the Stein’s

unbiased risk estimate criterion. The Rigrsure method defines the threshold

level T by

)log(log2 2 NNT eσ= (6.6)

Where N is the number of signal samples; and σ is the standard deviation of

the noise.

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

121

2. Sqtwolog

The Sqtwolog method defines the universal threshold slightly different from

the Rigrsure method in a fixed form

)(log2 NT eσ= (6.7)

3. Heursure

Heursure is a synthesis version of the aforementioned two rules resulting in

an optimal forecasting variable threshold.

4. Minimaxi

Minimaxi is a threshold selection scheme using the minimax principle, in

which a fixed threshold is selected to obtain the minimum of the maximum

mean square error, that is obtained for the worst function in a given set,

when compared against an ideal procedure.

All the above thresholding criteria is based on a simplified model that suppose a

noise is a Gaussian white noise with standard deviation σ =1. For the general

cases that noises are unscaled or nonwhite ones, the threshold level should be

rescaled according to the aforementioned thresholding criteria. The actual level is

commonly obtained by multiplying a rescaling factor by the thresholding value

found by the Sqtwolog method. Two rescaling options have been proposed. The

first one is to rescale the noise based on coefficients in the first level of the

wavelet decomposition. In this option, the Daubechies (Db) 1 wavelet is used to

obtain the detail coefficients of decomposition level 1, then the rescaling factor is

made to equal to the median values of all absolute values of the detail

coefficients. If the median absolute value is equal to 0, the actual threshold value

Ts is expressed as:

Ts= 0.05×max(abs(c)) (6.8)

where abs(c) represents a set of absolute values of detail coefficients at

decomposition level 1 of the Db1 wavelet. The first rescaling option then treats

the Ts as a global rescaling factor for the whole reconstruction. The second

rescaling option, which is best used for nonwhite noise, determines different

rescaling factors at various reconstruction levels.

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

122

In fact, there are a variety of noises in practical engineering and computer

science applications. It is almost impossible to adopt a uniform thresholding

strategy to achieve the best performance of denoising for all applications when

facing noises with various characteristics. Actually, there are many other

thresholding methods specially designed to deal with various forms of noise in

specific fields. The performance evaluation of different denoising methods are

often carried out by means of Mean Square Error(MSE), Signal to Noise Ratio

(SNR), and Peak Signal-to-Noise Ratio (PSNR) (Chicken and Cai, 2005; Azzalini

et al, 2005) with many past publications being focused on.

Except the aforementioned precision performance evaluation measures, another

vital but often omitted factor also determines the perspective of successful

implementation – computational cost. Extremely high computational cost (slow

process and long delay to users) will constrain the application of denoising

methods that demand a large pool of computer resources. This problem can

become very serious when wavelet-based denoising are used for large size noisy

images or high-definition videos, for example, satellite image processing and

real-time surveillance video processing, or even Augmented Reality applications,

in which enormous number of pixels need to be processed in a fraction of a

second. In this research, a hardware accelerated solution for wavelet-based

denoising has been proposed for alleviating the problem of computational cost

and process speed.

6.2 Wavelet-based Denoising on GPU

The amount of computation of wavelet-based denoising are mainly originated

from the recursive operations of wavelet decomposition and reconstruction. With

the constant increasing power of commodity GPUs, extensive researches on

implementing DWT on GPU have been carried out. The most relevant

contributions are works from Hopf and Ertl (Hopf and Ertl, 2000) at the University

of Stuttgart in Germany, and Wong at the Chinese University of Hong Kong

(Wong et al., 2007). Hopf and Ertl developed an OpenGL-based model of the

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

123

filter bank scheme (FBS) for implementing DWT on a Silicon Graphics

workstation by using high-level OpenGL routines, such as the OpenGL

convolution filters. The project had experienced a degree of success on process

acceleration. However, the solution has no direct mapping on hardware, which

limits the efficiency of the implementation with some of the GPU resources left to

spare. For the works of Wong, the convolution, downsampling, and upsampling

operations were performed in sequence on a GPU’s fragment processors (FPs).

Due to the restrictions on GPU programmability at the time and coding facilities,

the texture mapping prior to the convolution process was issued by establishing

texture lookup tables in which every single texture coordinate is pre-defined in

advance by separate CPU programs. The potential benefit of hardware-driven

acceleration by using the GPU’s hardware interpolators for generating texture

coordinates and texture fetch were not fully exploited. This in turn hampers the

performance of the consequent FP programs.

Based on the existing research on wavelet-based denoising, the GPGPU

programming model proposed in this chapter aimed at seeking further hardware

empowered process acceleration for wavelet-based denoising. This was

achieved by directly implementing texture fetching using hardware interpolators,

which was based on the general programming framework as shown in Fig.4.3.

When issuing filtering, kernels for downsampling and upsampling in the stages of

decomposition and reconstruction, there is no need to employ any pre-defined

values issued by separate CPU routines in advance. Furthermore, filtering and

down-sampling operations can be carried out on GPU simultaneously, for

instance, to implement the two operations on a single FP to exploit the

performance gain from GPU’s intrinsic functions.

Considering the fact that GPGPU is hardly a computational panacea and there

are still many issues regarding the hardware structure and programming

paradigm to be tackled before a proper match against its CPU counterparts

becoming a reality. Task partitioning in the proposed programming model that

decides which part of the work will be conducted on the GPU and which part

should be left to the CPU for the current generation of hardware will be discussed

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

124

in detail to promote the acceleration performance of the application developed

from the proposed GPGPU programming model for wavelet-based image

denoising.

The GPGPU solution for wavelet-based denoising developed in this chapter

employs 2D-DWT and 2D-IDWT respectively. 2D-DWT and 2D-IDWT were

implemented by applying separate 1D-DWTs and 1D-IDWTs along the horizontal

and vertical directions respectively. The decomposition process in 2D-DWT has

adopted the common square decomposition method which is depicted as in

Fig.6.2, where cAj, cHj, cVj , and cDj represent approximation coefficients (cA0

represents original 2D signal), and the detail coefficients along horizontal,

vertical, and diagonal orientations (Tenllado et al, 2008).

Figure 6.2 The square decomposition scheme

The thresholding approach chosen for denoising has employed the Sqtwolog

method introduced in Section 6.1.2 to integrate with the global rescale options.

As discussed earlier, the global rescaling factor is normally determined by the

median absolute values of the detail coefficients obtained by the Db1 wavelet

process, in which a sort operation on the absolute values of detail coefficients is

essential. The sort operation requires random memory write accessibility, which

is often not available from fragment processors on today’s GPU in the so-called

“scatter” memory operations which have been described in Chapter 5. The

GPGPU solution devised in this chapter then assigned the task of thresholding to

a CPU, while concentrating GPU resources on issuing the operations of

decomposition and reconstruction. The entire programming model corresponding

to the solution can be summarized as in Fig.6.3.

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

125

R
G

B

Horizontal edge

extension

Vertical edge

extension

R

G
B

Vertical filtering (LP and

HP) and downsampling

R
G

B

cAj cHj

cVj cDj

cAj cHj

cVj cDj

cAjcHj
cVj cDj

R
G

B

(1) Decomposition

Horizontal filtering (LP and

HP) and downsampling

R

G
B

Upload

image

Daubechies(Db) 1 Wavelet

(2) Thresholding

Detail coefficients at level 1Computing

threshold value

Read-back framebuffer

cAJ cHJ

cVJ cDJ

Coefficients at level J

cAJ cHJ

cVJ cDJ

cAJ cHJ

cVJ cDJ
R

G
B

cAj-1
R
G
B

Upload

threshold value

(fp32 RGB)

Vertical

upsampling

Vertical filtering

(LP and HP)

Horizontal

upsampling

Horizontal filtering

(LP and HP)

R
G
B

R
G
B

R
G
B

R
G
B

R
G
B

(3) Reconstruction

Approximation coefficients at level J and detail coefficients at each level

CPU G P U

cAj, cH’j,

cV’j,cD’j

Figure 6.3 The operational model of the GPGPU and wavelet-based denoising

 6.3 Technical Specifications of the GPU

Implementation

A texture consists of a vector Red-Green-Blue-Alpha (RGBA) floating point

values to be stored on a GPU. As a standard practice for image processing,

these 4 floating point vectors were used for storing pixels of an image. All the

approximation coefficients (cAj) and the detail coefficients (cHj, cVj, cDj) obtained

by deploying the same base wavelet were also stored in the same texture with

RGBA four channels. The Framebuffer Objects (FBOs) which has been used for

data scatter in Gaussian filtering in Chapter 4 – was employed as an off-screen

rendering mechanism for storing intermediate computation results.

6.3.1 Decomposition

There are three main steps concerning the integration of decomposition into the

programming model including image edge extension, filtering and sampling. After

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

126

investigating common extension schemes that include periodic padding,

symmetric padding, and zero padding, as summarized by Strang and Nguyen

(Strang and Nguyen, 1996), the proposed GPGPU solution has applied the

symmetrical periodic extension for its simplicity as shown in Fig.6.4. In the

diagram the extension length L is determined by the kernel length of a filter

employed in decomposition.

Figure 6.4 The symmetrical periodic extension scheme

Fig.6.5 shows a GPU program snippet for extending the left edge of an image on

a GPU. The extended edge consists of the part outside the left boundary as

indicated in Fig.6.4. The computational area is specified by an intrinsic OpenGL

instruction glBegin(GL_Quads) for defining an off-screen quad canvas with

specified vertex coordinates. The left edge extension was then issued with the

following fragment program (FP).

Figure 6.5 FP for edge extension

Two separable 1D-DWTs were issued following the edge extension, to enable

convolutions between the image texture and the filter kernel for downsampling

along the horizontal and vertical dimensions. In this project, the downsampling

fragout_float main(vf30 IN,

 uniform samplerRECT image, //image texture

 uniform float L //extension length)

{

 fragout_float OUT;

 OUT.col =f4texRECT(image, float2(2L-IN.TEX0.x, IN.TEX0.y));

 OUT.col.a=0.0;

 return OUT;

}

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

127

was issued by using functions from OpenGL library to control the actual sample

intervals in the texture fetching operations. For example, if using the variables

tex_width and tex_height to represent the width and height of an image texture, the

convolution between the image texture and the filter kernel along the horizontal

dimension for dowsampling can be combined into the following OpenGL

instruction sets and FP process, as shown in Fig.6.6 and Fig.6.7.

Figure 6.6 OpenGL instructions for controlling filtering and downsampling

When implemented in the proposed GPGPU denoising programs, the filter kernel

was stored in the R channel of a texture. As shown in Fig. 6.7, a factor of 0.5 for

addressing the pixel center when fetching a texture has been adopted.

The operation of filtering and down-sampling along the vertical direction is an

analogue to the horizontal ones.

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

128

Figure 6.7 Corresponding fragment program for filtering in horizontal dimension

6.3.2 Thresholding

As highlighted in Fig.6.3, a critical step in the thresholding stage is to implement a

Db1 wavelet on a GPU, and to retrieve the corresponding coefficients from the

GPU’s framebuffer transferring them to the CPU’s memory to generate a

rescaling factor. The task performed on the CPU is the sorting operation. This

back-and-forward process is the most time-consuming step in the entire process

for the reasons stated in Section 6.2.1.

Although some researchers claimed to have developed GPU-based sorting

libraries for implementing the sorting algorithms at 16-bit and 32-bit floating

precision with a performance comparable to a CPU, it was noticed that the

implementations still struggle to sort arrays with non power-of-two image sizes (

fragout_float main(vf30 IN,

 uniform samplerRECT image, //image texture

 uniform samplerRECT filter, //texture for filter kernel

 uniform float L //kernel length

)

{

 float3 sum=float3(0,0,0);

 // Implementing convolution

 for (int i=0; i<L; i++)

 {

 sum += f3texRECT(filter , float2(i+0.5,0.5)).r *

 f3texRECT(image , float2((IN.TEX0.x+i, IN.TEX0.y));

 }

 fragout_float OUT;

 OUT.col = float4(sum, 0.0);

 return OUT;

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

129

Govindaraju et al., 2008). To ensure adaptability, sorting operations in the

devised programming model in this project were still performed on the CPU. After

the threshold values were computed, they were downloaded to the GPU to

modify the detail coefficients obtained in the previous stage of decomposition.

6.3.3 Reconstruction

The reconstruction phase in the model is an inverse of the decomposition, which

is achieved by applying 1D inverse DWT vertically and horizontally in turn. For

reconstruction, the process started from the lowest decomposition level – referred

as J; and then the approximation coefficients cAj, and the modified detail

coefficients (''' ,, jjj cDcVcH) would be upsampled and filtered by corresponding

reconstruction filters along vertical and horizontal dimensions respectively. The

four computational results originated from cAj,
''' ,, jjj cDcVcH would then be

synthesized to form the approximation coefficients of the upper level j-1. After a

series of recursive computation, the ultimate denoised image can be obtained.

Fig.6.8 and Fig.6.9 illustrate the upsampling operations at the image size of

tex_width and tex_height.

Figure 6.8 OpenGL commands that implement upsampling along the vertical

dimension

glBegin(GL_QUADS);

{

 glTexCoord2f(0.0f, 0.0f);

 glVertex2f (0.0f, 0.0f);

 glTexCoord2f((float)tex_width, 0.0f);

 glVertex2f ((float)tex_width, 0.0f);

 glTexCoord2f((float)tex_width, (float) tex_height);

 glVertex2f ((float)tex_width, (float) tex_height);

 glTexCoord2f(0.0f, (float) tex_height);

 glVertex2f (0.0f, (float) tex_height);

}

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

130

Figure 6.9 Fragment program for upsampling along vertical direction

The effects of vertical upsampling and horizontal upsampling are displayed in Fig.

6.10.

(a) Vertical upsampling (b) Horizontal upsampling

Figure 6.10 The effect of upsampling

fragout_float main(vf30 IN,

 uniform samplerRECT image //image texture

)

{

 float3 sum=float3(0,0,0);

 int y=floor(IN.TEX0.y);

 if (y%2==0)

 {

 sum=f3texRECT(image, float2(IN.TEX0.x, floor(IN.TEX0.y/2)+0.5);

 }

 fragout_float OUT;

 OUT.col = float4(sum, 0.0);

 return OUT;

}

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

131

6.4 Test and Performance Evaluation

Our proposed GPGPU solution for wavelet-based denoising was tested on a PC

equipped with Nvidia’s GeForce 7900 GTX. Among the various base wavelets,

the Db4 base wavelet was tested as the denoising wavelets in the programs to

validate the programming model’s functionality.

First the results of DWT at various decomposition level are shown to illustrate the

coefficients, i.e. cAj, cHj, cVj, and cDj. The denoising effects on noisy images at

various reconstruction level are then demonstrated. In addition to the denoising

effect to be benchmarked, another key performance is the computational

efficiency that is often exponentially linked to a specified base wavelet and image

size. For various base wavelets, the kernel length of the low-pass or high-pass

filter is normally less than 20, for example, the kernel length of Db4 base wavelet

is 8, therefore the image size becomes the dominant factor that influences the

computational efficiency of the wavelet-based denoising.

6.4.1 Results of Decomposition

Fig. 6.11 shows a noisy image of night-sky cityscape in the size of 1280×1024.

This image consists of a large number of white light dots in the background of

blue night-sky, which is helpful to clearly illustrate the coefficients at different

decomposition level when using the DWT.

Figure 6.11 Noisy night-sky cityscape

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

132

Fig.6.12-6.14 show the coefficients at decomposition level 1, 2, 3 by employing

the proposed GPGPU programs to issue the DWT.

Figure 6.12 Coefficients at decomposition level 1

Figure 6.13 Coefficients at decomposition level 2

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

133

Figure 6.14 Coefficients at decomposition level 3

6.4.2 Quality Analysis

Three noisy image samples that contain nonzero-mean white noise were tested

sequentially. Fig.6.15 shows the noisy image with the size of 1024×960.

Figure 6.15 Noisy image (1024×960)

For the noisy image, shown in Figure 6.15, the maximum number of wavelet

decompositions chosen was 4. The synthesized images at different

reconstruction level corresponding to the approximation coefficients (cAs) at the

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

134

reconstruction according to the modified detailed coefficients are illustrated in Fig.

6.16.

 (a) cA3 (b) cA2

 (c) cA1 (d) The ultimate denoised image (cAo)

Figure 6.16 Denoising effects using the Db4 wavelet

Another noisy image is the night-sky cityscape, with a size of 1280×1024, which

is depicted by Fig. 6.12. The maximum number of wavelet decompositions

chosen for this image was also 4. Fig. 6.17 shows the modified approximation at

each reconstruction level and the ultimate denoising image.

 (a) cA3 (b) cA2

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

135

 (c) cA1 (d) The ultimate denoised image (cAo)

Figure 6.17 Denoising effects on the image of night-sky cityscape

Fig. 6.18 shows a noisy image of sunflower with arbitrary curves and edges and

with a size of 2048×2048.

Figure 6.18 The noisy image of a sunflower

The maximum number of wavelet decompositions chosen for this image was 3.

Fig. 6.19 shows the modified approximation at each reconstruction level and the

ultimate denoising image.

 (a) cA2 (b) cA1

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

136

(c) The ultimate denoised image (cAo)

Figure 6.19 Denoising effects on the image of sunflower

It was observed that during the process of reconstruction, much of the useful

image details were resorted with the noisy signals in the background region

reduced. In real applications, noise rejection and oversmoothing are often a

dilemma which sometimes causes unsatisfactory effects such as edge blurring.

There exists a trade off between these two factors when choosing and balancing

a donoising approach. In general, as indicated in Fig.6.16, Fig.6.17 and Fig.6.19

that the wavelet-based denoising achieved a good performance on GPU and

restored a substantial percent of strong edges which can be seen from the

reconstructed images, which further approves the effectiveness of wavelet for

image denoising.

6.4.3 Evaluation on Computational Efficiency

• Comparison with the software-based wavelet denoising

The computational efficiency of the developed GPGPU programming model for

image denoising was evaluated against the acceleration factor by comparing with

software-based wavelet implementations on a Pentium IV 2.6 GHz PC equipped

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

137

with Nvidia’s GeForce 7900 GTX graphics card. Except the aforementioned

three noisy images, two noisy images with sizes of 512×512 and 800×600 were

processed to evaluate the acceleration performance of the developed GPGPU

solution. Table 6.1 lists the comparison results regarding the overall operational

time on software-based wavelet denoising and on the GPGPU denoising

programs with the accelerating factors computed.

Table 6.1 Runtime comparisons on different image size (in ms)

Image size 512×512 800×600 1024×960 1280×1024 2048×2048

Software-based 2125ms 2703ms 6094ms 7562ms 26234ms

GPGPU-based 222ms 348ms 725ms 1275ms 3324ms

Accelerating factor 9.6 7.8 8.4 5.9 7.9

To evaluate the acceleration performance of the whole GPGPU programs on the

distinctive decomposition and reconstruction stages, a further breakdown of

computational time with regard to each stage is listed in Table 6.2 with a Db4

wavelet as a chosen target. It was envisaged that the GPGPU programming

model would have a satisfactory performance especially in the decomposition

stage. On the other hand, the accelerating factor for the reconstruction is much

lower than the decomposition. The reason for that is the need to obtain the

approximation coefficients at level j (cAj). The approximation and detail

coefficients at level j+1 (cAj+1, cHj+1, cVj+1, and cDj+1) here to be upsampled and

filtered in sequence in the solution, which increases the computational cost and

results in the reduced acceleration performance comparing to the decomposition.

In fact, the operations on all coefficients in the reconstruction stage are the same.

Therefore a better mechanism for texture mapping in the programming model, in

order to enable all coefficients in the stage of reconstruction to be processed in

parallel, needs to be researched in the future.

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

138

Table 6.2 Breakdown of computational time (in ms)

Image size 512×512 800×600 1024×960 1280×1024 2048×2048

Software-based

decomposition
423ms 658ms 1596ms 1923ms 5862ms

GPGPU-based

decomposition
15ms 16ms 31ms 94ms 158ms

Accelerating factor 28.2 41.1 51.5 20.5 37.1

Software-based

reconstruction
516ms 798ms 2112ms 2670ms 10968ms

GPGPU-based

reconstruction
125ms 171ms 391ms 593ms 2000ms

Accelerating factor 4.1 4.7 5.4 4.5 5.5

Since most of the tasks in the stage of thresholding are actually carried out by the

CPU, the impact of this workload distribution on the GPGPU programs has also

been evaluated. Table 6.3 lists the runtime of key steps in thresholding operation,

which includes issuing the Db1 wavelet decomposition on a GPU, transferring

coefficients of the Db1 decomposition at level 1, and sorting the coefficients to

compute the median absolute values for generating the rescale factor. It can be

observed that most of the run-time latency was caused by the reading of

coefficients back from GPU’s framebuffer and the sorting operation on CPU.

Table 6.4 lists the proportion of the runtime of these two tasks in the entire

GPGPU solution. It can be seen that the runtime of these two tasks dramatically

increases along with the image size.

Table 6.3 Runtime of key steps in thresholding (in ms)

Image size 512×512 800×600 1024×960 1280×1024 2048×2048

Issue Db1 Decomp. 3ms 5ms 9ms 11ms 36ms

Read-back framebuffer 31ms 47ms 109ms 359ms 500ms

Sort operation 31ms 62ms 125ms 156ms 562ms

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

139

Table 6.4 Proportional benchmarking of GPU-CPU data transfer latency

Image size 512×512 800×600 1024×960 1280×1024 2048×2048

Latency of GPU-

CPU uploading
62ms 109ms 234ms 515ms 1062ms

Total time cost 222ms 348ms 725ms 1275ms 3324ms

Proportion of the

cross border

delay

27.9% 31.3% 32.3% 40.4% 31.9%

• Comparison with Wong’s solution

The performance of the developed GPGPU solution was also compared with

another GPU-based solution devised by Wong’s group at the Chinese University

of Hong Kong. The core of Wong’s solution is to establish lookup tables along

both the horizontal and vertical directions, to store the texture coordinates for

texture fetching used in the fragment programs for DWT and IDWT at different

level. The lookup tables were initialized by a program running on CPU.

Adopting the same approach for thresholding operations as was explained in

Section 6.3.2, a series of experiments for image decomposition and

reconstruction that employed Wong’s method were also carried out. Table 6.5

lists the runtime performances regarding the sub-stages of decomposition,

reconstruction and lookup table initialization.

Table 6.5 Runtime of sub-stages on various image sizes using Wong’s method

(in ms)

Image size 512×512 800×600 1024×960 1280×1024 2048×2048

Decomposition 13ms 25ms 56ms 149ms 248ms

Reconstruction 16ms 31ms 59ms 154ms 251ms

Lookup table

initialization
235ms 360ms 901ms 1479ms 3034ms

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

140

Comparing the results shown in Table 6.5 with those in Table 6.2, it is observed

that for the GPGPU solution devised in this project, the runtime of image

decomposition was less than that of the Wong’s method. However, using the

Wong’s solution, the runtime of image reconstruction is faster than the proposed

GPGPU solution. Based on the processing flow of image reconstruction depicted

in Fig.6.3, it can be seen that the processes of upsampling and filtering in IDWT

are actually issued by different fragment programs running in multiple passes on

GPU. Snippets of the fragment programs have been shown in Fig. 6.7 and

Fig.6.9 respectively. In comparison, by using Wong’s method, the upsampling

and filtering can be issued by the same fragment program based on the pre-built

texture coordinates lookup tables. In Wong’s method, these two processes can

be implemented simultaneously. This is the reason why the runtime of image

reconstruction using Wong’s method is faster than the proposed solution.

However, the Wong’s approach requires the constant construction of processing

phase related lookup tables, which can be a time-consuming process to

implement. Table 6.5 also lists the runtimes for establishing the texture

coordinates lookup tables when using Wong’s method, which dominates the

application’s runtime.

Table 6.6 lists the comparison results regarding the overall runtime performances

of the GPGPU solution developed in this project. It can be seen that the overall

processing time of the proposed solution is less than that of Wong’s. Another

advantage of this solution is that it only allocates textures for image and filter

kernels which are essential for the GPU operation. The additional textures to

store the lookup tables are unnecessary during the operation cycle; hence spare

the hosting CPU program’s involvement completely. This design further improves

the GPU’s memory usage when issuing wavelet-based denoising on large size

digital images and/or high-definition videos.

Chapter 6 Parallel Implementation on Wavelet-based Image Denoising

141

Table 6.6 Runtime comparisons on different image size (in ms)

Image size 512×512 800×600 1024×960 1280×1024 2048×2048

Wong’s solution 284ms 466ms 1103ms 1877ms 4231ms

The new method 222ms 348ms 725ms 1275ms 3324ms

6.5 Summary

In this chapter, a GPGPU solution based on the proposed programming model

has been developed and evaluated for wavelet-based denoising. A number of

popular signal denoising algorithms and techniques have been implemented in

this chapter. The overall performance of the proposed GPGPU solution has been

assessed in terms of the visual quality and computational efficiency against the

set criteria. Through the quantitative tests on noisy images scaled from 512×512

to 2048×2048, the solution has achieved speed up factors in the range between

5.9 to 9.6 as shown in Table 6.1. It harnesses the parallel processing ability and

programmability of modern consume-level graphics hardware for accelerating

image processing. At the same time, the acceleration performance of the

proposed GPGPU solution was also compared with the other researcher’s

GPGPU solution such as Wong’s GPGPU approach. It is proved the newly

presented GPGPU solution can obtain a shorter runtime, and the solution is

particularly effective when the denoising approach is issued on a large volume of

noisy data, as depicted by Table 6.6.

On the other hand, it has been observed during the experiments that although

modern GPUs are fast co-processors, they are not designed to implement all the

tasks and to replace the CPU, some tasks such as sort operation on random-size

array aren’t suitable to be issued on the legacy GPUs. But through careful

balancing of the allocation of computational tasks between CPU and GPU, the

computation efficiency can still be greatly improved. The following chapter will

examine the latest GPU structure and its programming tools through

implementing another popular data processing technique for surface metrology.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

142

Chapter 7 Unified Pipeline Model-based Parallel

Processing for Spectral Scanning

Interferometry

In this chapter, the unified pipeline model-based parallel processing for

measurements obtained from the optical interferometry is discussed. Different

from the approach discussed in the last two chapters, which heavily relied on the

legacy pipeline structures, CUDA is used in this experiment for performing Fast

Fourier Transform (FFT) and data analysis through employing the latest unified

pipeline structure.

7.1 Surface Metrology Using Optical Spectral

Scanning Interferometry

Traditional surface metrology mainly focuses on the abstraction of roughness and

waviness from a rough surface, which is achieved by distinguishing these

components in different frequency segments in frequency domain, hence various

filtering algorithms, such as Gaussian filtering, Gaussian regressive filtering, and

Spline filtering, are employed to obtain the roughness and waviness. Except

rough surface, there is also a special kind of surface called a structured surface

that is characterized by various step and grooves (Reilly et al., 2006; Singleton et

al., 2002). For measuring this kind of surface, optical interferometry has been

widely explored due to the advantages of non-contact and high accuracy.

The use of ultra precision structured surfaces, which are now measured at the

nano scale, is rapidly increasing applications rang across optics, Si wafers, hard

disks, MEMS/NEMS, micro fluidics and the micro moulding industries (Reilly et

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

143

al., 2006; Singleton et al., 2002). Figure 7.1 (a) and (b) shows 3D profiles of

structured surfaces which also involve some environmental noises in measure

process.

 (a) (b)

Figure 7.1 Profiles of structured surface characterized by step and grooves

Although so many industries critically rely on ultra precision structured surfaces,

there is however a fundamental limiting factor to the manufacture of such

surfaces, namely the ability to measure the product accurately and rapidly in the

manufacturing environment. Traditional mechanical scanning of the probe head

or the specimen stage limits the accuracy and causes invalid results. As a result,

non-contact optical interferometry was introduced to measure the structured

surface, which is commonly called optical spectral scanning interferometry

(OSSI) (Su and Shu, 1991; Yamamoto and Yamaguchi, 2000).

7.1.1 The Principle of Surface Metrology Using

Monochromatic Interferometry

The essence of OSSI is using various monochromatic lights to generate

interference signal at each scanned point on a measured surface. The principle

of surface metrology using monochromatic interferometry will be briefly

introduced before the introduction to OSSI.

Surface metrology using menochromatic interferometry makes use of optical path

difference (OPD) to profile a structured surface (Huang et al., 1988). OPD’s

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

144

conception can be explained using Figure 7.2 that illustrates a classical

Michelson interferometer.

Figure 7.2 The optical path in a interferometer

The interferometer in Figure 7.2 is composed of a half-silvered mirror, detector

mirror, and reference mirror. The half-silvered mirror reflects part of the light from

light source to the detector mirror and directly transmits part of the light to

reference mirror. The light reflected by detector mirror then transmits through

half-silvered mirror to measured surface, which forms optical path L1 with length

l1. The light reflected by reference mirror transmits to half-silvered mirror and

forms optical path L2 with length l2. In the interferometer, l2 is constant while l1 is

shifted with the topography of measured surface. The length difference of L1 and

L2, which is the optical path difference represented by l1- l2, determines the phase

of the light radiant on the measured point at the surface by the following

equation, where Ф represents phase and λ represents wavelength of the light

(Huang et al., 1988).

λπ /)(4 21 ll −=Φ (7.1)

λ in Eq.(7.1) can be constant by using a monochromatic interferometer, OPD can

be therefore acquired by measuring the phase of the light at different scanned

point. But monochromatic interferometry brings the problem of 2pi phase

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

145

ambiguity (Schwider and Zhou, 1994; Schnell et al., 1996), which is illustrated in

Figure 7.3.

Figure 7.3 Illustration of 2pi phase ambiguity

In Figure 7.3, it is possible that the respective OPD of the interferometer at

scanned point A and B will result in the phenomenon that the phase of the light

transmitted to point A, which is represented by ФA, differs from the phase of the

light transmitted to point B, which is represented by ФB, by an integer multiple of

2π. In this case, ФA and ФB are evaluated to be same, hence the OPD of the

interferometer at scanned point A and B are also evaluated to be same. Points A

and B are therefore viewed as being locating at the same height in the height

map of the surface, which results in the step or grave where point B is located

being ignored.

To solve the problem of 2pi phase ambiguity, optical spectral scanning

interferometry (OSSI) was employed for structured surface metrology (Dai and

Katuo, 1998; Hayes, 2002; Joo and Kim, 2006). Compared with monochromatic

interferometry using a unique wavelength, OSSI uses light beam including with

various wavelength, such as white light, to measure surfaces. Surface

topography measurements are based on the phase and wavelength shift, which

therefore overcomes 2pi phase ambiguity.

7.1.2 The Principle of Optical Spectral Scanning

Interferometry

Optical spectral scanning interferometry (OSSI) uses light beam such as white

light to measure a surface (Sandoz et al., 1996; Hirai et al., 1999). Suppose the

wavelength segment of the light beam is [λ1, λ2], the relationship between the

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

146

intensity of the interference light at a measure point, for wavelength λ, and the

OPD of the measured point can be expressed as (Hlubina, 2002):

],[)2cos()()()(2121 λλλπλλλλ ∈+= hIII (7.2)

where I1 and I2 are the background intensity and fringe visibility respectively, h is

the OPD of the scanned point. In Eq. (7.2) I1 and I2 can be viewed as direct

current components which vary slowly with wavelength, thus the phase of the

interference signal is actually reflected by the cosine function in Eq. (7.2), which

is expressed as hπλ2=Φ . Also due to the slow variation of I1 and I2, there are

periodic peak points on the curve of I(λ) and the phase shifts of these peaks φ∆

satisfy πφ 2⋅=∆ n . Since OPD of each scanned point on the measured surface

is actually constant, the phase shift is intrinsically caused by the wavelength shift

which is expressed as (Hlubina, 2002):

hπλφ 2⋅∆=∆ (7.3)

This case is illustrated in Figure 7.4, in which the peaks on curve of I(λ)

correspond to a constant wavelength shift that causes a 2π phase shift. If using

3121, φφ ∆∆ and 41φ∆ to represent the phase shift of peak point 2, 3, and 4 to peak

point 1 in Figure 7.4, then 3121, φφ ∆∆ and 41φ∆ satisfy the following equation:

πφ 221 =∆ (7.4)

πφ 431 =∆ (7.5)

πφ 641 =∆ (7.6)

For two scanned points with different OPD, their wavelength shift that cause 2π

phase shift are also different.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

147

Figure 7.4 Intensity curve of interference signal at a scanned point

OSSI uses a spectrum and generates a series of interference signal at each

scanned point on a surface. By analysing the phase shift and wavelength shift of

each scanned point at a chosen wavelength segment, the OPD of each scanned

point will be acquired, thus the tomography of a surface is profiled. Wavelength

number determines the length of wavelength segment in light spectrum used for

measurement. Figure 7.4 is the intensity curve corresponding to using 400 lasers

with different wavelengths within the light spectrum for scanning, while Figure 7.5

shows the intensity curve corresponding to using 100 and 200 lasers

respectively. The curve in Figure 7.5 is ¼ and ½ part of the curve in Figure 7.4.

(a) Intensity curve of wavelength=100

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

148

(b) Intensity curve of wavelength=200

Figure 7.5 Intensity curve with different length of wavelength segment

Commonly, the more wavelength that are used, the wider the wavelength

segment, and so the more accurate the OPD measurement. But the wide

wavelength segment also limits the scanning speed and brings massive

increasing in data processing. In fact, monochromatic interferometry can be

viewed as an extreme case in OSSI where the wavelength number is equal to 1

and the light spectrum is compressed to a discrete point (Jiang et al., 2006).

7.2 Data Processing in Optical Spectral Scanning

Interferometry

The key to calculating a OPD is to calculate the phase shift at a chosen

wavelength segment, as stated in Eq.(7.3). Therefore the first step is to calculate

the phase distribution within the chosen wavelength segment.

Now rewrite equation (7.2) as (Takeda and Yamamoto, 1994;James et al., 2004):

)]2exp()2)[exp((
2

1
)()(21 hihiIII πλπλλλλ −++= (7.7)

The Fourier transform of variable λ in this equation can be written as (Takeda and

Yamamoto, 1994; James et al., 2004):

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

149

)(ˆ)(ˆ)(ˆ)(ˆ 221 hfIhfIfIfI ++−+= (7.8)

where)(ˆ)(ˆ),(ˆ 21 fIandfIfI are Fourier transform of)()(),(21 λλλ IandII

respectively. In a practical engineering application, the OPD of the scanned point,

i.e. the value of h is large enough to separate the three frequency spectrum in

Eq.(7.8) from one another, so that the second spectrum)(ˆ
2 hfI − can be filtered

out and processed by an inverse Fourier transform. The inverse Fourier

transform of)(ˆ
2 hfI − is (Takeda and Yamamoto, 1994; James et al., 2004):

)2exp()(
2

1
)](ˆ[22 hiIhfIIFFT πλλ=−

(7.9)

The logarithm of this signal is:

hiIhiI ee πλλπλλ 2)](
2

1
[log)]2exp()(

2

1
[log 22 += (7.10)

The imaginary part of Eq.(7.10) is precisely the phase distribution of a scanned

point within the chosen wavelength segment.

In OSSI, the surface measurement is implemented by a frame grabber and a

CCD. The CCD is used for detecting a series of interferograms of different

wavelengths within the chosen wavelength segment (Yamaguchi et al, 2000;

North-Morris et al, 2002). A frame grabber is then implemented to transfer the

interferograms from the CCD to a personal computer. Each grabbed frame forms

a grayscale image in which the intensity of each pixel corresponds to the intensity

of a scanned point at different wavelength, as stated in Eq.(7.2). When issuing

data processing, all grabbed frames are packed in sequence and form a 3D data

set as shown in Figure 7.6.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

150

.

.

.

X

Y

Z(Wavelength)
Data processing

N

(x,y)

Figure 7.6 Pack of grayscale image at various wavelength

Intensities of the same pixel (x,y) in each grayscale image will be abstracted and

formed into a vector],...,,[),(),(

2

),(

1

),(

N

yxyxyx IIIyxI = . For these discrete intensity

signal, fast Fourier transform will be implemented to process them in frequency

domain, which aims at filtering out)(ˆ
2 hfI − in Eq.(7.8). After implementing

inverse Fourier transform on)(ˆ
2 hfI − and issuing logarithm computation that is

illustrated by Eq.(7.10), the phase distribution of pixel (x,y)--),(yxϕ will be

acquired where],...,,[),(),(

2

),(

1

),(

N

yxyxyxyx ϕϕϕϕ = . However, the value of phase that

is obtained by the existing function or library in any data processing tool is

actually limited to within [-π, +π] or [0, 2π], which is shown by Figure 7.7 in which

the number of wavelength used for scanning is 128.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

151

Figure 7.7 Phase distribution in the wavelength segment

Comparing the phase value of point 1, 2, 3, and 4, it is obvious that the phase

shift between point 1 and 2 is within [0, 2π]. There is a 2π shift between point 2

and 3, so that the actual phase shifts between point 1 and 3, and between point 1

and 4 both exceed 2π. By comparing the phase shift of neighbouring points with

2π, the exact point where 2π phase shift occurs can be found out, the curve of 2π

phase shift therefore can be obtained as shown in Figure 7.8, and the actual

phase shift within the chosen wavelength segment can be also obtained as

shown in Figure 7.9.

2π

2π

2π

Figure 7.8 The curve of 2π phase shift

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

152

Figure 7.9 The curve of phase shift within chosen wavelength segment

Once the phase shift within the chosen wavelength segment is determined, the

OPD of each scanned point can be acquired by converting Eq.(7.3) to

λπ ∆⋅∆Φ= 2/h .

It is clear based on the above illustration that each scanned point actually follows

the same data processing pattern to obtain the topography of the measured

surface. The multi-level parallel processing therefore can be realized by using

the proposed programming frameworks in Chapter 4. In the following sections,

the Compute Unified Device Architecture (CUDA), a new generation of parallel

programming model, will be introduced. The earliest version of CUDA was

released by Nvidia in November 2006. In this experiment, CUDA 2.1 (released in

October 2008) was used for the test and evaluation.

7.3 Compute Unified Device Architecture (CUDA)

Briefly mentioned in Chapter 2, CUDA was designed from the ground-up for

efficient general purpose computation on GPUs around 2008. In contrast to

graphics-based GPGPUs, programmers can develop and compile GPGPU

programs by using CUDA’s C-like syntax and semantics, which is much simpler

to deploy than the previous GPGPU platform characterized by the graphics APIs

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

153

and shading languages. Developing shader programs for GPGPU applications

require skills and expertise in computer graphics, which had brought substantial

difficulties to researchers in the past to harness the parallel processing power in

PC-grade hardware. Empowered by the hard characteristics of the unified-

pipeline-based graphics card, CUDA has exposed important features that are

inherited and encapsulated from the conventional graphics APIs and shading

languages. The most significant of those is the shared memory and the support

for double precision floating point in arithmetic operations. In this section, new

features of CUDA will be briefly introduced from the aspects of thread structure,

memory hierarchy, host, and device. In CUDA, host commonly refers to CPU,

while device refers to not only GPU, but also Cell or FPGA if CUDA is used by

those processors.

Since the devised GPGPU programming framework follows the parallel pattern of

the Processor Farms, a program written in CUDA is therefore comprised of two

types of code, the host code implemented on CPU in serial, and device code

implemented on GPU in parallel. The device code is further composed of a series

of kernels that are instructions issued on GPU. The conception of thread is also

introduced in CUDA’s device code, for example, if a data stream involves N

elements, then CUDA will establish a thread for the operation on each element,

and N threads will run concurrently when a kernel is called.

7.3.1 Thread Hierarchy

CUDA programs use __global__ or __device__ to label a kernel that is

consisted of device code which runs on GPU. The computational range of

GPGPU, i.e., the range of threads in a kernel, is defined by the syntax of

<<<…>>>, which is different from the conventional shading language using

vertex coordinate to specify a kernel’s computational range. Each thread is

automatically configured with a unique identifier that is labelled by a built-in

variable in CUDA- ThreadIdx. Multiple threads make use of shared memory that

is eauipped on each processing core and acts as L1 cache to achieve fast data

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

154

exchange. However, the capacity of shared memory is limited, which means not

all threads in a kernel can access a single core’s shared memory, so that the

thread must be organized efficiently to balance the workload of GPU’s core and

its corresponding shared memory. This requirement results in the hierarchical

structure in CUDA’s thread management, which is characterized by thread grid

and thread block, as depicted by Figure 7.10. All threads within a thread block

can make use of the same shared memory for data exchange, therefore, the

number of threads in a block is determined by the capacity of the shared

memory, for example, a thread block on NVIDIA Tesla architecture can contain

up to 512 threads (Nvidia Corporation, 2009).

The <<<…>>> syntax is normally initialized as <<<gridSize, blockSize>>> in

which two parameters, gridSize and blockSize, are both 3-components vector

which is denoted by dim3 data type in CUDA. Parameter gridSize indicates the

total number of thread blocks along x, y and z directions respectively. Each block

is also automatically configured with a unique identifier that is labelled by a built-

in variable in CUDA- BlockIdx, which is similar to ThreadIdx, while parameter

blockSize indicates the number of threads along x, y and z directions in a block.

Each thread is indexed by ThreadIdx that has been explained above.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

155

Figure 7.10 Grid of thread blocks

As an illustration, the following sample demonstrates how to do matrix addition

using grid and thread blocks. In this example, M×M threads are encapsulated in

multiple blocks, and each block consists of 32 threads along x and y directions.

__global__ void Addition(float X[M][M], float Y[M][M], float Z[M][M])

{

int u =blockIdx.x * blockDim.x + threadIdx.x;

int v =blockIdx.y * blockDim.y + threadIdx.y;

if (u< M && v < M)

Z[u] [v] = X[u] [v] + Y[u] [v];

}

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

156

int main()

{

 Dim3 blockSize(32,32) // block size and the area of threadIdx is
predefined

 //Specify the grid size, thus pre-define the area of blockIdx

 dim3 gridSize((M + blockSize.x – 1) / blockSize.x,

 (M + blockSize.y – 1) / blockSize.y);

 // Kernel invocation

Addition<<<gridSize, blockSize>>> (X, Y, Z);

}

From the above code snippet, it can be seen that the dimension of grid and block

are specified by the first and second parameter of the <<<...>>>syntax

respectively. In graphics-based GPGPU, the index of a data in data stream is

specified by coordinate of the texture that stores data stream. While in CUDA, the

index of data corresponds to the thread index in the structure of thread hierarchy

that is featured by the thread block and grid.

7.3.2 Memory Hierarchy

CUDA names the GPU memory as the device memory, and it can be up to 1.5Gb

in Nvidia GeForce GTX280 (Nvidia Corporation, 2009). A device memory is

classified into various memory spaces that have different characteristics and

performance. These memory spaces include global memory, constant memory,

texture memory, local memory, registers and shared memory which are all

illustrated in Figure 7.11.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

157

Figure 7.11 The memory spaces in device memory and their relationships
between threads (Courtesy to Che et al.)

It can be seen from Figure 7.11 that the memory type defined in CUDA also

present the hierarchical structure that precisely corresponds to the thread

hierarchy. Each thread has a private local memory, while for thread block, its

private memory is shared memory. As the basic unit in CUDA coding, thread is

able to access all kinds of memory spaces. CUDA is also compatible with texture

memory which is convenient for the graphics applications.

The memory spaces for CUDA application have different levels of accessibility.

Generally, both registers and local memory can be read or written by a single

thread, the distinction between them is that registers obtain a fast access speed

while the access speed of local memory is relatively slow. Besides registers and

local memory, shared memory and global memory can also be read and written,

while constant and texture memory can only be read with a slow access speed,

which is similar to the “gather” operation in the previous graphics-based GPGPU

development tools. The diversity of memory space and the ability of “scatter” to

memory are two advantages of CUDA comparing with the traditional graphics-

based GPGPU development tools.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

158

7.3.3 Host and Device

A GPGPU program written in CUDA includes host code and device code where

host is specialised as CPU and device is referred to GPU. CUDA is a C-like

language, either the host or device code is similar to the common C-language

functions except the device code must use the label global_or device_for

classification. Host code is implemented in serial, while device code run on GPU

in parallel. A CUDA program comprises with a series of host-based functions

and device-based kernels, as illustrated by Figure 7.12. CUDA’s host code also

includes API instructions that are similar to instructions of OpenGL or DirectX to

invoke the device-based kernels, manage the hierarchical device memory, and

transfer data between host memory and device memory.

Figure 7.12 Heterogeneous programming in CUDA applications (Courtesy to

Nvidia Corporation)

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

159

7.3.4 The programming API -- CUFFT

The Fast Fourier Transform (FFT) is intrinsically an iterative process which

provides efficient solutions for computing discrete Fourier transforms that involve

both complex or real‐value data sets, and it is one of the most important and

widely used numerical algorithms, with applications that include computational

physics and general signal processing. Based on the product release

announcements made by the Nvidia, CUDA provides the CUFFT library as a

convenient interface for program developers. By employing CUFFT library, a

developer need not to care the algorithm details issued in each step in FFT’s

iteration.

The CUFFT library in CUDA supports one-, two-, and three-dimensional

transforms of complex and real‐valued data. Multiple 1D FFT can be

implemented in parallel by CUFFT library through batch execution, while for 2D

and 3D transforms, the size of data array along each dimension can be up to

16384 (Nvidia Corporation, 2009).

In this project, batch execution for multiple 1D transforms will be issued by

corresponding CUFFT functions as explained in Section 7.2. The main data types

defined in CUFFT are listed in Table 7.1 (Nvidia Corporation, 2009).

Table 7.1 Data types in CUFFT

Type Description

cufftHandle

A handle type used to store and access CUFFT plans. The user

receives a handle after creating a CUFFT plan and uses this

handle to execute the FFT plan.

cufftResult

An enumeration of values used exclusively as API function

return values (The possible return values can be referred in the

CUFFT documentation).

cufftReal A single-precision, floating-point real data type.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

160

cufftComplex
A single‐precision, floating‐point complex data type that consists

of interleaved real and imaginary components.

cufftType An enumeration of the types of transform data supported by
CUFFT.

The relevant CUFFT functions for this experiment are listed in Table 7.2 (Nvidia

Corporation, 2009).

Table 7.2 API functions in CUFFT

Functions Description

cufftPlan1d()
Creates a 1D FFT plan configuration for a specified signal size

and data type.

cufftPlan2d()
Creates a 1D FFT plan configuration for a specified signal size

and data type.

cufftPlan3d()
Creates a 3D FFT plan configuration for a specified signal size

and data type.

cufftExecC2C() Executes a CUFFT complex‐to‐complex transform plan.

cufftExecR2C()
Executes a CUFFT real‐to‐complex (implicitly forward)

transform plan.

cufftExecC2R()
Executes a CUFFT complex‐to‐real (implicitly inverse)

transform plan.

The CUFFT library supports complex- and real-data transforms. The cufftType

data type listed in Table 7.1 has the following values:

typedef enum cufftType_t {

 CUFFT_R2C = 0x2a, // Real to complex (interleaved)

 CUFFT_C2R = 0x2c, // Complex (interleaved) to real

 CUFFT_C2C = 0x29 // Complex to complex, interleaved

 } cufftType;

The detailed configuration of cufftPlan1d() is expressed as:

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

161

cufftResult cufftPlan1d(cufftHandle *plan, int nx, cufftType type,int batch);

Among all the input parameters, plan is a pointer to a cufftHandle object, nx is the

transform size (e.g., 256 for a 256-point FFT), type is the transform data type (e.g.,

CUFFT_C2C for complex to complex), and batch is number of transforms of size

nx. The output of cufftPlan1d() is also a pointer plan that contains a CUFFT 1D

plan handle value. The return value of cufftPlan1d() is a cufftResult data type

which indicates whether the cufftHandle was allocated successfully.

cufftPlan2d() and cufftPlan3d() have analogous configuration with cufftPlan1d(),

which are expressed as:

cufftResult cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type);

cufftResult cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type);

cufftPlan2d() and cufftPlan3d() create 2D and 3D FFT plan configurations

respectively, according to specified signal sizes and data type. cufftPlan2d() is the

same as cufftPlan1d() except that it takes a second size parameter, ny, and does

not support batching, and cufftPlan3d() takes the third size parameter nz except

ny. Both the output of cufftPlan2d() and cufftPlan3d() are in the parameter plan that

contains a CUFFT 2D or 3D plan handle value, and the return value of these two

functions are also cufftResult data type that has the same indication with that of

cufftPlan1d().

cufftExecC2C(),cufftExecR2C(), and cufftExecC2R() have analogous parameter

configurations as following:

cufftResult cufftExecC2C(cufftHandle plan, cufftComplex *idata, cufftComplex

*odata, int direction);

cufftResult cufftExecR2C(cufftHandle plan, cufftReal *idata, cufftComplex *odata);

cufftResult cufftExecC2R(cufftHandle plan, cufftComplex *idata, cufftReal *odata);

The parameter plan is the cufftHandle object for the executing FFT plan, idata is

the pointer to the input data (in GPU memory) to transform, and odata is the

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

162

pointer to the output data (in GPU memory) after transformation. Both idata and

odata can be parameterized with cufftReal and cufftComplex data type.

cufftExecC2C() can execute the forward and inverse FFT, which is determined by

the fourth parameter direction in cufftExecC2C(). cufftExecR2C() executes an

implicitly forward FFT while cufftExecC2R() executes an implicitly inverse FFT.

In this development, the function cufftPlan1d() was employed to create a 1D FFT

plan and the function cufftExecC2C() was used to execute the forward and

inverse FFT that calculates the pulses of the interference signals.

7.4 CUDA-based Data Processing in OSSI

Referring to the principle of data processing in OSSI that has been explained in

Section 7.2, the developed CUDA-based programme for parallel processing

includes the following sub-tasks:

• Loading original measured data (implemented on host);

• Issuing FFT and inverse FFT(implemented on device);

• Computing the absolute phase shift(implemented on device);

• Visualizing the results of data processing(implemented on device);

The details of these sub-tasks are demonstrated in the following sub-sections.

7.4.1 Initialization

The task of initialization mainly consists of loading measured data which is stored

as a series of 8-bit grayscale bitmap images, allocating device memory on GPU,

and transferring data from host memory to device memory. The number of

images is determined by the number of wavelengths that was used for generating

interference signals. A bitmap image of an interference signal generated at a

specific wavelength is shown in Figure 7.13.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

163

Figure 7.13 The intensity of interference signal at a specific wavelength

The example code of memory allocation is

cudaMalloc((void**)&d_yt, sizeof(Complex) * ImageSlices * ImageWidth *

ImageHeight);

which is very analogous to the malloc() function in C language. d_yt is a pointer to

the allocated GPU memory segment which stores float2 data type that is

represented by Complex through the instruction of “typedef float2 Complex”. Thus

*(d_yt).x and *(d_yt).y are used to store the real and imaginary parts of the results

of both the FFT and the inverse FFT. ImageSlices is the number of images, then

ImageSlices * ImageWidth * ImageHeight is the total number of pixels in all the

bitmap images. After the device memory allocation, the loaded data stored in

array h_yt in host memory can be transferred to device memory through the

following CUDA instruction:

cudaMemcpy(d_yt,h_yt,sizeof(Complex)*ImageSlices*ImageWidth*ImageHeight,

cudaMemcpyHostToDevice);

7.4.2 FFT and Inverse FFT

The FFT is issued by the following code:

cufftHandle plan;

cufftPlan1d(&plan, ImageSlices, CUFFT_C2C, ImageWidth * ImageHeight);

cufftExecC2C(plan, (cufftComplex *)d_yt, (cufftComplex *)d_yt, CUFFT_FORWARD);

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

164

The total number of pixels in the FFT will be ImageWidth * ImageHeight. To

implement these FFTs, all pixels in device memory are arranged as following

order:

Figure 7.14 FFT on different pixels

The results of FFT were stored in d_yt. The next step is to implement filtering in

parallel to get component)(ˆ
2 hfI − as illustrated in Eq.(7.8) before the inverse

FFT is applied, the inverse being involved by the kernel function filtering_d_yt().

The intrinsic operation of this kernel is to set some components in d_yt to 0, and

just reserve the value of components that corresponts to the frequency segment

of)(ˆ
2 hfI − . A snippet of this kernel is shown as follow:

static _global_ void filtering_d_yt(Complex *d_yt, int ImageWidth, int ImageHeight, int

ImageSlices)

{

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

 //The following instructions are used for filtering out)(ˆ
2 hfI − in Eq.(7.8)

if ((x < ImageHeight) && (y < ImageWidth)) //Specifying computation area

{

 for (int i=0; i<2; i++)

 {

 d_yt[((x * ImageWidth)+y) * ImageSlices)+i].x=0;

 d_yt[((x * ImageWidth)+y) * ImageSlices)+i].y=0;

 }

 for (int i=20; i<ImageSlices; i++)

 {

 d_yt[((x * ImageWidth)+y) * ImageSlices)+i].x=0;

 d_yt[((x * ImageWidth)+y) * ImageSlices)+i].y=0;

 }

 }

}

Based on kernel filtering_d_yt(), the parallel filtering of the results of the FFT is

implemented by the CUDA API instruction that calls kernel filtering_d_yt() by

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

165

specifying the area of threads through the parameters gridSize and blockSize in the

<<<...>>> syntax, which is expressed as:

filtering_d_yt <<<gridSize, blockSize>>> (d_yt, ImageWidth, ImageHeight, ImageSlices);

gridSize and blockSize are pre-defined as:

const dim3 blockSize(16, 16, 1);

const dim3 gridSize((ImageHeight + dimBlock.x – 1) / blockSize.x,

 (ImageWidth + dimBlock.y – 1) / blockSize.y);

The inverse FFT is then issued by the cufftExecC2C() in CUFFT library as:

cufftExecC2C(plan, (cufftComplex *)d_yt, (cufftComplex *)d_yt, CUFFT_INVERSE);

 7.4.3 Computing the Absolute Phase Shift

For each scanned point on the measured surface, the phases of interference

signals at different wavelengths are acquired by issuing the logarithm on the

results of the inverse FFT, and then abstracting the imaginary part of the

logarithm computation. This procedure is issued by the kernel Obtain_phase() as

follow:

static _global_ void Obtain_phase(Complex *d_yt, Complex *phase,int ImageWidth, int

ImageHeight, int ImageSlices)

{

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

 if ((x < ImageHeight) && (y < ImageWidth)) //Specifying computation area

{

 for (int i=0; i<ImageSlices; i++)

 {

 phase[((x * ImageWidth)+y) * ImageSlices)+i].x //Computing the phase

 = atan2(d_yt[((x * ImageWidth)+y) * ImageSlices)+i].y, d_yt[((x *

ImageWidth)+y) * ImageSlices)+i].x);

 }

 }

}

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

166

The CUDA API instruction calling the kernel Obtain_phase() is then expressed as

Obtain_phase <<<gridSize, blockSize>>> (d_yt, d_yt, ImageWidth, ImageHeight,

ImageSlices), which guarantees this kernel is used by each thread in parallel on

GPU. The phase shift between neighbouring wavelengths can be computed by

the kernel Phase_shift() which is written as:

static _global_ void Phase_shift (Complex *phase, Complex *Diff_phase, int ImageWidth, int

ImageHeight, int ImageSlices)

{

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

 if ((x < ImageHeight) && (y < ImageWidth)) //Specifying computation area

 {

 //Computing the phase shift between neighbouring wavelengths

 for (int i=0; i<ImageSlices-1; i++)

 {

 Diff_phase[((x * ImageWidth)+y) * ImageSlices)+i].y

 = phase[((x * ImageWidth)+y) * ImageSlices)+i+1].x

 - phase[((x * ImageWidth)+y) * ImageSlices)+i].x;

 }

 }

}

The CUDA API instruction calling the kernel Phase_shift() is Phase_shift

<<<gridSize, blockSize>>> (d_yt, d_yt, ImageWidth, ImageHeight, ImageSlices). In the

above snippet, Diff_phase is an array variable in device memory to store the

phase shift. In fact, it can be seen that the x components of array variable d_yt

are used for storing the phase while the y components are used for storing the

phase shift.

The aim of computing phase shift between neighbouring wavelengths is to find

out where 2π phase shift occurs, which is achieved by comparing the shift

amplitude as illustrated by Figure 7.7 and 7.8. The corresponding kernel

2pi_PhaseLeap() is then written as:

static _global_ void 2pi_PhaseLeap (Complex *Diff_phase, Complex * PhaseLeap, int

ImageWidth, int ImageHeight, int ImageSlices)

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

167

{

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

 if ((x < ImageHeight) && (y < ImageWidth)) //Specifying computation area

{

 PhaseLeap[(x*PhotoWidth+y)*PhotoSlices+0].y=0; //Reset the initial value to 0

 for (int i=1; i<ImageSlices-1; i++)

 {

 if (Diff_phase [(x*PhotoWidth+y)*PhotoSlices+i].y>0)

 Diff_phase [(x*PhotoWidth+y)*PhotoSlices+i].y=0;

 //The following programe is to acquire 2π phase leap

 Diff_phase [(x*PhotoWidth+y)*PhotoSlices+i].y

 =round(-Diff_phase [(x*PhotoWidth+y)*PhotoSlices+i].y/5)*2π;

 PhaseLeap[(x*PhotoWidth+y)*PhotoSlices+i].y

 = PhaseLeap[(x*PhotoWidth+y)*PhotoSlices+i-1].y

 + Diff_phase [(x*PhotoWidth+y)*PhotoSlices+i].y;

 }

 }

}

The CUDA API instruction calling kernel 2pi_PhaseLeap() is 2pi_PhaseLeap

<<<gridSize, blockSize>>> (d_yt, d_yt, ImageWidth, ImageHeight, ImageSlices). If the

2π phase shift along the whole wavelength segment used for the entire surface

measurement is acquired, then the absolute phase shift within the wavelength

segment, which is illustrated by Figure 7.9, can be obtained by the kernel

Abso_Phaseshift() as demonstrated below:

static _global_ void Abso_Phaseshift (Complex *Phaseshift, Complex *PhaseLeap,int

ImageWidth, int ImageHeight, int ImageSlices)

{

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

 if ((x < ImageHeight) && (y < ImageWidth)) //Specifying computation area

{

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

168

 //Calculating the absolute phase shift through adding the 2π phase leap

 for (int i=0; i<ImageSlices; i++)

 {

 Phaseshift [((x * ImageWidth)+y) * ImageSlices)+i].x

 = Phaseshift [((x * ImageWidth)+y) * ImageSlices)+i].x

 + PhaseLeap[(x* ImageWidth +y) * ImageSlices +i-1].y;

 }

 }

}

After the absolute phase shift within the wavelength segment is calculated, the

optical path difference (OPD) of each scanned point can be computed by the

kernel Obtain_OPD(), thus enables the tomography of the structured surface

being profiled according to the OPDs. The snippet of the Obtain_OPD() function is

listed below:

static _global_ void Obtain_OPD (float *OPD, Complex * Phaseshift, float ∆λ, int ImageWidth,

int ImageHeight, int ImageSlices)

{

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

 //Calculating the OPD according to Eq.(7.3)

if ((x < ImageHeight) && (y < ImageWidth)) //Specifying computation area

{

 OPD [(x * ImageWidth)+y] =

 = (Phaseshift [((x * ImageWidth)+y) * ImageSlices)+ ImageSlices-1].x

 - Phaseshift [((x * ImageWidth)+y) * ImageSlices)].x)/ ∆λ;

 }

}

In the two functions above, the parameter Phaseshift corresponds to the array in

device memory to store the absolute phase shift; ∆λ is a constant representing

the length of wavelength segment; and the parameter OPD is the array to store

the OPD of each scanned point. Since both kernels, Abso_Phaseshift() and

Obtain_OPD(), are device instructions, there are corresponding CUDA API

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

169

instructions for calling them with specifications of threading areas, which are

analogous with other aforementioned CUDA API instructions.

Based on the above discussions, the flows of CUDA-based parallel processing in

OSSI can be summarized as in Figure 7.15.

Figure 7.15 Flow of CUDA-based data processing in OSSI

7.4.4 Visualization of Processed Results

There remains a big challenge in massive data visualization, which is caused by

the problem of real-time rendering as explained in the case study on Gaussian

filtering in Chapter 5. The processing speed or “frame-rate” is commonly

determined by both the processing speed of graphics card, which is evaluated by

the maximum frames that the graphics card can render in one second, and the

latency characteristic of communication between CPU and GPU.

Many solutions to alleviate this problem have been attempted in the past

including graphics immediate mode, display list, vertex array, and the latest

version -vertex buffer object (VBO) (Pharr et al., 2005). For the solutions of

immediate mode, display list, and vertex array, data sets about vertices attributes

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

170

such as vertex 3D coordinates and vertex colours need to be transfered between

CPU’s memory and GPU’s memory, which results in the direct performance

correlation with the size of data set and the bandwidth of PCI bus. As an

alternative, the VBO processes the vertex attributes (3D coordinates and colours)

in physical space in “grouped” style, which is stored in various buffers in GPU’s

memory. It means the procedure of data transferring between CPU and GPU can

be erased to promote the rendering efficiency.

Simply speaking, there are two types of buffer, array buffers and element buffers,

defined in VBO. Array buffer, defined as the semantic ARRAY_BUFFER,

contains vertex attributes, such as vertex coordinates, texture coordinate data,

per vertex-color data, and normals. Element buffers, defined as the semantic

ELEMENT_ARRAY_BUFFER, contains only indices of elements that are used to

generate the correct shape of a geometric object.

In this experiment, VBOs are employed to visualize the processed data

generated by the CUDA-accelerated OSSI system.

Two VBOs were created for geometric rendering in this experiment; one is used

for specifying vertex coordinates and the other is for holding vertex colour. The

creation and initialization of these two VBOs are illustrated by the following

OpenGL code:

void createVBO(GLuint* vbo1,GLuint* vbo2)

{

 // create VBO to store vertex coordinates

 glGenBuffers(1, vbo1);

 glBindBuffer(GL_ARRAY_BUFFER, *vbo1);

 // initializing the size of the buffer data

 unsigned int size = ImageWidth * ImageHeight * 4 * sizeof(float);

 glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);

 glBindBuffer(GL_ARRAY_BUFFER, 0);

 // register VBO with CUDA

 cutilSafeCall(cudaGLRegisterBufferObject(*vbo1));

 // create VBO for vertex colour rendering

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

171

 glGenBuffers(1, vbo2);

 glBindBuffer(GL_ARRAY_BUFFER, *vbo2);

 // initializing the size of the buffer data

 glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);

 glBindBuffer(GL_ARRAY_BUFFER, 0);

 // register VBO with CUDA

 cutilSafeCall(cudaGLRegisterBufferObject(*vbo2));

}

Because both the vertex coordinates and the per-vertex colour are 4-component

vectors, for example, (x,y,z,h) for vertex coordinates and (r,g,b,a) for the colour,

the actual data size of these two VBOs need to be set as ImageWidth *

ImageHeight * 4. Following the creation of VBOs, the index of each vertex must

be specified to form the correct geometric shape. An element array buffer is

created to store the vertex index when drawing the geometry. The main OpenGL

instructions to initialize the element array buffer is listed as follow:

 glGenBuffersARB(1, indexbuffer);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, * indexbuffer);

 glBufferDataARB(GL_ELEMENT_ARRAY_BUFFER, size, 0, GL_STATIC_DRAW);

The parameter indexbuffer is a pointer of the GLuint data type, the parameter size

is the buffer size that is determined by the drawing mode that is used by OpenGL

to define primitives. The symbolic drawing mode includes GL_LINES,

GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS,

and GL_POLYGON etc. Different primitive definitions require different number of

vertices.

The profile of the structured surface can now be formed by making use of the

calculated optical path difference (OPD) that are stored in the device memory,

i.e., in the OPD array as depicted in Figure 7.15. This procedure involves the

drawing of the heightmap and the rendering of vertex colours according to the

value of the OPD, which also requires resetting of the data value in the

aforementioned VBOs (vbo1 and vbo2). For accessing the two VBOs, two

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

172

pointers were set as the entry to the beginning of the buffer vbo1 and vbo2 by the

following instructions.

 float4 *dptr1;

 cudaGLMapBufferObject((void**)&dptr1, vbo1);

 float4 *dptr2;

 cudaGLMapBufferObject((void**)&dptr2, vbo2);

The geometry will be then rendered by the kernel rendering() in the developed

CUDA program. The code of this kernel is shown as below.

Static _global_ void rendering (float4* height, float4* colour, unsigned int ImageWidth, unsigned

int ImageHeight, float *OPD)

{

 const int x = blockIdx.x*blockDim.x + threadIdx.x;

 const int y = blockIdx.y*blockDim.y + threadIdx.y;

 float u = y / (float) (ImageWidth -1);

 float v = x / (float) (ImageHeight -1);

 u = u*2.0f - 1.0f;

 v = v*2.0f - 1.0f;

 // The height value of the vertex

 float w = OPD [x*width+y]/3000.0;

 // Output the vertex coordinate

 height [x* ImageWidth + y] = make_float4(u, w, v, 1.0f);

 // Output the vertex colour according to the height value

 colour [x* ImageWidth + y] = SetVertexColor(w);

}

Since SetVertexColor() is called in the device code, it has the following expression

in CUDA applications.

static __device__ __host__ inline float4 SetVertexColor(float w)

{

 ... ;

}

Where __device__ and __host__ indicate this function can be invoked by both the

host and the device code.

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

173

The API function rendering() is used to set the vertex coordinate and vertex colour

in vbo1 and vbo2, both the VBOs and the aforementioned element array buffer –

indexbuffer, are integrated to visualize the measured surface in the call-back

function display() as listed below.

void display()

 // Visualizing the measured surface from the corresponding VBOs and element array buffer

 glBindBuffer(GL_ARRAY_BUFFER, vbo1);

 glVertexPointer(4, GL_FLOAT, 0, 0);

 glEnableClientState(GL_VERTEX_ARRAY);

 glBindBuffer(GL_ARRAY_BUFFER, vbo2);

 glColorPointer(4, GL_FLOAT, 0, 0);

 glEnableClientState(GL_COLOR_ARRAY);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);

 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

 glDrawElements(GL_TRIANGLE_STRIP, ((mesh_width*2)+2)*(mesh_height-1),

GL_UNSIGNED_INT, 0);

 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

 glutSwapBuffers();

 glutPostRedisplay();

7.5 Performance Evaluation

The OSSI system uses various wavelength segments to evaluate different

structured surfaces. It means the number of wavelengths used for producing

interference signals is different in each application. To evaluate the performance

of the developed CUDA-based parallel solution, in this experiment the measured

data sets obtained from a 616×458-pixel CCD camera (with the respective

wavelength number of 64, 128, 300 and 400) were tested. The parallel

processing programs have been tested on a Quad-Core Pentium 2.66GHz PC

equipped with a Nvidia GeForce GTX 260 GPU. Evaluations have been carried

out to compare the results with a MATLAB-based multithreaded implementation

on the same PC to assess the acceleration factor. The data accuracy were also

assessed through comparing the maximum differences between the CUDA

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

174

programs and the MATLAB simulations. Table 7.3 lists the average processing

time and the approximate accelerating factors of the two approaches.

Table 7.3 Multi-thread and Multi-stream Performance Comparison

Spectral wavelength

number

64 128 300 400

MATLAB processing

time
15254.8ms 26842.4ms 58110.6ms 73297.3ms

CUDA-based

processing time
611.4ms 1188.1ms 3136.2ms 4001.7ms

Accelerating factor 24.9 22.6 18.5 18.3

Based on the results shown in Table 7.3, it is evident that the GPU-based

hardware accelerated approach has surpassed the performance from a serial

computing solution by the factor of approximately 20.

Figure 7.16-19 show the surface profile obtained by the CUDA program and

MATLAB simulations when wavelength number is 64, 128, 300 and 400.

 (a) Result of CUDA programme (b) Result of MATLAB programme

Figure 7.16 The surface profile (wavelength number=64)

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

175

(a) Result of CUDA programme (b) Result of MATLAB programme

Figure 7.17 The surface profile (wavelength number=128)

 (a) Result of CUDA programme (b) Result of MATLAB programme

Figure 7.18 The surface profile (wavelength number=300)

 (a) Result of CUDA programme (b) Result of MATLAB programme

Figure 7.19 The surface profile (wavelength number=400)

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

176

Table 7.4 lists the maximum difference in absolute values between the CUDA

solution and the MATLAB test when the wavelength numbers are 64,128,300,

and 400 respectively. It is noted that the unit of difference is of nana-metre, thus

the accuracy of CUDA programme satisfies the precision requirement of OSSI

system for nano-scale surface measurement and analysis.

Table 7.4 The maximum difference in absolute value

Wavelength

number
64 128 300 400

The maximum

difference (nm)
0.004837 0.001074 0.007135 0.003385

It is also recorded that the total time consumed by the visualization of the

processed data is around 3-quaterth of a second for all test cases. Therefore, it is

concluded that the time for visualization is mainly determined by the size of

processed data and not related to the length of wavelength segments. In the

CUDA implementation, the data stored in device memory can be directly bound

with a vertex buffer object to allow accesses to various array buffer types relating

to vertex attributes such as coordinates, colours and normal values. In contrast to

the time-consuming process of transferring data from texture memory or

framebuffers back to the host CPU memory, the bottleneck of the GPU-to-CPU

cross border operation has been eliminated with sunstantial improvements on the

data visualization.

7.6 Summary

In this chapter, the latest GPU infrastructure and the CUDA have been explored

and employed for parallel processing in an OSSI system. The aim of this case

study is to release the potential of the unified programming architecture for real-

world applications. In contrast to the legacy graphics-based GPGPU

Chapter 7 Unified Pipeline Model-based Parallel Processing for Spectral

Scanning Interferometry

177

programming framework, developers can focus on the real task in hand by using

the C-like CUDA to avoid the tedious work of remapping their algorithms to

graphics concepts. Except the original design of texture memory in all graphics-

based GPGPU, the CUDA also equipped with the global memory, constant

memory, and shared memory. This design has enabled CUDA programs to

achieve the classical “gather” and “scatter” operations. Also attributing to the

evolution of GPU’s hardware architecture, especially since the release of

NVIDIA’s 8-Series, the distinctive vertex and fragment shaders have been

substituted by functions dedicated to “_device_” or “_global_” for the unified

shaders.

Through testing the CUDA-base GPGPU solution on four group of measured

data, it is found the proposed solution can achieve an approximate speed up

factor of 20 times as depicted by Table 7.3, while the data error of processed

results obtained by the GPGPU and MATLAB programs is limited within the

numeric level of 0.001 with the unit of nanometre, which completely satisfies the

requirement on data accuracy of nanometre-level surface metrology. In addition,

it is evident in this test series that through combining CUDA’s device code with

the VBOs, the geometry drawing operations have become much more efficient

and resolved the bottleneck problem of transferring data from GPU to CPU.

Chapter 8 Experiment Analyses and Discussions

178

Chapter 8 Experiment Analyses and

Discussions

This chapter starts with the further analyses on the cases examined in Chapter 5,

6, and 7 in terms of GPGPU-based LTI systems. It proves onto the comparable

effort in hardware acceleration for High Performance Computing (HPC) on

consumer-level devices. Following the analyses, the specific conclusions in this

research are then summarized in this chapter.

8.1 GPGPU-based LTI Systems Analysis

Based on the devised general GPGPU programming frameworks detailed in

Chapter 4, three comprehensive case studies, focusing on filtering techniques,

wavelet transforms, and Fast Fourier Transform (FFT), have been presented in

Chapter 5, 6, and 7 to evaluate the performance of the corresponding GPGPU

solutions. Although the case studies belong to the applications in surface

metrology and image processing, the implementation of the solutions

corresponds to a wide spectrum of specializations in LTI systems, which can be

extended to other engineering applications. The following subsections summarize

the technical criteria for GPGPU when applying to the LTI systems based on the

devised programming models.

8.1.1 Time Domain Analysis on GPGPU-based LTI Systems

The characteristics of data parallelism determine that GPUs can be ideally

employed by linear time-invariant (LTI) systems for process acceleration subject

to a few adjustments.

Chapter 8 Experiment Analyses and Discussions

179

Figure 8.1 Diagram of linear time-invariant system

As shown in Figure 8.1, a LTI system is normally characterized by its impulse

response function (indicated by h(t) in Fig. 8.1) which takes in signal in the

spatial domain and generates output O(t) that is equivalent to the convolution

between I(t) and h(t) depicted in Figure 8.1. Equally, a LTI system can also be

analysed in frequency domain through transfer function which is the Fourier transform

of its impulse response. The output in frequency domain is the multiplication of

the transfer function and the input signal. The flowchart of a LTI system in the

time and frequency domain is illustrated in Figure 8.2 (Willems, 1986).

Figure 8.2 LTI system’s flowchart in the time and frequency domain

The case study in Chapter 5 has examined in detail techniques and know-how in

realizing GPGPU to implement filtering algorithms in the time domain. It is

designed in the experiment that the continuous system in time domain will first be

transformed into a discrete system, in which signals and impulse response must

be discretized through sampling. As a result, the convolution is transformed from

the integral operation in continuous domain to multiplication and addition

operations in discrete domain. In the actual shader program development, this

Chapter 8 Experiment Analyses and Discussions

180

corresponds to the multiplication and addition operations of matrix/vector that

represent the input signal and the impulse response respectively. The multiple

stream processors will carry out this basic linear algebraic computation in a

parallel style. In conclusion of the case studied in Chapter 5, it can be

summarized that the GPGPU-based time domain LTI can be issued by the steps

shown in Figure 8.3.

As explained in Chapter 4, the fragment shader is commonly chosen as the

“worker” in contrast to its predecessor, the vertex shader, for carrying out linear

algebraic operations on a GPU. Figure 8.3 also highlights the GPGPU framework

pattern as illustrated in Figure 4.3.

Figure 8.3 Flowchart of the GPGPU-based LTI systems

In addition to the filtering techniques used in LTI systems, other applications such

as image processing have also extensively applied this type of processes. The

case study reported in Chapter 6 has explored the GPGPU-based parallel

implementation on wavelet-based image denoising. In comparison to Figure 8.1

which only shows the simplest LTI system, most applications involve multiple

Chapter 8 Experiment Analyses and Discussions

181

impulse responses. For the practical applications of that nature, a thorough

analysis on the wavelet transform and its realization on GPU is beneficial to

developers since there is a cascading connection of vertical and horizontal

filtering on the same decomposition level. As shown in Figure 8.4, for the whole

wavelet transform process, there exists a uniform-style cascading connection of

various levels of decomposition and reconstruction.

Figure 8.4 Cascading connection of LTI systems in wavelet transform

The structure of the cascading connection indicates a series of parallel cores

have to be performed in sequence (serial processing) on a GPU. Figure 6.3 in

Chapter 6 has illustrated the operational flowchart of the wavelet-based

denoising on a GPU and Figure 7.12 depicts the responsibility of the host and

device in a CUDA paradigm. The Framebuffer Object (FBO) has been chosen in

the solution design to store the intermediate results of the cascading operation

due to its flexibility and robustness with satisfactory result.

Figure 8.5 Flowchart of GPGPU-based signal processing on cascaded LTI

systems

Chapter 8 Experiment Analyses and Discussions

182

The loop structure shown in the Figure 8.5 indicates the multi-pass cascading

relationship between various level of decomposition and reconstruction in the

GPGPU application.

8.1.2 Frequency Domain Analysis on GPGPU-based LTI

Systems

The case studies reported in Chapter 5 and 6 were focusing on the LTI system

performance in the time domain. As highlighted in Figure 8.2, LTI systems can

also be analysed in the frequency domain by applying Fourier transforms on the

system impulse response. The experiment examined in Chapter 7 has

demonstrated the realization of GPGPU-based LTI systems by the means of

Fourier transform and the inverse Fourier transform. In this case, continuous-time

system has to be transformed into discrete-time linear shift-invariant system. To

further enhance the system performance, the discrete Fourier transform (DFT)

has been adopted together with its inverse in implementing the practical system.

It is well understood from practice that direct compute the DFT and IDFT can be

extremely slow, therefore, the technique of Fast Fourier transform (FFT) is often

employed as a practical solution. As such, the FFT is widely regarded as the

foundation for analyzing LTI systems in the frequency domain. A wide spectrum

of algorithms for implementing the FFT have been developed in the past, among

them, the Cooley-Tukey algorithm, Prime-factor FFT algorithm, Bruun's FFT

algorithm, Rader's FFT algorithm, and Bluestein's FFT algorithm are the most

prominent and successful (Auslander et al., 1996; Temperton, 1983; Kekre et al.,

1988; Swarztrauber et al., 1991). Echoing this development, the implementation

of the FFT and IFFT on a GPU for speed gain has been proposed since the

appearance of programmable GPUs, most of the pilot projects were carried out

on the basis of the so-called butterfly operations.

The importance of the hardware-assisted FFT is also evident by GPU vendors’

innovation on their software products. A classical example of this is the CUFFT, a

Chapter 8 Experiment Analyses and Discussions

183

FFT library for CUDA covering the 1D power of 2 FFTs and the 3D non-power of

2 FFTs. “The CUFFT liberates the GPGPU programmer from tedious work of

remapping their algorithms to graphics concepts”, as claimed by its developer.

The case study in Chapter 7 has demonstrated the adoption of CUFFT functions

for issuing FFT transforms on various data sizes.

8.2 Final Discussions

Based on the test results from the case studies in previous chapters and the

further analysis of GPGPU’s processing flowchart on LTI systems as illustrated in

Section 8.1, it can be concluded that GPGPU idealism and practices are effective

and efficient for applications in which the system can be modelled as a LTI

system. In addition, supported by the GPU’s operations on the floating-point

level, GPGPU programs can achieve sufficient precision level as CPU-based

programs in terms of data accuracy, which has been demonstrated by the case

studies in the thesis. This has been proven valuable especially for the

applications in surface metrology where data and processes are often having

high demand on accuracy.

For nonlinear systems, GPGPU has also been applied in the area such as partial

differential equation (PDE) solving and computational fluid dynamics (CFD)

simulations, in which the nonlinear Navier-Stokes equation is commonly

employed for modelling. It is observed that GPGPU can also achieve satisfactory

acceleration for nonlinear systems if the operations can be linearized or be

transformed into the algebraic operations expressed by matrices or vectors.

Therefore, as a cost-effective consumer-level stream processor, GPUs will play a

much more important role in the future for real-world applications. As a guideline

for the future effort on harnessing the power of GPUs, it is worth remembering

that the acceleration performance of GPUs is largely determined by the following

two pre-conditions:

Chapter 8 Experiment Analyses and Discussions

184

• Independencies between data elements at each step in the computation for

the reason that the parallel processing of today’s GPUs is still pre-dominantly

localized on the level of data parallelism;

• Uniformity of computations on data for the reason that GPU’s operation is

still only based on the SIMD mode.

For the algebraic operations on small-scale data sets, GPGPU solution does not

bring obvious advantage in terms of computational efficiency due to the overhead

of the operations between CPU and GPU. As a result, this thesis has only chosen

the visualization of massive processed data, which is viewed as the classical

setting, to demonstrate the effective ways in dealing with the issue of

communications between CPU and GPU. To overcome this problem, one

straightforward solution is to increase the bandwidth of the interface, for example,

the bandwidth of the new generation of PCI-Express bus is up to 6Gb/s.

However, under the condition subject to this research where the bandwidth of the

data bus is fixed, the thesis has proven two effective methods to alleviate the

negative impact of this overhead:

• To split a massive data into multiple smaller parts for “cross-border”

transferring, which is originated from the strategy of the Divide-and-Conquer

pattern;

• Utilizing GPU’s memory and other hardware features for “pre-“ and “post-“

style processes to shifting the computational weight from CPU to GPU.

The effectiveness of the first method was validated by the case study in Chapter

5, while the latter one was validated by the using of vertex buffer object in the

case study in Chapter 7. It is noted that the latter method is based on the

functional enhancement of the new generation GPUs which allows the access to

GPU’s memory, that is, the support of direct memory address indexing.

Finally, through the domain survey in Chapter 2 and 3, it can be seen that the

GPU’s hardware structure and software development platform has evolved

greatly since its first appearance over 10 years ago, and this trend is still

Chapter 8 Experiment Analyses and Discussions

185

continuing. Considering the fact that different users are likely to be exposed to

different specifications or even generations of GPU products, a general GPGPU

programming framework is devised and presented in the thesis with the aim in

shielding the detail distinctions of GPUs and focusing on the essential

implementations in parallel processing. Based on the programming framework, a

set of programming models for various applications have also been developed.

The models focus on the kernel clarification through task partitioning which is

viewed as the core of GPGPU practices and directly influences the computational

efficiency of the devised solutions. The validity and feasibility of the research

results were evaluated and proven through the cases studies in the surface

metrology and image processing domains.

Chapter 9 Contributions and Future Works

186

Chapter 9 Contributions and Future Works

The perceived contribution to domain knowledge from this research is

summarized in this chapter, along with the anticipated future works in the related

fields.

9.1 Contributions

The research reported in this dissertation has been focused on exploring and

adopting commodity GPUs as parallel processors for accelerating scientific

computation. Several discoveries and contributions have been made in the areas

of GPGPU’s parallel architectural patterns, overarching GPGPU programming

framework, and GPGPU programming model design.

1. Graphics Hardware Characterization

One of the contributions of this dissertation is the systematic and

programmatic characterization of graphics hardware features, such as the

vector processor architecture and various pipeline elements for mapping to the

parallel processing paradigms, which has laid down a solid foundation for this

research and future GPGPU applications.

2. General GPGPU Programming Framework Definition

Following the detailed study and clarification of GPGPU’s parallel architectural

patterns, an overarching GPGPU programming framework was proposed

aiming to formularize a common guideline to GPGPU programming model

designs. The proposed framework supports the conventional GPUs equipped

with traditional rendering pipelines, and the latest GPUs with the uniformed

pipelines.

3. Effective GPGPU Programming Model Design

Chapter 9 Contributions and Future Works

187

The dissertation has adopted a scope of popular engineering algorithms to

devise the GPGPU programming model for implementing the algorithm in LTI

systems. The adopted algorithms include filtering algorithms, Fast Fourier

Transform (FFT) and wavelet transform, which are both generic and

representative in practical engineering domains. In general, these algorithms

represent the single-level and cascaded LTI systems in both the spatial and

frequency domains. Based on the programming model, this research has

revealed the detailed GPGPU solutions for the adopted algorithms in terms of

kernel definition and development phases. The evaluation carried out in

Chapter 5, 6 and 7 have proven that GPUs are capable of satisfactory

performances on acceleration and precision for the adopted algorithms.

4. Measurable Criteria for GPGPU Performance Analysis

Another important contribution from this dissertation is the forming of criteria

for quantifying and evaluating the performance of GPGPU solutions in term of

speed up factor, and, operational and data accuracy. For testing the

performance criteria, a set of CPU-based programs have also been developed

in the research to compare with the performance of the proposed GPGPU

solutions. While exercised, the evaluation results on the GPGPU solutions

have clearly demonstrated advantages over their counterparts in a quantifiable

fashion. Since the implementation of GPGPU is based on the “farmer-and-

worker” architectural pattern with both GPU and CPU playing important roles,

the effect of workload weighting on CPU in an entire GPGPU application cycle

has also been thoroughly evaluated to validate the feasibility of the GPGPU

programming framework in practical applications.

5. Efficient Visualization Techniques for Massive Data Sets

Another relative trivial but more “obvious” contribution is the near real-time

visualization of the processed data. This dissertation presented a visualization

solution for efficiently displaying massive data sets by splitting data through

using the GPU resource of Vertex Buffer Object, which greatly promotes the

Chapter 9 Contributions and Future Works

188

acceleration performance of the graphical operations such as the

transformation computation and the visualization processes.

9.2 Future Works

Commodity-level parallel computing has a wide diversity of applications from

embedded and mobile software through consumer applications such as games

and multimedia to HPC solutions. This demand of more computational power and

capacity has been driving a steadily increasing market for parallel computing

products. Apart from GPUs, other intrinsically parallel processors such as FPGAs

and Cell CPUs have also appeared on the consumer doorsteps, providing a

spectrum of parallel computing options. To better harnessing the raw power of

the less regulated consumer “gadgets”, it is essential to devise a unified

programming model for devices such as GPUs, Cells, DSPs and other

standalone or embedded processors in a system. CUDA has attempted to

provide such a unified development platform, in the form of conceptions for host

and computer devices that correspond to different kinds of processors. However,

only limited success has been observed on Nvidia’s own GPUs. It is still not even

compatible with other vendor’s GPUs.

A natural extension of this research would be the investigation of a

heterogeneous framework consists of multi-core Cell CPUs, multiple GPUs and

FPGAs that are interconnected by networks and databases to form clusters and

grids. To support such a framework, the parallel task and distribution model will

need to be developed and evaluated. The future research on the heterogeneous

parallel programming framework can be centred on the following aspects.

• Platform Models Definition

The focus will be on the abstraction of an integrated parallel model (or models)

for heterogeneous and asychronized hardware and networks. The investigation

approach could follow the one adopted by the CUDA initiative, that is, a

Chapter 9 Contributions and Future Works

189

hierarchical structure consists of one or more hosts plus one or more computing

clients. Each computing client is composed of one or more computing units, while

each unit can be further divided into processing elements corresponding to

software elements (functions), and arithmetic as well as register units. The clients

can communicate with each other by using device-portable or middleware

functions with all communications monitored by the hosts.

• Optimization and Standardization on Memory Access

For efficient cooperation among the processing elements, shared memory can be

used as a low-latency solution, much like the L1 cache in a processor core similar

to the shared memory model adopted by CUDA. However, due to the likely

limited shared memory resources from the heterogeneous framework,

optimization on memory access needs to be further investigated. This part of the

work should mainly be concentrating on the memory coalescing strategy in which

memory transactions might be issued in an irregular mode.

• Task Distribution Model

As a branch of high performance computing, distributed computing is commonly

implemented in the form of clusters and grids in which a Message Passing

Interface (MPI) model is employed for task parallelism (Foster, 1995). GPU

clusters were initially developed for graphics and rendering demanding tasks,

such as the visualization of time-dependent Computational Fluid Dynamics (CFD)

simulation, which can comprise several gigabytes of intermediate processed data

in a single clock cycle and lasting through several hundred or thousand frames. It

is anticipated that further research on the GPU or other device clusters need to

be carried out to achieve load balance and optimized task parallelism. A classic

application of such a model can be explained in the following example: the

practical implementation of a parallel LTI system for video event detection in

which a series of continuous video frames need to be processed in a timely

fashion. The demanding process might even require frames from different time

segments been processed by different algorithms. For automating and analysing

Chapter 9 Contributions and Future Works

190

the videos online, the practical solution has to employ distributed processors with

well balanced workload. There are currently limited researches on the GPU

clusters based on the author’s survey, possibly because the challenging demand

in developing the complex parallel multigrid solvers with decoupled local

smoothing mechanisms.

• Syntax and Semantics for the Adaptable Program

At the end of 2008, Apple, AMD and Nvidia have jointly released the Open

Computing Language (OpenCL) as a future programming model and platform for

developing programs that can execute across integrated parallel processing

systems (IPPS). Similar to CUDA, OpenCL also employed the concepts of “host

programs” and “kernels”. However, OpenCL has added the flavour of task-

parallelism to its kernel settings, for example, it envisages that a heterogeneous

parallel system might be deployed through the task-parallel-based kernels for

program execution. Although OpenCL is closing its Beta release, much

researches are still needed in the application level.

References

191

References

[1] Adams, J. (2003) “Advanced animation with DirctX”, Boston, Massachusetts,

USA.

[2] Almasi, G. S. and Gottlieb, A. (1990) ‘Review of "Highly parallel computing"’,

IBM Systems Journal, 29(1) : 165 – 176.

[3] Arjona, J. L. O. (2006) “Architectural Patterns for Parallel Programming”, PhD

Thesis, Department of Computer Science, University College London, 2006.

[4] ASME B46.1 (1995) “Surface Texture: Surface Roughness, Waviness, and

Lay”, New York: American Society of Mechanical Engineers,1995.

[5] ATI Corporation (2009), “Product Archive”, Available online:

<http://ati.amd.com/products>.

[6] Auslander, L., et al.(1996) “Multidimensional Cooley–Tukey Algorithms

Revisited”, Advances in Applied Mathematics, 17 (4): 477-519.

[7] Azzalini, A., et al. (2005) “Nonlinear wavelet thresholding: A recursive method

to determine the optimal denoising threshold”, Applied and Computational

Harmonic Analysis, 18(2): 177-185.

[8] Barron, A., et al. (1999) “Risk bounds for model selection via penalization”,

Probability Theory and Related Fields, 113(3): 301-413.

[9] Baskaran, M. M., et al. (2008) “A Compiler Framework for Optimization of

Affine Loop Nests for GPGPUs”, Proceedings of the 22nd annual

international conference on Supercomputing, June 2008, Island of Kos,

Aegean Sea, Greece. pp. 225-234.

[10] Berkovich, E. and Berkovich, S.(1998) “A combinatorial architecture for

instruction-level parallelism, Microprocessors and Microsystems”, 22 (1) : 23-

31.

References

192

[11] Berrington, N., et al. (1993) “Guaranteeing unpredictability”, The Computer

Journal, 36 (8) :723-733.

[12] Birgé, L. and Massart, P. (1997) “From model selection to adaptive

estimation, Festschrift for Lucien Le Cam”, Research Papers in Probability

and Statistics, Springer(1997), pp. 55-88.

[13] Blasquez, I. and Poiraudeau, J. F.(2004) “Undo facilities for the extended z-

buffer in NC machining simulation”, Computers in Industry, 53 (2) :193-204.

[14] Blunt L. and Jiang X. Q.(2003) “Advanced techniques for assessment

surface topography: Development of a basis for 3D surface texture standards

‘SURFSTAND’”, Kogan Page Science, London.

[15] Bovik, A. (2005) “Handbook of image and video processing (Second

Edition)”, Elsevier Academic Press, London, UK.

[16] Brinkmann, S., et al. (2000) “Development of a robust Gaussian regression

filter for three-dimensional surface analysis”, In: Proceedings of the Xth

International Colloquium on Surfaces.Chemnitz University of Technology,

Chemnitz, 2000, pp. 122–132.

[17] Buck, I., et al.(2004) “Brook for GPUs: stream computing on graphics

hardware”, ACM Transactions on Graphics, 23 (3) : 777-786.

[18] Buschmann, F., et al. (1996) “Pattern-Oriented Software Architecture”, John

Wiley & Sons, Ltd., Oxford , UK.

[19] Cai, H., et al. (2004) “A performance anomaly in clustered on-line transaction

processing systems”, Computer Communications, 27 (12) :1166-1173.

[20] Carriero, N. and Gelernter, D. (1988) “How to Write Parallel Programs. A

Guide to the Perplexed”, Department of Computer Science, Yale University,

New Heaven, Connecticut, USA.

References

193

[21] Chandy, K. M., and Taylor, S. (1992) “An Introduction to Parallel

Programming”. Jones and Bartlett Publishers, Boston, Massachusetts,

USA.

[22] Che, S., et al. (2008) “A performance study of general-purpose applications

on graphics processors using CUDA”, Journal of Parallel and Distributed

Computing, 68, (10): 1370-1380

[23] Chicken, E. and Cai, T. T. (2005) “Block thresholding for density estimation:

local and global adaptivity”, Journal of Multivariate Analysis, 95 (1): 76-106.

[24] Christopher H., et al. (1994) “Laboratories for Parallel Computing”, Jones

and Bartlett Publishers, London.

[25] Clark, J. H. (1982) “The geometry engine: A VLSI geometry system for

graphics”, Proceeding of the SIGGRAPH’82. pp:127~133.

[26] Collange, S., et al. (2007) “Graphic processors to speed-up simulations for

the design of high performance solar receptors”, Proceedings of the IEEE 18th

International Conference Application-specific Systems, Architectures and

Processors, May 2007, Volume 2, pp.377-382.

[27] Cormen, T. H., et al. (2001) “Introduction to Algorithms (2nd ed.)”, MIT Press

and McGraw-Hill, USA, 2001.

[28] Culler, D., et al.(1997) “Parallel Computer Architecture”, Morgan Kaufmann

Publishers, San Francisco, USA.

[29] Dai, X. and Katuo, S. (1998) “High-accuracy absolute distance measurement

by means of wavelength scanning heterodyne interferometry”, Measure

Science & Technology, 9 (5): 1031-1035.

[30] Dally, W. J., et al. (2003) “Merrimac: Supercomputing with streams”, In

Proceedings of Super Computing (SC'03 Proceedings).

[31] Dally, W. J., et al. (2004) “Stream Processors: Programmability with

Efficiency”, ACM Queue, 2 (1): 52-62.

References

194

[32] Darlington, J., et al. (1993) “Parallel programming using skeleton functions”,

In Parallel Architecture and Languages Europe (PARLE’93), 1993.

[33] David J. (1994) “A multiprocessor architecture combining fine-grained and

coarse-grained parallelism strategies”, Parallel Computing, 20 (5) : 729-751.

[34] DIN 4776 (1990) “Measurement of surface roughness for describing the

material portion in the roughness profile”.

[35] Donald, K. (1998). “The Art of Computer Programming”, Addison-Wesley.

pp. 158–168.

[36] Donoho, D. L. and Johnstone, I. M. (1995) “Adapting to unknown

smoothness via wavelet shrinkage”, Journal of the American Statistical

Association, Vol.90, pp.1200-1224.

[37] Donoho, D. L. and Johnstone, I. M. (1998) “Minimax estimation via wavelet

shrinkage”, Journal of Applied Probability, 26 (3): 879-921.

[38] Donoho, D. L., et al. (1995) “Wavelet shrinkage: Asymptopia”, Journal of the

Royal Statistical Society, Series B(Methodological), 57 (2) : 301-369.

[39] Douglas, C. (2009) “Computer Networks and Internets(5th Edition)”, Pearson

Education, Inc..

[40] EI-Rewini, H. and Abd-El-Barr, M.(2005) “Advanced Computer Architecture

and Parallel Processing”, John Wiley & Sons, Inc., Oxford, UK.

[41] Enderle, G., et al. (1984) “Computer Graphics Programming: GKS --The

Graphics Standard”, Berlin: Springer-Verlag.

[42] Flynn, M.(1966) “Very high-speed computing systems”, Proceedings of the

IEEE,1966.

[43] Foster, I. (1995) “Designing and building parallel programs: concepts and

tools for parallel software engineering”, Addison-Wesley, Reading,

Massachusetts.

References

195

[44] Fuchs, H. and Poulton, J. (1981) “Pixel-Planes: A VLSI-oriented design for a

raster graphics engine”, VLSI Design, 2 (3) : 20~28.

[45] Fuchs, H., et al. (1989) “Pixel-Planes 5: A heterogeneous multiprocessor

graphics system using processor-enhanced memories”, Proceeding of the

SIGGRAPH’89, 1989, pp. 79~88.

[46] Geys, I., and Gool, L. V.(2007) “View synthesis by the parallel use of GPU

and CPU”, Image and Vision Computing, 25 (7): 1154-1164.

[47] Goodeve, D. M. (1994) “Performance of Multiprocessor Communications

Networks”, PhD Thesis, Department of Electronics, University of York,

1994.

[48] Goossens, B.(2001) “Handling 16 instructions per cycle in a superscalar

processor”, Future Generation Computer Systems, 17 (6) : 699-709.

[49] Goswami, D., et al. (2002) “From design patterns to parallel architectural

skeletons”, Journal of Parallel and Distributed Computing, 62 (4): 669 –

695.

[50] Gschwind, M. (2007) “The Cell Broadband Engine: Exploiting multiple levels

of parallelism in a chip multiprocessor”, International Journal of Parallel

Programming, 35 (3): 233-262.

[51] Hagen, T. R., et al. (2005) “Visual simulation of shallow-water waves”,

Simulation Modelling Practice and Theory, 13 (8): 716-726.

[52] Han, C. Y., et al. (2005) “Geometry engine architecture with early backface

culling hardware”, Computers & Graphics, 29 (3): 415-425.

[53] Hayes, J. (2002) “Dynamic interferometry handles vibration”, Laser Focus

World, 38 (3): 109-118.

[54] Hector, F. C.(2002) “Signal de-noising in magnetic resonance spectroscopy

using wavelet transforms”, Concepts in Magnetic Resonance, 14 (6): 388-

401.

References

196

[55] Hill, F. S. (2001) “Computer graphics : using OpenGL”, London : Prentice

Hall.

[56] Hirai, A., et al. (1999) “White-light interferometry using pseudo random-

modulation for high-sensitivity and high-selectivity measurements”, Optics

Communications, 162 (1-3): 11-15.

[57] Hlubina, P. (2002) “Dispersive white-light spectral interferometry to measure

distances and displacements”, Optics Communications, 212 (1-3): 65-70.

[58] Hopf, M. and Ertl, T. (2000) “Hardware-Accelerated Wavelet

Transformations”, Proc. EG/IEEE TVCG Symp. Visualization (SisSym ’00),

May 2000, pp. 93-103.

[59] Hopgood, F. R. A., et al. (1983) “Introduction to the Graphics Kernel System

(GKS)”, Academic Press.

[60] Howard, T. L. J., et al. (1991) “A Practical Introduction to PHIGS and PHIGS

Plus”, Addition-Wesley, NJ, USA.

[61] Huang, J., et al. (1988) “Fringe scanning scatter plate interferometer using a

polarized light”, Optics Communications, 68 (4): 235–238.

[62] Huang, T. C., et al. (2004) “The local memory access sequence of multiple

induction variables on distributed memory machines”, Computers & Electrical

Engineering, 30 (3) : 231-244.

[63] Intel Corporation (2007), “Intel® Hyper-Threading Technology”, Available

online: < http://www.intel.com/technology/platform-technology/hyper-

threading/index.htm>

[64] Intel Corporation (2008), “Intel® Core™2 Quad Processors”, Available

online: <http://www.intel.com/products/processor/core2quad/index.htm>

[65] ISO 3274 (1975) “Instruments for the measurement of surface roughness by

the profile method-contact (stylus) instruments of consecutive profile

References

197

transformation – contact profile metres, system M”, International

Organization for Standardization, Geneva, Swiss,1975.

[66] ISO 11562 (1996) “Geometrical Product Specifications (GPS) -- Surface

texture: Profile method -- Nominal characteristics of contact (stylus)

instruments”, International Organization for Standardization, Geneva,

Swiss,1996.

[67] James, E., et al. (2004) “Instantaneous phase-shift, point-diffraction

interferometer”, Interferometry XII: Techniques and Analysis, edited by

Katherine Creath, Joanna Schmit, Proceedings of SPIE Vol. 5531 (SPIE,

Bellingham, WA, 2004), pp.264-272.

[68] Jiang, X., et al. (2006) “Near common-path optical fibre interferometer for

potentially fast real-time micro/nano scale surface measurement”, Optics

Letters, 31(24) :3603-3605.

[69] Joo, K. and Kim, S. (2006) “Absolute distance measurement by dispersive

interferometry using a femtosecond pulse laser”, Optics Express, 14 (13):

5954-5960.

[70] Kaya, D. (2005) “The symmetric tridiagonal eigenproblem on a shared

memory multiprocessor: Part II”, Applied Mathematics and Computation,

163 (1) : 213-244.

[71] Kekre, H. B., et al. (1988) “Application of Rader transforms to the analysis of

nuclear spectral data”, Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 269 (1):279-281.

[72] Kessenich, J., et al. (2006) “The OpenGL Shading Language”. Available

online: <http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf>

[Accessed on 8th February 2007]

References

198

[73] Khronos (2009) “OpenCL Overview”, Available online:

<http://www.khronos.org/opencl/>

[74] Kincaid, D. and Cheney, E. W. (2002) “Numerical analysis : mathematics of

scientific computing(3rd Edition)”, Pacific Grove, Calif., United Kingdom.

[75] Kolks, J., et al.(2009) “Effects of video game console and snack type on

snack consumption during play”, Appetite, 52 (3): 841-843.

[76] Krüger, J. and Westermann, R. (2003) “Linear algebra operators for GPU

implementation of numerical algorithms”, ACM Transactions on Graphics

(TOG) (Proceedings of ACM SIGGRAPH 2003), 22(3):908–916.

[77] Lefohn, A. E., et al. (2004) “A streaming narrow-band algorithm: Interactive

computation and visualization of level-set surfaces”, IEEE Transactions on

Visualization and Computer Graphics, 10 (4):422–433.

[78] Lefohn, A. E., et al. (2006) “Glift: An abstraction for generic, efficient GPU

data structures”, ACM Transactions on Graphics, 26 (1): 60–99.

[79] Li, W. (2004) “Accelerating Simulation and Visualization on Graphics

Hardware.” Ph.D. dissertation, Computer Science Department, Stony Brook

University.

[80] Liu, S. G., et al. (2008) “Simulation of atmospheric binary mixtures based on

two-fluid model”, Graphical Models, 70 (6): 117-124.

[81] Losasso, F. and Hugues, H. (2004) “Geometry Clipmaps : Terrain Rendering

Using Nested Regular Grids”, ACM Transactions on Graphics (Proceedings

of SIGGRAPH 2004), 23(3):769–776.

[82] Luna, F. D. (2003) “Introduction to 3D game programming with DirectX 9.0”,

Wordware Pub.

[83] Manuel, V., et al. (1996) “Relating data-parallelism and (and-) parallelism in

logic programs”, Computer Languages, 22 (2-3): 143-163.

References

199

[84] Marziale, L., et al. (2007) “Massive threading: Using GPUs to increase the

performance of digital forensics tools”, Digital Investigation, 4 (1): 73-81.

[85] Merlin, J., et al. (1999) “Multiple data parallelism with HPF and KeLP”, Future

Generation Computer Systems, 15 (3): 393-405.

[86] Meunier, R. (1995) “The Pipes-and-Filters architecture”, in <Pattern

languages of program design>, ACM Press/Addison-Wesley Publishing Co.,

New York.

[87] Microsoft (2006), “Microsoft Developper Network”, Available online:

<http://msdn2.microsoft.com/en-us/library>

[88] Mitchell, J. L. and Sander, P. V. (2004) “Applications of Explicit Early-Z

Culling”, In Real-Time Shading Course of SIGGRAPH 2004, 2004.

[89] Molnar, S., et al.(1992) “PixelFlow: High-Speed rendering using image

composition”, Proceeding of the SIGGRAPH’92, 1992, pp. 231~240.

[90] Moncrieff, D., et al. (1996) “Heterogeneous computing machines and

Amdahl's law”, Parallel Computing, 22 (3) : 407-413.

[91] Natalia, O. and Victor, O. (2006) “Computer networks : principles,

technologies, and protocols for network design”, John Wiley & Sons Ltd,

Oxford, UK.

[92] North-Morris, M. B., et al. (2002) “Phase-shifting birefringent scatterplate

interferometer”, Applied Optics, 41(4): 668-677.

[93] Nvidia Corporation (2009), “Product and Technical Whitepaper Archive”.

Available online: <http://www.nvidia.com>

[94] Oat, C. (2005) “Rendering to an off-screen buffer with WGL_ARB_pbuffer”,

Technology paper of ATI Inc. pp.1-13. Available online:

<http://ati.amd.com/developer/ATIpbuffer.pdf> [Accessed on 5th December

2006]

References

200

[95] Ocak, H. (2008) “Optimal classification of epileptic seizures in EEG using

wavelet analysis and genetic algorithm”, Signal Processing, 88(7): 1858–

1867.

[96] Owens J. D., et al. (2007) “A Survey of General-Purpose Computation on

Graphics Hardware”, Computer Graphics Forum, 26 (1) : 80 -113.

[97] Pancake, C. M. (1996) “Is Parallelism for You?”, Computational Science and

Engineering, 3 (2) : 18-37.

[98] Parberry, I. (2001) “Introduction to computer game programming with DirectX

8.0”, Wordware Pub.

[99] Persson, E. (2007) “Framebuffer Objects”, Technology paper of ATI Inc.

pp.1-12. Available online:

<http://ati.amd.com/developer/SDK/AMD_SDK_Samples_May2007/Docume

ntations/FramebufferObjects.pdf> [Accessed on 3rd September 2007]

[100] Pharr, M., et al. (2005) “GPU Gems 2:Programming Techniques for High-

Performance Graphics and General-Purpose Computation”, Addison-

Wesley, NJ, USA.

[101] Rabaey, J. M. (1996). “Digital Integrated Circuits: a design perspective”,

Prentice Hall.

[102] Rabhi, F. A. (1995) ‘Exploiting parallelism in functional languages: A

“paradigm-oriented” approach’, Abstract Machine Models for Highly Parallel

Computers (pp.118-139), Oxford University Press.

[103] Raja J., et al. (2002) “Recent advances in separation of roughness,

waviness and form”, Journal of the International Societies for Precision

Engineering and Nanotechnology, 26(2):222-235.

[104] Rastello, F., et al.(2003) “Optimal task scheduling at run time to exploit

intra-tile parallelism”, Parallel Computing, 29 (2) : 209-239.

[105] Reilly, S. P., et al.(2006) “Overview of MEMS sensors and the metrology

References

201

requirements for their manufacture Market”, NPL report DEPC-EM 008.

[106] Robert L. G., et al. (1998) “Task-oriented asymmetric multiprocessing for

interactive image-guided surgery”, Parallel Computing, 24 (9-10) : 1323-

1343.

[107] Sandoz, P., et al. (1996) “High-resolution profilometry by using phase

calculation algorithms for spectroscopic analysis of white-light interferograms”,

Journal of Modern Optics, 43 (4): 701-708.

[108] Schneider, B. and Rossignac, J. (1995) “M-Buffer: A flexible MISD

architecture for advanced graphics”, Computers & Graphics, 19 (2) : 239-246.

[109] Schnell, U., et al.(1996) “Dispersive white-light interferometry for absolute

distance measurement with dielectric multilayer systems on the target”,

Optics Letter, 21 (7): 528-530.

[110] Schwider, J. and Zhou, l.(1994) “Dispersive interferometric profilometer”,

Optics Letter, 19 (13): 995-997.

[111] Segal, M. and Peercy, M. (2006) “A performance-oriented data parallel

virtual machine for GPUs”. ACM SIGGRAPH 2006 Sketches.

[112] Seitz, C., “Evolution of GPUs”, Available online:

<ftp://download.nvidia.com/developer/presentations/2004/Perfect_Kitchen_A

rt/English_Evolution_of_GPUs.pdf> [Accessed on 12th October 2006]

[113] Shaw, M.(1995) “Patterns for Software Architectures”, In < Pattern

Languages of Program Design>, ACM Press/Addison-Wesley Publishing

Co., New York.

[114] Shirley, P.(2005) “Fundamentals of computer graphics (2nd Edition)”, A K

Peters, Wellesley, Massachusetts, USA.

References

202

[115] Silicon Graphics Inc. (1996) “The OpenGL Machine”, Available online:

<http://www.opengl.org/documentation/specs/version1.1/state.pdf>

[Accessed on 19th December 2006]

 [116] Silicon Graphics Inc. (2005) “Silicon Graphics Prism Systems

Breaking Barriers to Large Data Visualization for Researchers and

Film Industry at SIGGRAPH 2005” Available online:

<http://www.sgi.com/company_info/newsroom/press_releases/2005/august/s

iggraph2005.html> [Accessed on 24th March 2008]

[117] Sina, B., et al (2003) “Analog VLSI design automation”, London : CRC

Press.

[118] Singleton, L., et al. (2002) “Report on the analysis of the MEMSTAND

survey on Standardisation of MicroSystems Technology”, MEMSTAND

Project IST-2001-37682.

[119] Sinnen,O. (2007) “Task scheduling for parallel systems”, John Wiley &

Sons, Inc., Oxford, UK.

[120] Simon F. et al. (2007) “High-performance direct gravitational N-body

simulations on graphics processing units”, New Astronomy, 12 (8): 641-650.

[121] Steve, H. (1995) “Microprocessor architectures : RISC, CISC, and DSP(2nd

Edition)”, Oxford Press.

[122] Steven, G., et al. (1997) “A superscalar architecture to exploit instruction

level parallelism, Microprocessors and Microsystems”, 20 (7): 391-400.

[123] Stout K. J. and Blunt L.(2000) “Three-dimensional surface topography (2nd

Edition)”, Penton Press, London.

[124] Strang, G. and Nguyen, T. (1996) “Wavelets and Filter Banks”, Wellesley-

Cambridge Publisher, Cambridge, Massachusetts, USA.

References

203

[125] Su, D. C. and Shu, L. H. (1991) “Phase-shifting scatter plate

interferometerusing a polarization technique”, Journal of Modern Optics,

38(5): 951–959.

[126] Swarztrauber, P. N., et al. (1991) “Bluestein's FFT for arbitrary N on the

hypercube”, Parallel Computing, 17 (6-7): 607-617.

[127] Szirmay-Kalos, L., et al. (2008) “GPU-based techniques for global

illumination effects”, Morgan & Claypool Publishers, San Rafael, California,

USA.

[128] Takeda, M. and Yamamoto, H. (1994) “Fourier-transform speckle

profilometry: three-dimentional shape measurements of diffuse objects with

large height steps and/or spatially isolated surfaces”, Applied Optics,

33(34): 7829-7837.

[129] Temperton, C. (1983) “Note a note on prime factor FFT algorithms”, Journal

of Computational Physics, 52 (1): 198-204.

[130] Tenllado, C., et al. (2008) “Parallel Implementation of the 2D Discrete

Wavelet Transform on Graphics Processing Units: Filter Bank versus

Lifting”, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS. 19(3): 299-310.

[131] Thomas, F., and Zsolt, N. (2007) “Distributed and parallel systems : from

cluster to grid computing”, New York : Springer.

[132] Thomaszewski, B., et al.(2008) “Parallel techniques for physically based

simulation on multi-core processor architectures”, Computers & Graphics, 32

(1) : 25-40.

[133] Tomov, S., et al. (2005) “Benchmarking and implementation of probability-

based simulations on programmable graphics cards”. Computers &

Graphics, 29 (1):71-80.

References

204

[134] Victor, J. D., et al. (2005) “Interaction of luminance and higher-order

statistics in texture discrimination”, Vision Research, 45 (3) : 311-328.

[135] Wagner, A. S., et al. (1997) “Performance Models for the Processor Farm

Paradigm”, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, 8 (5):475-489.

[136] Walsh, P.(2008) “Advanced 3D game programming with DirectX 10.0”,

Wordware Pub.

[137] Watt, A. H. (1999) “3D computer graphics”, Addition-Wesley, NJ, USA.

[138] Willems, J. C. (1986) “From time series to linear system—Part I. Finite

dimensional linear time invariant systems”, Automatica, 22 (5): 561-580.

[139] William, G. and Rajeev, T.(2007) “Thread-safety in an MPI implementation:

Requirements and analysis”, Parallel Computing, 33 (9) : 595-604.

[140] Wong, T. T., et al. (2007) “Discrete Wavelet Transform on Consumer-Level

Graphics Hardware”, IEEE Transaction on Multimedia, 9(3): 668-673.

[141] Xie, K., et al. (2008) “Real-time visualization of large volume datasets on

standard PC hardware”, Computer Methods and Programs in Biomedicine,

90 (2): 117-123.

[142] Yamaguchi, I., et al. (2000) “Surface topography by wavelength scanning

interferometry”, Optical Engineering, 39(1): 40-46.

[143] Yamamoto, A. and Yamaguchi, I. (2000) “Surface profilometry by

wavelength scanning Fizeau interferometer”, Optics & Laser Technology,

32 (4) : 261-266.

[144] Yanagi, K. and Hara, S. (2003) “Technical committee for standardizing the

software to characterize surface topographic data—in concert with the

geometrical product specifications: surface texture in ISO”, J Jpn Soc

Precision Eng, 69(8):1057–1060.

References

205

[145] Zhao, Y., et al. (2006) “Melting and flowing in multiphase environment”,

Computers & Graphics, 30 (4): 519-528.

206

Appendix A: Hardware Acceleration

Prospects for High Performance Computing

For the traditional meaning, high performance computing (HPC) has the specific

requirement on the hardware platform, which brings expensive cost for the users.

However, the situation has somewhat changed recently, in the last decade or so,

attributing to ‘consumer-level’ computing devices such as game consoles, mobile

devices, and PCs. Except GPU, there are some other types of PC-grade HPC

systems which include multicore processors, chip multithreading, Cell

processors, field-programmable gate arrays. The technological characteristics of

these systems are summarized below:

• Multicore Processors

The earliest multicore processor can be originated to the release of dual-core

processors which are now installed in PC, hence it was viewed as an early

version of PC-grade HPC system. Furthermore, Quad-core processors can yield

the processing capability that is same as eight processors if the mother board

supports two physical CPU sockets. In this way, more cores began to be

integrated into a processor density along with the advancement of chip

manufacturing. It is obvious that this trend will provide new opportunities to

consumer-level parallel computing and might even bring great impact on some

popular engineering/mathematical algorithms, for example, fast but serial-based

algorithms. However, the situation of integrating dense cores in a single

processor also requires high-standard communication buses in terms of

bandwidth to main memory, synchronization and clocks. It is even clear to

relative novice in computing that one shouldn’t expect a double, quadruple, or

octuple of program execution speed simple because there are dual-core, quad-

core, or octa-core CPU’s employed. A basic reason is that the process must cope

with the problems of communication latency and bandwidth allocation among

cores. This challenge becomes much greater when multiple CPU sockets exist

on a main board. It also results in the consequence that a processor with more

207

cores has to run at a decrease clock frequency. It unavoidably decreases the

multicore CPU’s performance when used in HPC as a hardware accelerator. It

has been observed from the case study in Chapter 7 that a quad-core CPU has a

limited effect on acceleration in contrast to running the HPC workloads on GPU.

Although six, eight, and even twelve-core processors are hanging just above the

horizon, based on the author’s view, this is not an imminent solution for power-

hunger parallel computing applications.

• On-Chip Multithreading Processor

Chip multithreading technology (CMT) means a processor maintains separate

threads, managed in hardware multi-threading rather than software multi-

threading. In Software multi-threading, several tasks are implemented within a

process where different tasks are implemented by various software threads. This

has been widely used in today’s operating systems and applications, and is

available as a programming paradigm in mainstream languages like C++ and

Java. However, the software threads are mainly executed on a single processor

in a serial fashion. In contrast, a CMT-enabled processor has the ability of

executing many software threads simultaneously within its own cores, which

greatly increases a processor's efficiency. The classical products on the market

that have adopted the CMT technology are the Sun’s UltraSPARC T1 and T2+

processors. A standard configuration of T2+ processors is 8 cores in which 8

threads running in each core, this configuration has the same processing

capacity as 64 separate processors.

Although integrated better than the above multicore-based approach, CMT still

has the rigid demand on “suitable” applications and algorithm mapping. Unlike

the processors based on the Simultaneous Multithreading technology (SMT),

which had focused on promoting process ability by efficiently sharing some key

resources which include execution pipeline and fetch bandwidth; while a CMT

processor still operated at the style that multiple threads share resources on chip

level, further research has to be carried out on this kind of resource share to find

out the ideal policies or mechanisms to enhance CMT’s processing ability. It is

reported that on the Sun UltraSPARC T2+ processor, a linear increases in speed

208

is observed as more cores were added, but beyond eight, there was little

increase in performance.

• Cell Broadband Engine

The Cell CPU, formally referred as the Cell Broadband Engine (Cell BE)

processor, is originated from the design of Playstation3 gaming console. The

architecture of the Cell BE has been introduced in Figure 4.8 in Chapter 4.

Although this architecture was initially used for gaming, it now has been

extensively viewed as an efficient HPC system. The newly released product of

Cell CPU series, PowerXCell 8i, has more powerful processing ability on floating-

point number than its predecessor. However, based on the author’s observation,

the access of the raw power of the Cell CPU on play station is deliberately made

difficult for application developers due to commercial considerations by the

manufacturer and vendors.

Within the Cell, the general-purpose Power Processing Element (PPE) hosts the

operation system, therefore PPE is the controller of the whole system. Multiple

Synergistic Processing Elements (SPEs) operate as PPE’s coprocessor and has

separate processing power that can achieve more than 25 GFLOPS for single

precision mathematics. The SPE’s separate processing power means SPE has

its own shared and local memory, internal buses, and the interface based on

direct memory access (DMA) to the PPE and other parts of Cell. This design

provides benefit on data locality but exposes some challenges for programmers,

for example, how to allocate workload on PPE and SPE to achieve the most

optimal computing performance, and how to evaluate the influence of different

workload distribution plan on the compile and run-time. Although IBM, the vendor

of Cell, and some other software developing corporations such as RapidMind

have released the software development kit (SDK) to guarantee SPEs are more

transparent to developers, accessing the SPEs is still tedious due to the DMA

model and PPE “front end” to the SPEs which unavoidably increases the

development cost of using Cell CPU.

In contrast to the chip multithreading and multicore processors, the Cell

processor, if properly tuned for a type of computation, will greatly exceed the

209

performance of a single microprocessor. For harnessing its power, an open

source programming platform, Open Computing Language (OpenCL), has been

developed by the HPC research community, which is currently under trial.

• Field Programmable Gate Array

Field programmable gate array (FPGA) is a special-purpose vector processor

which guarantees developers can “route” applications on hardware, but not

“code” them in software. For specially aligned applications, FPGA can achieve

performance that is close to that of a standalone application-specific integrated

circuit (ASIC), the digital signal processor or special-purpose “board” based

devices. However, just small number of specially aligned applications can directly

be run on FPGA for the reason that FPGA has the limit on the program size. In

addition, the bandwidth limitations and the synchronization restrictions also limit

the FPGA’s extensive application in practical engineering domain. Therefore,

FPGAs are commonly treated as part of the so-called specific-purpose-built HPC

systems, which are mainly used for digital signal processing, bioinformatics

computation, and image processing with small-scale data sets. In addition,

restrictions on applicable programming models for FPGAs, have limited its

spread in industry. Therefore, FPGAs are considered not well studied to general-

purpose computing as the ones investigated in this research.

Overall, GPUs has proven a qualified candidate in carrying out many HPC tasks

and providing much needed hardware acceleration on an affordable cost to many

engineering applications. Their outstanding GFLOPS and the large amount of

arithmetic cores have power consumption over a general-purpose CPU.

Application programming libraries such as CUDA’s Fast Fourier Transform (FFT)

library has benefited programmers by avoiding the prerequisite knowledge on the

hardware-level differences between different GPUs and graphical operations.

The efficiency of a GPU acting as a hardware accelerator has been validated

through the case studies in this project. It is envisaged that GPUs will have bigger

shares in future consumer-level HPC systems research and development.

