

University of Huddersfield Repository

Lewington, Amy E.

An Investigation into Various Human-Computer Interfaces which may Enhance Communication for Students with Motor Impairments

Original Citation

Lewington, Amy E. (2009) An Investigation into Various Human-Computer Interfaces which may Enhance Communication for Students with Motor Impairments. In: Degrees of Independence: Providing inclusive learning in Higher Education, 16th - 17th April 2009, University of Huddersfield, Huddersfield, UK. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/8357/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

An Investigation into Various Human-Computer Interfaces which may Enhance **Communication for Students with** Motor Impairments Presented by Amy E Lewington Supervisor: Dr. Steve Woodhead

Overview

- Brief introduction
- Literature findings
- Technologies
- Results and conclusions
- References
- Further work

Introduction

- Background
 - » Aim
 - » Why?
- Technology aiding communication
- Ethics involved
- Current research explored
- Methodology
- Represent results

Literature

- Sources of information
- Current findings
- Engineering Rehabilitation
- Organisations

Information on various technologies

Mouse Technology

- Head mice
- Three types explored:
- 1. Standard mouse
- 2. SmartNav
- 3. QualiEye

Design

🐃 LearnIT		NO PR	G
StearnIT How To Play View 51:7 WebCam (QualiEye) SmartNav Standard Mouse Frame1 NEW USER - SIGN IN Amy Lewington	Start Stop Target 1 hit in 3.3 Seconds Target 2 hit in 4.7 Seconds Target 4 hit in 3.9 Seconds Target 4 hit in 5.3 Seconds Target 6 hit in 5.2 Seconds Target 7 hit in 5.3 Seconds Target 9 hit in 3.3 Seconds Target 9 hit in 3.3 Seconds Target 9 hit in 4.7 Seconds Target 1 hit in 4.7 Seconds Target 2 hit in 5.3 Seconds Target 9 hit in 5.3 Seconds Target 9 hit in 5.3 Seconds Target 9 hit in 5.3 Seconds Target 10 hit in 4.7 Seconds Target 10 hit in 4.7 Seconds Target 10 hit in 4.7 Seconds		G
	Finished in 51.7 with 8 targets hit and 2 targets missed.		
15/06/2009	Department of Computer and Communications Engineering		

Results

A bar graph showing the mean time and percentage number of targets hit out of 30

Keyboard Technology

- Text entry
- Three types:
- Standard keyboard 1.
- 2. Penfriend word predictor
- 3. Penfriend with on-screen keyboard

¢۲			
🖲 D	e.	() Keyboard	
🖲 D		File View	
(D P)	-		BackSp
🔞 к			
	1		Rtn
	9		
	- -	liock a s d f g h j k l ; ' ;	#
	÷		ift
14:55	თ	Space	
22	-		
13°N	<u><u></u>.</u>		
2	Draw 🔻 😓 🛛 Aut	itoShapes • 🔨 🔌 🖸 🖓 🔛 🐗 🎲 🖳 🌄 🔯 🔌 • 🚄 • 🚍 🧮 🛱 🌒 🕤 🗸	

(D) P	enfriend 💶 🗵 🗙
File	View
f1.	selects
٤f2.	sell
f3.	selection
f4.	Selec
f5.	selected
f6.	Select

Results

Shows the number of words users typed correctly using each text entry technology.

15/06/2009

Speech Technology

- Speech recognition
- Training is required
- Any success rates?
- Valid Results?

Conclusions

- Opinions of participants
- Technology a valuable tool
- Disadvantages/Problems faced
- Some trials unsuccessful
- Time limited

REFERENCES

- Hwang, F., Keates, S. Langdon, P. & Clarkson, P.J. (2001) 'Perception and Haptics: Towards More Accessible Computers for Motion-Impaired Users', *Proceedings of the* 2001 Workshop on Perceptive User Interfaces PUI '01, ACM Press.
- Wobbrock, J.O., Myers, B. A., Yang, S., Yeung, B., Nichols, J., Miller, R. (2004) <u>Accessible interfaces: Using handhelds</u> to help people with motor impairments'. *Communications of the ACM.*
- [www.ninds, 2006] <u>http://www.ninds.nih.gov/disaorders/cerebral_palsy/detail_c</u> <u>erebral_palsy.html</u> Accessed 05/ 2006

Further Work

- Undertake tests with new devices
 regular periods
- Questionnaires for participants, support workers.
- Include "real work" examples
- Use a "control group"
- Design rigorous recruitment process

Thank you for listening

Amy E Lewington la46@gre.ac.uk 01634 883534 Pembroke 069

15/06/2009