
University of Huddersfield Repository

Wade, Steve and Salahat, Mohammed

Application of a Systemic Soft Domain-Driven Design Framework

Original Citation

Wade, Steve and Salahat, Mohammed (2009) Application of a Systemic Soft Domain-Driven
Design Framework. Proceedings of the World Academy of Science, Engineering and Technology,
(57). pp. 476-486. ISSN 2070-3724

This version is available at http://eprints.hud.ac.uk/id/eprint/7624/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Application of a Systemic Soft Domain-Driven
Design Framework

Mohammed Salahat, Steve Wade, Izhar Ul-Haq

Abstract—This paper proposes a “soft systems” approach to
domain-driven design of computer-based information systems. We
propose a systemic framework combining techniques from Soft
Systems Methodology (SSM), the Unified Modelling Language
(UML), and an implementation pattern known as “Naked Objects”.
We have used this framework in action research projects that have
involved the investigation and modelling of business processes using
object-oriented domain models and the implementation of software
systems based on those domain models. Within the proposed
framework, Soft Systems Methodology (SSM) is used as a guiding
methodology to explore the problem situation and to generate a
ubiquitous language (soft language) which can be used as the basis
for developing an object-oriented domain model. The domain model
is further developed using techniques based on the UML and is
implemented in software following the “Naked Objects”
implementation pattern. We argue that there are advantages from
combining and using techniques from different methodologies in this
way.

The proposed systemic framework is overviewed and justified as
multimethodologyusing Mingers multimethodology ideas.

This multimethodology approach is being evaluated through a
series of action research projects based on real-world case studies. A
Peer-Tutoring case study is presented here as a sample of the
framework evaluation process

Keywords—SSM, UML, Domain-Driven Design, Soft Domain-
Driven Design, Naked Objects, Soft Language.

I. INTRODUCTION
HE failure of software support systems has been well
documented over the years, and many of these failures

have been attributed to poor business process modelling
(Joseph Barjis, (2008)). The systems failed because the
business process model developed did not adequately support
the process of designing and implementing the software
support system. One of the main reasons for information
systems failure is a tendency to concentrate on the technical
aspects of design rather than understanding the business needs
[2].

Mohammed Salahat is with the Informatics department, School of

Computing and Engineering, University of Huddersfield, UK, as a part-time-
PhD student, and Lecturer with Ajman University in UAE. (e-mail:
m.salahat@hud.ac.uk & abac.hasan.m@ajman.ac.ae)

Steve Wade is with the Informatics department, School of Computing and
Engineering, University of Huddersfield as a Senior Lecturer (e-mail:
s.j.wade@hud.ac.uk)

Izhar Ul Haq is with New York Institute of Technology, Abu Dhabi
Campus, UAE, as Associate Professor (e-mail: ihaq31@yahoo.com)

There is a need for a systematic approach for capturing the
information required by business processes [1]. This suggests
a need to bridge the gap between business process modelling,
information systems modelling, and implementation. Our
previous work [4, 5] proposed and evaluated a development
“framework” to deal with soft and technical systems aspects
with an emphasis on modelling workflow. The evaluation
results guided us to modify the framework in a new direction
in which the concept of “workflow” is less dominant. The new
modified framework focuses on Domain-Driven Business
Process Modelling (DDBPM) as an approach to modelling
business processes in an object-oriented domain model. This
approach is named SDDD (Soft Domain-Driven Design).
SDDD combines Soft systems Methodology (SSM), the
Unified Modelling Language (UML), and the “Naked
Objects” implementation pattern. SDDD aims to investigate,
analyze and model a business domain so that we can
implement it as a software support system. SDDD is a
multimethodology systemic framework consisting of four
phases with guiding procedures to steer the developer between
the various compromises that need to be made throughout the
development process. Section 2 reviews related work. Section
3 introduces SDDD and explains the basic structure of the
framework. Section 4 and 5 then discuss the framework in
more detail as a multimethodology approach. Section 6 is a
brief description of a practical case study in which the method
has been applied. Section 7 presents a reflection on the
framework and the learning process of applying it suggesting
further research.

II. RELATED WORKS

Domain-Driven design is an approach that seeks to model

the system processes as a domain model and develop a
software support system based on it. The first step of the DDD
approach is to develop a Ubiquitous Language which consists
of different concepts, diagrams, and documents to facilitate
the communications between the developers and domain
experts. The Ubiquitous Language will be used to create the
domain model by the developers and domain experts [6].
UML defines a number of diagrams that can be used to model
the business process [7] but lacks the ability to explore the soft
issues related to the problematic situation which can be
handled using Soft System Methodology. SSM [8, 9, and 9] is
an established means of problem solving that focuses on the
development of idealised models of relevant systems that can
then be compared with real world counterparts. Some re-

T

World Academy of Science, Engineering and Technology 57 2009

414

searchers have explored the relationship between SSM and
object oriented analysis and design techniques in general [11]
but less has been written about the application of these
techniques in the context of the UML. UML is considered by
DDD to model the business domain as a “Domain Model”.

Recent works [12]-[13] consider the SSM conceptual model
as a focal point for linking SSM and UML by mapping the ac-
tivities of an SSM conceptual model into UML use-cases.
Recent examples of this approach can be found in SWfM [7]
and our previous works [4]-[5]. The SDDD framework guides
the developer into creating a “Soft Language” which consists
of the output of the SSM stage to deal with the soft aspects
which are not handled explicitly by Domain Driven Design.
The SSM Conceptual Primary task Model (CPTM) is used to
map human activity to a UML use-case model using a new
elaboration technique. Use-cases, as abstractions of business
activities, are used to model the business process in a domain
model using UML diagrams and based on the philosophy of
DDD which employs the idea of “Knowledge Crunching”
during the different stages. SDDD employs the same
philosophy during its four stages as explained in later sections.

 Other researchers have made use of various extensions to
the UML. For example [3] employed a systemic framework
combining SSM and UML extensions proposed by [14] to
model the business process of a manufacturing factory. Their
framework is based on Mingers Multimethodology ideas [15]
but does not encompass the software implementation phase of
development.

Our previous works [4]-[5] presented a systemic framework
for business process modeling and implementation as a
workflow system, that framework was described as a
multimethodology based on Mingers Multimethodology [15]
and it compassed the software implementation phases of
development. This paper aims to present an updated
framework for modeling the system business processes as a
domain model and implementing it as a software support sys-
tem. The SDDD framework combines SSM, UML techniques,
and the Naked Objects implementation pattern. To the best of
our knowledge, this combination has not been applied in an
intervention before.

III. DOMAIN-DRIVEN BUSINESS PROCESS MODELLING

The organization business process must be well defined and

modelled for the implementation. A business process can be
defined as ‘the transformation of something from one state to
another state through partially coordinated agents, with the
purpose of achieving certain goals that are derived from the
responsibility of the process owner’ [16]. There are many
definitions of “business process”. Most of these definitions are
based on the idea of a business process as a deterministic
system that receives inputs and transforms into outputs
following a series of activities. For example [17] defines
business processes as “‘‘structured sets of activities designed
to produce a specified output for a particular customer or
market’’.

Good information systems software will support the
organization work by handling the internal business process
and control all aspects affecting the execution of the process.
The business process must be supported with good business
process modelling and implementation techniques that can
analyze, model, and implement the business process in a
professional way to achieve the organizational goals [18].

Domain-Driven Design can be used to model the business
process as a business domain model [6]. A Ubiquitous
Language (UL) is generated first as a communication tool
between different stakeholders and the domain model will be
generated and implemented based on UL. We have adapted
the idea of a UL into a “Soft Language” which incorporate
certain artefacts of a SSM analysis into the model. An object-
oriented domain model can be extracted from this Soft
Language through a transition process which will be explained
in the next section. We argue here that SSM helps the
developer to gain a deep understanding of different
stakeholders’ perspectives which will need to be represented
in the Soft Language.

UML diagrams are sufficient tools for requirement mod-
elling to support business process modelling in an object-
oriented domain model [19]. When it comes to implementing
the system we have made use of the DDD implementation
pattern (i.e. Naked Objects) to reflect the system interface
directly from the domain model. Naked Objects is described
as “an open-source java based framework designed to
encourage the creation of business systems from business
objects” [20]. The latest version makes use of the Microsoft
.Net framework.

V. SOFT DOMAIN-DRIVEN DESIGN FOR BUSINESS
PROCESS MODELLING AND IMPLEMENTATION

The proposed framework is based on research into

multimethodology, which justifies combining methods for the
same business intervention [15]. It is
a multi-method framework which intended to guide the
developer through an investigation of a problematic situation.
The purpose here is to insure that a comprehensive
understanding is achieved in order to facilitate the modelling
and implementation of the domain-driven business processes
as a software support system. The framework is being
developed through a series of “action research” case studies.
Action research requires the participation of the researchers in
the development process. Accordingly our case studies have
involved development projects within our own school. Our
first two case studies have focussed on the development of a
peer-tutoring-system and a support system for the school’s
combined studies programme. The researchers are part of the
school and they are participating in daily activities related to
the case studies.

The proposed framework SSDDDF (Figure 1) is focused on
modelling and implementing of the domain-driven business
process as a software support system. SSM is used as a
guiding and learning methodology with techniques including
UML and implementation pattern (Naked Objects)) embedded

World Academy of Science, Engineering and Technology 57 2009

415

within it. The DDD philosophy is adapted to generate a SL
instead of UL and it will be an input to the next stages. The
implementation pattern is used after the generation of the final
refined change report which is an input to the implementation
process. The research can’t be a discrete event but a process
that has phases with activities to be performed; the research
process consist of four generic phases [15]:

1- Appreciation of the problematic situation and un-
derstanding why the problem exists as experienced by the
involved actors.

2- Analysis of the methods and the data produced during
the appreciation stage to understand how and why they are
generated.

3- Assessment of alternatives that may be improve the
current situation to better than it is, it includes interpretation of
the results.

3- Action includes reporting about the results in order to
recommend changes for improving the situation.

Using this generic model, the proposed framework consists
of four phases and each phase consists of a group of activities.
In the next section, the framework explained in details and
“Evaluating the problem using SSM” stage consists of three
activities represented in three steps [3]. The three steps equate
to the appreciation, analysis, and assessment steps of Mingers
generic model. Domain model generation takes place using
UML modelling techniques because SSM lacks to techniques

for taking actions [3], and this is equivalent to action step in
Mingers generic model. In our framework, domain modelling
and implementation is equivalent to action step in Mingers
generic model. So, the proposed framework satisfies the
generic process of conducting an action research in the
business intervention. SSDDDF represented in Figure1, Figure
2 represents the conceptualization of the framework, and
Figure 3 represents the logical processes embedded in it.

VI. THE FRAMEWORK OVERVIEW
The proposed framework consists of four phases and each

phase consists of a group of activities. The details of these
phases are as follows:

A. .Pre-SSM Phase

This phase consists of the following activities:

1- Initial problem identification

The problem in a specific area will be determined initially
before starting the process of investigation.
2- Stakeholder roles analysis

This step to clarify the roles of all parities involved in the
problem investigation to avoid any conflicts and to facilitate
further proceeding into the other steps.

Fig. 1 A Systemic Soft Domain-Driven Design

(SSDDDF)

1. Initial problem identification

 9. Exit

10. Reflect on the process and record learning
 9. Exit

10. Reflect on the process and record learning

 2. Stakeholder roles analysis

 3. Evaluating the problem using SSM
 6. Rethink
 2-5 4. Generate SDDD Soft Language and use it to generate

 Domain_Driven Business Process Model using UML

 5. Generate a proposal about the DDBPM generated during this phase.
This will be used in the implementation phase, and it will include the
whole models developed during the previous phase and how to use them
in the implementation phase. The report will be refined by matching it
with previous stages output until considered adequate for
implementation

7. Domain Model Implementation using DDD implementation Pattern

(i.e. Naked Objects)
8. Rethink (6-7)

World Academy of Science, Engineering and Technology 57 2009

416

Fig. 2 The conceptualization of SSDDDF

Pre-SSM Phase
1-Initial problem
identification
(Output: Problem
statement)
2-Stakeholder
roles analysis
(Output: Different
views)

SSM Phase
 -Evaluating the
problem using SSM.

(The output: Rich
Picture, Root -
Definition,
Conceptual Model,
CATWOE)

Post1- SSM Phase

Generate SDDD
Soft Language (The
output of SSM will
be input to this
language)

Generate the Domain-
Driven Business Process
Models using UML (Use
case, class diagram, etc)

Rethink

The final report includes changes required to the
business domain investigated based on SSM
philosophy (Domain-Driven Business Model-> a
group of UML diagrams)

Post 2- SSM Phase

Implement the software support system based
on the generated Domain-Driven Business
Process Model using DDD Implementation
Pattern (i.e Naked Objects)

 EXIT

Reflect on the framework Application and
record learning

Rethink

World Academy of Science, Engineering and Technology 57 2009

417

b) SSM Application Phase

1- Evaluating the problem using SSM
SSM is a guiding methodology of the research and as

shown in figure (1), there is a rethink about the steps (2-5)
which includes the application of SSM to evaluate the
problem; SDDD techniques are used to model the domain
business processes and a change report will be generated
which includes the modelled domain and how to implement it.
The output of SSM stage will be an input to Soft Language of
SDDD. This language is an important part of SDDD and
represents the communication tool between the different
stakeholders. SSM application consists of the following steps:

1.1 Investigating the problem situation using rich picture
model

Anything can be included in rich picture and it is used to
support the overall understanding of the organisation situation,
goals, structure, and issues affecting the problem situation.

1.2 Modelling the relevant system using root definition and
conceptual model

 Root definition is used to determine the purpose of the
system and the interested parties. Root definition constructs
from the different views of parties concerned, and these views
represent the expected functions of the system. Root definition
represents the mission of the target system and look at the
organization or the problem situation from different points of
view. Root definition is one sentence and over all structure
should be tested using CATWOE. (For details, see 8, 9, and
10). RD will be used to construct the conceptual model (CM)
or consensus primary task model (CPTM) and it represents the
human activity model.

1.3 Compare the (CM) with the real world
The conceptual model, as an abstract representation, will be

compared to the real world (the current organizational
process) for validation. If the organization business process
model does not exist, then the conceptual model will be used
as a basis to model it as a domain model [11]. The comparison
will use the activities, organizational goals, objectives, and the
structure using rich picture, root definition, and conceptual
model.

2- SDDD Soft Language
Soft Language is the first product of SDDD. It consists of

all documents and diagrams representing the business domain
as communication tool between the different stakeholders. The
proposed framework suggested that models developed
following the Pre- Soft

Fig. 3 The embedded logic in SSDDDF

Systems Methodology (SSM) and SSM Phases could

provide useful input to the development of a soft language
(SL). SSM helps the developer to gain a deep understanding of
different stakeholders’ perspectives which will need to be
represented in the ubiquitous language (Soft Language).

C. Post1-SSM Phase

1- Object-Oriented Domain modelling using UML
The conceptual model (CM) or consensus primary task

model (CPTM) is represents a general view of the domain

Stakeholders Analysis

Initial Problem Identification
Pre-SSM
Phase

Create rich picture, root
definition, conceptual model,
and compare CM with
existence model

SSM
Phase

Is the Report
adequate for
implementation

Generate changes Report

N

The final refined changes report

Implement the software support
system based on the final refined
changes report using DDD
implementation pattern (i.e.
Naked Objects)

Y

Is it Adequate
Implementation?

EXIT

Reflect on the framework Application

-Generate SDDD Soft Language
and Object-Oriented Domain
Model using UML

Post 1-
SSM
Phase

N

Post 2-
SSM
Phase

Y

World Academy of Science, Engineering and Technology 57 2009

418

functional perspective. The decomposition of CM into
subsystems will take place using a subsystem description table
[11] and each subsystem activity will be represented in an
activity description table. There is an identical similarity
between conceptual model activities and use cases which
make the conversion process possible and straightforward. A
new elaborating technique is used to elaborate about any
activity to be converted to a use case. This technique
represented in Figure 6 and demonstrated through the case
study.

1.1 Building a subsystem description and activity
description tables

Subsystem description table will be prepared for each
subsystem which includes subsystem number, name, head, and
activities. Then, an activity description table will be prepared
for each activity and it includes subsystem number and name,
activity name, preceding and following activities,
precondition, input and output data, tasks, business rules and
constraints, post conditions, required skills and capabilities,
role name, and performance criteria.

1.2 Converting the activities of the conceptual model into
use cases

 Activities will be tested to determine their goals, and
some of the activities will be combined and some of them will
be decomposed. The activities and their goals will be tested
and mapped to UML use cases as one-to-one relationship. All
use cases will be combined in the use case diagram which
consists of use cases and their actors. The use case diagram is
part of the use case model which is representing the
organizational business process and it will be the basis for
modelling the object-oriented domain model.

1.3 Use cases analysis and modelling
Each use case will be described using a textual format

template. Each use case will be modelled using UML activity
diagram, sequence diagram, and class diagram. The activity
diagram is used to model the functional, informational,
behavioural, and organizational work flow perspectives. The
sequence diagram is used to model the interaction between the
use case objects (the dynamic aspects of the workflow
system). Finally, class diagrams for the static and
organizational structures for each use case will be developed.

1.4 Developing the class diagrams
Class diagrams developed to model the behaviour of all use

cases will be combined together in one class diagram called
the analysis model. This model will be converted to a design
model, by adding to it the design aspects required to design
the object-oriented domain model.

2- Generate the changes a proposal
Change proposal to improve the domain model will be

produced and it includes the whole models developed during
the previous stages and guidelines for using them in the
implementation stage.

3- Generate the final refined changes report
The report contents will be matched against previous stages

results until an adequate report is a achieved.

D. Post2-SSM Phase

1- The domain model Implementation
DDD implementation pattern (i.e. Naked Objects) will be

used in this stage because it’s critical to start the imple-
mentation before refining the proposed modelling report. The
domain model (mainly class diagrams) will be used to
prototype the software system required.

2- Refining the implemented software support system
The implementation results will be matched to the refined

modelling report and if any deviation available must be
managed. This step represented in figure (1) as rethink (6-7).

 3- Exit and reflect on the framework application
Exit implementation refinement step when an adequate

software system reached. Then a reflection on the role of each
component of the framework will take place. Finally, lessons
learned from combining SSM, UML, and DDD
implementation pattern will be recorded to guide further
applications.

VI. THE CASE STUDY

We have been engaged in an information systems

development project using SSM and UML techniques within
an agile framework to make recommendations about the
development of an intranet for the academic school in which
we are employed. At the beginning of the project the
department had an operational intranet but this was not widely
used. An information system strategy was initiated to
investigate ways in which the intranet could be developed to
support the university mission and departmental goals.
Initially we used use cases as the primary fact-gathering
technique but certain limitations in this approach led us to a
more thorough SSM-based analysis of the situation.

We argue that the techniques of SSM can help the
developer to identify a richer set of use cases than would
otherwise be possible but developers with a full use case
model still have many challenges ahead of them. We are
interested in object oriented design and the view that all
business behaviour identified in the use case model should be
encapsulated as methods on domain objects. Thus, a Student
object should not just be a collection of data about the Student;
it should encapsulate all the behaviours that we need to apply
to a student. In Domain-Driven Design these are often referred
to as 'behaviourally-rich' domain objects.

A number of software frameworks have been developed to
allow programmers to build prototype applications directly
from a behaviourally rich domain model implemented in an
object oriented programming language. Prominent amongst
these is the Naked Objects implementation Pattern. This is the
one that we have chosen to use to implement our prototype
applications.

In the next section we present a quick superficial
description of how the method might be applied to a relatively
simple project, the design and implementation of a peer-
tutoring system.

World Academy of Science, Engineering and Technology 57 2009

419

A. Peer-Tutoring System Development

It aims to design and implement peer-tutoring system for
introductory programming unit in the department of
informatics to support the students and reduce number of
failures. One of the current problems facing students and
lecturers in university is the difficulty of understanding and
mastering the skills required to write and run computer
programs successfully. A number of researchers have
suggested that peer tutoring can be particularly useful to
support this type of learning because it allows learners to learn
and support each other [21], and it is beneficial to help
students learn and practise the required skills more actively in
a setting that encourages them to be more active and
intellectually engaged [22]. Other researchers [23] reported
about the problems of teaching programming course at
Victoria University in Australia and they proposed an
approach to enhance the delivery of this module. [24] Raised
the difficulties of teaching programming course in Chinese
universities and discussed different modern incorporating
strategies, to solve this problem, which includes “Concept
Mapping”, “Peer-learning” and “E-learning” methods.

The proposed solutions to recap the difficulties of teaching
programming unit by the mentioned researchers concentrating
on the delivery methods only without investigating all soft and
hard systems issues that can cause such a problem [23]-[24].
In this work, we proposed Peer- tutoring system as an
improvement of the teaching process and to enhance the
students understanding which may be reduce the percentage of
failures. In the next sections we will show how the method is
applied.

1- Pre-SSM Phase
1.1 The problem identification
The Department of Informatics in the School of Computing

and Engineering at the University of Huddersfield in UK and
Information Technology College at Ajman University of
Science and Technology in UAE both offer introductory
programming modules for their first year computing students.
These modules focus on Java programming; lecturers face
certain difficulties related to students understanding of the
subject because of the nature of the required problem-solving
skills. Students require more tutoring and practical sessions to
help them practise different exercises in order to enhance their
understanding and practical skills. Both Universities expect
that implementing a peer-tutoring system will reduce the
failure rate. The departments want to know how to select
tutors among good students and how to reward them.

1.2 Stakeholder Determinations
The stakeholders of the required system were determined to

be peer tutor, peer tutee, lecturer, and management. The
stakeholders have different expectations of the system. Peer
tutors are generally looking for teaching experience to be
added to their CVs. Peer tutees are looking for extra help.
Lecturers are looking to reduce their workload, and to

determine which students most require tutoring sessions.
Management look to reduce the number of failures on
programming modules.

2- SSM Phase
2.1 Investigating the problem situation using a rich picture
In order to develop a rich picture of the situation under

study, a number of information sources were used to capture
views of the introductory programming unit from the
perspective of the management (the school & the college in
both universities), lecturers, and students. Interviews with the
school (or college) administration and groups of students were
conducted to understand the problematic situation of teaching
introductory programming course and set out suggestions to
solve the problems. Rich pictures were used as a tool used in
this investigation. A number of different pictures were drawn
the following is a simple early example.

Fig. 4 Peer-Tutoring System Rich Picture

2.2 Modelling the relevant system using SSM

The relevant system was modelled using a root definition

and conceptual models. Our initial root definition was as
follows:

“a peer-tutoring system for the informatics department will
help in the selection of peer- tutees and peer-tutors, the
scheduling of tutoring sessions based on the availability of
rooms, tutors, and tutees. The system will also monitor the

World Academy of Science, Engineering and Technology 57 2009

420

perceived benefit to tutors and the progress of tutees in
increased self-confidence as well as measure the impact on
failure rates.”

A variety of conceptual models were then developed to
model the key activities in the system. From these a simple
Consensus Primary Task model (CPTM) was developed
identifying the core activities that the first version of the
system would need to support. This presented in figure 5.

Fig. 5 CPTM of Peer-tutoring System

2.3 Compare the conceptual model to the real world
SSM required the investigator to compare the produced

conceptual model with the actual real life work. There is no
real life PTS available to be compared with the developed
conceptual model. In this case, the conceptual model will be
considered the base to model the PTS system as a domain
model. The CPTM, as a combination of all conceptual
models, and by considering the other components of SL will
be used in the next phase for to generate the domain model as
stated in the beginning.

3- Post1- SSM Phase
3.1 Moving from SL to domain model using UML
This section consists of three parts: converting CPTM into

use cases, use case modelling using UML, and Class diagram
development.

3.2 Converting CPTM into use case
Any activity required software support will be selected as a

use case. The stage of moving from an SSM conceptual model
to a use case model is not as straightforward as this high-level
discussion would suggest. In thinking this through we have
been pushed towards making a clear distinction between
stakeholder goals, business activities and use cases. The
following model (Fig. 6) shows the relationship between these
key abstractions.

Use Case
Business Activity

Name
Description
Conceptual Model (image)

nn nn

nn

Goal
Priority (Low, Medium, High)
Description

n

n

n

n

Stakeholder
Name
Description nn nn

Fig. 6 Moving from an SSM to use case diagram

The model suggests a hierarchy of business activities

related to stakeholder goals that are taken to be the primary
reasons for developing the system. The business activities
would be represented in a hierarchy of conceptual models with
the lowest models containing more primitive, elementary
business activities than the higher ones. An individual
business activity is represented in context in the image of the
conceptual model of which it is a part. Some of the determined
use cases are presented in the following Use Cases Diagram
(Fig. 7).

Fig. 7 Use case diagram

3.3 Developing the class diagram of PTS

Each use case presented using textual template, activity

diagram, sequence diagram, and all use cases are combined in
a use case diagram. The next step in the process is to take the
business logic identified in the use cases and associate it with
classes in a class diagram. We have followed the guideline
that all important business logic must be implemented in
classes in the domain model. An initial class diagram is
presented below. (Fig. 8)

3.4 Change report generation and refinement
As shown in the framework (SSDDDF), there is a draw

back to the previous stages to refine what’s done during Pre-
SSM, SSM, and Post1-SSM. This refinement is essential to be
sure that the exact changes required already modelled well as
a domain model. As a guiding methodology, SSM focus on

Identify Tutors Identify
Tutees

Identify Room

Schedul

Run
Tutorin

Reward Tutors

World Academy of Science, Engineering and Technology 57 2009

421

the generation of the required change report as a result to be
recommended for the management actions [8]-[9]-[10].

Fig. 8 Class Diagram of PTS

SSDDDF extended SSM further steps to include

implementation as a major action to be taken as part of the
improvement change to enhance the investigated situation.
This indicate that the implementation will be started after the
completion and the refinement of the change report (includes
the domain model) to facilitate the implementation process
and eliminate the possibility of system failure since all soft
and hard system concerns are investigated, modelled, refined,
and included in the object-oriented domain model for
implementation.

4- Post2-SSM Phase
 4.1 Prototype Design, Implementation, Refinement
The class diagram is used to extract the domain objects

which lead to a domain model which was implemented in VB
and the Naked Objects implementation pattern. This process is

used to generate an initial prototype where the interface allows
users to interact directly with the domain objects. A
screenshot is provided below to give an idea of what the initial
prototypes looked like: (Fig. 9)

Fig. 9 Naked Object Screenshot from PTS Prototype

More improvement and work is going on to enhance the

productivity of the prototype to be a real system. Currently,
we are Naked Objects .Net to get a real live software product,
and may domain-driven design features added to this version.
The new output of the current work and further enhancement
on the proposed framework will be a target of a new
publication.

B. Other case studies

This research is part of ongoing research aims to evaluate

the proposed multimethodology framework using different
case studies. Combined studies programs, work placement
management systems, student associations systems, and others
are a group of case studies which allow the action research
approach to be applied by the researchers. We aim from this to
find different important issues related to the framework in
order to evolve as an ISD framework.

VII. REFLECTIONS ON THE FRAMEWORK

Our work in applying the framework to a series of real-

world development projects has focussed our attention on a
number of issues that we had not considered at the outset.
Some of these present difficulties for the further development
of the framework which present opportunities for further
research. Some of these will be briefly discussed in this

World Academy of Science, Engineering and Technology 57 2009

422

section.

a) Role of Re-Use and Design Patterns in Domain

Modelling

Our approach tries to preserve as much “soft” information
as possible in the evolving domain models. Inevitably some of
this information is lost as we move from approaches that try to
model what “people” are doing (including activities that do
not require software support) through to program code. At
present our framework leads to development of a bespoke
software system based on a rich object-oriented domain
model. In practice many software developers make use of
reusable software components or wish to design software with
an eye to future reuse. There is clearly a tension between our
emphasis on a bespoke solution and the software developers’
objective of developing generic, reusable software solutions.

b) Representation of Implicit Information in the Domain

Model

The conceptual models in SSM do not have rigorous syntax.
We have discovered that when developing the conceptual
models people often include information in, for example, the
sequence of activities or the knowledge required to carry out
certain activities which is lost when we move into the use case
and object models. We are attempting to develop clear
guidelines for identifying this type of information and what
should be done about it. One possibility is that we develop our
own version of conceptual models that do include a more
prescriptive notation.

c) Ambiguity in the Definition of “Business Process”

One of the issues that we have confronted is the lack of

consensus about precisely what can be defined as a business
process and what cannot. SSM has a number of techniques for
capturing multiple stakeholder perspectives on what the key
business processes are and how they should be monitored. We
want to preserve these multiple perspectives for as long as
possible into the development process. At present we take the
Consensus Primary Task Model produced in SSM to be an
objective description of what is required but we have found
that it is often difficult to gain consensus in developing this
model and then to preserve that consensus as we move on.

VIII. CONCLUSION AND FUTURE WORK

The work done in this paper reviewed and highlighted the

need for a multimethodology framework that can handle both
soft and hard issues of domain business process modelling and
implementation as a software support system. The new
proposed framework is developed based on the idea of
Domain-Driven Design (DDD) and Soft Systems
Methodology (SSM). We have added a “soft” perspective on
DDD to form “Soft Domain-Driven Design”. The approach is
described as a systemic framework for domain business

process modelling and implementation. The framework is
proposed and justified as a multimethodology framework,
incorporating guiding steps through various key stages in the
development process. The framework is being evaluated and
further developed in an action research programme. We
briefly provided the example of a “Peer-Tutoring-System”
(PTS) case study to show how the proposed framework can be
applied to a real problem situation. The evaluation work is
ongoing in other cases including a “Combined Studies
Programme Development” (CSPD) and the “Placement Unit
Management System” within our institutions. More details
will be the target of future publications.

REFERENCES

[1] Joseph Barjis, “The importance of business process modelling in

software systems design”, Science of Computer Programming Journal,
vol 71 ,pp 73–87, 2008.

[2] Alter, S., “The work system method: Connecting people, processes and
IT for business results”, Work System Press, Larkspur, CA, 2007.

[3] Sewchurran, K. & Petkov D, “A systemic Framework for Business
Process Modelling Combining Soft Systems Methodology and UML”,
Information Resources Mnagement Journal, 20, 3, IGI Publishing,
PA,USA, P. 46-62., 2007.

[4] Salahat , M., Wade, S., Lu, J., A systemic Framework for Business
Process Modelling and Implementation, In the proceeding of 5th
International Conference on Innovations of Information Technology
(Innovations’08), UAE University, Al Ain, UAE, in IEEE xplore 978-1-
4244-3397-1/08., 2008.

[5] Mohammed Salahat, Steve Wade. A Systems Thinking Approach to
Domain-Driven Design. In the proceeding of UKAIS2009 conference,
Oxford University, Oxford, UK, 2009.

[6] Eric Evan , Domain-Driven Design –Tackling Complexity in the Heart
of Software, Addisson Wesley, 2004.

[7] Al Humaidan, F., “Evaluation and Development Models for Business
Processes”, PhD thesis, University of Newcastle, UK, 2006

[8] Checkland, P., and Poulter J., “Learning for Action. A short Definitive
Account of Soft Systems Methodology and its use for Practitioners,
Teachers and Students”, John Wiley and Sons Ltd, West Sussex,
England, 2006.

[9] Checkland, P., “Systems Thinking, Systems Practice”, John Wiley and
Sons Ltd, West Sussex, England, 1999.

[10] Checkland, P. and Holwell, S.E. , “Information, Systems and
Information Systems, Making sense of the field”, John Wiley and Sons
Ltd, West Sussex, England, 1998.

[11] Bustard, D. W., Dobbin, T. J., and Carey, B. N., “Integrating Soft
Systems and Object-Oriented Analysis”, IEEE International Conference
on Requirements Engineering, Colorado Springs, Colorado, pp. 52-59,
1996.

[12] Wade, S. and Hopkins, J., “A Framework for Incorporating Systems
Thinking into Object Oriented Design” Seventh CAiSE/IFIP8.1
International Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design (EMMSAD’02), Toronto, Canada, May ,27-
28,2002.

[13] Al-Humaidan, F., & Rossiter, N.,” Business Process Modelling with
OBPM combining soft and hard approaches”, in Proceeding of 1st
Workshop on Computer Supported Activity Coordination (CSAC), 6th
International Conference on Enterprise Information Systems, Porto, , pp
253-260, 13-14 April,, 2004.

[14] Erikksonn, H. E., & Penker, M., “UML business process modelling at
work”, John Wiley and Sons, New York, 2000.

[15] John Mingers, “Combining IS Research Methods: Towards a Pluralist
Methodology”, Information Systems Research, 12, 3, Institute for
Operations Research and the Management Sciences (INFORMS), pp.
240-259, 2001.

[16] D. Platt, “Process Modelling and Process Support Environment to
Design Management”, Department of Civil Engineering, Faculty of
Engineering, University of Bristol, UK, 1994.

World Academy of Science, Engineering and Technology 57 2009

423

[17] Daveport, T. h. Process innovation: Reengineering work through
information technology, Harvard Business School Press, Boston, Mass,
1993.

[18] Warboys, Brian, Kawalek, Peter, Robertson, Ian, and Greenwood, Mark,
“Business Information Systems-A process approach”, McGraw-Hill,
UK, 1999.

[19] Svatopluk Štolfa, Ivo Vondrák, “Mapping from Business Processes to
Requirements Specification”, Retrieved on 7th Aug, 2008 from
85.255.195.219/conf/esm/esm2006/abstract.pdf

[20] Pawson R. & Mathews R., “Naked Objects”, John Wiley and Sons Ltd,
West Sussex, England, 2002.

[21] Goodlad, S. and Hirst, B. Peer Tutoring: A Guide to Learning by
Teaching,London: Kogan Page; New York: Nickols Publishing, 1989.

[22] Gardner, H. (1993) Multiple intelligences: the theory in practice. New
York, NY:Basic Books.

[23] Miliszewska Iwona , Tan Grace. Befriending Computer Programming:
A Proposed Approach to Teaching Introductory Programming. Issues in
Information Science and Information Technology, volume 4, 277-289.,
2007.

[24] Hu Xiaohui. Improving teaching in Computer Programming by adopting
student-centred learning strategies, China papers, issue 6. 46-51., 2006.

World Academy of Science, Engineering and Technology 57 2009

424

