H

University of
HUDDERSFIELD

University of Huddersfield Repository
Simpson, R.M. and McCluskey, T.L.

An Object-Graph Planning Algorithm

Original Citation

Simpson, R.M. and McCluskey, T.L. (1999) An Object-Graph Planning Algorithm. In: 18th Annual
UK Planning and Scheduling Workshop (PLANSIG), 15th - 16th December 1999, Salford, UK.
(Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/8146/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

An Object-Graph Planning Algorithm

R.M.Simpson and T. L. McCluskey

Department of Computing Science
University of Huddersfield, UK

September 1999

Abstract

In this paper we describe the results of our initial attempt to integrate two strands
of planning research - that of using plan graphs to speed up planning, and that of using
object representations to better represent planning domain models. To this end we have
designed and implemented OCL-graph, a plan generator which builds and searches an
object-centred plan graph. Our initial design and experimental results appear to confirm
our conjectures that the extra information and structure of OCL benefits plan generation
efficiency and algorithmic clarity.

1 Introduction

This document describes work that is part of a continuing effort to evaluate the impact of
modelling planning domains in an object-centred way, using a family of fairly simple planning-
oriented domain modelling languages known as OCL [11]. The benefit is seen as twofold: (a)
to improve the planning knowledge acquisition and validation process (b) to improve and
clarify the plan generation process in planning systems. With regard to (b), it is our belief
that certain obstacles and problems that researchers into planning algorithms encounter can
be alleviated or overcome using a rich, planning-oriented knowledge representation language.

The object-centered language OCL, and more recently the hierarchical version OCLy, [8, 9],
have their roots in the ‘sort abstraction’ ideas used in the domain pre-processing work of
references [13, 10]. OCL is primarily aimed as a high level language for planning domain
modelling, the main feature distinguishing it from STRIPS-languages being that models are
structured in terms of objects, rather than literals. It aims is to allow modellers to more easily
capture and reason about planner domain encodings independent of planning architecture,
and to help in the validation and maintenance of domain models. On the other hand, OCL
retains all the flexibility of a STRIPS-like encoding. The rationale behind OCL has been sus-
tained by the experience of those applying planning technology. For example, the developers
of the planner aboard Deep Space 1 [12] stress the need to develop clean, planner-independent
languages that can be used to build and statically validate domain models.

In this paper we seek to tie up the advantages in creating a domain model in OCL with the
use of a particularly successful plan generation algorithm called Graphplan [1]. Graphplan
has been used as the basis for many experimental planning systems, and was the predominant

technology used in the ATPS-98 planning competition. This paper describes our initial inves-
tigation into the use of an object-centred plan graph in a Graphplan-like planning algorithm.
Parallel work [6, 5] is investigating the use of OCL in traditional goal directed plan-space
search algorithms. The current effort is therefore part of a larger project to implement many
of the best regarded planning algorithms in a manner both to process planning problems ex-
pressed in OCL and to develop the algorithms in a manner to take advantage where possible
of the additional information content of OCL models.

After introducing the reader to OCL and Graphplan, in section 4 we detail the design and
implementation of a planner which draws from Graphplan in algorithmic details, and from
OCL for its representation. We argue that the ‘object-graph’ algorithm embedded in OCL-
graph is conceptually simpler than the corresponding literal-based algorithm, although in this
initial work we have restricted the OCL language to fit in with the planner input language
in Blum and Furst’s algorithm [1]. In particular our results suggest that the use of OCL (i)
simplifies the plan graph: proposition levels become object levels where it is implicit that an
object can only be in one ‘substate’ at one time (ii) makes graph generation more efficient:
for example operator mutexes are generated in N steps, where N is the number of objects in
the application (iii) makes graph searching more efficient: for example the operator mutexes
generated are n-ary relations rather than binary (i.e. they are generally ‘multi-mutexes’ in the
jargon of reference [2]), allowing speedier identification of inconsistent operator sets. Finally,
our initial implementation using tests from two benchmark domains suggest a speed up of
between 4 and 10 times in plan generation when comparing Graphplan with and without an
OCL encoding.

2 Foundations of OCL

2.1 Overview

In OCL the world is populated with objects each of which exists in one of a well defined set of
states (called ‘substates’), where these substates are characterised by predicates. On this view
an operator may, if the objects in the problem domain are in some minimal set of substates,
bring about changes to the objects in the problem domain. The application of an operator will
result in some of the objects in the domain moving from one substate to another. In addition
to describing the operators in the problem domain OCL provides information on the objects,
their object class hierarchy and the permissible states that the objects may be in. The main
advantage of the OCL conception of planning problems to algorithms is that they do not
need to treat propositions as fully independent entities rather they now belong to collections
that can be manipulated as a whole. So instead of dealing with propositions the algorithms
deal with objects (typically fewer objects than propositions). This is a type of abstraction
which we believe most naturally co-insides with domain structure, and we believe provides
opportunities to improve on existing planning algorithms by adapting them to operate at the
object level rather than the propositional level.

2.2 Basic Formulation

A domain modeller using OCL aims to construct a model of the domain in terms of objects,
a sort hierarchy, predicate definitions, substate class definitions, invariants, and operators.
Predicates and objects are classed as dynamic or static as appropriate - dynamic predicates
are those which may have a changing truth value throughout the course of plan execution,
and dynamic objects (grouped into dynamic sorts) are each associated with a changeable
state. Each object belongs to a unique primitive sort s, where members of s all behave
the same under operator application. In what follows we will explain those parts of OCL
sufficient for the rest of the paper, the interested reader is referred to the bibliography for
more information.

A ‘situated object’ in a planning world is specified by a pair (i,ss), where i is the object’s
identifier, and ss is its substate - a set of ground dynamic predicates which all refer to i.
All predicates in ss are asserted to be true under a locally closed world assumption.

As a running example we will use a version of the Rocket World, as this was the original
example used for Graphplan in reference [1]. Note that, however, this does not illustrate the
full benefits of an OCL encoding as the rocket world is structurally trivial (e.g. there are
no static predicates). Dynamic objects in a rocket world could be of sort rocket (identifiers
rl,r2,..) or of sort cargo (identifiers cl,c2,..), and static objects may be of sort location
(identifiers Jtk, Ln, Ps ..) or fuel status (identifiers full, empty). Two examples of situated
objects are (rl, {at(rl,paris),fuel(rl,empty)}) and (c1,{in(cl,rl)}).

A world state is a complete set of situated objects for all the dynamic objects in the planning
application, and is usefully viewed as a total mapping between object identifiers and their
corresponding substates, as an identifier is allowed to be associated with exactly one substate.
States are constrained by invariants. These define the truth value of static predicates and the
relationships between dynamic predicates. In particular they are used to record inconsistency
constraints. A world state that satisfies the invariants is called well-formed.

For each sort s, the domain modeller groups a sort’s substates together, specifying each
group with a set of predicates called a substate class definition. They form a complete,
disjoint covering of the space of substates for objects of s. When fully ground, a substate
class definition forms a legal substate. To ensure that any legal ground instantiation of a
substate class definition gives a legal substate, definitions usually contain static predicates.
The substate class definitions for the dynamic sorts cargo and rocket in the rocket world are:

substate_classes(cargo,| [at(cargo,location)], [in(cargo,rocket)]])
substate_classes(rocket,|[[pos(rocket,location), fuel(rocket,fuel status)]])

meaning that cargo can only be either at a location or in a rocket, and a rocket must be
positioned at a location and have some fuel status. If i is a variable or an object identifier
of sort s, and se is a set of predicates, then (i,se) is called an object expression if there
is a legal substitution t such that iy = j and se; C ss, for at least one situated object
(j,ss). The second component of an object expression is thus called a substate expression. A
planning task is normally defined by an initial state and a goal; in OCL an initial state is
any well-formed world state, and a goal is any legal mapping of object identifiers to substate
expressions i.e. a goal is a set of object expressions with distinct objects identifiers.

2.3 Operator Representation

An object transition is an expression of the form (i,se = ssc) where i is a dynamic
object identifier or a variable of sort s, se is a substate expression describing i, and ssc is an
expression describing i that if legally instantiated in any way would form a substate of i.

An action in a domain is represented by operator schema O with the following components:
0.id, the an operator’s identifier; O.prev, the prevail condition consisting of a set of object
expressions; O.nec, the set of necessary object transitions; and O.cond, and the set of
(conditional) object transitions. Each expression in O.prev must be true before execution of
O, and will remain true throughout operator execution. In the rocket world we have operators
load, unload and move. load can be specified as follows:

operator(load(C,R,A),
% prevail
[se(R,[pos®R,0)]) 1,
% necessary
[ssc(C,[at(C,A)] => [in(C,R)]) 1,
% conditional

[D

We define O.Pre to be the preconditions of O, i.e. the set of object expressions in O.prev and
the set of left hand sides of O.nec. Hence load.Pre = [se(R,[pos(R,A)]), se(C,[at(C,A)])] If O
is ground we we can define O.Rhs to be the set of substates in the right hand sides of O.nec.
For the rest of the paper we restrict ourselves to models with no conditional operators.

3 The Graphplan System

Graphplan [1] has proved to be one of the fastest plan generation algorithms working with a
traditional STRIPS-like planning representation. Since its introduction a number of authors
have proposed amendments with a view to improving the efficiency of the algorithm further
e.g. [4]. Here we give only a very brief review of the algorithm, given the amount of published
literature already using it. Graphplan works by building a plan-graph representing all possible
plans creatable from the initial state by application of the available operators. If we consider
the set of propositions true in the initial state as being at level 1 in our plan-graph then at
level 2 will exist the set of all operations that are applicable, i.e. have their preconditions
fulfilled by the propositions of level 1. At level 3 will be the set of propositions made true by
the application of the operators of level 2. This process continues by developing the graph
in exactly the same manner to additional levels. In the developing graph we record the
application of operators as links that connect the propositions of the adjacent odd numbered
levels. This process of moving from one level of propositions to the next supported by the
application of operators is augmented by the application to every proposition at level n with
a special operator no-op that renders the proposition true at level n + 2. This forward
development of the graph faces a problem in that clearly in all proposition levels other than
level 1 there may be propositions that cannot be jointly true. In the rocket world the rocket
‘rl’ cannot be at Paris, Jfk and at London. Likewise in a link layer actions may be mutually
exclusive. The actions of moving rocket ‘rl’ to Paris and the action of moving the rocket to Jtk
cannot be simultaneously undertaken. We think of each proposition level as recording what

potentially might be true at the same instant. We think of each link layer as recording the
operations that might consistently be applied in parallel. The inconsistencies within a layer
are recorded within Graphplan by augmenting the graph further by noting these mutually
exclusive relations both between operations in the link layers and by recording mutually
exclusive relations at the proposition layers. The development of the graph in this way from
one proposition layer to the next mediated by a link layer constitutes the forwards phase of
Graphplan.

To complete Graphplan a backwards search phase is required to find if a legal plan that
satisfies the goal condition has been generated. This backwards phase is undertaken after
the generation of each proposition layer, and starts by first searching the new proposition
layer to see if all the propositions of the goal state are supported at this level. If they are
not then the backward phase can be terminated and the next forwards phase started. If the
goals are all present then the goal propositions must be checked to ensure that there are no
recorded mutual exclusions between any of them. The backwards phase continues finding a
set of operations that support these propositions and are themselves mutually consistent then
recursively checking the preconditions of those operations in the same manner at the level two
below. This process continues until we have regressed to the propositions of level 1 which by
definition must be consistent with one another. If at any layer we find that the chosen set of
operators are not mutually consistent then we must backtrack and see if an alternative set of
operations can be chosen to support the same set of propositions. In this way Graphplan will
continue interleaving its forwards and backwards phases to find an optimally parallel short
legal plan, if one exists.

4 The Object Graph

4.1 OCL Input

We will assume that the domain model is input using a restricted from of OCL to coincide
with the input language specified in reference [1]. In particular, OCL operator schemas are
translated to a ground set, and do not contain a conditional component. The initial state is
a total mapping between object identifiers and substates, and a goal condition is a mapping
between object identifiers and ground substate expressions. Some recent work has been aimed
at extending Graphplan to cope with more expressive input languages (e.g. [7]) but we leave
corresponding extensions for future work.

4.2 Building Up the Graph

We will build an ‘OCL-graph’ in the spirit of Graphplan by first substituting the idea of
a proposition level with what we call an ‘object level’, defined as a (total) mapping (called
level(n) where n is odd) between the set of object identifiers O-ids and the partitioned set
of all possible substates for that object:

level(n) : O-ids = Table

where Table is a set of substates partitioned by the substate class definitions. The intuitive
idea is that if an object situation (i,ss) is potentially reachable at level n through the execution
of operators then ss will be somewhere in the (partitioned) set ‘level(n)[i]”.

Two immediate consequences of this representation are that:

(a) The size of every object level in a plan graph is always fixed as the number of objects in
the initial state, although the size of the range sets of this map generally increases at each
time step.

(b) In a literal-based Graphplan any subset of the propositions at each propositional level
can form a goal set which is potentially satisfiable. For example in the rocket world, the
set {in(cl,rl), at(cl,paris)} would be acceptable in principle, but would be found to be in-
consistent through operator back chaining. OCL restricts goal sets to a set of legal object
expressions - hence an object expression (cl, {in(cl,rl), at(cl,paris)} would not be allowed as
cl’s substate expression is not well formed (it is not a specialisation of either one of rocket’s
two substate classes).

To create level(n+2) from level(n), we copy over the old mapping (this parallels the use of
‘no-ops’ in reference [1]) and add new substates to level(n+2)’s range if they are created by
operator application at level(n+1). Consider the trivial rocket world with only two cities
involved (London (Ln) and Paris (Ps)) with the initial state of one rocket r1 at London, and
two packages c1,c2 at London. Then

level(3)[cl] = { partition 1: [in(cl,rl)], partition 2: [at(cl,Ln)] }
level(3)[c2] = { partition 1: [in(c2,r1)], partition 2: [at(c2,Ln)] }
level(3)[rl] = { partition 1: [pos(rl,Ln), fuel(rl,full)], [pos(rl,Ps),fuel(rl,empty)] }

as the operators applicable at level 2 are load(cl,r1,Ln), load(c2,r1,Ln), and move(rl,Ln,Ps).

4.3 Links

We define contains(level(n),SE), where SE is a set of ground object expressions, and n
is odd, as being true if for each (i,se) in SE, there is an ss € level(n)[i] such that se C ss.
An operator is applicable to level(n) if contains(level(n),0.Pre) is true, where O.Pre are the
operator’s preconditions as defined above. For example, contains(level(3),[pos(rl,Ln)]) is true.

If operator O is applicable at level(n), and level(n+2)[i] contains ss, then a link ‘1k(0O, i, ss, mode)’
is stored in level(n+1) if (a) O changes i’s substate to ss or (b) (i,se) € O.prev and se C

ss or (c) O is a no-op preserving ss from level(n)[i] to level(n+2)[i]. Here mode is either
‘change’, ‘prevail’ or ‘no-op’ depending on each of the caes (a) - (¢). In the running example
we therefore store the following:

level(2) =

{ Ik(no-op-1,cl,[at(cl,Ln)],no-op), lk(load(cl,r1,Ln),cl,[in(cl,r1)],change),
1k (no-op-2,c2,[at(c2,Lin)],no-op), lk(load(c2,r1,Ln),c2,[in(c2,r1)],change),
1k (no-op-3,rl,[pos(rl,Ln), fuel(rl,full)],no-op),
lk(move(rl,Ln,Ps),rl,[pos(rl,Ps),fuel(rl,empty)],change),
lk(load(cl,r1,Ln),rl,[pos(rl,Ln), fuel(rl,full)],prevail),

lk(load(c2,r1,Ln),rl,[pos(rl,Ln), fuel(rl,full)],prevail) }

4.4 Mutual Exclusions in OCL-Graph

The forward development of the plan graph spreads in the manner described above. It is
checked, however, by the use of mutual exclusion conditions on both operators and substates
in the object levels. Blum and Furst’s ‘Interference’ statement ([1], section 2.2) is paraphrased
as follows: ‘If either of actions O1 and O2 deletes a precondition or Add-Effect of the other,
they are mutually exclusive at that level.” The idea is then to check each operator at each
level against all the others, resulting in a set of binary mutual exclusions (which are not
transitive).

We exploit the structure of OCL to give the following definition:

For each object identifier i in the object level(n+2), the set
{ O : Ik(O,i,ss,mode) € level(n+1) }
forms an N-ary mutual exclusion relation (where N is the size of the set).

In other words, all operators that support the same object form a set whose members are
mutually exclusive to one another (these are referred to as multi-mutex relations which are
more powerful than binary relations according to Fox and Long [2]). The rationale is as
follows: if operators O1 and O2 change or rely on the same object being in a particular sub-
state, then they would in general interfere with each other. There is, however, one exception
to the general rule above. If 1k(O1,i,ss,prevail) and 1k(02,i,ss,prevail) are in level(n+1), or
Ik(O1,i,ss,prevail) and 1k(02,i,ss,n0-op) are in level(n+1), then it does not follow that O1 and
02 are mutually exclusive.

The mutually exclusive sets of operators can be stored in N steps, where N is the number
of objects in the initial state. We read off the operators supporting each object’s substates
into a mutually exclusive set, stored in a set of mutexes at the link level n+1 (noting the
exception above which would split up the set). Employing this method to the example above,
the mutexes turn out to be:

mutex(2) = {
{ no-op-1, load(cl,r1,Ln)}, { no-op-2, load(c2,r1,Ln)}, { move(rl,Ln,Ps), no-op-3 },
{ move(rl,Ln,Ps), load(cl,r1,Ln) }, { move(rl,Ln,Ps), load(c2,r1,Ln) } }

Note that the exception to the rule collapses the mutex formed by considering rl to, in this
example, 3 binary mutexes. Using the set of mutexes, we can now define concept of consistent
operator sets, which will be used in the algorithm below:

A set of operators Y, applicable at level(n), is consistent if
- 3M € mutex(n+1) : [MNY |>1

In other words, a set of operators is consistent if it does not contain 2 or more operators in
the mutexes at level n.

Mutual exclusion conditions on object levels: In the original Graphplan description,
two propositions were mutual exclusive if all operators creating proposition pl were exclusive

algorithm OCL-graph

In O-ids : Object identifiers; I : O-ids = Substates, Ops : Ground Operators, G : Goals
Out P : Parallel Plan

Types level(n) (n odd) is a map O-ids = Table, level(n) (n even) is a set of links
Types mutex(n) is a set of operator sets

1. Vi€ O-ids: level(1)[i] = a set containing I[i] in the appropriate partition

2. n:=1;

3. ACHIEVE(G,1, P) ;

4. while (P = null) do

5 level(n+2) := level(n); level(n+1) := { }; mutex(n+1) = { };

6. Vi€ O-ids: V ss € level(n+2)[i] :

7. add lk(no-op-X, i, ss, no-op) to level(n+1);

8 Y O € Ops do:

9. if contains(level(n), O.Pre) then

10. if not(P = null) & not MUTEX(Pre,n) then

11. V (i,ss) € O.Rhs: add ss to level(n+2)[i], add 1k(O,i,ss,change) to level(n+1);
12. V (i,se) € O.prev: if se C ss & ss € level(n+2)[i

13. then add 1k(O,i,ss,prevail) to level(n+1);
14. end if

15. end if

16. end for;

17. Vi€ O-ids: add {O : Ik(O,i,ss,mode) € level(n+1)} to mutex(n+1) and deal with exceptions;
18. n :=n+2;

19. if contains(level(n),G) then ACHIEVE(G, n, P);

20. end while

21. end.

Figure 1: An Outline of the Object-Graph Planning Algorithm

of operators for creating p2. In the OCL formulation, mutual exclusion of object expressions
(i,sel) and (j,se2) is immediately true if i = j and sel and se2 fall into different substate
classes. Otherwise, we can check (and possibly ‘memoize’ the set of object expressions and
the result if required) for this kind of mutual exclusion as in the original Graphplan algorithm.

5 An OCL Planning Algorithm based on the Plan Graph

Figure 1 shows the overall algorithm. Line 1 initialises the first level in the plan graph using
the initial state. If the goals are not trivially achieved (Line 3), the algorithm builds two
new levels. In Lines 7 the no-ops links are added to the structure (note each no-op is given a
unique identifier no-op-X). In the main loop (Lines 8 to 16) the operators are applied to the
previous level, with appropriate links (lines 11,12 and 13). After this loop, operator mutex
sets are built up in Line 17.

Figure 2 details the (similar) definitions of ‘ACHIEVE’ and ‘MUTEX"’. The latter algorithm is

procedure ACHIEVE(SE : set of substate expressions, n : odd integer, P : plan);
Global levels, mutexes

Out a parallel plan P;

1. if n = 1 & contains(level(1), SE) then P = { }

2. else if n = 1 and not(I contains SE) then P = null

3. else if inconsistent(SE) then P = null

5 P’ = null;

6 repeat

7. choose Y := a set of operators that achieve a set of substates containing SE;

8 Y’ := union of all the operators’ preconditions in Y;

9. if 3M € mutex(n-1) : | M NY | > 1 then call ACHIEVE(Y’,n-2,P’);

10. until there are no choices left or not(P’=null);

11. if not(P’=null) then P = append(P’)Y) else P = null

12. end if

13. end.

function MUTEX(SE : set of substate expressions, n : odd integer): boolean

Global levels, mutexes

if n = 1 then MUTEX := false

else if 3 Y, a set of operators that achieve a set of substates containing SE, and
not(3M € mutex(n-1) : [MNY | >1) then MUTEX := false

else MUTEX := true

. end.

Cr W

Figure 2: Auxiliary Procedures for the Object-Graph Algotithm

used to check groups of substate expressions. It does the checking very simply, by trying to find
a set of consistent operators at the level below which add these substate expressions. Given
G, the set of substate expressions making up a goal, the forward search halts when it reaches
an object level level(n) such that contains(level(n),G) (Line 19 in Figure 1). ACHIEVE
searches for a consistent operator set Y to achieve G, and if it finds one recursively calls
itself at level(n-2) with the set of preconditions of Y as the new goals to achieve. Finally,
the definition of inconsistent in Line 3 is left open ended, and depends on whether mutexes
are stored concerning substates, as well as checking to see whether a goal expression is well
formed with respect to the object class definitions. The current OCL-graph implementation
does not memoize substate mutexes, but this is a subject for on-going research.

6 Implementations

To try and establish the benefits of using OCL in a Graphplan like algorithm two separate
implementations were created. The first though it could process OCL descriptions of planning
domains made no attempt to benefit from the structure. Rather it was used to simply
extract the elements of the standard STRIPS style operators. Essentially operators were still
conceived of as possessing a list of propositions which formed the preconditions to an action

and two lists of propositions, the add list and the delete list. The add list contained the
new propositions made true as a result of the application of the operator and the delete list
contained those propositions made false by the application of the operator. In particular no
attempt has been made to utilise the grouping of atomic propositions by the object they
relate to. Similarly the internal data structures of this implementation of Graphplan do
not utilise ‘objects’. The graph is conceived of as made from proposition layers i.e. the
propositions potentially true at an instant and links connecting the propositions in successive
layers where each such link corresponds to the application of a single operator. The graph also
contains edges between individual links to show that they are mutually exclusive and edges
between propositions in the same layer to establish that they are mutually exclusive. The
implementation, though done in Prolog tries to be faithful to the description of Graphplan
provided above. This implementation is designed to form our base measure for conducting
experiments in an attempt to investigate the advantages in utilising the structures inherent
in OCL. We will refer to this implementation of Graphplan as ‘vanilla’ Graphplan.

6.1 OCL-Graph data structures

The primary innovation in our second implementation of Graphplan is to replace the propo-
sition layers in the graph with object layers. To assist in the searching of these layers the
map structure defined in the abstract algorithm was flattened to allow easier searches for
specific substates of a given object. Also to aid referencing these states in operator links we
introduced identifiers for each such substate of an object at a given level. The size of this
map generally grows from one level to another but it has an upper bound determined by the
number of objects in the problem domain and the number of substates of each object.

In our implementation of OCL-graph the action links that join two adjacent object levels are
stored in a structure that identifies the operation performed, the object states that jointly
form the preconditions of the action and an element to identify the substates of objects
resulting from the application of the action. The backwards references to object substates
forming the preconditions of an action assist in the backwards search undertaken during the
achieve phases. This search is also assisted by our ability to store the references both to
preconditions and to supported object substates using the identifiers mentioned previously.

The remaining data-structure that constitutes the graph stores the mutual exclusions be-
tween operations. In the implementation we do not explicitly record mutez relations between
different substates of the same object though they are found in the attempt to achieve or
apply an operator. The only mutezes stored relate to links where more than one object will
be involved in the inconsistency.

7 Empirical Results

Tests have been carried out on a number of the standard ‘toy’ domains, such as the Rocket
World and the Robot World. The tests have involved comparing times of the vanilla version
of Graphplan against the OCL version. The restriction on the domains has risen partly due
to the ease of automatically deducing the STRIPS operators from the OCL versions of these
two domains.

10

The results of our tests would indicate a speed up of the algorithm in a range from as much
as a factor of ten down to a factor of four. To give an indication of the improvement the
following table shows the result of running the two versions on five problems in the Rocket
world and three from the Robot world. In these experiments the code was run in SWI Prolog

vanilla | ocl
0.13 0.02
2.9 0.26
3.05 0.27
3.1 0.26
3.3 0.25
0.26 0.08
1.54 0.56
10.57 | 2.49

Table 1: Rocket - Robot World Timings

hosted on a Linux box. The times refer to cputime measured in seconds. Individual times
for particular runs of the same task seemed to vary by plus or minus 10 percent. The figures
given represent a fairly representative sample.

In addition to timing the algorithms several other measurements were taken from the sample
runs. We were particularly interested in the relative sizes of the graphs created by the two
algorithms. To do this we have compared the number of propositions at a given level of
the graph with the number of object states created by running the same problem. We also
compared the number of operator links at a given level, and the number of mutual exclusion
relations recorded at a particular level. The figures presented in the latter tables are for a
single problem in the rocket domain involving a problem solvable using only four proposition
or object layers.

vanilla ocl
Levels | propositions | links | Substates | links
1 6 n/a 4 n/a
3 16 14 12 12
5 16 28 12 24
7 20 36 16 32

Table 2: Rocket World Levels

vanilla ocl
Levels | mutex Act | mutex prop | mutext
3 24 36 8
5 84 10 16
7 132 10 32

Table 3: Rocket World Mutex Relations

11

8 Analysis

The first point to be made is to warn against putting too much stress on the timings provided.
Timings are a notoriously poor way of trying to measure efficiency and may be distorted by
all sorts of extraneous factors. Even though the two algorithms share a great deal of code and
structure it still may be the case that a particular element of one of the algorithms is poorly
implemented while the corresponding element in the algorithm we were more particularly
interested in has been very efficiently coded, but these differences may not be a reflection of
the underlying algorithms. Similarly the choice of examples may be biased in favour of one
of the implementations. Certainly the Rocket world provided better results than the Robot
world.

The test results are encouraging and suggest that there is an efficiency improvement. This is
despite the fact that in some cases the graph built may be larger than the equivalent graph
in the vanilla version of Graphplan. The larger graph can be a result of both the larger
number of object substates as compared to propositions and the greater number of operator
instantiations to object substates than ground operators. But even in those cases occurring
in the Robot world the OCL version was faster. The efficiency gain we conjecture results
from our more powerful mutexes and a less dense graph providing fewer opportunities for
backtracking and in the forward phases results from the fact that that many of the mutezes
are implicit and hence do not require computational effort to memoize.

9 Conclusions

In this paper we have illustrated how a graph-based algorithm can benefit from an object-
centred representation based on OCL. Our design of the Object-Graph algorithm has thrown
up various ways in which the extra information content of OCL can be used to make the
graph-based algorithm more efficient. Our initial experimental results appear to support this
claim.

They are many avenues for future work. Most pressing is to extend our experimental results
with our current domains, and to experiment with more interesting domains possessing more
structure. Secondly, there is a need to attempt to analyse the computational complexity of
the OCL-based algorithm, and compare it with the original. Thirdly, we need to extend the
algorithm to be able to accept the full OCL language, and to improve the algorithm so that it
uses the extra information given in an OCL model. For example, domain invariants typically
found in an OCL model often read as mutex constraints on a pair of substates. Finally,
improvements to the basic algorithm such as dependency directed backtracking [3] have not
been implemented but there is no reason to expect that they would not be equally applicable
to our version of the algorithm.

References

[1] A. L. Blum and M. L. Furst. Fast planning through Planning Graph Analysis. Artificial Intelli-
gence, 90:281-300, 1997.

12

[2]
3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

M. Fox and D. Long. The Automatic Inference of State Invariants in TIM. JAIR wvol. 9, pages
367421, 1997.

S. Kambhampati. On the relations between intelligent backtracking and explanation-based learn-
ing in planning and constraint satisfactions. Artificial Intelligence, 105, 1998.

S. Kambhampati, E. Parker, and E. Lambrecht. Understanding and Extending Graphplan. In
Proceedings of the 4th European Conference on Planning, 1997.

D. E. Kitchin. Object-Centred Generative Planning. PhD thesis, School of Computing and
Mathematics, University of Huddersfield, forthcoming,1999.

D. E. Kitchin and T. L. McCluskey. Object-centred planning. In Proceedings of the 15th Workshop
of the UK Planning SIG, 1996.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending Planning Graphs to an ADL
Subset. In Proceedings of the Jth European Conference on Planning, 1997.

D. Liu. The OCL Language Manual. Technical report, Department of Computing Science,
University of Huddersfield , 1999.

T. L. McCluskey and D. E. Kitchin. A Tool-Supported Approach to Engineering HTN Plan-
ning Models. In Proceedings of 10th IEEE International Conference on Tools with Artificial
Intelligence, 1998.

T. L. McCluskey and J. M. Porteous. The Use of Sort Abstraction In Planning Domain Theories.
In Planning and Learning: On to Real Applications. Papers from the 1994 AAAI Fall Symposium,
number FS-94-01. Published by AAAT Press, American Association for Artificial Intelligence,
ISBN 0-929280-75-X, 1995.

T. L. McCluskey and J. M. Porteous. Engineering and Compiling Planning Domain Models to
Promote Validity and Efficiency. Artificial Intelligence, 95:1-65, 1997.

B. P. N. Muscettola, P. P. Nayak and B. C. Williams. Remote Agent: To Boldly Go Where No
AT System Has Gone Before. Artificial Intelligence, 103(1-2):5-48, 1998.

J. M. Porteous. Compilation-Based Performance Improvement for Generative Planners. PhD
thesis, Department of Computer Science, The City University, 1993.

13

