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A Case Study in the Use of Theory Revision in Requirements
Validation

T.L. McCluskey
School of Computing and Mathematics,
The University of Huddersfield,
HD1 3DH, UK
lee@zeus.hud.ac.uk.

Abstract

Research emanating from Artificial Intelli-
gence has throughout its history contributed
to techniques and ideas in Software Engineer-
ing. We describe in this paper a case study
showing the use of theory revision to the re-
finement of a formally specified requirements
model. In a previous project we were con-
tracted to create a precise model of the com-
plex criteria governing the separation of air-
craft profiles in Atlantic Airspace. During
that work it became clear that the (auto-
mated) validation of the model was of the ut-
most importance, and in our current project
we have used machine learning tools to pro-
vide extra support in bug identification, bug
removal and maintenance of such a require-
ments model. In this paper we give an
overview of the domain, identify a relevant
learning bias which makes search for revi-
sions tractable, and describe a systematic ap-
proach for the application of theory revision
to such a model. We illustrate the approach
with results of experiments where theory re-
vision techniques have identified and removed
errors, and induced a new part of the model.

Keywords Theory Revision, Machine Learning and
Software Engineering, Requirements Model, Auto-
mated Validation.

1 INTRODUCTION

Promoting and maintaining the quality of require-
ments specifications has a vital role in the engineer-
ing of software. Some software projects, such as those
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School of Computing and Mathematics,
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m.m.west@zeus.hud.ac.uk.

involving safety-critical elements, necessitate that pre-
cise, mathematical specifications of their requirements
domains be constructed. Such ‘requirements models’
must be validated to satisfy certain major quality ob-
jectives such as accuracy, completeness, usability, and
understandability, and during the model’s lifetime it
is likely to be incrementally updated, and will require
re-validation. Validation and maintenance of realistic
domain models is a very time consuming, expensive
process where the role of support tools in vital. The
process is best carried out using diverse techniques,
and one of the most useful techniques is to test an an-
imated form of the model. Even when an animated
version is available, however, it is not easy to pinpoint
the causes of bugs and subsequently provide the cor-
rect revision that eliminates them.

In this work we view a precise requirements model
as an imperfect theory of the requirements domain
that needs to undergo refinement to remove bugs or
to reflect changes in the domain, and we formulate
the problem as one of theory revision. The case study
uses an air traffic control requirements model devel-
oped in a previous project called FAROAS (McCluskey
et al. 1995). The model represents aircraft sepa-
ration criteria and conflict prediction procedures re-
lating to airspace over the North East Atlantic, and
is recorded in the ‘Formal Methods Europe Applica-
tions Database’*. The model’s ‘conventional’ support
environment had been used for verification and vali-
dation of models written as a set of axioms in many
sorted first order logic (Meinke and Tucker 1993) —
here abbreviated to msl. During the current IMPRESS
project we extended the environment to include ma-
chine learning tools which perform blame assignment,
explanation-based generalisation and theory revision
(TR). We show in this paper how we overcame the in-

web site http://www.cs.tcd.ie/FME



tractability problems in fielding TR by firstly focusing
on likely faulty axioms sets using a blame assignment
algorithm, then targeting for revision the ordering re-
lations between values of ordinal sorts. We describe a
method and a class of revision operator that has been
successfully used to (a) find and remove bugs from the
requirements model, and (b) to construct a new part of
the model to cope with the changing of criteria for ver-
tical separation between subsonic aircraft. Thus TR
can be seen as a useful embedded component within a
requirements validation regime for high integrity sys-
tems.

2 THE ATC DOMAIN

2.1 DOMAIN DESCRIPTION AND
ACQUISITION

‘Shanwick’ is a large area of airspace in the eastern
half of the North Atlantic, managed by air traffic con-
trol centres in Shannon, Ireland and Prestwick, Scot-
land. Controllers must organise this airspace daily,
taking into account such factors as weather and the de-
sired flight paths of aircraft companies. They plan the
four dimensional flight profiles of aircraft crossing this
airspace in good time before the aircraft reaches the
boundary, and for this task require a precise definition
of aircraft separation criteria, and an algorithm for
predicting conflicts. The controllers are supported in
their safety-critical work by a computer system which
performs predication and resolution of conflicts be-
tween pairs of flight profiles, and our involvement came
about as part of the research and development con-
cerning the requirements specification of a replacement
for their current flight data processing system.

In the FAROAS project, we created a precise require-
ments model (called the CPS) of the conflict predic-
tion of aircraft flight profiles through the Shanwick
airspace, together with a software support environ-
ment. Knowledge sources used were manuals of air
traffic control, existing computer systems documenta-
tion, and air traffic control officers themselves. The
current CPS contains a kernel of 300 - 400 axioms
in msl representing aircraft profile separation criteria
and a conflict prediction method; the total number of
axioms in an instance of the model, which includes
airspace and short term flight information for a day’s
set of profiles, exceeds two thousand. The model is
structured into 23 sorts, and is enriched with real and
natural numbers. An example of an axiom in the CPS
is provided in Figure 1. This represents the condition
for a vertical separation of 2,000 feet, where segments

(Segmentl and Segment2
are_subject_to_oceanic_cpr) =>

[(the_min_vertical_sep_Val_in_feet_required_for

Flight_levell of Segmentl
and Flight_level2 of Segment2) =
[[(both Segmentl and Segment2
are_flown_at_subsonic_speed)
& (one_or_both_of Flight_levell and
Flight_level2 are_above FL 290) ] or
[(one_or_both_of Segmentl and Segment2
are_flown_at_supersonic_speed) &
(one_or_both_of Flight levell and
Flight_level2 are_at_or_below FL 430) 1 1 ]

2000 <=>

Figure 1: Condition for a Minimum Vertical Separa-
tion of 2000 feet

are roughly ‘straight’ components of an aircrafts pro-
file. Either the two aircraft are both subsonic and are
flying above FL 290 (29,000 feet) or one or both are
supersonic and are flying at or below FL 430.

2.2 A CONVENTIONAL SUPPORT
ENVIRONMENT

The CPS is highly structured, with axioms containing
very complex conditions, but the support of an in-
tegrated tools environment alleviates its analysis and
manipulation. In the FAROAS project diverse valida-
tion was carried out using tight syntactic checking, se-
mantic internal consistency checks, expert inspection,
simulation and batch testing. The most complex tool
in the environment is a translator program which in-
puts the CPS (or more generally a set of wifs in msl),
together with a syntactic definition of the tailored msl
language expressed in grammar rules. It parses the
wils and outputs an animation of them by translating
them into what we call ‘EF’ (execution form). This
is similar to general clausal form, except clauses may
contain nested negation and disjunction in their bod-
ies. EF obeys the syntax rules of Prolog and is ex-
ecutable by a Prolog interpreter. This parsing and
translation process takes less than 5 minutes for all of
the CPS, and its translated form we term CPSgp 2.

Flight profiles are input to the software environment
as msl axioms and are translated into EF. Although
in theory any part of the CPS can be tested, virtually
all of the instances we obtained were for the ‘top level’

2all software tools reported in this paper are imple-
mented in Sicstus Prolog and were tested using a SUN
SPARC station 4 processor with 32MB memory



conflict axiom defining the mixfix conflict predicate:

SegmentX of Profilel and SegmentY of Profile2
are_in_oceanic_conflict

A day’s worth (500 - 800) of cleared aircraft profiles,
where each profile is cleared with (say) the last 20
cleared aircraft in chronological order, results in ap-
proximately 10,000 instances classified as false for the
conflict axiom, where the SegmentX and SegmentY
are existentially quantified variables representing seg-
ments of an aircrafts profile.

In the rest of this paper we use the following nota-
tion: a classified instance that is labelled true and
which CPSgp classifies as true is called truly positive
(‘TP?), and denoted e’”, whereas one that executes
to false is called falsely negative(‘FN’) and denoted
ef'N. A classified instance labelled false which executes
to false using CPSgp is called truly negative (‘TN’),
whereas one that executes to true is called falsely pos-
itive (‘FP’); these are denoted e?” and e’ respec-
tively. Early phases of validation during the FAROAS
project involving syntax checking and painstaking ex-
pert inspection increased the accuracy and complete-
ness of the CPS so that dynamic testing of the con-
flict axiom resulted in a large number of TN, with a
smaller (about 5 per cent) but significant number of
FP. Although investigation of the set FP helped to find
bugs, it became clear that more powerful tools for bug
identification and removal were needed when building
up and maintaining such a complex, precise domain
model.

3 APPLICATION OF THEORY
REVISION

3.1 RATIONALE

The principle objectives of the current project, IM-
PRESS, were to test the use of ML to help improve
the quality (in terms of accuracy and completeness) of
a formalised requirement specification written in msl
and to increase the quality of the CPS itself. The focus
was not only on bug removal but also on maintenance,
to support the inevitable changes in the requirements
model. Since we started with an existing symbolic do-
main model, the principle ML paradigm we decided
to use was theory revision (Wrobel 1996). Our initial
formulation was as follows:

Revisable theory: a subset of CPSgr clauses.
We can keep some parts of the CPSgr immune or
‘shielded’ from the revision process, as they were ad-

equately validated using other processes. For exam-
ple, it may be assumed that the ‘top level’ axioms,
i.e. those defining the basics of separation in terms of
vertical and horizontal dimensions, are correct. The
target concept is the conflict predicate shown above.

Training Instances: The main source is a day’s
worth of cleared flight profiles supplied directly by the
UK National Air Traffic Services. The conflict predi-
cate can be executed, and when instantiated with pairs
of cleared flight profiles should return false. The na-
ture of the application skews the training somewhat as
it is driven by FPs only. However, experiments have
also been conducted with other, lower-level predicates
as target concepts, such as those involved in vertical
conflict. Instances associated with these conflicts are
classified into FNs and TPs as well as TNs and FPs.

Learning Biases: the language used for the CPSgr
is strongly typed, which provides a useful constraint in
the generalising or specialising of predicates. Also we
assume a minimal revision bias: we know from other
forms of validation that its structure mirrors the re-
quirements domain, and so we assume only minimal
revisions are necessary.

Given the general problem outlined above, we imple-
mented a standard, simple TR, algorithm with opera-
tors such as ‘add antecedent’ and ‘delete clause’. How-
ever we only confirmed that a ‘mainstream’ approach
to TR would be impracticable. Even given the biases,
the potential space of revisions is enormous, and ‘hill-
climbing’ with traditional TR operators appears out
of the question. The CPSgr executes the conflict ax-
iom at an average rate of about one test per minute
and results in a batch of tests taking perhaps days to
execute!

We also investigated using TR tools, available via ftp,
but came to the conclusion that we would need to build
our own environment (West et al. 1996). This was
based on the need for a flexible tool base given we
were embarking on a research project, and the need
for tool integration, particularly with our existing val-
idation tools from the earlier FAROAS project. More-
over, the existing tools we examined were not powerful
enough for our use. For example, FORTE (Richards
and Mooney 1995), though well tested, could not cope
with negation or functors. Both the latter are impor-
tant features of the CPS. Also, while tools presented in
the literature had been tested on theories of the order
of 10’s of predicates calls within a similar number of
non-atomic clauses, the CPSgr contains c.2,000 pred-
icate calls within more than 300 non-atomic clauses.



3.2 ORDINAL SORTS

The key to our approach lay in the introduction of a
further bias. Although the sorts comprising universes
of objects are distinct, each sort can be characterised
as either ordered or not (Birkhoff 1967). The sorts
which are ordered are termed ordinal in this paper,
and those which are not are termed nominal. Associ-
ated with each ordinal sort X is an arbitrary binary,
transitive, ordering relationship we call ‘>’. Exam-
ples of ordinal sorts are Flight Level, Time and Lati-
tude, where primitive order relations are for example
‘is above’, ‘is later than’, ‘is west of’. Examples of
nominal sorts are Aircraft, Airspace, Segment, Profile.
Technical specifications such as the CPS include many
references to ordinal sorts, and our experience in the
validation phase had shown that very often clauses in-
volving comparisons and limits were to blame. For
example, of the 17 primitive order relations defined in
the CPS’s grammar, there are 204 occurrences of them
within the current version of the CPS.

Each axiom in the CPS has as its variable domain:

Xy X...x Xy, XDy X...XDpyn,m > 0.

where each X; is an ordinal sort and each D; is a
nominal sort. We will focus on axioms containing
‘>’ examples are £ > a,z; > ¥, where x,x;, 1> are
ordinal variables and a a constant, limiting value of
some appropriate sort. The axiom involving ordering
might be an equation defining a function, F which
returns different values for different subsets of its do-
main X3 X ... X X, x D; X ... X Dy,, or a predicate,
P. The statements involved in the definition of P re-
turn ‘true’ or ‘false’ for different subsets of its domain
Xy X...x X, xDyx...x Dy, If we factor out the X;
from the D; components, for each main predicate and
function, for each tuple (di, ..., dy,) of values, there is
defined an n dimensional region R(di,...,d,) — the
domain of applicability of the predicate or function.
For the remainder of the paper, we shall shorten this
to R.

When the CPS is translated to executable form, each
axiom becomes a Prolog clause. The regions described
above, for the main axioms, now become regions for
Prolog clauses, where tuples of variables now become
tuples of Prolog variables. In the case where a wif is
an equation, its domain is extended by the returned
term.

3.3 SIMPLE REVISIONS

Given a concept (for example the conflict predicate)
and a set of positive instances of the concept, trans-
lated to EF, then the set of proof trees of the in-
stances involve a set of clauses. Consider a clause C
from this set, where its (Prolog) variables are the tu-
pleX1, ,Xn, D1, ,Dn, where the X’s and D’s
are ordinal and nominal respectively (where n > 0).
Each instance of C is associated with an n-tuple of
ordinal variables (z1,...,%,) = x. We should expect
positive instances to have x € R. The region R is
defined by logical expressions £(x) involving ordinal
variables x and is not necessarily connected. In a sim-
ilar manner a clause C' which does not succeed and
which is involved in a failed proof tree (or trace) of
a negative instance will have x ¢ R. In order for in-
stances to fail where they previously succeeded, and
vice-versa, then region R is revised to become region
R', for clause C. We classify revision operators that
may change a clause containing an ordinal literal into
two: simple and composite. Simple operators involve
deletion and addition of antecedents from a clause, as
in conventional TR, although the antecedents are re-
stricted to occurrences of order relations This kind of
operator is mainly for finding and possibly correcting
bugs in the model. For example, the condition z > y
may be either removed or replaced by y > z. This
latter is akin (in 2-D geometrical terms) to examining
reflections of the region about a straight line.

3.4 COMPOSITE REVISIONS

The second kind of revision is designed to clarify
requirements involving complex conditions involving
limiting values, which might not have been captured
initially from the expert sources, and also to cope with
changing requirements. We first deal with specialisa-
tion. Suppose C to be a candidate for revision, or
revision point, where C contains antecedents of the
form x > a, a a constant. Further, suppose C suc-
ceeds with instances 6;C in proofs of some training
instances eff € FP, with tuple x; the ordinal vari-
ables of 8;C. Suppose also that C is successful with
instances ¢;C in proof tree of training instances ejTP ;
the tuples y; are the ordinal variables of ¢;C. Failure
of C would ensure the removal of some instances ef"
and in order that C should fail, we need to revise R
to R'.

VXi - X ¢ RI.

However, in order that C should safely succeed for
correctly classified instances, then tuples x associated



with e7? should not be removed from R. Thus
Vyj 'y; € R
We calculate the two sets of tuples:

SFP = [x; | x; ordinal variables of §;C},

STP = {y; | y;j ordinal variables of ; C}. (1)

This allows for the fact that the mis-classification of
some/all of the instances e’ may have arisen from
another clause. Recalling that the variables of C are
X =1 ... Ty, we denote the minimum and maximum
values of variable component z; of the S¥F variables
by minfF, mazfT respectively. In a similar manner
the minimum and maximum values of components of

the STF variables are respectively minI”, maz, .

We induce the following, that for instances 6; C to fail,
the new specialised region is R less an n dimensional

interval Rpp bounded by min/*, maz}’*. We have

Rep ={(z1 -..3,) | minff = 2, = maz{T A

oo Amintt =z, = maztt} (2)

However for instances ¢;C to succeed, R' must in-
clude an n dimensional interval R7p bounded by
. TP TP.

min; -, max;

Rop = {(m--.2,) | minT = 2 > mazF A

coo AminIt =z, = mazIT} (3)
We have
R'=(R\Rrp)URTP (4)

(Rrp = Rpp is the limiting case, where all of the mis-
classified instances have arisen from another clause.)
In order to accomplish the revision, we specialise the
clause C as follows: every occurrence in the unrevised
body of C of the logical expression £(z; . .. 2, ), should
be replaced in the revised body of C by &'(z1 ... z,),
which is defined:

E(xy...xp) A= (minf? =z = mazf? A
1 1

oo Amink? =z, = mazl?))

V (min!? = 2, = maz P

. TP TP
.. Amin, " =z, = maz, ") (5)
Generalisation can be explained in a similar manner:

in order for instances eV to succeed, their x compo-
nents are added to the region. However instances e 7V

must still fail. We calculate sets S¥V, STV and re-
gions Rgx, Ry in an analogous manner to S¥F, § TP

in (1) and RFP;RTP in (2)

We induce the following, that for some FN instances
to succeed and all the TN instances to fail, then the
new generalised region is

R' = (RURpN) \ Ry (6)

In order to accomplish this, we generalise the clause
C, so that every occurrence in the unrevised body of
C of the logical expression £(#; ... ,), should be re-
placed by £'(#; ... x,), in an analogous manner to (5).
In the next section we explain how these simple and
composite revisions were applied to CPSgp.

4 EXPERIMENTS WITH TR
TOOLS

We report experiments involving two kinds of data set:

1. The first data-set consists of training instances
from a day’s cleared flight profiles recorded in
January 1995. This data was used with the ob-
ject of testing our current techniques using ‘sim-
ple’ ordinal operators. When tested, the errors in
the CPS as measured by this training set were 33
in 5070, having been previously reduced by other
techniques. Use of TR with simple operators fur-
ther reduced the errors to 1 in 5070.

2. ‘Reduced separation for vertical minima’ (RVSM)
criteria have recently been introduced for certain
types of aircraft in North Atlantic airspace. A
days cleared flight profiles were provided (from
April 1997), where clearance is subject to the new
revised criteria (of flight levels) for vertical sepa-
rations for pairs of aircraft.The new criteria in-
volved flight level intervals for both aircraft and
was not captured by our current theory. ‘Simple’
ordinal operators were not suitable for revisions
of the type investigated, so this data-set was used
for independently testing ‘composite’ ordinal op-
erators. After the CPS was revised using simple
operators, it was then re-revised using training in-
stances from post-RVSM data and composite op-
erators. All 121 errors resulting from the data
cleared by the changed separation standard were
eliminated by the method.

4.1 THE METHOD AND RESULTS

The method shown here is a general one for revision
of a theory, I, containing significant ordinal variables,



although it is based on experiments with the CPS. We
have implemented TR in a manner based on the ‘geo-
metrical’ discussion above, and integrated it into our
legacy software environment (McCluskey et al. 1995).
This architecture has had to be both flexible and ex-
perimental in response to the inherent complexity of
formal specifications of the size and expressiveness of
the CPS. For example, we have had to develop a form
of blame assignment that can cope with proof trees
from general clausal form logic programmes. This in-
volves first unfolding and then transforming negative
literals using De Morgan’s laws and is detailed in (West
et al. 1997).

4.1.1 An Error Removal Experiment

The algorithm for simple ordinal revisions is based on
conventional theory revision techniques and used hill-
climbing based on the accuracy of the theory I'. It is
shown in Figure 2. The potential of a clause C is the
number of instances in which it succeeds in a proof
tree, and the negative potential is the number of in-
stances in which it fails in a proof trace; this notion was
used in the description of the FORTE tool (Richards
and Mooney 1995).

1. Collect training set of instances of a concept, L,
known to contain misclassified instances.

2. Classify training instances into TNs, FPs, FN’s,
TPs and calculate accuracy.

3. Run blame assignment on instances in FN giving
set of potential-pairs, P1.
P1 = {(C,N) | C revisable clause in I' and
N is the potential of C }
Find subset OP1 of P1:
OP1 = {(C,N) | (C,N) € P1 A C contains an
ordinal relation }.

4. Repeat step 3 for instances in FP giving set of
potential-pairs, P2, and subset OP2.
Let OP = OP1 U OP2.

5. Revision points = {C | (C, N) €} OP.
Apply each simple TR operator to each revision
point, in order of C with largest potential. Im-
plement the best revision.

6. Repeat from step 2, unless a maximum accuracy
has been reached.

Figure 2: Algorithm for Simple Ordinal Operators

Using a day’s worth of training instances (cleared flight
profiles) we obtained 33 FPs and 5037 TNs out of 5070
runs of the conflict axiom. Because of the complex-
ity of the criteria the revision was accomplished by
focusing the revision space to the longitudinal separa-
tion criteria (i.e. concept L in Figure 2) rather than
from the initial training instances. L was selected by
studying the output of blame assignment for all the
FPs, and the generalised explanation output for indi-
vidual FPs. Longitudinal separation values in minutes
can be 5,6,7,8,9,10,15,20 or 30, and the CPS contains
formalised criteria for all of these. 75 new training
instances were generated from proof trees and proof
traces in which a longitudinal separation value of 10
minutes was assigned to two aircraft at least one of
which is flying at subsonic speed. The training in-
stances included 25 FN and 50 TP, the concept being:

the_basic_min_longitudinal_sep_Val_in_mins_
required _for(Segment1,Segment2) = 10.

The TP’s were generated by re-running the day’s
worth of instances, and identifying those in vertical
conflict that gave a longitudinal separation of 10 min-
utes, but were not in overall conflict according to both
air traffic control officers and the CPSgp (thus lower-
ing the possibility of noisy data). The FN’s of con-
cept L are derived directly from the 33 false positives
from the conflict predicate. The algorithm using sim-
ple reverse and dropping conditions operators returned
a new theory with two clauses altered by both the op-
erators; after revision, 74 of the training instances were
covered, and only 1 (FN) uncovered. Significantly, one
of the clauses that was revised, defining the predicate:

are_after_a_common_pt_from_which_profile_tracks
_are_same_or_diverging_thereafter_and_at_which
_both_aircraft_have_already_reported _by

has been subsequently identified as an incorrect read-
ing of an ATC Manual.

4.1.2 A Requirements Change Experiment

The method for implementing composite ordinal oper-
ators is shown in Figure 3. Steps 1 and 2 are similar
to those of the simple operator. If after step 2, FN
is larger than FP, then generalisation of a clause C
occurs in steps 4b .. 8b in a similar manner. Note
that the driver for the algorithm is the stability of the
clauses in OP, rather than the increase in accuracy of
T.



1. Collect training set of instances of a concept, known
to contain misclassified instances. Initialise: D =
Deleted clauses = { } , A = added clauses = { }.

2. Classify training instances into TNs, FPs, FN’s,
TPs and calculate accuracy.

3a. Specialise I' in a manner indicated by steps 3a ..
8a. Run blame assignment on instances in FP
giving set of potential-pairs, P.

P = {(C,N) | C revisable clause in I and

N is the potential of C }.

Find subset OP of P:

OP = {(C,N) | (C,N) € P A C contains an

ordinal relation }.

4a. Select pair (C, N) where N is maximum of

(N|(C,N) €} OP.

5a. Calculate the n dimensional regions Rpn, RN

defined by (1), (2) and (3).

6a. If Rpy, RN are not equal

set head of C' := head of C;

set body of C' := body of C with £ replaced by
&' from (5)

else

delete C from OP and repeat from step 4a.

7a. Replace C with C' and calculate accuracy.

8a. D'=DUC; A = AU C".

9. Repeat from step 1 until OP is stable or accuracy
is 100 %.

Figure 3: Algorithm for Composite Ordinal Operators.

Because of the safety-critical nature of the application,
and the fact that some data values may occur only
rarely, it is necessary to check that a clause C' € A orig-
inally arising from a function, remains defined over its
intended domain. If this is the case, a post-processing
phase is necessary.

204 training instances (classified according to post-
RVSM criteria) of the conflict axiom were used to re-
vise the CPS using the algorithm in Figure 3. How-
ever, revisions were confined to ordinals of the form
‘is_above’. When tested, there were found to be 121
FP instances, and 83 FN instances. The ’blame as-
signment pinpointed the clause
’the_min_vertical_sep_Val_in_feet_required_for(
A, B, C, D, 2000)’

as a revision point and the results are shown below.
(The ‘limitvar’ predicate is a device for marking vari-
able occurrences.) As can be seen, for supersonic air-
craft, the criteria is unaltered. The criteria for a verti-
cal separation of 2000 feet are specialised; they exclude
the region where both flight levels are between FL 330
and FL 370 as shown in the following result:

lengths of FN, FP, TN, TP
0 121 83 0

%% set P.
[potential(1,121) ,potential(2,121), ..,
potential(23,1) ,potential(26,121), ..]

%% list of revision points
[26]

New_accuracy = 100.0, 0ld_accuracy = 40.686
Yhrevised code for 2000
the_min_vertical_sep_Val_in_feet_required_for(
A, B, C, D, 2000) :-
(both_are_flown_at_subsonic_speed(B, D),
(A is_above £1(290), 1limitvar(1l),
(( not__(A is_at_or_above £1(330))
; not__(A is_at_or_below £1(370)))
; not__(C is_at_or_above £1(330))
; not__(C is_at_or_below £1(370)))
; C is_above £1(290), 1limitvar(2),
(( not__(A is_at_or_above £1(330))
; not__(A is_at_or_below £1(370))
)
; not__(C is_at_or_above £1(330))
; not__(C is_at_or_below £1(370))))
one_or_both_of_are_flown_at_supersonic_speed(
B, D),
(A is_at_or_below £1(430), limitvar(3),
; C is_at_or_below £1(430), limitvar(4))),!.

5 RELATED WORK

Some recent work has pointed to the similarities
between the validation of requirements models and
knowledge based systems development (McCluskey
et al. 1996; Shaw and Gaines 1996), and hence the area
of Knowledge Base Refinement (KBR) is related to
our work. A detailed comparison of validation in soft-
ware engineering and KBS is given in reference (Ver-
mesan and Bench-Capon 1995), and the state of the
art in automated KBS validation is surveyed in refer-



ence (Zlatareva and Preece 1994).

As far as we are aware our work is the first to apply ma-
chine learning techniques to formal specifications of re-
quirements, although, as mentioned above, work most
related to our own occurs in the field of KBR. Both
areas have to adopt strategies to overcome the com-
plexity pitfalls surrounding the use of TR (where the-
oretical results suggest that no polynomial algorithm
exists to perform global optimisation in hill climbing
algorithms (Greiner 1995)). In KRUST (Palmer and
Craw 1996), for example, test cases are used one at
a time to refine the KBS, in contrast to our focusing
procedure, which uses multiple examples and a form
of statistical blame assignment. In MOBAL, an envi-
ronment for knowledge acquisition that has been used
with a large security rule base, TR is also used but in
restrained fashion and with limited success (see (Som-
mer et al. 1994) page 453). Experience with MOBAL
is consistent with our experience that ML tools work
well in the context of a diverse tools environment.

Imperfect theory refinement techniques have been well
researched in the machine learning literature, includ-
ing reviews (Wrobel 1996), and a text relating ML to
Software Engineering (Bergadano and Gunetti 1996).
The case where theories represent planning domains is
described in reference (Tae and Cook 1996) and the
case where theories are posed as Horn Clause mod-
els is described in reference (Richards and Mooney
1995). Machine learning in domains containing sig-
nificant numerical components has previously been ac-
complished by using neural networks (Opitz and Shav-
lik 1997). Constraint Inductive Logic Programming
(Anthony and Frisch 1997; Sebag and Rouveirol 1996)
has been utilised for generalisation and specialisation
of numerical predicates. Theory Patching (Argamon-
Engelson and Koppel 1998) is described as a type of
TR in which revisions are made to individual compo-
nents of the theory. (The concern of the latter paper
is to determine which classes of logical domain theo-
ries the theory patching problem is tractable.) Theory
patching compares with our work on focusing on ordi-
nal revisions and on shielding clauses which are not to
be revised.

6 CONCLUSIONS AND FURTHER
WORK

In this paper we have reported the application of the-
ory revision techniques to the validation and main-
tenance of a substantial ‘theory’, the formal require-
ments model of an air traffic control application. The

model is encoded in msl, is customised by a genera-
tive grammar, animated by a Prolog generator, and
can be analysed using an integrated environment sup-
porting a diverse range of validation techniques (Mc-
Cluskey 1997). After overcoming problems to do with
blame assignment in general clause form programs
(West et al. 1997), we developed the method whereby
batches of tests were used by blame assignment, and
single tests were used by explanation-based tools, to
identify axioms sets in which bugs were likely to reside.
After acquiring classified instances for these faulty
components, we used theory revision operators, tar-
geting comparison operators acting on ordinal sorts,
to identify and remove the bugs. Here we have shown
two different experiments where bugs were identified
and removed, and a new part of the model was in-
duced. The project started with an error rate for the
conflict predicate of several hundred errors per 10,000
tests. The application of ML techniques in general has
lead us to establish the cause of all the errors shown
up in our initial tests, and the error rates using code
generated from the current version of our model have
been cut by 2 orders of magnitude. Having said this,
our success in fielding TR seems to depend on correctly
predicting how fundamental the revisions are, and hav-
ing the machinery available to bring about such a level
of revision.

Many problems for future work remain, however. Most
outstanding is the generalisation of our environment so
that other customised msl models can be created and
analysed using ML tools. Secondly, the TR algorithms
for simple and composite revisions need to be further
refined and perhaps merged. Also, the implications of
using blame assignment which takes into account neg-
ative literals in proof trees needs to be fully evaluated.
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