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Abstract 

 
Many novel condition monitoring techniques have been invented in recent years, and the 
challenge lies in coming up with a highly reliable and cost efficient monitoring system 
which should be capable of tracking down and give an early indication of machinery’s 
faults. The focus of this paper is to develop advanced approaches based on advanced 
intelligent computations to diagnosis and prognosis bearing condition. TESPAR (Time 
Encoded Signal Processing and Recognition) is an effective and direct way for 
describing complex waveforms in digital terms. It is the generic terms set to a collection 
of novel signal analysis, recognition and classification approaches that can be applied to 
describe and classify various ranges of complicated band limited signals. The results 
show that vibration signal waveforms of bearing faults can be digitized and analyzed in 
terms of its epochs’ duration and shape which are the main parameters of the TESPAR 
technique that provides an accurate separation between different bearing faults with 
different degree of severity. 
 
Keywords: TESPAR, Fault detection, Condition monitoring, Bearing faults. 
 

1. Introduction 
 

Condition monitoring of machines has become increasingly essential to improve their 
reliability and to avoid catastrophic failures. Many novel condition monitoring 
techniques have been invented in recent years, such as the indication of temperature, 
acoustic emissions, debris in lubricant, instantaneous angular speed airborne acoustics 
and structural borne vibration techniques. One of the key tasks in using these techniques 
is to apply effective data analysis techniques for accurate detection and diagnosis 
feature extraction. 

In bearing condition monitoring, vibration based envelop analysis is considered as the 
most common method for monitoring various faults up to now. However, this technique 
involves complicated operations such as Fast Fourier Transforms (FFT) and digital 
filtering implemented using an expensive Digital Signal Processing (DSP) board. In 
addition, it also needs large memory space due to a very high sampling rate requirement 
in envelope analysis and hence also requires high power to operate it. These high 
resource demands make it difficult to implement in an intelligent sensor node which has 
very limited in computational capability, storage and power resources [1]. 

This research explores an alternative method to vibration data analysis in bearing fault 
monitoring. The TESPAR (Time Encoded Signal Processing and Recognition) 
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describes different signal waveforms in terms of their shape and differentiates between 
them. The technique is simple but is able to code time varying signals without the need 
to use complex FFT and has been used for analysing speech signals. Recent practical 
experience [2, 3] confirms that the TESPAR and neural network combination produces 
very powerful classification methods, achieving system performance previously 
considered infeasible using conventional methods. Therefore, this work evaluates the 
performance of this technique in condition monitoring by applying it to bearing 
vibration signals from different bearings conditions. 
 

2. Time Encoded Signal Processing and Recognition (TESPAR)  
 
TESPAR is a new simplified digital language, first proposed by King and Gosling [4] 
for coding speech signals. TESPAR technique is based on an accurate numerical 
representation of waveforms, concerning polynomial theory that explains how a signal 
illustrates solely depending on its real and complex zeros locations. It differs from 
conventional techniques that are based on amplitude sampling at regular intervals that 
have been illustrated by several researchers such as Fourier. The TESPAR and Fourier 
transform are computationally equivalent, they result in 2TW (where the T is the time 
and W is the bandwidth) of digital sample data points explaining the waveform [5]. 

A TESPAR quantisation process has been promoted to code the signal waveform in its 
real and complex zeros [6, 7]. The interval between two closest zero-crossings is called 
an epoch. Every epoch can be described by two parameters that are obtained from its 
limits: D, the duration represents the samples number and its shape, S, is the number of 
negative maxima or positive minima featured. As shown in Figure 1, the signal between 
two zero crossings can be encoded into D=14 and S=1.  

 

It is possible for the majority of applications to be coded and expressed into a small 
sequence of discrete numerical descriptors identified as a symbol stream of the 
TESPAR [8, 9], typically in the range 1 to 29. Base on these small number of symbols 
classification can be implemented. The model TESPAR symbol alphabet consists of 28 
different symbols and has been proven that it is sufficient to characterise signal 
waveforms to a given approximation.  

The sequence of the symbols can be represented in two data formats: 1-Dimensional 
(vector) or 2-Dimensional (matrix) and named as “S-Matrices” and “A-Matrices” 
respectively. The S-matrix approximates to a histogram of TESPAR symbols which 
records the number of times each TESPAR alphabet symbol appears in the TESPAR 
symbol stream. A-matrix represents the temporal relationship between consecutive pairs 
of symbols. It is a two dimensional 28x28 vector matrix that records the number of 

Figure 1 TESPAR coding within one epoch (D=14, S=1) 
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times each pair of symbols in the alphabet appears n symbols apart in the symbol stream 
[7]. Parameter n is known as the delay between symbols. n < 10 is used for 
characterizing the fast oscillating content of the signal while and n > 10 is used for 
characterizing the slow fast oscillating content of the signal. Discrimination between 
TESPAR matrices has been always obtained through different applications [10]. 
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Figure 2 S-Matrices from amplitude modulation signals with 4 modulation factors 
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Figure 3 Raw signals from 4 modulation factors 

Figure 2 shows four examples of S-Matrices for 4 sets of amplitude modulation signals 
respectively. It is clear that the amplitude for symbol 15 and 19 are very high for all four 
signals. Interestingly, the amplitudes for symbol 15 have a gradual increase trend, 
showing that some of the signal components have an internal connection and changes 
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gradually over the four cases. 

Actually these four signals are generated by changing the shape of a triangle modulating 
signal in a linear way. The four factors represent values: 0.45, 0.3, 0.15 and 0 
respectively. Each of them is a fraction of 2π at which the maximum of the triangle 
wave occurs. As shown in Figure 3, Factor 1 is from a fraction value 0.45. So the 
modulating process starts slowly whereas Factor 4 is for the value 0 and the modulating 
starts very quick. With such modulating characteristics, these 4 simulated signals may 
reflect different degrees of severities included in vibration signals from different bearing 
faults. The quick modulation may represent high impacts due to large deep dents on 
bearing races whereas the slow one may represent small impacts from small shallow 
dents. Therefore, the amplitudes for symbol 15 in S-Matrix can be used to differentiate 
the signal contents and hence used for classification of fault severity. 
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Figure 4 A-Matrices from amplitude modulation signals with 4 modulation factors 

In a similar way TESPAR A-matrices can be also used to differentiate the four cases. 
As shown in Figure 4, the number of distinctive peaks in A-matrices becomes small as 
the severity factor increases. Therefore, this number can be a feature for severity 
classification. 

From this study, TESPAR methods have been understood to be capable of classifying 
signals with amplitude modulations. Vibrations of faulty bearings often exhibit these 
characteristics. So TESPAR can be used to analyse bearing vibrations for condition 
monitoring.  

3. Bearing Vibration Measurement 

To examine the performance TESPAR in monitoring bearing faults, bearing vibration 
data was acquired from a research bearing test rig illustrated in Figure 5. It comprises of 
a 3-phase electrical induction motor coupled with a dynamic brake, the stator of which 
is free to move so that torque measurements may be taken. The motor is connected to 
the brake through 2 shafts that are coupled by three pairs of matched flexible couplings. 
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These two shafts are held in two bearing housings, each has one roller and one captive 
ball bearing. It is the roller bearing that is tested with different faults in this study.  

 

 

 

 

3.1. Test Bearings 

Table 1 lists the specification of the roller bearing. It is a common bearing used to 
undertake high radial load only. Characteristic frequencies in the table are usually based 
to diagnose faults from this bearing in envelope spectrum analysis. Because this type of 
bearing can be separated easily into different parts, various faults can be created 
conveniently for study. 

Table 1 Roller bearing characteristic frequencies at a shaft frequency of 24.3Hz 

Elements Dimension Fault Frequency(Hz) 

Roller diameter 14mm Cage 9.3 

Number of roller 9 Outer race 83.3 

Contact angle 0˚ Inner race 135.1 

Pitch diameter 59mm Roller 48.3 

In this study, four faulty bearings were tested under a shaft rotational speed of 
1461.7rpm or frequency of 24.3Hz under no load condition. Bearings 1 and 2 were 
introduced to a small fault and a large fault respectively by making small and large 
scratches on the out races. In the same way, Bearing 3 and 4 were created with a small 
and a large fault on their inner races respectively.  

3.2. Data sets  

Four tests were conducted for studying bearing fault detection and diagnosis. Each test 
acquired data at a sampling rate of 62.5 kHz. In addition, the data length for each test 
recorded is 960,000 points and three such records were obtained for each bearing case. 
This is the typical requirement for envelope based bearing analysis, which allows 
envelope signals to be obtained in high frequency range and the spectrum average to be 
carried out with high numbers and hence produces reliable results for bearing fault 
diagnosis.  

Figure 5 Image of bearing test rig 

Bearings Housing Couplings  Break Amplifier Motor Shafts 
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Figure 6 shows the envelope spectra of vibration for the four bearings. It is clearly 
demonstrated that the first two bearings have different amplitudes at 83.3Hz, showing 
the typical feature of an out race fault, whereas bearing 3 and 4 show different spectral 
amplitudes at 135.1Hz, showing the typical faults at the inner race. In addition, the 
spectral amplitudes for each type of fault increase with the size of scratches on the 
races. Therefore, it is confirmed that the datasets contain the desired fault characteristics 
and severity for TESPAR methods evaluation. 
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Figure 6 Envelope spectra of tested bearings 

4. TESPAR Result and Discussion 
 
 

 
 

 
 

Once vibration datasets have been obtained for the four cases, they are encoded into 
their TESPAR symbol streams and their S and A-Matrices are constructed by a program 
written in Matlab. For comparison over different cases, the matrices are normalised by 
the total number of symbol occurrence with respecting to each case. 

In addition, two sets of matrices are obtained for evaluation. The first set is the raw data 
directly where the second is from the envelope signals of the raw data. As the envelope 
signals are obtained in the same frequency range as that of envelope spectrum analysis, 
results from the second matrices thus allow a comparison with the detection results from 
envelope spectra.  

4.1 Matrices of raw vibration signals 

By comparing the S-Matrices, shown in Figure 7, between all bearing conditions tested; 
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clear differences can be observed in TESPAR symbol 2, 4, 5 and 6. In particular, the 
amplitude differences in symbol 2 and 4 can be combined to differentiate between 
different types of faults and different degrees of faults for each type. This demonstrates 
that it is possible to use S-Matrices alone to diagnose these for bearing cases completely 
but it needs to use two features. 
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Figure 7 S-Matrices from raw signal for four faulty bearings 
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Figure 8 A-Matrices from raw signals for four faulty bearings 

A-Matrices for raw signals are shown in Figure 8. The pattern’s differences permit the 
differentiation between small and large severities for each type of fault. However, 
because the patterns of Figures (a) and (c) are very similar, it is difficult to analyse 
differences between two types of faults under the cases of small severities. This means 
that A-Matrices cannot provide a full separation between the cases tested even if it has 
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large number of features  

4.2 Matrices of envelope signals 

S-Matrices in Figure 9 exhibit similar patterns as that of Figure 7. So with the same 
method, the amplitude in TESPAR symbol 2 and 4 can be relied on for the separation of 
fault cases completely. Moreover, amplitudes in either symbol 5 and 8 exhibit a pattern 
that can be used to separate between different types of faults and different degrees of 
severity for each fault, showing that only one feature is needed for fault diagnosis. 
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Figure 9 S-Matrices from enveloped signals for four faulty bearings 
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Figure 10 A- Matrices from enveloped signals for four faulty bearings 

In addition, patterns in A-Matrices shown in Figure 10 also provide good differences for 
a full separation between the four fault cases. For the out race faults, two patterns are 
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very similar but with different peak values, which indicates signal contents are close for 
the same type of bearing faults. This features also exhibits for the cases of two inner 
race faults. In addition, patterns between the two different types are quite different, 
showing the diversity of the signal contents. Nevertheless, the results from enveloped 
signals show better performance than the raw signals because envelope signals have a 
higher sign to noise ratio. This also indicates that TESPAR method is sensitive to noise 
and noise suppression is needed before applying these methods. 

5. Conclusion 

The performance of TESPAR in monitoring bearing faults has been evaluated with both 
raw and envelope signals. From the results obtained based on raw signals it shows that 
S-Matrices allow the diagnosis of the faults simulated but needs more than two features. 
However, A-Matrices cannot produce full diagnosis results in classifying fault types.  
The reason for this lower performance is that the signal to noise ratio is low in the raw 
data sets. Therefore, enveloped signals obtained by filtering away some noisy 
components allow TESPAR to produce a full diagnosis of the bearing faults with using 
just one detection feature.  
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