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ABSTRACT 

Free-form surfaces are increasingly used in optical and mechanical devices due to 
their superior optical and aerodynamic properties. The form quality plays an essential role 
in the characteristics of a free-form component. In order to assess the form error, it is 
necessary to fit the measurement data with a nominal template or analytical function.  
This thesis focuses on investigating and developing appropriate fitting (matching) 
algorithms for different kinds of free-form surfaces. 

A new algorithm called the Structured Region Signature (SRS) is proposed to provide 
a rough matching between the data and template. SRS is a global generalised feature 
which represents the surface shape by a one dimensional function. The candidate location 
which occupies the most similar signature with the measurement data is considered to be 
a correct matching position. 

The fitted result is then refined to improve its accuracy and robustness. The widely 
used Iterative Closest Point technique suffers from a slow convergence rate and the local 
minimum problem. In this thesis the nominal template is reconstructed into a continuous 
representation using NURBS or radial basis functions if provided as a CAD model or a 
discrete-point set. The Levenberg-Marquardt algorithm is then applied to calculate the 
final result. The solution of the traditional algebraic fitting may be biased. The orthogonal 
distance fitting techniques can effectively overcome this problem. If the template 
function is explicit, the projection points can be updated simultaneously with the motion 
and shape parameters; whereas a nested approach is adopted to update the projection 
points and motion parameters alternately when the template is in a parametric form. 

A proper error metric should be employed according to the distribution of the 
measurement noise, so that the solution can be guaranteed robust and unbiased. 
Simulation and experimental results are presented to validate the developed algorithms 
and techniques. 
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 INTRODUCTION 

1.1 Definition 

In the metrology field, free-form surfaces are defined as the surfaces which have no 

invariance degree [ISO 17450-1]. This means if translating a free-form surface along any 

direction or rotating it about an arbitrary axis, the surface cannot remain unchanged. 

Therefore, a free-form surface has no symmetry in translation or rotation. 

The simplest shape in the 3D Euclidean space is a plane. It has three Degrees of 

Freedom (DoF): two in translation and one in rotation. Another simple surface is a sphere, 

which has three DoF in rotation. If restricting a plane by one translational DoF, a cylinder 

comes into being. It is rotationally symmetric about its axis and can remain identical 

when displaced along the axis. These three shapes are traditionally regarded as ‘simple 

geometries’, and appear very commonly in natural objects and artificial products. 

If we eliminate the translational DoF of a cylinder, and make it only rotationally 

symmetric about the axis, a revolved surface is obtained. It can be created by rotating a 

curve about one axis. On the contrary, restricting the rotational DoF of a cylinder yields 

an extruded surface, which is generated by extruding a curve alone a straight line. Instead 

of eliminating one DoF of rotation or translation, assigning a constraint between these 

two DoF will lead to a helically symmetric surface, which is termed as a generalized 

helicoid [Weisstein 2002]. It can be constructed by rotating a twisted curve about a fixed 

axis and, at the same time, displacing it with a velocity proportional to the angular 

velocity of rotation. 

Finally, by restricting all the DoF of rotation and translation, we can obtain a free-

form surface. 

It is proved that all the surfaces have only these seven types of invariance under rigid-

body transformations in the 3D Euclidean space. These surfaces are illustrated in Figure 

1.1 with their rigid-body invariance (R denotes DoF in rotation and T translation). 
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(a) Plane (1R+2T)                       (b) Sphere (3R+0T)                        (c) Cylinder (1R+1T) 

           

(d) Revolved surface (1R+0T)                         (e) Extruded surface (0R+1T)         

           

(f) Generalized helicoid (1R+0T)*1                       (g) Free-form surface (0R+0T) 

Figure 2.1 Surfaces with different invariance 

In other research fields, different definitions have been given for free-form surfaces. 

Campbell and Flynn [Campbell 2001] defined free-form surfaces as complex surfaces 

that are not of an easily recognized class such as planes and/or natural quadrics. Another 

                                                 

 

* The DoF of translation is constrained with rotation. 
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interpretation was given by Besl [Besl 1990]: “A free-form surface has a well defined 

surface normal that is continuous almost everywhere except at vertices, edges and cusps”. 

1.2 Motivation 

With the development of technologically advanced industries, free-form surfaces are 

more and more widely used in optical and mechanical devices. They have remarkable 

superiorities over traditional simple-shaped elements. 

Firstly, they can simplify the system. Most traditional optical lenses are composed of 

spherical elements. In order to eliminate aberrations, many pieces of glass are required. 

On the contrary, if adopting free-form surfaces, only one or two pieces are sufficient to 

meet all the optical requirements whilst not causing aberrations. Thus free-form surfaces 

can make the optical system lighter and cheaper. Such examples include microscopes, 

telescopes and camera lens. 

Secondly, free-form surfaces can realize some novel optical functionality. For 

example, the image height of an F-theta lens used in the scanning system of laser printers 

is proportional to its scan angle. A Fresnel lens used in a lighthouse enables the 

construction of lenses with large aperture and short focal length whilst requiring much 

smaller weight and volume compared with conventional lenses. 

Thirdly, free-form surfaces can meet some biological or mechanical requirements. 

The contacting surfaces of bio-implants should have consistent shapes with real human 

body bones; otherwise the patient will suffer pain due to conflicting and wear of 

replacements, then the life length of the implants will be significantly shortened [Blunt 

2009].  In aerodynamics and automotive industries, some surfaces have interactions with 

air or fluid, e.g. 3D cams, seals, turbine blades, impellers, fuselage etc. These surfaces are 

designed based on their dynamic and mechanical functionality, and imperfect shapes may 

cause energy waste or even damage of the elements [Savio 2007]. 

In precision engineering, a fundamental problem is to determine whether a 

manufactured workpiece meets the requirements of its original design specifications. It is 

widely recognized that the surface form plays an essential role in the characteristics of a 

free-form component; hence the component must have extremely high fidelity with the 

original design. It is critical to evaluate the form error of a free-form surface with respect 
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to the nominal shape at high precision, and ensure this manufactured item fulfil the 

design in terms of macro-topography and micro-topography. 

The inspection of simple geometries like spheres and cylinders traditionally involves 

gauges for different shapes and applications [Hume 1970]. Concerning complex-shaped 

surfaces, e.g. marine propellers [Jastram 1996], it needs highly skilled technicians to 

check the surface with numerous mechanical gauges. In optical engineering, the form 

qualities of optics are generally tested with the Newton or Fizeau interferometer 

[Malacara 2007]. A quality test plate or a reference surface is required. The inspection in 

this way depends heavily on the technician’s proficiency and the manufacturing accuracy 

of the test plates or gauges. It is evident that the task is very inefficient and expensive, 

more importantly, the accuracy cannot be guaranteed. 

Various automatic techniques have been developed. A component is measured and 

then a mathematical assessment process follows to quantitatively calculate the form error 

of the data with respect to the nominal shape. In this way human operation is no longer 

necessary, thereby greatly saving time and cost, at the same time, improving the 

evaluation accuracy. 

Normally a design template is provided as a reference to represent the nominal shape 

of a free-form component. The deviation between the measurement data and the template 

is regarded as the form error of the free-form surface. 

When measuring a free-form component, some reference datums like planes or holes 

on the support are used to establish the measurement coordinate system. Normally the 

working surface (free-form surface) is machined with higher accuracy than other surfaces, 

and the alignment of the measured component may not be precise enough, i.e. the 

measurement data are not exactly located in the same coordinate system with the template, 

and the form error cannot be calculated by directly subtracting the reference template 

from the data. Slight misalignment between the two coordinate systems can cause 

apparent error in the evaluation of form quality. This is fatal for some key free-form 

elements which have rather high form accuracy and perform critical functionality. 

Misalignment shall be eliminated to bring the template and data into a common 

coordinate system, this procedure is called localization or alignment [Li 2005]. 

On the other hand if its corresponding standard geometric function is already known, 

the actual shape of a workpiece can be assessed by recognizing the geometric parameters 
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(intrinsic characteristics) in the sense of least squares, minimum zone etc [ISO 4291:1985, 

Forbes 1990], and this kind of manipulation is called association [ISO/TS 17450-1: 2005]. 

Such examples of free-form surfaces include biconic surface, conical surfaces etc [ISO 

10110-12:2007]. From the mathematical point of view this procedure can be regarded as 

the reverse process of manufacturing.  

In the present thesis, this association process and the preceding localization problem 

are both termed as fitting. 

At present, there is a lack of practical and general-purposed methods to match 3-D 

free-form surfaces with their templates. This dissertation endeavours to bridge the gap 

between the free-form measurement data and design functionality. Appropriate fitting 

techniques will be explored and developed for characterization of free-form surfaces. 

1.3 Objectives 

Considering their practicability and utility, the fitting algorithms are required to be 

widely applicable and no prior assumptions or restrictions are assigned onto the surface 

shape. However, a standardized and universal technique is not desirable for all 

circumstances; instead, the methods will be application-oriented and surface-shape-

related. That is to say, different fitting algorithms will be developed according to the 

shapes, representations and applications of the free-form surfaces. It is also expected to 

quantitatively evaluate the form accuracy as an error map, instead of making a simple 

‘pass/fail’ decision. 

This research project will address the following major objectives: 

1. To review conventional techniques of form error evaluation in the precision 

metrology field, and survey various matching/fitting methods developed in other research 

fields, e.g. Computer-Aided Design (CAD), pattern recognition, image processing etc. 

2. To generate appropriate mathematical representations for the nominal templates. 

The design templates sometimes are provided as CAD models or discrete point sets, 

which are not compatible with the optimization programs of the fitting process. Thus they 

will be transformed /reconstructed into other proper mathematical representations which 

are required to have extreme fidelity with the original designed shape. 

3. To develop practical and efficient localization techniques to find the best matching 

between the measurement data and nominal template. Free-form surfaces will be 
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classified into several categories based on their shapes, and different matching algorithms 

will be adopted accordingly. Reliable correcting processes are also required to reject false 

matching results. 

4. To improve the accuracy and robustness of the fitting results. Proper error metrics 

and optimization algorithms will be employed to make sure the fitted results are 

consistent with the measurement error distributions and robust against outliers and 

missing data. Compensation may also be implemented to deal with manufacture defects 

or other physical effects. Extensive attention will be paid on the numerical stability and 

efficiency. These fitting programs will be coded with MATLAB. 

5. To verify the performance of these fitting algorithms with actual experiments. 

Some case studies will be given to compare the fitted results with some mature 

commercial software and mathematical tools. 

1.4 Approaches 

We classify free-form surfaces into three kinds according to their shapes and 

applications [Jiang 2007], 

1. Smooth surfaces: surfaces with no steps, edges, or cliffs, in another word, surfaces 

with a continuous normal vector. 

2. Non-smooth surfaces: surfaces with very complex topographies, i.e., having many 

sharp shape-variations like cliffs, small concave and convex parts. 

3. Structured surfaces: surfaces with a deterministic pattern of usually high aspect 

ratio geometric features designed to give a specific function [Evans 1999]. 

The fitting strategy of different free-form surfaces is summarised below, 

Case A. If the surface is structured and each part is of a simple geometry, we will fit 

each section with a quadric function individually, and then determine the form error and 

position error separately. 

Case B. If the surface is non-smooth, it will be very difficult to represent the surface 

with global mathematical functions. Some nominal points will be sampled on the 

reference template and the Iterative Closest Point method will be adopted to find the best 

matching between the two sets of points [Besl 1992]. 
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Figure 2.2 Hierarchy of free-form surface evaluation 

Case C. Smooth surfaces are of our particular interest in this thesis. This type of 

surfaces are also termed as sculptured surfaces or curved surfaces, and they are the most 

commonly used free-form surfaces. Some special surfaces have their analytical functions, 

e.g. F-theta surface, biconic surface etc. These surfaces are put into Case C and a design 

template is not essential for them. The association of these surfaces is very similar with 

conventional simple geometries, such as sphere and cylinder. If moving the analytical 

function into a non-standard position, the representation will become rather complicated. 

It is proved that moving the measurement data is equivalent to moving the template, and 

their fitting results are the same [Atieg 2003]. As a consequence transformations are 

always performed onto the measurement data in this dissertation. 

Case D. The design template is supplied as a CAD model, and this case is the main 

task of this thesis. Sometimes it is not straightforward to directly read the design function 

from the file, but a set of nominal points can be obtained from the template by some 

software like HOLOS (Carl Zeiss CMM) or Rhinoceros. These discrete points can be 

reconstructed into a continuous representation with NURBS or Radial Basis Functions. 

Then the form quality of the workpiece can be evaluated by fitting the measurement data 

with the reconstructed template. Thereupon, 

reconstrct
- 

fitmeasureactevaluate
ErrorErrorErrorError Error ++=                      (1.1) 

Here 
evaluate

 Error and 
act

Error  indicate the evaluated and actual form errors of the 

component with respect to the design template, whilst 
measure

Error , 
fit

Error  and 

reconstrct
Error  refer to the errors introduced in measurement, fitting programme and 

Free-form 

Structured Smooth 

Function template CAD model template 

Non-smooth 

A B 

C D 
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reconstruction programme respectively. In order to make the evaluation result more 

reliable, i.e. the evaluated form error is closer to the actual form error, the other three 

terms are hopefully to be as small as possible. The measurement data is provided 

beforehand, so that the measurement error is fixed and we will not pay much attention to 

the measuring techniques. Effort will be made to reduce the bias and uncertainty of the 

fitting algorithms and to improve the accuracy of surface reconstruction. Here the 

reconstruction and fitting errors are required to be at least one order smaller than the 

actual form error. 

1.5 Structure of the Thesis 

In Chapter 2, we review some existing reconstruction techniques for regular-lattice 

and scattered distributed data. To avoid incorrect results, the whole fitting procedure is 

divided into two stages, initial matching and final fitting. We briefly introduce some 

initial matching and final fitting methods in the fields of metrology, computational 

geometry, CAD, image processing, pattern recognition etc. Moreover, issues about the 

numerical stability and robustness are also discussed. 

NURBS is adopted for reconstructing a surface from discrete points of regular 

distribution. Chapter 3 gives the five stages of NURBS surface reconstruction: 

parameterization, selecting knots, determining degree, calculating basis functions and 

finally, computing the control points. Point inversion is necessary when implementing 

interpolation; and point projection when finding the closest point on the surface. Some 

novel techniques are developed to improve the computational efficiency of point 

inversion and projection. 

Chapter 4 focuses on surface reconstruction of scattered points using the radial basis 

function (RBF). To improve the numerical stability, a centre selection algorithm called 

orthogonal least squares basis hunting is utilized to build a sparser RBF system. We also 

suggest adding a circle of new centres outside the domain of interest to improve the 

boundary behaviour. 

Chapter 5 introduces segmentation algorithms to divide a structured surface into 

patches, and then individually fit each part using a quadric function.  A new algorithm, 

called the structured region signature, is proposed to match smooth free-form surfaces. 
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When some parts of the template are nearly symmetric, a residual-checking-strategy can 

be utilized to avoid false matching. 

Chapter 6 pays attention to refining the fitting result after initial matching. The 

traditional Iterative Closest Point (ICP) method suffers from high computational 

complexity and a local minimum problem. The template is thereby reconstructed into a 

continuous representation if supplied as a discrete point set, and the Levenberg-

Marquardt algorithm is adopted to find the optimal fitting. The fitted parameters of the 

conventional algebraic fitting may be biased. Hence orthogonal distance fitting programs 

are developed for explicit and parametric template functions respectively. If the 

measurement data contain outliers or defects, the ordinary least squares solution will be 

distorted. In this case, the l1 norm error metric will be adopted to improve the system 

robustness. 

The thesis concludes in Chapter 7 by summarizing the implemented work in this 

project and pointing to possibilities of further work.  
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CHAPTER 2 LITERATURE SURVEY 

2.1 Surface Reconstruction 

2.1.1 Introduction 

Nowadays, precision free-form components are fabricated with Computer-Aided 

Manufacturing (CAM) techniques, such as single point diamond turning, ultra-precision 

polishing, electrolytic in-process dressing, plasma chemical vaporization machining etc 

[Lee 2005]. The design model of a workpiece is generally supplied as a 3D CAD file in 

formats of IGES, VDA-FS, DXF, SET, and the ISO standard representation STEP 

[Goldstein 1998]. Since each CAD system has its own method of describing geometries, 

both mathematically and structurally, exchanging between different CAD systems and 

formats will more or less lose some information. Moreover, due to the shape complexity 

of free-form components, the mathematical description of a free-form surface is often 

composed of a number of separate patches, each individually has its own function, and 

continuity constraints are assigned at the boundaries between these patches. Consequently 

it is a tough task to directly read or transform such CAD models. 

However, when characterizing the form quality of a free-form surface, we need to 

know exactly the original design shape as a nominal reference; hence a straightforward 

continuous representation of the model is required for further mathematical processing. 

Apparently, it is easy to sample discrete points from the design model through CAD 

systems; therefore it is feasible to mathematically generate a new continuous 

representation for the design template from these sampled points for the purpose of 

surface fitting. 

Surface reconstruction (also termed surface modelling or fitting) is to obtain a 

continuous surface Q that best explains the given data point set P.  

Two closely related concepts are surface interpolation and approximation. 

Interpolation generates a surface which passes exactly through all the given data points, 

while approximation generates a surface which passes near the data points [Dinh 2000]. 

Usually a ‘good’ reconstruction surface not only fits the given data points well, but also 

shall satisfy some requirements on their properties, e.g. smoothness and continuity.  
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Surface representations can be classified into three categories, explicit, implicit and 

parametric forms. 

Explicit In this form, the dependent value is provided explicitly by an equation in 

terms of the explanatory variables, 

)},(|),,{( yxfzzyx ==S                                                                                  (2.1) 

Explicit functions include power series, Chebyshev polynomials, radial basis 

functions, orthogonal bivariate polynomials etc [Huhtanen 2002]. They are easy to 

understand and implement. However, most closed shaped surfaces cannot be represented 

in this form. In addition, the geometric meaning of the surface is usually not clearly 

revealed in the equation. 

 Implicit The surface is defined by passing through all the given data points where the 

implicit function evaluates to some specified value (usually zero), i.e. 

}0),,(|),,{( == zyxfzyxS                                                                              (2.2) 

Simple geometries are generally represented in implicit forms, e.g. sphere, paraboloid, 

hyperboloid etc. Geometric parameters can be revealed in the equations. For general 

shaped surfaces, Pratt and Taubin proposed to minimize the sum of squared Hausdorff 

distances from the data points to the zero set of polynomials [Pratt 1987, Taubin 1991]. 

Muraki adopted a function as a linear combination of three-dimensional Gaussian kernels 

with different means and spreads [Muraki 1991]. Moore and Warren fitted piecewise 

polynomials recursively and then enforced continuity between these polynomials using a 

freeform blending technique [Moore 1990].  

Parametric The surface is described by a parametric equation with two parameters, 
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where u and v are called foot-point parameters. Parametric forms are the most general 

way to specify a surface. They have the following advantages [Campbell 2001], 

• They are mathematically complete, i.e. they can completely and faithfully preserve 

the geometrical information of an original model. 

• They are easy to be sampled. 
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• They facilitate design: models can be designed in terms of patches whose continuity 

can be controlled at the boundaries. 

• Their representation power is strong: they can represent very complex objects and 

geometries. 

• They can be used to generate realistic views. 

• Reconstruction technologies for parametric representations have been well 

developed. 

Therefore, parametric surfaces are widely used for surface reconstruction and object 

modelling. 

The most common parametric surfaces may be quadric surfaces [Forbes 1990]. In 

their equations, the radius and azimuth angles are adopted as foot-point parameters. 

Different with implicit or explicit representations, each parametric coordinate may have 

distinctive geometric meaning. Hence parametric forms are preferred in some special 

applications, such as in navigation and astronomy.  

If generalizing quadric surfaces further, superquadrics and generalized cylinders come 

out [Campbell 2001]. They are capable of representing a large class of complex shapes, 

and are of special interest in geometric modelling. 

In order to improve the computational efficiency, some standardized modelling 

techniques have been developed. In these methods, the surface representations can be 

derived using some premised techniques and they are invariant under rigid body 

transformations. Smoothness and continuity conditions will be automatically satisfied. 

Such examples include B-spline, Bézier surfaces etc, which will be introduced in 

Sections 2.1.2 and 3.1. 

2.1.2 Reconstruction Methods for Regular Lattice Data 

An open surface patch can be regarded as a function respect to two independent 

variables, e.g. x and y. In this thesis all the surfaces are considered to outspread in the 2D 

domain of X-Y plane, unless stated otherwise. If a 3D point set is unorganized and no 

information is provided regarding the connectivity relationship between the points, these 

points are thought to be scattered. Conversely if the X-Y coordinates of these points, or 

their corresponding location parameters after a simple space transformation, are located 

in a regular grid, they are respected as regular lattice points, as shown in Figure 2.1. 
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(a) Regular lattice points                                  (b) Scattered points 

Figure 2.1 Regular lattice and scattered distributed points 

The two variables of points located on a regular lattice are separable when 

implementing surface reconstruction, i.e. we can construct bases in x and y directions 

independently, 
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Then the surface can be represented as a tensor product, 
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In the procedure of surface reconstruction, the form of the bases }{ kφ  and }{ lψ  is pre-

set by the user and the coefficients a  and b should be calculated from the data. 

The reconstruction of tensor product surfaces is very efficient and numerically stable 

for regularly distributed points. On the other hand, they are less efficient for band 

surfaces with local areas of great shape variations or for surfaces which have different 

behaviour in different regions. 

Some extensively adopted tensor products are that of two curves represented by 

Chebyshev polynomials, polynomial splines, B-splines etc. A brief review is given below. 

The simplest form of curves is the power series, 
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When the curves become very sophisticated, the corresponding degree n is required to 

be increased simultaneously. Hence the values of the bases can be unacceptably large and 

an ill-conditioned matrix is generated. To overcome this problem, Chebyshev 

polynomials are proposed [Abramowitz 1965]. They normalize the x coordinates by, 
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and defines the basis Tk(z) recursively, 
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These basis functions are orthogonal to each other with respect to the weighting 

( ) 2/121/1)( zzw −=  within the interval [-1,1], 
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Therefore, the interpolation matrix is diagonally dominant and the system will be 

much more stable. 

Monomial and Chebyshev polynomials are very flexible and suited for smooth curves 

which behave similarly at different parts. As regards some curves with specific behaviour, 

e.g. asymptotic curves, some special functions will be adopted, like asymptotic 

polynomials [Barker 2004], rational functions [Petrushev 1987] etc. 

All the above methods represent the whole curve using a single function. They are 

relatively easy to calculate. But when surface shapes become rather complex or show 

distinctive behaviour at each part, these methods need to construct a high-degree function 

and the Runge’s phenomenon will arise. Thus a whole surface/curve can be divided into 

sections and represented piecewisely by a series of low order polynomials, which is 

called spline. 

A common form of polynomial spline curves is, 
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where );( axp  is a polynomial of degree n-1. max21min xx S <<<<< λλλ L  are called 

knots or breakpoints [Piegl 1997]. 
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are the truncated power functions. 

In practice, this kind of splines may suffer a severe ill-conditioning problem. 

Additionally, the coefficients a and c convey very little insight about the geometric shape 

of the curve. In 1960s, Pierre Bézier developed a very interesting representation for 

curves, now called Bézier curves [Bézier 1972], 
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In the equation, )}({ , uB nk  are the classic n-th degree Bernstein polynomials, 
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The coefficients }{ kP  are called control points. They form a control polygon and the 

curve is contained in the convex hull of the control points, as shown in Figure 2.2. 

 

Figure 2.2 A cubic Bézier curve 

Bézier curves have some very attractive properties,  

• The two ending points lie at the two end control points. 

• The tangent directions at the ends are parallel to 01 PP −  and 1−− nn PP  respectively. 

• Moving any control point, the curve moves in the same direction with it.  
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• The basis functions )}({ , uB nk  have pre-defined form and do not rely on the data 

points. 

Bézier curves use a single polynomial for the whole curve. When the curve is very 

complicated, the degree n increases. Thus the Bézier curves suffer the analogous 

numerical problems as the monomial series. Again, a curve can be divided into several 

sections. The spline-form expansion of a Bézier curve is a B-spline curve [Schoenberg 

1967], 
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Unlike Bézier curves, the degree n of the basis functions )}({ , uN nk  is not necessarily 

related to the number of the control points S. The basis functions can be calculated 

recursively by the de Boor-Cox algorithm [de Boor 1972, Cox 1972], 
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In the equation 10 121 =≤≤≤≤= +SS uuuu L  are knots. 

Some attractive properties of B-splines are listed below [Piegl 1997], 

• 0)(, =uN pk
 if u is outside the interval ),[ 1++ pii uu , hence B-spline curves have local 

supporting property.  

• 0)(, ≥uN pk  holds true for all k, p, and u. 

• All derivatives of Nk,p(u) exist in the interior of a knot span.  

• Nk,p(u) is p-m times continuously differentiable at a knot, where m is the multiplicity 

of the knot. 

For the sake of computational simplicity, the knots are usually sampled uniformly. If 

sampling the knots non-uniformly and writing Equation (2.12) in a rational form, we 

obtain 
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In the equation, 0}{ ≥kw  are weighting parameters. This is the well-known Non-

Uniform Rational B-spline (NURBS). Its properties and the detailed reconstruction 

procedure will be presented in Chapter 3. 

2.1.3 Reconstruction Methods for Scattered Data 

The tensor product methods do not apply for the surface reconstruction from scattered 

points, thereby various techniques have been proposed. These techniques can be roughly 

classified into global methods and local methods. 

Global methods have no restriction on the structure of the data points and the 

connectivity information is not required. The interpolation value is generally written as a 

weighted sum of all the data points, 
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Here }{ if  are some function values associated with the data points }{ ix . The 

weighting parameters }{ iw  are assigned based on the distances from the data points to the 

evaluation location x. The simplest way to assign the weighting is to make it inversely 

proportional to the distance, 
iiw xx−∝ /1  [Shepard 1968]. The main drawback of this 

method is that the interpolant is in general not particularly smooth. 

If extending the function )( if x  further into other functions with respect to the 

distances from the input data to some preset ‘centres’, it will become the well know 

radial basis functions. The form of the functions is irrelevant with the interpolation 

values and the weighting parameters are calculated from the interpolation data. This will 

be discussed in Chapter 4. 

Local methods divide the whole surface into small simplicial complexes, e.g. vertices 

and triangles. The connectivity and neighbourhood relationship between them is 
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established. Reconstruction is implemented by interpolating the neighbour data points of 

the evaluation location. 

The finite element method [Burnett 1987] takes the input data as nodes. The node 

coordinates are interpolated over an element using C1 interpolation functions. Curvilinear 

elements can be defined by specifying nodal derivatives. 

Franke and Nielson [Franke 1980] modified Equation (2.15) into, 
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where 
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Each data point only influences the interpolated values within its neighbourhood of 

radius wR . It has local supporting property and the observation matrix becomes banded, 

thus the calculation of the system will be more efficient. The resulting interpolation 

function is C1 continuous. 

Franke adopted a rectangle based method [Franke 1977]. It represents the 

interpolation function similarly as Equation (2.16). The weighting is taken as, 
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where iR  is the distance between 
ix and its fifth closest neighbour and  

iid xx−= . One 

of the chief benefits of this approach is, compared with taking iw  with disks centred at 

the (xi, yi) as support region, it is easier to use a smaller number of overlapping rectangles 

in such a fashion that at most four terms in the sum are nonzero. 

Triangulation based methods are very extensively used in computational geometry. 

They establish the connectivity relationship between the data points with the Delaunay 

triangulation algorithm [Delaunay 1934], which neglects all the non-neighbouring points 

in the Voronoi diagram of the given point set and avoids poorly shaped triangles. The 

Delaunay based reconstruction methods can be classified into four categories: tangent 

plane methods, restricted Delaunay based methods, inside/outside labelling, and empty 
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balls methods. Alpha shapes and the Crusts algorithm are the two most widely used 

algorithms [Cazals 2004]. Triangular representation can reconstruct shapes of arbitrary 

topology and scalability to arbitrary accuracy, as long as the triangular mesh is dense 

enough and the weighting function is properly selected. However, the quality of the 

reconstructed surface relies heavily on the accuracy of the data points. The vertices of 

triangulation surfaces are a subset of the original data points. Any error of the data points 

will directly translate to the reconstructed surface [Dinh 2000]. A very comprehensive 

survey for Delaunay triangulation methods is given in [Alexa 2005]. 

Recently researchers have also introduced the B-spline and NURBS techniques into 

scattered data interpolation. After organizing the scattered data into triangles or 

tetrahedrals, a B-spline or NURBS surface can be defined for each element. Continuity 

conditions are then assigned at the boundaries [Han 1996, Bajaj 2003]. Gregorski et al 

[Gregorski 2000] decomposed the data with a strip tree. A set of quadric surfaces are 

fitted through the data points and then blended together to form a set of B-spline surfaces. 

Some commercial graphic and modelling software has emerged in the market, e.g. 

3Ds Max (Autodesk), AC3D (Inivis), Lightwave 3D (newTek), Maya (Autodesk), and so 

on. The software implements interpolation based on meshes or NURBS surface patches. 

It concentrates on salient features, basic shapes, and visualization, therefore works well 

for virtual reality modelling and animation. But the interpolation accuracy is very poor. 

As a result it is not suited for the purpose of high precision reconstruction in the 

metrology field. 

2.2 Initial Matching Methods 

2.2.1 The Two-Phase Matching Strategy 

In order to evaluate the form quality of a free-form surface, it is required to compare 

the deviation between the measurement data and the nominal surface. But usually the 

measurement data and the template do not exactly lie in the same coordinate system. 

Thus it is necessary to transform the measurement data to an appropriate position and to 

align it with the design template. 

Matching (in different research fields, it is also termed alignment, best-fitting, 

registration, or localization ) is generally formulated as an optimization problem 

involving the search for pose parameters that minimize an objective function which 
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quantifies the matching quality, such as the average squares distance between the 

measurement data and the template surface, 
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where qi is the corresponding template point of an arbitrary measurement point pi. t is the 

translation vector and R is the optimal rotation matrix, 
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Here 
yx θθ  ,  and 

zθ  are the rotation angles about the x, y and z axes respectively. A 

free-form surface has no invariance against rigid-body transformations; hence the six 

degrees of freedom in transformation will all be taken into account. 

In practice the number of measured points is far more than the parameters to be fitted, 

thus surface fitting is an over-determined problem. In order to eliminate redundancy, a 

unique solution is required to specify the six motion parameters and sometimes, the best-

fitted shape parameters (intrinsic characteristics) as well. These parameters are generally 

obtained via an iterative optimization procedure under a particular criterion (error metric). 

Due to the non-convexity of the optimization problem, the solution may be trapped at a 

local minimum or even become divergent if the initial guess is not properly supplied. 

Therefore, the whole fitting procedure is divided into two phases: initial matching (coarse 

matching or rough matching) and final fitting (refinement).  

Initial matching intends to find a rough position for the measurement surface with 

respect to the design template.  

Traditional approaches in mechanical engineering are to manually align workpieces 

with the measuring instruments involving special tools, fixtures or other part 

presentation/orientation devices [Gunnarson 1987, Sahoo 1991] or to perform human-

computer interaction [Pulli 1999, Fan 2001]. These methods are very onerous and slow.  

Take the Carl Zeiss Coordinate Measuring Machine (CMM) as an example. It has 

excellent measurement capability and applies to various shapes. In order to measure 

complex shaped workpieces, the collateral software HOLOS is embedded for CAD 

models. Given a regular workpiece, it aligns the measurement coordinate system with the 
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model by Base Alignment, e.g. using a plane to define the direction of an axis and using 

the centre of a hole to define the origin. If a surface is very smooth and no salient feature 

exists, the software selects six points on the workpiece and six correspondence points on 

the model, and then matches the two surfaces by overlapping these six point pairs. The 

result is very rough and not reliable. 

Various automatic matching techniques have been developed in different research 

fields, such as pattern recognition, computer graphics and vision, computer aided 

geometric design, image processing, reverse engineering etc. 

2.2.2 Review of Initial Matching Techniques 

Due to the complexity of surface shape and the huge number of the data points, it is 

not appropriate to directly utilize the whole surface or all the data values for initial 

matching. Instead, some features (or termed descriptors [Bustos 2005] or signatures 

[Yamany 1999]) will be defined and adopted as measures of initial matching.  

From the machine learning theory it is known that the more sophisticated an 

algorithm is, the more likely that it will overfit the experimental data, thus making it less 

robust [Liu 2004]. With regards to this, the feature should not be too complicated or 

memory-consuming. It is hopefully to satisfy the following properties [Mortara 2001, 

Campbell 2001]: 

• Ambiguity measures the descriptor’s ability to completely define the object in the 

model space. It is also referred to as completeness. 

• Conciseness represents how efficiently (compactly) the descriptor defines the 

surface. 

• Uniqueness measures whether there is more than one way to represent the same 

object by the given construction methods of the descriptor. 

• Invariance means not changing under translation, rotation or sometimes scaling. 

• Rich local support refers to being locally insensitive to modification of the shape 

occurring far from the current focus. 

• Stability measures the perturbation of the feature caused by the perturbation of the 

shape. 

• Saliency is the qualities that allow surfaces to be discriminated from one another. 
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Here rough matching algorithms are classified into six categories: global feature 

based methods, manufacturing feature recognition based methods, local feature based 

methods, surface geometry based methods, image based methods, and graph based 

methods. 

(a) Global Feature Based Methods 

Global feature based methods use global properties of the models such as statistical 

moments, invariants, Fourier descriptors, and geometry ratios. These methods describe 

the whole surface using one single or several parameters, thus they fail to capture the 

specific details of a shape, and fail to discriminate among locally dissimilar shapes.  

Paquet et al [Paquet 2000] defined the bounding volume of a 3D object to be the 

minimal rectangular box that encloses a 3D object. They adopted the occupancy fraction 

of the object within its bounding volume and the orientation of the box as volume 

descriptors. 

Corney et al [Corney 2002] proposed to calculate the convex hull of a 3D object. 

Some values are obtained from the convex hull, e.g. hull crumpliness, hull packing and 

hull compactness. These values can be taken as measures of the similarity between two 

objects. 

Wang et al [Wang 1997] adopted some simple global features: feature points, feature 

lines, and feature planes. The gravity centre is defined as the feature point and the best 

fitted plane is taken as the feature plane. The feature line is the vector from the gravity 

centre pointing to the farthest point on the surface. Then the two surfaces can be aligned 

by overlapping these features. 

Cheung et al developed a simple method called the five-point method [Cheung 2006]. 

For each surface they defined five characteristic points: gravity centre and four corner 

points. Then the gravity centres of the two surfaces are overlapped and the measurement 

surface is rotated to minimise the sum of the distances between the five characteristic 

points on the two surfaces. 

A p+q+r order moment of a 3D model ),,( zyxQ  is defined as [Zhang 2001], 

∫∫∫= dxdydzzyxzyxM
rqp

pqr ),,(ρ                                                          (2.20) 

where ),,( zyxρ is an indicator function, 
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The coordinate values in Equation (2.20) have been normalised with respect to the 

gravity centre in order to make the moments invariant to translation. 

A 33×  matrix can be constructed for each model, 
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In the equation, the three subscripts of each element represent the corresponding 

orders p, q and r of the x, y and z coordinates respectively. The principal axes can be 

obtained by principal component analysis upon S, and the rotation angles are gained by 

aligning the principal axes of the two surfaces. 

Other moments have also been proposed for some particular applications, e.g. partial 

moments [Duda 1973], Zernike moments [Kohtanzad 1990], rotation-invariant moments 

[Ghorbel 2006] etc. 

Another kind of global feature is spherical harmonics [Groemer 1996]. The spherical 

harmonics )},({ ϕθm

lY  are the angular portion of the solution to Laplace's equation in 

spherical coordinates where azimuthal symmetry is not present. 

Any spherical function ),( ϕθf can be decomposed as the sum of its harmonics, 
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where }{ lma are the Fourier coefficients. The similarity between two surfaces can be 

assessed based on their spherical harmonics. 

(b) Manufacturing Feature Recognition Based Methods 

Manufacturing feature indicates certain non-unique shape characteristics which the 

required part possesses, realized as a consequence of applying some manufacturing 

processes to the stock, e.g. holes, slots, pockets etc [Wang 1989]. 

Feature recognition techniques generally represent the shape of a 3-D object by a set 

of features extracted from CAD models or drawings. It is required to provide an 

intelligent interface to understand the meaning of the product design information. Some 
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approaches, such as rule-based algorithms [Kyprianou 1980], graph-based algorithms 

[Joshi 1988], logical inference etc have been developed. 

If the design data is represented in a Boundary Representation (B-Rep) form, the 

graph-based method could be used, because a B-Rep data structure can be easily 

transformed into a graphical representation [Subrahmanyam 1999].  

The group technology describes parts according to the design and manufactory 

attributes based on drawings or CAD/CAM models, e.g. the main shape features, 

production quality, material etc [Venugopal 1999, Yager 1994]. All the attributes are 

represented with binary numbers or numeric values and result in a string of features. 

Similarities between different parts are determined by comparing their strings. 

Chen et al [Chen 2001] developed a feature extracting method which combines 

morphological feature extraction and geometric hashing. They used skeletons to extract 

features and to compare 3-D objects. 

(c) Local Feature Based Methods 

Local features can be defined to represent the geometrical information at the 

neighbourhood around a point. If organizing the local features of a 3D model into a 

histogram or distribution to represent their frequency of occurrence, similarity between 

surfaces or models can be determined by comparing their histograms [Iyer 2005]. The 

effectiveness of these algorithms depends on the number of samples, which is inversely 

related with the matching efficiency.  

Osada et al [Osada 2002] proposed to describe the shape of a 3D object as a 1-D 

probability distribution sampled from a shape function. The shape function is usually 

very simple and easy to calculate, e.g. the distance between two points, area of a triangle, 

angle between two lines etc. The shape distribution is invariant under rigid body 

transformation and robust against small distortions. 

Ankerst et al [Ankerst 1999] partitioned the enclosing space of an object using a shell 

model, sector model, or combined model, as illustrated in Figure 2.3. Then they 

established a histogram by calculating the point fraction that fall into each partition. 
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(a) 3 shell bins                   (b) 8 sector bins                  (c) 24 combined bins 

Figure 2.3 Shell model partitioning 

Suzuki et al [Suzuki 2000] proposed to perform principal component analysis onto a 

3D model. A unit cube embodying the model is placed with its origin at the centroid of 

the object and perpendicular to the principal axes. The cubic is partitioned into 7×7×7 

cells and the point number contained in each cell is calculated. All the cells are associated 

to 21 equivalence classes and the point number of each class is aggregated. As a 

consequence the final descriptor of dimensionality 21 is obtained. 

Some researchers adopted another approach. Instead of organizing the local features 

first and then compare the constructed histograms, they directly established a list of 

correspondence pairs between some points or local features. For each pair, all the 

transformations that map them together were computed. The subspace of transformations 

was discretized and one vote was given for each such transformation. The cell of 

transformation with the maximal number of votes is regarded as the correct one [Barequet 

1999, Olson 1997]. Histograms only work well to match whole objects, but voting 

algorithms can also be employed for partial matching. 

Ko et al adopted a curvature based method called the KH method [Ko 2005]. Given 

an arbitrary point p on a smooth surface, its mean curvature H and Gaussian curvature K 

are calculated. On the measurement surface, one 3-tuple (a group composed of three 

points) {p1, p2, p3} is selected. On the template surface, all the points satisfying the 

curvature constraints, 
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are selected as candidate correspondence points. Some 3-tuples {q1,q2,q3} are chosen 

from them which satisfy the following Euclidean-distance constraints simultaneously, 
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where δ is a user-defined tolerance. 

Thus correspondences will be found between {pi} and {qj} on the two surfaces and 

transformation is obtained with the voting method. 

Some curvature variations, e.g. curvedness 
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−= −  can also be employed as local shape descriptors [Sukumar 

2004]. 

The above curvatures and their variations are computed differentially and is not robust 

against noise. For this reason, an integral volume descriptor is proposed [Gelfand 2005], 
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As shown in Figure 2.4, the integration kernel Br(p) is a sphere of radius r centred at 

the point p, and S  is the interior of the surface, such that Vr(p)  is the volume of the 

intersection between the sphere Br(p) with the interior of the model. It is demonstrated 

that Vr(p) is related with the mean curvature H, 

)(
43

2
)( 543

rOr
H

rVr +−=
ππ

p                                                                   (2.27) 

 

Figure 2.4 Definition of the integral volume descriptor 

 (d) Surface Geometry Based Methods 

For most of the smooth free-form surfaces, there is no salient geometric feature. To 

take advantage of the simplicity of feature-based methods, researchers have developed 
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some generalised features mathematically and geometrically for smooth surfaces. This 

kind of method employs an intermediate representation to aid a matching stage. Usually 

the 3-D information is broken down into a stack of 2-D descriptors on which robust 2-D 

shape matching techniques can be applied. 

Spin image is the most widely used generalised feature [Johnson 1997]. A surface is 

presented as a mesh and the normal vectors of the points are given to form oriented points. 

Some points of interest are sampled on both surfaces. Given a point of interest p, a plane 

P is calculated through the point p and oriented perpendicularly to the normal vector n, as 

described in Figure 2.5. All the points, whose normals possess an angle smaller than a 

given threshold with respect to n, compose a region. The projection distances {β} from 

these points to the plane P and the distances {α} to the normal vector n form a 2-D 

histogram. The histogram is called a spin image associated with the point p. 

 

Figure 2.5 Creation of spin image 

Then the correspondence points on the two surfaces are decided based on the 

similarity of their spin images. Transformation is calculated to overlap these point pairs. 

Harmonic shape image is another 2-D feature based method [Zhang 1999]. Provided a 

3-D surface S, let v denote an arbitrary vertex on S and D(v, R) the surface patch centred 

at v with radius R. R  is the greatest distance along the surface for all the points within the 

patch. The unit disc P on a 2-D plane is selected to be the target domain and D(v, R) is 

mapped onto P by minimizing an energy function, 

∑ −= 2||)()(||
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where φ is the interior mapping and vi, vj are the interior vertices of D and P respectively. 

kij is a spring constant. 

As long as one correspondence pair has been found, the translation and rotation 

between them can be determined simultaneously. 

Point signature method computes 1-D functions to represent surface shapes [Chua 

1997]. For a point p, a sphere with a small radius r is placed centred at p. The intersection 

curve C between the sphere and the surface is calculated, as illustrated in Figure 2.6(a). 

A plane P is fitted though C and a new plane P' which is parallel with P is created to go 

through the point p. The curve C is projected onto P' and a planar curve C' is formed. The 

perpendicular distances {d} from the points on C to C’ form a 1-D function with respect 

to the azimuth angles {θ} on the plane P'. The vector from p to the point which has the 

greatest positive projection distance is taken as the reference direction for the angles. 

Here the resultant 1-D function in Figure 2.6(c) is called point signature of the point p. 

    

 (a)                                      (b)                                      (c) 

Figure 2.6 Creation of point signature 

After all the signatures on both surfaces have been calculated, the correspondence 

point pairs are sought by comparing their signatures. For each pair, the transformation is 

decided by overlapping the interest points and aligning the orthonormal frames. 

Transformation parameters between the two surfaces are decided using a voting method. 

Sun et al [Sun 2003] proposed another 2-D descriptor called point fingerprint. Firstly 

the points that result in irregular contour shapes are selected as points of interest. For 

each interest point p, a local coordinate system is defined according to the normal vector 

at p. The contours at p are projected on to the tangent plane P and form a 2-D figure, 

which is called a point fingerprint, as shown below. 
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(a)                                                        (b) 

Figure 2.7 Creation of point fingerprint 

In the matching stage, the contour radius variation and the normal variation in the 

fingerprints are compared to find the correspondence pairs. 

There are also other types of geometric descriptors developed for pattern recognition 

and computer vision. Comprehensive surveys were given by Planitz et al [Planitz 2005] 

and Bustos et al [Bustos 2005]. 

(e) Image Based Methods 

Image based methods project 3D models onto 2D images. Therefore 2D image 

retrieval techniques can be employed. Query interfaces were straightforward to design so 

that a user-supplied 2-D sketch can be input into the search algorithms [Funkhouser 

2003]. 

The Lightfield descriptor is defined as certain image features extracted from a set of 

silhouettes obtained by projecting a 3D model [Chen 2003]. Cameras are located at the 

vertices of a dodecahedron centred at the object’s centroid, completely surrounding the 

object. The deviation between two objects is measured by the minimum sum of the 

distances between all the corresponding image pairs when rotating one camera system, 

covering all 60 possible alignments. The image metric adopted to compare image pairs is 

the l1 norm over 35 coefficients of Zernike moments and 10 Fourier coefficients obtained 

from the silhouettes. A very comprehensive survey on image registration can be found in 

[Zitová 2003]. 

An important application field of image registration is face recognition for decision of 

the identity of individuals [Heseltine 2005]. The main problem is how to distinguish the 
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specific characteristics of a person’s photo whilst eliminating the influence of the 

variations of pose, illumination, and facial expression. Traditionally, researchers 

recognized faces based on the facial features, e.g. eyebrows, nose vertical position and 

width, mouth position and width, and so on. However, they are not sufficiently 

descriptive. Only a small group of persons can be distinguished by these features. As a 

consequence various new methods have been developed applying elastic bunch graphs 

[Wiskott 1997], curvatures [Tanaka 1998], principal components analysis [Hesher 2002], 

morphable models [Romdhani 2002], contours [Lee 2003], Kimmel’s Eigenforms [Elad 

2003] etc. 

Extending the human face imaging further, medical images are used very widely to 

investigate disease processes and to understand normal development and ageing of organs 

[Hill 2001]. Registration of medical images is very challenging because of the 

deformation of organs and scanner-induced geometrical distortions. In order to deal with 

non-rigid registration, patient-related image information is usually required. Maintz and 

Viergever referred this kind of registration techniques as intrinsic methods and classified 

them into three types: landmark based methods, segmentation based methods, and voxel 

property based methods [Maintz 1998]. 

(f) Graph Based Methods 

These methods evaluate the similarity between surfaces by comparing their surface 

topologies using a relational data structure such as a graph or a tree. 

Chung et al [Chung 1997] proposed a refined version of the graph spectra based on 

the Laplacian of a graph, 
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where u and v are nodes of a graph G, and di represents the degree of a node i. The graph 

spectra of different graphs are compared with proper measures. 

Hilaga et al [Hilaga 2001] presented an approach to describe the topology of 3D 

objects by a graph structure called the Reeb graph. The Reeb graph can be interpreted as 

information about the skeletal structure of an object. The similarity between two objects 
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are compared according to the topology of the Reeb graphs as well as mesh properties of 

the model parts associated with the corresponding graph nodes. 

Sundar et al [Sundar 2003] applied a thinning algorithm on the voxelization of a solid 

object to obtain a thin skeleton. The matching of two skeletal graphs is performed by 

establishing a set of node-to-node correspondences between the graphs based on a greedy, 

recursive bipartite graph matching algorithm [Shokoufandeh 2001]. 

 

Figure 2.8 Skeletons of two models [Sundar 2003] 

2.3 Final Fitting Methods 

After a proper rough position is obtained, the fitting result will be refined 

subsequently. Different with the initial matching, requirements on the final fitting are: 

accuracy, stability, robustness, and efficiency. 

2.3.1 Parameter-Based Algorithms 

(a) Quadric Surface Fitting 

Quadric surfaces are used very extensively in engineering. It has been reported that 

approximately 85% of manufactured objects can be well-modelled with quadric surfaces, 

such as sphere, cylinder, cone, paraboloid etc [Chivate 1993]. The general form of a 

quadric surface is represented as, 
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The most intuitive fitting approach is to minimize the algebraic distance function, 
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It is a linear least squares problem and the parameters can be solved directly from the 

normal equation. Evidently, there exists a trivial solution === CBA =D == FE  

== HG 0== JI . To avoid it, various normalization methods are proposed, like J=1 

[Cao 1991] or 1=+++++++++ JIHGFEDCBA , so that Equation (2.30) becomes a 

minimization problem with linear constraints. However they all have singularities for 

some specific kinds of surfaces. The best constraint is ++ 22
BA ++ 22

DC ++ 22
FE  

++ 22
HG 122 =+ JI . However, it will make the function very difficult to solve if using 

the ordinary derivative-based algorithms. A generalized eigenvector method is proposed 

[Taubin 1991, Petitjean 2002]. We rewrite Equation (2.29) in a matrix form, 

0=Xp                                                                                                          (2.31) 
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Its normal equation is, 

0=XpXT

 

Evidently if one of the eigenvalues of the matrix XXA T=  vanishes, the solution p is 

the corresponding eigenvector. Otherwise p is the eigenvector associated with the 

eigenvalue which has the minimum absolute value. In fact, since A is a positive semi-

definite matrix and all its eigenvalues are non-negative, thus p is the eigenvector 

associated with the minimum eigenvalue. 

Even if the parameters in Equation (2.29) have been obtained, the geometric 

information is not clear yet. Thus transformation is needed to convert the equation into a 

standard form. 
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Two invariants can be defined as [Korn 1968], 
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The type of the quadric surface can be determined by these two invariants: 

 
K≠0 

Central quadric surfaces 
K=0 

Non-central quadric surfaces 

∆>0 Single-sheet hyperboloid Hyperbolic paraboloid 

∆=0 Ellipsoid or dual-sheer hyperboloid Elliptical paraboloid 

∆<0 Cone Cylinder or plane 

Table 2.1 Quadric surface types 

After all the parameters have been extracted, the eigen-decomposition technique can 

be utilized to get the standardized form of a general quadric surface. Further details will 

be presented in Subsection 5.1.3. 

If the specific type of a quadric surface has been known, some type-specific fitting 

algorithms can be employed. Type-specific fitting has more benefits in terms of occlusion 

and noise-insensitivity than general methods. In addition, the increased stability of the 

algorithm widens its scope of application to cases where the data is not strictly, say, 

elliptical, but needs to be minimally represented by an elliptical ‘blob’ [Fitzgibbon 1999, 

Banegas 1999]. 

In the previous methods, algebraic distance is involved in the error metric to assess 

the quality of fit. This is a linear least squares problem and commonly applied in the 

metrology field because of its ease of implementation. However, its definition of error 

distances does not coincide with measurement guidelines. The estimated fitting 

parameters are biased, especially in the case there exist errors in the explanatory variables 

[DIN 1986, Ahn 2001, Sun 2007]. Consequently researchers have developed the 

orthogonal distance fitting (or termed geometric fitting) method. This technique attempts 

to minimize the sum of the squared orthogonal distances from the measurement points to 

the model. It successfully overcomes the bias problem of the algebraic fitting. 
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Jung et al [Jung 2000] compared five algorithms of sphere fitting: linear least squares, 

non-linear least squares, minimum zone, four-point, and sphere fit by error curve analysis.  

The nonlinear least squares method solves the parameters by, 

[ ]{ }∑
=

−−+−+−
N

i

iii rczbyax
1

22/1222 )()()(min                                            (2.34) 

This equation takes the squared orthogonal distances in the error metric. It is proved 

that the nonlinear least squares method is the best option for spherical surfaces with 

random irregularities. The minimum zone algorithm is the best when the surface 

irregularity is skewed or rotationally symmetric [Jung 2000]. 

Forbes [Forbes 1990] performed parameterization on sphere, cylinder, and cone 

accordingly. The orthogonal distance can be represented in a closed form using location 

parameters. Lukács et al [Lukács 1998] approximated the orthogonal distance with a 

faithful function. For example, Equation (2.34) can be approximated as, 
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For general quadric surfaces, Cao et al [Cao 1994] proposed an approximate 

orthogonal distance fitting approach. They calculated the distances from a point to the 

surface along several fixed directions. The minimum distance is regarded as the real 

orthogonal distance. The parameters are optimized iteratively and converge to a very 

good result. 

Instead of minimizing the residual error, Dai et al optimized the shape parameters 

directly [Dai 1998]. For hyperboloids and ellipsoids, the matching error is presented as, 
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where cba
)))

,,  are the fitted parameters and a, b and c are the real lengths of the three 

principal axes. In this method, sampled points located within three special regions are 

used to estimate a, b and c, each region corresponding to one parameter respectively. 
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(b) Aspheric Surface Fitting 

Researchers have also paid attention to aspheric surfaces, especially in the field of 

optics manufacture. Aspheric lenses show notable superiority over conventional spherical 

lenses in that a multiple element lens can be replaced by a single aspheric lens. Aspheric 

surfaces can be represented with this function [ISO 10110-12:2007], 
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with 2/122 )( yxr += . 

Here R is the radius of curvature of the underlying sphere. k is the conic constant 

determining the nature of the basic (second order) deviation from sphericity: when k>0 it 

is an oblate spheroid; k=0, a sphere; 01 <<− k , a prolate spheroid; 1−=k , a paraboloid 

and 1−<k , hyperboloid. {Ai} are the magnitudes of any higher order deviations from 

sphericity. 

Because of the fractionality and high order terms in the equation, a non-standard form 

of Equation (2.37) will be very complicated. It is better to pre-process the measurement 

data and align it to a standard position, and derive the shape parameters thereafter. 

Scott [Scott 2002] firstly corrected the measurement data for the geometry of the 

stylus tip using an areal morphological erosion filter, and then carried out a pitch-yaw 

rotation and 3D translation to move the corrected data to the standard position. The 

intrinsic characteristics (R, k etc) are fitted by minimizing the squared algebraic distances 

with the Gauss-Newton method. 

Hill et al [Hill 2002] presented a two-stage pre-processing technique using the 

contour-line fit and local axis search to evaluate the orientation and position parameters 

respectively. After pre-processing and alignment, a least-squares technique is adopted to 

find the best-fitted parameters in Equation (2.37). 

2.3.2 Iterative Closest Point Method 

ICP (Iterative Closest Point, though Iterative Corresponding Point is a better 

expansion [Rusinkiewicz 2001]) is a most widely used final matching algorithm. It was 
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initially adopted by Horn [Horn 1987] and popularized by Besl and McKay [Besl 1992] 

and Chen and Medioni [Chen 1992]. It is able to register several types of geometric data 

such as point sets, triangle sets, implicit surfaces or parametric surfaces. 

Given an initial relative position between two point sets, ICP iteratively refines the 

transform by repeatedly generating pairs of correspondences on the point sets and 

minimizing the error metric e.g. the sum of squared distances between the 

correspondence point pairs. 

Plenty of variants and improvements of ICP have been developed. They contribute to 

different stages of the matching procedure. These techniques are classified into the 

following five groups. 

(a) Searching Closest-Point Pairs 

Usually the closest template point of each measurement datum is taken as the 

correspondence. If directly searching the closest points, the computational complexity of 

establishing the correspondences is )(MNO , where M and N are the point numbers of the 

template and measurement data respectively. It is demonstrated that more than 90% of 

the computation is spent on closest-point searching [Jost 2002].  

In order to accelerate the matching procedure, the first option is to sample fewer 

points from the given point sets. The points can be sampled evenly on the whole surface 

[Turk 1994], or selected randomly [Masuda 1996]. Sometimes it is better to choose the 

points with high intensity gradient [Weik 1997] or the points in smooth areas [Chen 

1992]. 

Another procedure is to utilize some efficient searching techniques. Several data 

structures have been developed to speed up the closest point searching, such as the 

multidimensional binary search tree (the k-D tree) [Bentley 1990], geometric cashing 

[Simon 1996], Elias method [Greenspan 2000], triangle inequality [Greenspan 2001] etc. 

The k-D tree will be introduced in detail in Subsection 6.1.1. Employing fast searching 

techniques, the computational complexity can be reduced down to )log( MNO . 

(b) Other Correspondence Relations 

Initially, most of the authors took the nearest points as correspondences; however, it 

may lead to false matching. Here an example is given. The correct correspondences 
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between two surfaces are presented in Figure 2.9(a), but if taking the closest point, false 

correspondences will be caused, see Figure 2.9(b). 

 

(a)                                                                   (b) 

Figure 2.9 False correspondence problem of ICP 

To avoid false correspondences, another two forms of correspondences, point-to-

plane and point-to-projection are proposed [Park 2003]. In the three correspondence 

approaches, the closest point (point-to-point) method is most sensitive to noise and 

outliers, and generates the most false correspondences. By contrast, the-point-to-plane 

technique is the most accurate one. The point-to-projection method is the fastest, because 

it is performed in constant time and no searching work is required. However, it is not as 

accurate as the other two techniques. 

Park and Subbarao [Park 2003] proposed a new method called the contractive 

projective point (CPP) technique which combines the advantages of the point-to-plane 

and point-to-projection methods. 

Suppose the normal vector at an arbitrary measurement point 0p  is p̂  and the back 

projection of 0p  onto a 2D image plane QI  is qp . Forward project 0p  on the template 

surface Q, and calculate the perpendicular foot 1p of the projection point 0pq onto p̂ . 

Repeat this procedure k times until the orthogonal projection point 
kp  sufficiently 

achieves the surface Q. 
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Figure 2.10 CPP method to find correspondences 

 (c) Improving Robustness and Stability 

The sum of the squared distances is commonly adopted as an error metric. However, 

it is not robust against outliers [Meer 1991]. In order to improve the matching accuracy, 

some ‘bad’ matching pairs can be rejected, for instance 

• correspondence points more than a given distance apart [Rusinkiewicz 2001],  

• the worst n% of pairs based on some metric, e.g. distance (this method is also called 

the trimmed ICP [Chetverikov 2005]), 

• point pairs that are not consistent with neighbouring pairs [Dorai 1998], 

• boundary point pairs [Turk 1994], 

and so on. 

For the remaining point pairs, weighting can be assigned either based on the distance 

[Godin 1994] or the relative angle between the normal vectors [Rusinkiewicz 2001]. 

Additionally, some robust estimators, such as the least median squares, can also be 

adopted [Meer 1991]. 

In order to make the matching result more reliable, other features of the models or 

images can also be involved in the error metric e.g. reflectance, colour, temperature 

[Akca 2005], invariant features [Sharp 2002], measurement error properties [Okatani 

2002] etc. 
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(d) Calculating Motion Parameters 

The error metrics are nonlinear with respect to the motion parameters; hence some 

recursive algorithms such as the Newton or Gauss-Newton algorithms shall be employed. 

Researchers have also developed some closed-form techniques for this specific purpose. 

Eggert et al [Eggert 1997] compared four closed form methods quantitatively: singular 

value decomposition (SVD), orthogonal matrices (OM), unit quaternion (UQ) and dual 

unit quaternion (DQ). The qualitative rating result is shown in Table 2.2 (1 is the best and 

4 the worst) [Eggert 1997]. 

Method 
3D accuracy 2D stability 1D stability 0D stability Efficiency 

ideal   noise ideal  i-noi  a-noi ideal i-noi  a-noi ideal  i-noi  a-noi small N  large N 

SVD 1              1 1         1           1 2          2          2 3           1         1 2              2 
OM 3              1 4         4           4 1          1          1 1           1         1 1             4 

UQ 2              1 2         1           1 3          3          3 1           1         1 2             3 
DQ 4              1 3         1           1 4          4          4 4           4         4 4             1 

ideal denotes ideal correspondence points without noise. i-noi and a-noi refer to isotropic and 

anisotropic noise respectively. 

Table 2.2 Qualitative comparison of the four closed form algorithms 

In this thesis we want to match 3D surfaces, thus the 3D matching accuracy and 

efficiency are of our interest. Therefore, the SVD algorithm is the best choice for our 

purpose. 

The ICP method exhibits linear convergence [Pottmann 2006]. In order to accelerate 

the convergence rate, Besl and McKay [Besl 1992] performed extrapolation onto the 

transformation parameters based on the residual, so that the iteration number can be 

decreased. The main problem of extrapolation is overshoot, which will lead to a local 

minimum [Jost 2002]. Therefore the update will be ignored or reduced if the mean 

squared error is worse than that of the last iteration. 

(e) Overcoming the Local Minimum Problem 

The ICP method is prone to being trapped at a local minimum because of the non-

convexity of the cost function with respect to the motion parameters. 

In order to handle this problem, Simon [Simon 1996] started the optimization with 

several perturbations in the initial conditions, and then selected the best result. Blais and 

Levine [Blais 1995] adopted stochastic search using simulated annealing. 
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Boughorbel et al [Boughorbel 2004] proposed a method called the Gaussian field. 

Instead of using the sum of squared distances, they calculated an optimal transformation 

to maximize, 

{ }∑
=

−+−
N

i

ii

1
,

expmax qtRp
tR

                                                                      (2.38) 

It is demonstrated that the cost function is always differentiable and convex in a large 

neighbourhood, so that the convergence region is greatly enlarged. 

2.4 Numerical Issues: Stability and Robustness 

2.4.1 Numerical Stability of the Solution 

In previous sections, the following linear system appears very frequently, 

bAx =                                                                                                          (2.39) 

In the equation, MN×ℜ∈A  is a non-singular design matrix and 1×ℜ∈ M
x  is the least 

squares solution. In practice, usually the data number N is very large and the system is an 

over-determined problem, i.e. MN > . 

Now we investigate the stability of the solution x against perturbations in A  and b 

[Golub 1996].  

Suppose the perturbations in A  and b are Aδ  and bδ  respectively, and the new 

solution of the perturbed system is x̂ , i.e. 

)(ˆ)(minargˆ bbxAAx δδ +−+=                                                               (2.40) 

Set        








=
||||

||||
,

||||

||||
max

b

b

A

A δδ
ε , 

and             
b

Axb −
=)sin(θ  

then,   )()()tan(
)cos(

)(2ˆ
22

2
2 εκθ

θ

κ
ε O+









+≤
−

A
A

x

xx
,                                                 (2.41) 

where  =)(2 Aκ ||A|| ⋅ ||A† || is the l2 norm condition number of the matrix A and A† is the 

pseudoinverse of A. 
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If introducing a perturbation MM×ℜ∈E into the normal equation, i.e. 

bAxEAA TT =+ ˆ)(                                                                                     (2.42) 

Then  2
22 )()(

ˆ
A

AA

E
AA

AA

E

x

xx
κκ

T

T

T
=≅

−
                                                      (2.43) 

That is to say, the system stability is determined by the condition number of the 

matrix A . If the matrix is rank-deficient or ill-posed, the error in the solution maybe very 

large even there is only a small perturbation in A  or b. We can also see the normal 

equation is less stable than the original one. When the size M and N are in the same order 

or the design matrix A is ill-posed, direct decomposition of A is recommended, although 

inversion of the normal equation is more efficient (its complexity is 
62

32
MNM

+ ). 

In order to overcome the ill-conditioning problem, some stabilized inversion 

techniques have been developed. 

(a) Rank-Revealing QR Decomposition 

A popular decomposition method is the QR decomposition, 

QRA =                                                                                                       (2.44) 

where NN×ℜ∈Q is a unitary matrix and MN×ℜ∈R  is an upper triangular matrix. 

The complexity of the decomposition is 
3

3
2 M

NM −  if using the Householder 

algorithm [Householder 1958].  

We introduce a permutation matrix Π  satisfying, 

rN

r
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1211

0 R
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QAΠ                                                                      (2.45) 

If 022 =R , we can get )(Arankr = . In the case of rank-deficiency, the 

orthogonalization process will be stopped when 22R  is sufficiently small [Hong 1992]. 

Denoting 
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r
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bQ , then the new solution will be, 
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If we set 0=z , a basic solution is obtained, 
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                                                                                         (2.47) 

This method is called the Rank-revealing QR decomposition [Björck 1996] and its 

complexity is 3/2)(2 32
rNMrNMr ++−  [Golub 1996]. 

(b) Truncated SVD 

The SVD (Singular Value Decomposition) of a matrix MN×ℜ∈A  is defined as 

[Björck 1996], 

 TUSVA =                                                                                                  (2.48) 

where NN×ℜ∈U  and MM×ℜ∈V  are two unitary matrices and MN×ℜ∈S  is a diagonal 

matrix, 
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0...11 ≥≥≥≥ Mσσσ  are called singular values of the matrix A . 

The pseudo-inverse matrix of A  is, 

T
UVS'A =−1                                                                                               (2.50) 

where 
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The l2 norm condition number of A  is MA σσκ /)( 12 = . SVD is particularly useful 

because it permits us to quantify the notion of near rank-deficiency. In fact, it is the most 

numerically reliable and the only completely reliable method of calculating the inverse of 
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a rank-deficient matrix. However, it is very computationally expensive and its number of 

flops is 32

3

2
2 MNM − [Golub 1996].  

If A is rank-deficient, the minimum singular value 'Mσ  will be rather small. The 

Truncated SVD calculates the new singular values by, 



 >

=
otherwise0

/1
'

εσσ
σ ii

i
                                                                              (2.51) 

In the equation, ε  is a user-set criterion. 

2.4.2 Robustness of the Solution 

Before introducing robust regression techniques, we firstly define two critically 

important terminologies. 

Robustness — A statistical procedure is described as robust if it is not very sensitive 

to departure from the assumptions on which it depends [Rey 1983]. 

Breakdown point — The breakdown point of an estimator is the smallest fraction or 

percentage of discrepant data (i.e. outliers or data grouped at the extreme end of the tail 

of the distribution) that the estimator can tolerate without producing an arbitrary result 

[Anderson 2007]. It is a common measure of the robustness of an estimator. 

In previous sections, most solutions are based on the least squares method, 
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i rrE
1

2

1

)(ρ                                                                                    (2.52) 

In the equation, ρ is called cost function (also loss function) and ir  is the residual 

error associated with the datum T

iii yx ] [ ,=x . 

The least squares method is applied very extensively because of its ease of 

implementation. More importantly, it is unbiased when the measurement error obeys 

Gaussian distribution (Normal distribution), as asserted by the Gauss-Markoff theorem 

[Björck 1996]. 

However, the assumption of normality does not always hold true. In practice, 

deviations such as gross errors (outliers), rounding and grouping errors, and departure 

from an assumed sample distribution will take place because of defects, improper 
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operation, external influence [Nasraoui 2002] and some functional properties, e.g. 

lubrication and friction.  

Gross errors are data severely deviating from the pattern set by the majority of the 

data. They are the most dangerous type of errors and one single outlier could make the 

least squares fitting result break down. It is worth noting that outliers do not necessarily 

mean bad data or wrong data. Outliers should never be blindly discarded. They are 

usually analyzed separately with the clean data [Olive 2007]. 

Rounding and grouping errors result from the inherent inaccuracy in the collection 

and recording of data which is usually rounded, grouped, or even coarsely classified. 

The departure from an assumed model means that real data are probable to deviate 

from the often assumed normal distribution. The actual distribution may be skewed or 

with a long tail. Estimators are required to be consistent with the error distributions. 

(a) M-Estimators 

M-estimators are generalizations of the usual maximum likelihood estimates. They 

are initially proposed by Peter J. Huber [Huber 1964]. M-estimators will be very robust 

when formulated properly and more efficient than other robust regression methods for 

large samples. The cost function must be strictly convex to make sure the uniqueness of 

the solution. 

Huber [Huber 1964] proposed a robust estimator, now called the Huber estimator, 
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The performance of this estimator relies on the value of the threshold c. When ∞→c , 

it reduces to the least squares estimator; as 0→c , a l1 norm estimator is obtained. In 

practice, MADc 2=  is recommended, where MAD is the median absolute deviation. 

Mosteller and Tukey [Mosteller 1977] proposed the biweight estimator (also called 

Tukey’s bisquare estimator), 
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MADc 7=  is recommended. The biweight and the Huber estimators behave similarly 

for most of the distribution, except in the very centre and at the extreme tails of the 

distribution. For larger errors, the bisquares estimator tapers off. 

The fair estimator is defined as [Rey 1983], 


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r
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r
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||
1log

||
);( 2θρ                                                                     (2.55) 

with MADc 2= . It is three-ordered differentiable everywhere. Its performance is between 

the least squares and the least absolute value regression. 

Compared with the least squares method, these estimators pay less attention to the 

gross error. In fact, they can be regarded as the iterative reweighted least squares, 

2);( wrr =θρ                                                                                               (2.56) 

The weighting parameters are assigned inversely proportional to the residual errors, 

i.e. smaller weighting parameters are assigned onto larger residuals and vice versa. 

Various reweighted least squares techniques have been proposed and some relevant 

reviews can be found in [Heiberger 1992, Zhang 1997]. 

Additionally, many new estimators have been developed based on the M-estimators, 

e.g. GM-estimators, and MM-estimators [Anderson 2007]. 

(b) L-Estimators 

L-estimators are linear combinations of order statistics and firstly proposed by Lloyds 

[Rey 1983, Lloyd 1952]. The k-th order statistic of a statistical sample is equal to its k-th 

smallest value. 

The first L-estimator is the least absolute values (LAV), also known as l1 norm, which 

intends to minimize the sum of the absolute deviations. This will be introduced in the lp 

norm estimators later. 

 Another famous L-estimator is the least median of squares (LMS) proposed by 

Rousseeuw [Rousseeuw 1984], 

)(minarg 2
irMedian=θ                                                                              (2.57) 
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It is resistant to outliers and the resulting breakdown point may be as high as 0.5, 

which is the highest possible value of all regression techniques. However, it is very 

complex to solve and two times slower than the ordinary least squares [Anderson 2007]. 

Rousseeuw developed a Least Trimmed Squares (LTS) regression method 

[Rousseeuw 1984], which minimizes the sum of the trimmed squared residuals, 

∑
=

=
q

i

irE
1

2                                                                                                     (2.58) 

where 1)1( +−= αNq  is the number of data points included in the error metric and α  is 

the proportion of trimming. The above case is sometimes called the α -least trimmed 

squares. Its breakdown point is α  [Maronna 2006] and it is more than 10 times slower 

than ordinary least squares [Anderson 2007]. It is so slow that LTS is not commonly 

applied in practice. 

(c) R-Estimators 

In R-estimators, the residuals are weighted based on their ranks [Jaeckel 1972], 

∑
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=
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iiN rRa
1

)(minargθ                                                                              (2.59) 

where iR  is the rank of the i-th residual in },,,{ 21 Nrrr L  and Na  is a nondecreasing score 

function satisfying 0)(
1

=∑
=

N

i
N ia . Many forms have been proposed for the score function, 

such as [Anderson 2007], 
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i
iaN , where Φ  is the normal probability 

density function. 

An advantage of R-estimators over others is that they are scale invariant. But the 

choice of the optimal score function is not clear. Additionally, they are not easy to solve 

and their breakdown points never achieve more than 0.20. 
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 (d) lp Norm Estimators 

The ordinary least squares regression can be extended into the lp norm [Gonin 1989], 
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The cost function 
p

p r=ρ  and the corresponding probability density function (PDF) 

p

p

p
A

r
PDF

}||exp{−
= for different p values are depicted in Figure 2.11. 
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(b) Probability density functions 

Figure 2.11 Comparison of different p values 

It can be seen the lp norm with a smaller p value assigns a smaller cost function for the 

wild points, therefore being more robust against outliers. It is good at dealing with long 
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tailed errors. If the errors are uniformly distributed or with a sharply truncated PDF, 

∞=p  will be a good choice. 

When p<1, the objective function is concave, thus not of our interest. If the errors are 

skewly distributed, it may be useful [Ekblom 1974].  

If 1=p , it is the well known least absolute values (also called minsummod [Cox 

1993]) mentioned above in L-estimators. The object function is not strictly convex, thus 

the solution cannot be guaranteed to be unique. Furthermore, it is not differentiable at r=0, 

so that the l1 norm cannot be directly solved based on the derivatives. A common 

approach is to transform it into a minimization problem with inequality constraints and 

solve it with linear programming techniques [Barrodale 1973]. Based on this algorithm, 

lots of variants have been developed [Lei 2002]. 

However, linear programming methods are not straightforward to use. In order to 

improve the calculation efficiency, some approximates of the l1 norm have been proposed, 

such as, 

22)( ερ += rr  [El-Attar 1979] 
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r  [Madsen 1990]. 

When the threshold 0→ε , the approximations approach the l1 norm. 

The lp norm with 21 << p  goes to the category of M-estimators. They are smooth and 

differentiable with respect to the residual r. Most of the authors handled this problem 

using Newton or quasi-Newton algorithms [Gonin 1989]. Cooper and Mason transformed 

it into a reweighed least squares problem [Cooper 2004]. 

At the k-th iteration, the weighting is assigned as, 
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In the equation, )1( −k
iw  and )1( −k

ir  are the weighting and residual error at the previous 

iteration. When k becomes larger, 1
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an upper bound is set for them. After all the weightings are worked out, they are 

normalized subsequently. At the first iteration, the weightings are initialized 

as Nwi /1)0( = , here N is the number of data points. 

p=2 is the ordinary least squares problem. More details will not be presented here. 

If 2>p , the lp norm is even less robust that the least squares. When ∞→p , it is the 

Chebyshev norm, 

i
i

rmaxmin
θ

                                                                                               (2.62) 

It works well for the uniformly distributed error. In mechanical engineering, form 

errors are defined based on the 
∞l  norm, like out-of-sphericity, out-of-cylindricity, and 

out-of-flatness. Researchers have developed various methods to assess form errors of 

workpieces, such as minimum zone [ISO 4291:1985], support vector machine 

[Balakrishna 2008], genetic algorithm [Lai 2000], or computational geometric techniques 

[Samuel 1999]. Concerning general mathematical 
∞l  optimization problems, most 

existing algorithms are based on the linear programming due to the discontinuity of such 

problems [Gonin 1989, Lei 2002]. Lawson proposed to transform the 
∞l   problem into 

iterative reweighted least squares [Lawson 1961]. Rice and Usow [Rice 1968] 

generalized it into 2>p . At the k-th iteration, the weighting is calculated as, 
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Analogues to the circumstance of 1<p<2, 
p

k

i
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i rrw )(2)()( )( →  when k becomes larger. 

There are also many other kinds of estimators, such as W-estimators, S-estimators etc 

[Maronna 2006, Nasraoui 2002]. 

As summary, the relative performance of different robust estimators is listed 

[Anderson 2007]. 
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Estimator 
Breakdown 

Point 
Bounded 
Influence 

Asymptotic 
Efficiency 

Ordinary Least Squares 0 No 100 

Least Absolute Value 0 Yes 64 

Least Median Squares 0.5 Yes 37 

Least Trimmed Squares α Yes 8 

Least Trimmed Median 0.5 Yes 66 

Bounded R-estimator <0.2 Yes 90 

M-estimator(Huber, Biweight) 0 No 95 

GM-estimator (Mallows, Schweppe) 1/(p+1) Yes 95 

GM-estimator (Schweppe one-step estimator) 0.5 Yes 95 

S-estimator 0.5 Yes 33 

GS-estimator 0.5 Yes 67 

MM-estimator 0.5 Yes 75 

Generalized estimator 0.5 Yes 95 

Table 2.3 Comparison of various estimators 

2.5 Summary 

Sometimes a reference template needs to be reconstructed into a continuous function 

if it is provided as a discrete point set. Existing reconstruction techniques are reviewed 

for regular-lattice and scattered points respectively.  

If the given points are distributed regularly, but not exactly located in a grid format, 

the surface cannot be directly interpolated based on the coordinates using tensor product 

techniques. Hence the coordinates will be transformed into a parametric space and 

reconstructed using splines, such as B-splines. 

For scattered data, most of the existing reconstruction methods attempt to interpolate 

a point according to its neighbourhood. The shape of the interpolated surface may not be 

consistent with the target surface and the accuracy is not satisfactory. 

In order to make the fitted result more reliable, the whole fitting procedure is divided 

into two stages. Rough matching is performed beforehand to supply an approximate 

relative position between the data and the design template. Various methods have been 

developed in different research fields. Among them, generalized signatures are the most 

promising techniques. They represent the shape of a surface with figures or curves, and 

sufficient information can be involved. But most of them are burdensome to be 
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constructed. Hence a new descriptive and easy-to-calculate generalized signature needs to 

be developed. 

Given a good initial solution, refinement follows to improve the fitting accuracy. The 

Iterative Closest Point method is most widely adopted to match two surfaces that are 

given as discrete point sets. It suffers from problems of high computational cost and slow 

convergence rate. 

On the other hand, derivative-based algorithms can be adopted when a continuous 

representation is supplied for the design template. The shape parameters can be derived 

from the measurement data if they exist. 
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CHAPTER 3 SURFACE RECONSTRUCTION WITH 

NURBS 

In CAD-CAM, the design model of a free-form component is generally provided with 

a 3D CAD model in the format of IGES, STEP etc. To evaluate the form quality of the 

measurement data, we need the nominal template as a reference. A straightforward 

continuous representation of the template is required for further processing. As stated 

before, reading or transforming the CAD models is rather tough, and some geometric 

information may be lost therein. Thus in this thesis a complex CAD file will be firstly 

sampled into discrete points accordingly, and then reconstructed into a continuous surface 

via proper mathematical tools under some restrictions on accuracy and surface 

smoothness property. Additionally, the measurement data may sometimes need to be 

resampled or interpolated for subsequent filtering or other post-processing, thus surface 

reconstruction is also required.  

Most optical instruments like Talysurf CCI and other interferometers record measured 

results through CCD and generate data in a form of regular grid. In the metrology area, 

surface data are also organized in regular grid formats (2.5 D data), because they are 

convenient for subsequent mathematical calculations like window filtration. Here we 

adopt NURBS for surface reconstruction of regular points. 

3.1 Introduction to NURBS 

In late 1980s, Les Piegl and Wayne Tiller proposed the Non-Uniform Rational B-

Spline (NURBS), which represents a surface as [Piegl 1997], 
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In the equation, m and n are degrees of the spline in the u and v directions respectively, 

and { })(, uN mk  and { })(, vN nl  are basis functions. ,|{ 13
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used to measure the relative influence of each control point onto the NURBS surface. 

Foot point parameters u and v are usually normalized into the span [0, 1]. 

w4=0

w4=0.5

w4=1

w4=2

w4=10

P3 P4 P7

P1 P2 P5 P6  

Figure 3.1 Effect of weighing on NURBS curve 

To clarify the effect of the weights, we give a NURBS curve in Figure 3.1. Firstly set 

all the weights to be { }7,,1|1 L== kwk  for all the seven control points. If 4w  (the 

weight associated with the control point p4) increases (respectively, decreases), the curve 

section near p4 is pulled toward (respectively, pushed away from) 4p . Obviously, if 

∞→4w , the curve passes through the control point 4p . On the other hand, if 04 →w , the 

point 4p  will have no influence onto the curve. 

The advantages and disadvantages of the NURBS reconstruction are listed below 

[Barker 2004], 

Advantages 

• For regularly distributed data, NURBS reconstruction is very efficient and 

numerically stable. 

• For data representing similar qualitative behaviours, it is usually possible to 

determine good approximations. 

• For regularly distributed data it is easy to check whether the knots are well chosen. 

• Because of the local supporting property, errors only affect the local neighbourhood. 

If one data point is invalid, other areas will still be correct. 

•To modify one part of the surface, it is only necessary to change the control points 

and/or basis functions at this area. It does not need to recalculate the whole surface. 
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• NURBS is able to represent highly complex curves and surfaces and can represent 

analytical features exactly. 

• NURBS has unified representations of 2-D and 3-D curves. 

• NURBS is invariant under perspective transformation, while B-spline is invariant 

under affine transformation. 

Disadvantages 

• If the data or surface exhibits different behaviours in different regions, the choice of 

knots will affect the reconstruction quality. In this case the tensor product approach will 

not be efficient. 

• For scattered data, there is no easily tested criterion to determine a priori whether or 

not the approximation with splines is well posed. 

• The interpolation matrix is often rank-deficient or poorly conditioned, especially 

when the number of data or control points is very large. 

For the sake of its superior characteristics, NURBS is nearly ubiquitous in computer 

aided design, manufacturing and reverse engineering, and is widely used in some 

standard formats, e.g. STEP, ACIS, and PHIGS. 

There are two approaches to control the shape of NURBS curves/surfaces: weight 

modification and control point movement. Certain standard techniques have been 

developed to assign weights for some basic geometric elements [Piegl 1997]; whereas 

concerning general shaped surfaces, the calculation of weights is not so straightforward 

[Wang 2001]. In fact, it is a practical approach to utilize the same weights for all the 

control points when fitting general-shaped surfaces. As a consequence the denominator in 

Equation (3.1) can be neglected and NURBS surfaces become the Non-Uniform B-spline 

surfaces, 
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3.2 Reconstruction Procedure of NURBS Surfaces 

Suppose the input data },,1,,,1,|{ 13
MjNiijij LL ==ℜ∈ ×

xx  are regularly distributed 

in N rows and M columns. Without loss of generality, we assume the x and y coordinates 

are in an ascending order in each row and column respectively, i.e.  
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A continuous surface can be constructed through the following steps: 

parameterization, selecting knots, determining degrees, calculating basis functions and 

calculating control points. 

 (a) Parameterization 

Normally the foot-point parameters of a NURBS surface lie within the interval [0, 1], 

but in fact the abscissa of the data points rarely satisfy this. Hence the location 

coordinates of the input data need to be scaled first so that their corresponding location 

parameters can be obtained. 

If the data are exactly located in a grid format, i.e. the data points have the same x 

coordinates in each column and the same y coordinates in each row, the corresponding 

foot-point parameters can be calculated by a simple linear transformation, 
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Thereupon the resulting location parameters satisfy 1~~~0 21 =<<<=
M

uuu L , 

1~~~0 21 =<<<=
N

vvv L . 

If the data are not exactly located in a grid format, the coordinates can be transformed 

into a parameter space to make their foot-point parameters located in a grid. As a result 

the NURBS surface can be constructed in the manner of tensor product. The most simple 

location parameters are a uniform system. Take the calculation of }~{
j

u  as an example. 
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When the data points are uniformly distributed, i.e. the distances between all the 

adjacent points within one row are nearly the same, equally spaced parameters work well. 

But if the data are unevenly spaced, it will produce erratic shapes. In this case non-

uniform parameters are needed. Obviously it is intuitive to assign parameters according to 

the distances between adjacent points. Some common parameterization techniques are 

listed here [Piegl 1997, Yin 2004]. 

• Cumulative chord length 
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It is capable of giving a good parameterisation and thus is very widely used. 

• Centripetal model 
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It can give better results when the data occupy highly curved parts. 

• Generalization of the centripetal model: exponential model 
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It is a generalisation of the centripetal method. For different types of data, the 

parameter e can be adjusted to make the fitted surface more accurate. 

After all of  }~{ , ji
u  are calculated, they are averaged by 
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(b) Selection of Knots 

The number of knots can be determined by the user according to the data size and 

surface shape. It is clear that selecting more knots can improve the reconstruction 

accuracy, whilst reducing the efficiency. Hence an appropriate compromise should be 

made between the accuracy and efficiency. 

From the view point of computational complexity, a uniform B-spline system is 

preferred. But the generated surface may not be consistent with the surface shape and 

distribution of data points. Here a criterion is given to decide whether to use uniform or 

non-uniform knots [Zhu 1981], 
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 and the surface is sufficiently smooth, adopt 

uniform knots; otherwise non-uniform knots }{ ku  will be employed. At the regions 

where surface shape varies sharply or the data spacing is smaller, denser knots will be 

placed, and vice versa. 

In practice, the knots are often clamped, i.e. 0121 ==== +muuu L , and 

11 ==== ++ mNNN uuu L , so that the boundary data points coincide with the starting and 

end control points respectively. 

The parameterization and selection of knots in the v direction can be implemented in 

the same way. 

(c) Determination of Degrees 

The degrees m and n directly determine the shape properties of the surface such as 

smoothness and continuity. Surfaces with higher degrees are more flexible, and at the 

same time more computationally complex. In practice, m=n=3, i.e. a bi-cubic surface is 

commonly applied.  These surfaces are C
2 continuous at the knots and infinitely 

differentiable at the interior of the knot spans. A cubic spline curve is the one which 

minimizes the functional, 
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over the function )(xf  in the Sobolev space ]),([2
baH . 

This means the cubic spline is also the approximation of the curve with minimal 

curvature, i.e. it is an elastic strip with the minimal strain energy constrained to pass the 

given data points [de Boor 1978]. 

(d) Calculation of Basis Functions 

Now all the basis functions associated with each data point can be calculated. If the 

knots are non-uniform, the basis functions should be calculated recursively using the de 

Boor-Cox algorithm [de Boor 1972, Cox 1972], whereas for uniform knots, we have 

worked out the explicit formulations. Thus the design matrix of NURBS reconstruction is 

obtained, and only the control points need to be calculated. 

(e) Calculation of Control Points 

In Equation (3.2), all but the control points are already known. The subsequent steps 

are the same with the reconstruction procedure of common tensor products. The bases in 

the equation are separable, 
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It can be rewritten in a matrix form, 

)~()~( ijij vu PΨΦx =                                                                                      (3.11) 

with ],,,[ 21 Smmm NNN L=Φ , T
Tnnn NNN ],,[ ,21 L=Ψ  and TS

kl

×ℜ∈= }{pP . 

Firstly the data are processed row by row, 
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It is simplified into, 

ii XAK =                                                                                                    (3.13) 
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The number of the variables S is less than that of the constraints M, hence this is an 

over-determined system. Usually it is solved in the sense of least squares, 

=iK A
†

iX                                                                                                  (3.14) 

 Here A
† is the pseudoinverse of A. Then we can solve the control points from 

{ },,1|),~( Nivii L== PΨK . Each row is processed as follows, 
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In the equation, (k,:) denotes the k-th row of the matrix. 

Again it is simplified into, 

Skkk ,,1, :),(:),( L== KBP                                                                      (3.16) 

Similarly, we obtain, 

=P KB
†                                                                                                      (3.17) 

Here A
† and B

† need only to be calculated once. In fact P is a matrix of size 

3××TS .The x, y and z components in }{ ijx and }{ klp  should be handled separately in 

Equations (3.14) and (3.17). That is to say, utilizing the same observation matrix, gain the 

x coordinates of the control points from the x values of the input data, and then y and z 

respectively. 

The matrices A and B are banded and only four elements in each row are nonzero. 

Some computational techniques specially developed for sparse matrices can be employed 

to save computation cost and memory space [Björck 1996]. If the data size M and N are 

very large, the design matrix A may become ill-conditioned. Thus stable inversing 

techniques such as the Truncated SVD and Rank-Revealing QR Decomposition 

mentioned in Subsection 2.4.1 can be utilized. 



 

 

79 

 

3.3 Point Inversion and Projection 

3.3.1 Point Inversion 

When implementing surface interpolation, usually the x and y coordinates at the 

interpolated locations are given and the corresponding z coordinates need to be computed. 

However, NURBS surfaces are in parametric forms, so that the foot-point parameters u 

and v should be worked out first. This is called point inversion [Piegl 1997]. 

The procedure of point inversion can be divided into two steps: 

(1) Find the parameter spans associated with the given point based on the strong 

convex hull property of NURBS, so that proper basis functions can be used. 

(2) Iteratively refine the solution (u0, v0) with the Newton-Raphson algorithm. 

Suppose the NURBS surface is ),( vuS  and the given point is Tyx ],[=x . 

The target is to solve 

)()( xSxSrr −−== TTE                                                                          (3.18) 

only x and y coordinates are involved in the equation. 

It is evident the solution (u0, v0) satisfies, 
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The solution can be updated iteratively as, 
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In Equation (3.20), 
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vS , uuS  and vvS  are analogous. Here the derivatives of the basis functions with 

respect to the foot-point parameters are required. Due to the following relationship [Piegl 

1997], 
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the derivatives can be derived from the lower order basis functions. 

Alternatively it can also be worked out via another approach, 
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For non-uniform knots, the derivatives can be recursively calculated from Equation 

(3.22) or (3.23), whereas for uniform knots, we worked out the explicit formulae for the 

derivatives of cubic B-spline basis functions. 

However, sometimes the initial guess of the parameter intervals is not very reliable, 

especially when the solution lies near the boundaries of parameter spans. The solution 

may go beyond the current span during the procedure of iterative minimization. 

Consequently a ‘jumping’ mechanism is established. A pointer is defined to determine 

the incremental direction of the solution. When the new solution in Equation (3.21) goes 

outside the current span, the pointer is changed.  

Suppose the current span is ),[ 1+kk uu  and ),[ 1+ll vv . 

pointer=0; 

if kuu <  

   %jump to the left span 

   pointer=pointer-1; 

elseif 1+> kuu  

   %jump to the right span 

   pointer=pointer+1; 

end 

if lvv <  

   %jump to the lower span 

   pointer=pointer-3; 
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elseif 1+> lvv  

   %jump to the upper span 

   pointer=pointer+3; 

end 

This mechanism yields a jumping map, as depicted in Figure 3.2. 

 

Figure 3.2 Jumping map of point inversion 

According to the value of the pointer, we can gain the correct parameter spans at the 

next iteration. 

3.3.2 Point Projection 

When matching measurement data with a NURBS surface, it is often demanded to 

find the closest template point for each measurement datum. Given a point T
zyx ],,[=x , 

point projection is the operation to find a closest point Tvuzvuyvux )],(),.(),,([=y  on the 

NURBS surface. 

The procedure of point projection can also be divided into two stages, 

(1) Supply a rough guess for the foot-point parameters. 

(2) Refine the solution using the Newton-Raphson algorithm. 

The refinement of point projection is the same with that of point inversion. The only 

difference is that Equations (3.18)-(3.20) apply all x, y and z coordinates instead of only x 

and y. However, it is very difficult to supply a reliable initial guess, since the convex hull 

property does not apply in such a situation. Piegl and Tiller proposed to decompose the 

whole surface into quadrilaterals, and a rough solution can be found by projecting the 

point onto the closest quadrilateral [Piegl 2001]. But this method is very expensive. Here 
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we follow the suggestion of Ma and Hewitt [Ma 2003] to decompose the NURBS surface 

into Bézier patches by knot insertion. 

Knot Insertion 

For simplicity and clarity, here we take a NURBS curve as an example, 
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, )()( pC                                                                                  (3.24) 

Its knot vector is ],,,[ 121 TuuuU L= . If inserting a new knot u  and obtaining a new 

knot vector ],,,,,,,[ 11121 ++= Taa uuuuuuU LL , the resultant curve is, 
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The curve is required to remain unchanged either geometrically or parametrically. 

Thus the key part of knot insertion is to calculate the new control points }{ kq . The 

relationship between the new and old control points is proved to be [Piegl 1997], 

1)1( −−+= kkkkk ppq αα                                                                               (3.26) 
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Equation (3.26) can be rewritten as, 

i

S

i

ikk pq ∑
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1

α                                                                                               (3.28) 

So that the essential task becomes to work out the coefficients }{ ikα . If we want to 

divide a NURBS curve into Bézier curve sections, the new knot vector should meet these 

requirements: the multiplicities of two ending knots are m+1 and the multiplicities of 

interior knots are m, here m indicates the degree of basis functions. That is to say, we 

shall insert plenty of new knots simultaneously. An efficient insertion algorithm proposed 

by Pan et al [Pan 2003] is adopted, which will not be presented in detail here. 

After knot insertion in the u direction, the same manipulation is performed in the v 

direction. As a consequence the NURBS surface is now decomposed into Bézier patches. 
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Figure 3.3 (a) depicts a simple bi-cubic NURBS surface; by ‘simple’ here we mean 

there is no crossing edge. Its knot vectors in u and v directions are both [0, 0, 0, 0, 1/3, 

2/3, 1, 1, 1, 1]. 6×6 control points are denoted with red dots. If decomposing this surface 

into 3×3 Bézier patches, new knot vectors turn out to be [0, 0, 0, 0, 1/3, 1/3, 1/3, 2/3, 2/3, 

2/3, 1, 1, 1, 1]. The resulting control polygon is plotted in Figure 3.3 (b). Apparently, all 

the corner control points of each Bézier patch (denoted with blue diamonds) are located 

on the surface. Then the parameter spans associated with the projection point of each out-

of-surface point can be determined according to the new control polygon. 

 

(a) NURBS surface 

 

(b) Bézier patches 

Figure 3.3 Dividing a NURBS surface into Bézier patches 
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Find the Corresponding Surface Patch 

If a control polygon is convex and simple, the corresponding patch is regarded to be 

valid. Given a valid Bézier patch, the following criterion can be adopted to determine 

whether the projection point is located at this span [Ma 2003]. 

For clarity, we firstly investigate the case of a 2D curve. Given a 2D point x, we 

determine whether its projection is within this Bézier section as follows, 

 

Figure 3.4 Determine the span by Bézier section 

Define two dot products xppp 1211 ⋅=R  and xppp 112 ++ ⋅= mmmR ; 

if 01 ≥R and 02 ≥R  

   x locates at region I and the parameter is at this span; 

elseif 01 <R and 02 ≥R  

   x locates at region II and the parameter is at the left span; 

elseif 01 ≥R and 02 <R  

   x locates at region III and the parameter is at the right span; 

else 

   x locates at region IV; 

   if |||||||| 11 xpxp +≤ m  

      the parameter is at the left span; 

   else 

      the parameter is at the right span; 

   end 

end 

Check the control polygon in u and v directions respectively and then a jumping 

mechanism is built in the same way as point inversion. 
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If this control polygon is not valid, the patch will be decomposed further until it is 

valid or flat enough. So that the point can be projected onto the fitted plane of this small 

planar patch and a rough guess of the foot-point parameters is obtained. 

3.4 Numerical Example 

The NURBS programmes are coded in MATLAB R2007A and run on a NEC PC with 

Intel Pentium 4 CPU 3.00GHz, 2.00GB of RAM, and Microsoft Windows XP. 

The Carl Zeiss PRISMO Coordinate Measuring Machine (CMM) embeds a software 

HOLOS to define scanning routes on 3D CAD models and to evaluate the form errors of 

the measured workpices with respect to the ideal shapes. Figure 3.5 shows a design 

model of the meniscal bearing component in a knee joint replacement. Through HOLOS 

we sample 58×45 template points uniformly with spacing 0.4 mm from the bearing 

surface at the right side of the model, as plotted in Figure 3.6. 

 

Figure 3.5 Meniscal bearing component 
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Figure 3.6 58×45 model points 

 We create a uniform bi-cubic B-spline system to represent this surface. 15 and 18 

knots are employed in u and v knots respectively, yielding a control polygon of size 

14×11, as depicted in Figure 3.7. Obviously, this surface is concave. Since the control 

polygon is its convex hull, i.e. the surface is completely contained within the control 

polygon, thus all the control points are on or beneath the surface.  

15

20

25

30

-10

-5

0

5

10

-2

0

2

Y/mm

X/mm

Z
/m

m

 

Figure 3.7 A 14×11 control polygon 

To assess the accuracy of this NURBS system, 151×114 new points are taken from 

the original CAD model with spacing 0.15 mm, and point inversion is implemented on 
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the NURBS surface at the same locations. We use a rather small termination threshold 

(10-6) in the Newton-Raphson point inversion programme, thus the obtained points on the 

NURBS surface can be very close to the target positions and the round-off errors 

introduced at this stage will be very small. It suggests that the reconstruction errors 

dominate in the relative deviations between the sampled model points and the inversed 

NURBS points. The relative residuals of their z coordinates are adopted to evaluate the 

reconstruction error, as plotted in Figure 3.8. 

 

Figure 3.8 Reconstruction residuals with a 14×11 control polygon  

Then we change the numbers of knots in the u and v directions into 36 and 46 

respectively, and construct a new bi-cubic NURBS surface. The control polygon will be 

of the size 42×32. In Figure 3.9 it can be seen that the reconstruction residuals are now 

greatly reduced. 
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Figure 3.9 Reconstruction residuals with a 42×32 control polygon 

To compare their accuracy quantitatively, the Sa (arithmetical mean error), Sq (root 

mean square error) and Sz (maximum height error) [ISO/DIS 25178-2: 2007] of the 

residuals are calculated in these two cases. The running time spent on surface 

reconstruction and point inversion is also recorded, as listed in Table 3.1. 

Knot numbers 
u knot 15 36 

v knot 18 46 

Size of control polygon 14×11 42×32 

Evaluation 
Errors/µm 

Sa 0.724 0.005 

Sq 1.198 0.009 

Sz 8.726 0.086 

Reconstruction time/second 0.110 0.113 

Point inversion time/second 10.094 10.386 

 Table 3.1 Comparison of reconstruction accuracy and efficiency 

Applying more control points, the reconstruction accuracy could be improved further, 

whilst reducing the efficiency. Actually, NURBS reconstruction is very efficient, and 

very little time is required. In contrast, point inversion is processed successively one point 

by one point, and a Newton-Raphson iteration is carried out for each point, thereby 

making the programme very slow. The computational complexity of point inversion is 
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proportional to the number of evaluation points, whilst not significantly affected by the 

size of the control polygon. Adopting more control points can bring higher fidelity to the 

NURBS surface with the original model, and greatly improve the reconstruction accuracy. 

Hence more control points and knots are preferable when creating NURBS surfaces. But 

it needs to obey some restrictions. Assume the data is of size N1×M1 and the degrees of 

basic functions in two directions are n and m. If always using clamped knots, the size of 

the control polygon N2×M2 should meet, 
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                                                                                    (3.30) 

When 11 NM =  and 22 NM = , it is the exact interpolation; whereas the surface will be 

a Bézier patch if 11 += mM  and 11 += nN . 

3.5 Summary 

NURBS has gained more and more attraction because of its versatility and powerful 

capability of modelling and reconstruction. 

Actually it is a generalization of a tensor product by two parametric spline curves; 

hence the input data points are required to be distributed on a regular grid. If the data 

points are regularly distributed but not exactly in a grid format, parameterization can be 

implemented to transform the data into a parameter space. 

Like other tensor product techniques, the u and v basis functions are separable in the 

function of a B-spline surface, thus the control points at each row or column can be 

gained individually, instead of involving all the data points as a whole. The size of the 

design matrix can thereby be greatly reduced. The design matrix needs only to be 

constructed and inversed once in the x and y directions respectively. Therefore the 

reconstruction of NURBS surface is very efficient compared with other methods. 

The reconstruction accuracy is determined by the number and positions of knots, 

which lead to a trade-off between the accuracy and efficiency. A bi-cubic B-spline 

surface is recommended in practical use for reconstruction of a smooth surface. 

Due to the parametric form of a NURBS surface, the corresponding foot-point 

parameters are required at the given locations when implementing interpolation. It is a 
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non-linear problem and generally solved by the Newton-Raphson algorithm. Interpolation 

of NURBS surfaces is not very efficient. 

Finding the closest point on a NURBS surface for an out-of-surface point is called 

point projection. It is a very complicated problem because the representations vary at 

each parameter span. The entire surface can be divided into Bézier patches and the 

resultant control polygon is employed to help find a rough guess for the foot-point 

parameters. 
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CHAPTER 4 SURFACE RECONSTRUCTION WITH RBF 

4.1 Introduction to Radial Basis Functions 

Traditional tensor product methods using polynomials or splines are not suitable for 

interpolating scattered data. Around 1970, Roland L. Hardy proposed the Radial Basis 

Function (RBF) method to interpolate multivariate scattered nodes [Hardy 1971]. Light 

[Light 2001] asserted that Radial Basic Function is a stricter terminology. However, due 

to its popularity, we still adopt the name Radial Basis Function in this thesis. 

Given an arbitrary point dℜ∈x , RBF defines certain fixed centres {cj| d
j ℜ∈c , j=1,…, 

M}. A radial basis function is defined as, 

)(||)(||)( jjj rφφ =−=Φ cxx                                                                         (4.1) 

where 
jjr cx −=  denotes the Euclidian distance. For reconstruction of 3D surfaces, set 

d=2, because x and {cj} only represent the abscissa of the points. 

Then the function value f associated with the point x can be written as, 

∑
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=
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j
jj rwf

1

)()( φx                                                                                           (4.2) 

where {wj} are weighting parameters. 

RBF has several interesting properties [Barker 2004], 

• RBF is uniquely solvable under rather mild conditions on the centres.  

• RBF applies to scattered data. 

• RBF applies to multivariate data in any dimension. The computational complexity 

of RBF reconstruction is O[MN(M+d)], where N is the number of data points, M the 

number of centres and d the dimension. 

• Centres can be appropriately chosen so that the approximation problem is well-

posed. 

• RBF is easy to implement. 
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Due to these superiorities, the RBF technique has become a standard tool of geometric 

data analysis in pattern recognition, statistical learning and neural networks. 

Basis Functions 

The performance of RBF interpolants relies heavily on the choice of the radial basis 

function )(rφ . Table 4.1 lists some commonly used basis functions. 

Name Function 

Linear ( )r rφ =  

Cubic 3( )r rφ =  

Gaussian 2 2( ) exp( )r rφ α= −  

Multiquadric (MQ) 2 2 1/ 2( ) ( )r rφ α= +  

Inverse multiquadric (IMQ) 2 2 1/ 2( ) ( )r rφ α −= +  

Thin plate spline  (TPS) 2( ) logr r rφ =  

 Table 4.1 Several commonly used radial basis functions 
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Figure 4.1 Some common radial basis functions 

Franke [Franke 1982] compared 34 reconstruction algorithms for scattered data and 

found the RBF with multiquadric provides the highest accuracy. This method works best 

when the scale parameter 2α  is close to the average distance between the centres. But 

Powell found that a larger scale parameter is preferred when the centres form a regular 

grid [Baxter 1992]. By far, it is not clear yet how to select an optimal scale parameter for 

a general function. 
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The Gaussian basis function exhibits excellent smoothness properties. It has a local 

supporting advantage and a rapid decay. In addition, its design matrix is guaranteed to be 

positive definite if the centres are distinct, thus it has been extensively used in neural 

networks. But it is very sensitive to the scale parameter. When the scale parameter is not 

properly selected, its behaviour may be rather poor. In fact, for Gaussian, multiquadric, 

and inverse multiquadric basis functions, the scale parameter is always a key factor that 

determines the quality of the interpolated surface. 

The thin plate spline (TPS) is proposed by Duchon [Duchon 1977]. This function is a 

fundamental solution of the bi-harmonic equation, 

0)( =∆ rφ                                                                                                      (4.3) 

where ∆ is the Laplacian operator, e.g. a 2-D case, 
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More general forms of TPS are given by 
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where d is the dimension of input nodes. The function is forced to have a value zero at the 

origin. 

TPS function is the one which passes through the given data points with the minimum 

bending energy in the 2D case, 
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It suggests that TPS is the smoothest interpolant. Moreover, it is scale-independent. 

So TPS is well-suited for surface reconstruction of scattered data. 

Wendland proposed a group of compactly-supported basis functions [Wendland 1971], 

which are defined as a product of a truncated power function and a polynomial of 

minimal degree k-1 in r, 

)()1()( rPrr k

d

+−=φ                                                                                       (4.7) 



 

 

94 

 

For instance, rrPk 41)( +=  when k=2. These functions are local supporting and can 

generate sparse design matrices, hence they are more efficient and numerically stable 

than the global basis functions such as TPS and multiquadric. However, these basis 

functions have discontinuous higher derivatives; thus they are not very suitable to 

approximate smooth functions. 

Non-Singularity of the Design Matrix 

Micchelli's theorem states that for distinct data points {xi} and selection of particular 

radial basis functions, the design matrix A is non-singular [Micchelli 1986]. Thus one of 

the most attractive features of the RBF method is that a unique interpolant can often be 

guaranteed under rather mild conditions on the centres. In several important cases, the 

only restrictions are there exist at least two centres and they are all distinct. But TPS is an 

exception. Its design matrix may be singular even for non-trivial sets of distinct centres. 

A low order polynomial is proposed to be augmented into the RBF system [Schaback 

1995], 

)()()(
1

xx prwf
M

j
jj +=∑

=

φ                                                                                 (4.8) 

If the degree of the polynomial is one, i.e. cybxap ++=)(x , three additional 

constraints are required to eliminate the extra three degrees of freedom introduced by this 

polynomial, 
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where jjj yx c=],[ is an arbitrary centre. 

In this way, the design matrix can be ensured non-singular, even for TPS. 

Compactly supported basis functions, e.g. Wendland functions have a sparse design 

matrix, thus are well-posed. But for globally defined radial basis functions, e.g. TPS and 

MQ, the resultant design matrix is dense and will be ill-conditioned when the number of 
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data points is greater than several thousand or there are near-coincident centres which are 

very near to each other. In order to overcome this ill-conditioning problem, Truncated 

SVD or Rank-Revealing QR Decomposition can be employed to calculate the weighting 

parameters from Equation (4.2) or (4.8). 

4.2 Centre Selection 

Given a group of function values {zi}, i=1,…, N associated with some points {xi| 

d
i ℜ∈x }, certain fixed centres {cj}, d

j
R∈c , j=1,…, M are selected appropriately and a 

model is built as Equation (4.2). It is rewritten as, 

Awz =                                                                                                        (4.10) 

Elements in the design matrix A are the corresponding basis functions, 

||)(|| jiijA cx −= φ                                                                                       (4.11) 

Its least squares solution is, 

zAAAw TT 1)( −=                                                                                       (4.12) 

The most intuitive way to locate centres is directly taking all the data points as centres, 

which is called exact interpolation. When the data points are very dense, it may cause 

oscillations onto the curve or surface due to the noise and unconstraint at locations 

between the data points, although the reconstruction values at the input nodes still remain 

very accurate. This phenomenon is called an over-fitting problem [Bishop 1995]. See 

Figure 4.2. In this figure, the dots denote the input data, and the dashed and solid lines 

represent the original and fitted RBF curves respectively. 

 

Figure 4.2 Over-fitting problem 
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There are two ways to avoid over-fitting. The first is regularisation, which augments 

the objective function of sum-of-squared-residual with a term which penalises large 

weights [Orr 1996], 
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j
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ii wfyE
1

2

1

2))(( λx                                                                     (4.13) 

i.e.             wwee
TT

E λ+=                                                                                            (4.14) 

This approach is also known as zero-order regularisation or ridge regression. The 

solution of Equation (4.14) is, 

zAIAAw
TT 1)( −+= λ                                                                                 (4.15) 

where I is an M×M identity matrix. The regularization parameter 0>λ controls the 

balance between the accuracy of fit and the smoothness of the surface. It is chosen in 

advance or estimated from the data. Orr [Orr 1996] calculated the regularization 

parameter λ  by cross-validation. More details on regularization can be found in the PhD 

thesis [Björkström 2007]. 

The second approach to avoid over-fitting is to allow only a subset of the candidate 

centres, i.e. to employ centre selection techniques. When the centres are not the same 

with the input nodes, the linear systems are rarely singular [Fornberg 2002]. Therefore, 

the incremental polynomial will not be considered in this situation. 

If the data is on a uniform regular grid, the centres are also arranged on a regular grid 

employing an appropriate space. Given an arbitrary scattered point cloud, Broomhead 

[Broomhead 1988] chose centres randomly from the input data points, but the 

reconstruction accuracy cannot be guaranteed in this way. Orr [Orr 1996] adopted a 

forward selection method, in which centres are chosen one by one from the candidate 

point locations until some criterion is satisfied, and the ridge regression technique is 

involved as well. Other centre selection methods, such as geometric selection [Valdés 

1999], immunological approach [de Castro 2001], hierarchical clustering [Crampton 

2002], the predicted residual sum of squares [Chen 2004], Voronoi method [Samozino 

2006] etc have also been developed. 

Recently Sheng Chen et al [Chen 2008] proposed an orthogonal least squares basis 

hunting (OLS-BH) method to select centres for RBF surfaces. It is introduced in detail as 

follows. 
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Given a set of candidate centres Mij ,,1},{ L=c , and input nodes Nii ,,1},{ L=x , 

the design matrix constructed by them is MN

M

×ℜ∈= ],,,[ 21 aaaA L  and the resulting 

RBF system is zAw = .  Here any column ja  in A corresponds to one centre jc . The 

matrix A can be decomposed into the multiplication of an orthogonal matrix 

MN

M

×ℜ∈= ],,,[ 21 qqqQ L  and an upper diagonal matrix  R MM ×ℜ∈ , 

QRA =                                                                                                        (4.16) 

with  
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zQΛQRwAw ===                                                                                 (4.17) 

In the equation, T

M ],,[ 11 λλλ L== RwΛ  is the new weighting vector in the 

orthogonal space Q. 

The least squares error of reconstruction is, 
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TTE
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2)()( λqqzzQΛzQΛz                                                (4.18) 

If selecting centres recursively one by one from the candidate set, at the k-th stage the 

total error will be reduced as, 

2)()()(
1 )( kkTk

kk EE λqq−= −                                                                        (4.19) 

Here )(kq  is the deign vector and )(kλ  is weight associated with the newly selected 

centre )(kc . Therefore, minimizing the total error E is equivalent to maximizing the error 

2)()()( )( kkTk

ke λqq=  each time. Before selection the centre set is null and the initial total 

error of the system is zz
T

E =0 . 

Assuming k-1 centres have been determined already, we present the pseudo-code of 

the OLS-BH algorithm of selecting the k-th centre. 

Set pN : the population size of randomly sampled candidate centres; 

gN : the number of generations in repeated search; 

sN : the search iteration for each candidate centre 
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Bξ : the criterion to terminate the weighted boosting search; 

for m=1:1: gN  

   Initialize the first candidate centre )1()(
1

−= m
best

m
cc ; 

   % )1( −m

bestc is the optimal candidate centre found at the previous generation 

   %if m=1, 
)(

1
m

c  is randomly chosen. 

   Randomly generate the rest of the candidate centres 

p
m

i Ni ≤≤2,)(
c ; 

   Initialize the distribution weights
ppi NiN ≤≤= 1 ,/1)0(δ ; 

   for i=1:1: pN  

      Calculate the vector of the design matrix )(i
k

a for )(m
ic ; 

11,
)(

)(
, −≤≤= kj

j
T
j

i
k

T
ji

kj
qq

aq
α                                                                              (4.20) 
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      %Gram-Schmidt orthogonalization 

   end 

   for i=1:1: pN  

( )
( ) )()(

)(
)(

i
k

Ti
k

Ti
ki

k

qq

zq
=λ                                                                                           (4.22) 

( ) ( )2)()()(
1

)( i
k

i
k

Ti
kk

i
k EE λqq−= −                                                                         (4.23) 

      %calculate cost function associated with each candidate centre 

   for t=1:1:
sN  

      )(

1
minarg i

k
Ni

best Ei
p≤≤

=   and )(

1
maxarg i

k
Ni

worst Ei
p≤≤

= ; 

      Denote )()( m

i

m
best best

cc =  and )()( m

i

m
worst

worst
cc = ; 

      %find the best and the worst candidate centres 

pN

j

j
k

i
ki

k Ni

E

E
E

p

≤≤=

∑
=

1,

1

)(

)(
)(                                                                                  (4.24) 

      %normalize the errors 
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      %Compute the weighting factors 
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      % Update the distribution weights 
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      %normalize the weights 
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      % construct the ( 1+pN )-th candidate centre 

1
)(

2 2 ++ −=
pp N

m
bestN ccc                                                                                    (4.29) 

      % construct the ( 2+pN )-th candidate centre 

      Calculate design matrices 
)1( +pN

k
a  and 

)1( +pN

k
a ; 

      Orthgonalize them as Equations (4.20) and (4.21); 

)(

2  ,1* minarg i

k
NNi

Ei
pp ++=

= ;                                                                                 (4.30) 

      Replace ( ))()( , worsrti

k
m

worst Ec  with ( ))( *

*
, i

ki
Ec ; 

      If  BNN pp
ξ<− ++ 12 cc  

         %termination criterion is satisfied 

         break 

      end 

   end 

end 

So that the optimal candidate centre )( gN

best
c  is selected as the k-th centre. 

This procedure is repeated until the total error kE  is less than a user-set threshold. 

One manifest benefit of this searching strategy is that each time two extra candidate 

centres can be generated from Equations (4.28) and (4.29), so that the resulting centres 
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are not restricted to be the initial candidate centres. In order to ensure the numerical 

stability of this linear system, we generate a set of uniform candidate points within the 

domain of interest using an appropriate spacing. Then in each generation pN  candidates 

are randomly sampled from this point set. If the newly generated candidate centre 1+pNc  

or 2+pNc  is too close to the already selected centres 1,2,1},{ −= kjj Lc , this candidate 

centre will be neglected. 

Through this approach much fewer centres are required to construct this RBF system, 

so that the size of the design matrix will be greatly reduced. 

Figure 4.3 plots the flowchart of the OLS-BH point selection algorithm.  
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Figure 4.3 Flowchart of the OLS-BH centre selection algorithm 
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4.3 Boundary Effect 

The surface used in precision metrology is generally an open surface patch. The 

reconstruction accuracy near the surface boundary will be degraded compared with the 

interior area.  Hangelbroek et al proved that the reconstruction error in the interior region 

of smooth surfaces may attain O(h4) when adopting the thin plate splines as basis 

functions, whereas at the boundary it is not better than O(h5/2) in the sense of l2 norm. 

Here the fill distance h is defined to measure the density of the data points [Hangelbroek 

2007]. This effect seriously limits the application of the RBF method, especially when the 

boundary information is of our particular interest. Almost all the proposed approaches 

deal with this problem by changing the arrangement of the boundary centres, e.g. using a 

larger density for outer centres [Hangelbroek 2007], deploying some extra centres outside 

the domain of data [Fedoseyev 2002, Morandi 2002] or moving the boundary centres 

outward [Fornberg 2002]. However, the relationship between the accuracy and the centre 

density and/or moving distance has not been clearly indicated. 

(a) Comparison of Some Common Boundary Treatments 

The condition numbers of the observation matrices formed by infinitely smooth basis 

functions like Gaussian, multiquadric etc are terribly large compared to non-smooth basis 

functions like TPS [Schaback 1995]. Additionally, their scaling is a crucial issue for 

accuracy and stability. To concentrate on the influence of the centre distribution, we 

adopt the TPS as a basis function. The following six typical smooth functions are selected 

as test surfaces to investigate the behaviours of RBF in different situations [Franke 1982, 

Lee 1997], as presented in Figure 4.4. 
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(1) z1                                                      (2) z2   

 

(3) z3                                                     (4) z4 

 

(5) z5             (6) z6 

Figure 4.4 Test surfaces 
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The functions of the six test surfaces are, 
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   (4.31) 

Data points are sampled uniformly in the domain of a unit disc 

25.0)5.0()5.0( 22 ≤−+− yx  with spacing h=0.035. Centres are also uniformly selected 

within this domain with a greater spacing H=0.05. The residuals at the input nodes cannot 

completely reflect the reconstruction quality due to the over-fitting phenomenon, hence 

we sample evaluation points in the domain of interest with a smaller spacing h1=0.015. 

The reconstruction error with respect to the ideal test surface is depicted in Figure 4.5. 

For the purpose of quantitative comparison, the boundary region is defined as a narrow 

annular region with a width w=0.15. The fitting errors at the interior and outer areas are 

assessed separately. 
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Figure 4.5 Initial reconstruction residual 

Six boundary treatments are presented, as listed in Figure 4.6. 

(I) Adding one circle of centres outside the domain of interest; 

(II) Adding two circles of centres outside the domain of interest; 

(III) Moving the outmost one circle of centres outward with a distance δ =H; 

(IV) Moving the outmost two circles of centres together with a distance δ =H; 

(V) Moving the outmost two circles of centres together with a distance δ =2H and 

(VI) Moving the outmost two circles with distances δ 1=2H and δ 2=H respectively. 

The l2 norm condition number (Cond) of the design matrix is adopted to measure the 

numerical stability of each case, as listed in Table 4.2. For comparison, the initial case 

without boundary treatment is called Case 0. It can be seen that all the six condition 

numbers are worse than Case 0, especially Case 2. This means the numerical stability is 

degraded. To make the solutions more trustworthy, Truncated SVD is applied for Cases II 

and V, and QR Decomposition for the rest cases. 
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I                                     II                                  III 

 

IV                                     V                                    VI 

Figure 4.6 Centre arrangements 

Case 0 I II III IV V VI 

Cond 1.39×105 1.79×107 1.78×1012 1.00×106 5.87×106 4.10×108 6.25×107 

 Table 4.2 Condition numbers of different treatments 

We found that Sa (arithmetical mean height), Sq (root mean square error) and Sz 

(maximum height error) show very similar behaviours, thus only Sq values are presented 

here, see Figure 4.7. Cases IV and V are termed ‘Not-a-Knot’ and ‘Super Not-a-Knot’ 

respectively by Fornberg et al [Fornberg 2002]. Moving boundary centres outward as 

Cases IV and V does not necessarily improve the reconstruction quality, such as in 

Surfaces 2 and 3. Case I can greatly improve the fitting accuracy both at the inner and 

outer areas of all the six test surfaces.  It is proved to be the most reliable method. 

Therefore we adopt this technique for boundary improvement. It is also apparent that the 

influence of boundary enhancement techniques onto the inner area is in positive 

correlation with the slope at the boundary region. That means when the boundary is 

relatively planar and varies slightly, the technique works well, and vice versa.  
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(a) Interior errors 
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(b) Boundary errors 

Figure 4.7 Boundary errors of different treatments 

 (b) Factors Influencing the Boundary Behaviour 

In the previous section, adding one circle of new centres is found to be the best 

boundary enhancement technique. The distance from the added circle to the region 

boundary and the spacing between the added centres are fixed to be H. Now we 
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investigate the relationship between the fitting quality and the distribution of the centres, 

i.e. the number N of the new centres and the distance δ  from the boundary to the added 

circle. 

The corresponding condition numbers associated with different N and δ are plotted in 

Figure 4.8. With N and δ increasing, the condition number increases exponentially, 

thereby degrading the stability. For this reason we adopt Truncated SVD to solve the 

weighting parameters. 
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Figure 4.8 Condition numbers for different N and δ 

Now we switch the distance δ from H to 15H and simultaneously change the point 

number N from 12 to 120, the optimal result at each δ is recorded in Figure 4.9. Surfaces 

2, 4, and 5 achieve the best result at the interval ]4,2[ HH∈δ , whilst Surfaces 3 and 6 

prefer a smaller δ value, and H8=δ  is the best choice for Surface 1. When δ is large 

enough, all the six surfaces behave very steadily and remain nearly unchanged. 
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Figure 4.9 Optimal results for different δ 

Again for each surface, we select HHH 6,3,=δ and 10H respectively and change the 

point number N. The resultant Sq curves are plotted in Figure 4.10. When H=δ , Sq is 

very sensitive to the added point number N, and a larger N is preferable for all test 

functions. With δ increasing, the reconstruction quality is less and less sensitive to N and 

differentiated by surface shapes. Therefore it is impossible to give an optimal δ and N 

which are always the best choice in all situations. Taking the numerical stability into 

account, we select δ=3H and N=40. In this case, the corresponding spacing between the 

added new centres is H2=ε . 
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(a) Surface 1                                         (b) Surface 2 
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(c) Surface 3                                         (d) Surface 4 
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(e) Surface 5                                          (f) Surface 6 

Figure 4.10 Sq values for different N and δ 

To clarify the effect of the aforementioned optimal treatment, the abscissa domain is 

divided into six annular regions. At each region the error Sq is calculated individually. We 

work out the quotient between the Sq of Case 0 and the optimal boundary treatment in 

each region for the six test surfaces, as plotted in Figure 4.11. The effect of this technique 

is concerned with the surface shape. The amount of accuracy improvement at the 

boundaries of the six surfaces can be sorted in this order: Surfaces 6> 5> 1> 2> 4> 3. It is 

interesting to note that the height variations of the six boundary curves descend exactly in 

this order. In another word, the effect of this technique is in negative correlation with the 

boundary height variations. Thus for surfaces with planar boundary curves, it is an 

appropriate approach to add extra centres outside to improve the boundary accuracy. 
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Figure 4.11 Accuracy improvements at different parts 

 (c) How to Get the Boundary Points? 

For RBF reconstruction, the input data points are usually scattered in the domain of 

interest, as a result it is not easy to obtain the boundary points and add extra centres 

outside. In the case of 3D surface fitting, the abscissa domain is a 2D area. In 1972, 

Ronald L. Graham proposed an optimal algorithm, called the Graham scan to compute 

the convex hull of a set of discrete points [Graham 1972].  When a domain is convex, its 

convex hull can be respected as the boundary. However, the convexity of the boundary 

cannot always be guaranteed in practice. We improved the ordinary Graham scan 

algorithm. The new program can find the boundary points as long as the domain of 

interest is connected without holes, and the boundary is a closed curve without crossings. 

Given a point set Nii  ,...,2,1},{ == pP , this algorithm attempts to find the boundary 

point set Mjj  ,...,2,1},{ == qQ . The boundary points will be searched with a counter-

clockwise order, thus there should be no sharp right-turn between them. Once the turning 

angle between 12 −− kk qq  and kk qq 1−  is smaller than a user-set threshold, say -60˚, as 

depicted in Figure 4.12, 1−kq  is not a real boundary point and will be removed from the 

boundary point set. 
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Figure 4.12 Sharp right-turn check 

The pseudo-codes are shown below, 

Find the rightmost lowest point 1q ; 

Sort other points by polar angles in a counter-clockwise order 

around 1q . If more than one point has the same angle, remove all 

but the farthest one from 1q ; 

Add 1q  at the rear of the point list, consequently form a new 

point set ',...,2,1},~{
~

Nii == pP ; 

Add 1q , 1
~p , 2

~p  into Q ; 

Initiate the number k of the points contained in Q to be 3; 

for ':2 Ni =  

   while 3≥k  

      if there is a sharp right-turn between 12 −− kk qq  and kk qq 1−  

         kk qq ←−1 ;  

         1−← kk ; 

          % 1−kq  is not a boundary point, remove it 

      else 

      % 1−kq passes the test at this step 

         1+← kk ; 

         1
~

+← ik pq ; 

         % check the next point 

         break 

         % If 1−kq  is not removed, it will be kept in QQQQ and thought as 
a            

         % boundary point 

θ qk 

qk-1 

qk-2 
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      end 

   end 

end 

The median distance between the adjacent points of the boundary Q is taken as the 

average spacing H of the interior centres. The polygonal lines connecting these points 

may be very irregular, thus causing the reconstruction domain to be non-regular as well. 

The boundary polygon can be fitted into a closed smooth curve. Then some new 

boundary centres are sampled on the curve and moved outward an appropriate distance 

along the local normal vectors of the curve. These moved points are added as new 

auxiliary centres of the RBF system. 

4.4 Numerical Examples 

Example 1 Verification of RBF Surface Reconstruction 

Here we carry on the reconstruction of the meniscal bearing component in Section 3.4. 

To avoid sharp corners, 1733 points are sampled with spacing 0.5 mm in an elliptical area 

on the CAD model using the software HOLOS, as illustrated in Figure 4.13. 

Firstly we check the behaviour of the RBF exact interpolation, i.e. directly employing 

all the 1733 input nodes at centres. TPS is adopted as the basis function. To ensure the 

numerical stability, a linear polynomial is augmented in the reconstruction function and 

the Rank-Revealing QR Decomposition is utilized to solve the weighting vector. At the 

positions of the input data, the reconstruction error is as small as 10-10 µm. Evidently, it is 

only caused by the numerical round-off error of the MATLAB program. However this 

does not suggest that this RBF surface is very accurate. If sampling some new evaluation 

points with spacing 0.2 mm on the CAD model and at the same locations on this RBF 

surface, the relative deviations between their z coordinates turn out to be very large, 

especially at the boundary. It clearly reveals the over-fitting phenomenon and the poor 

boundary performance of the RBF exact interpolation. 
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Figure 4.13 Reconstruction area 

 

(a) Fitting residuals at the input nodes (µm) 
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(b) Evaluation errors (µm) 

Figure 4.14 Reconstruction errors of RBF exact interpolation 

Then we use a new set of RBF centres to improve the reconstruction accuracy. The 

input nodes are evenly distributed on a smooth surface, thus the centres are also evenly 

sampled with spacing 0.6 mm within the domain of interest. In addition, a circle of 

auxiliary centres are placed outside to overcome the boundary effect, in accordance with 

the boundary enhancement technique proposed in Section 4.3. Figure 4.15 depicts these 

1232 RBF centres. It is worth noting that to make sure the uniqueness of the solution, the 

number of the weighting, i.e. the centre number, cannot exceed the input data. Hence the 

spacing between the interior centres should always be greater than the input data. 
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Figure 4.15 Sampled uniform centres 

The reconstruction residuals at the locations of input data and evaluation points are 

shown in Figure 4.16 (a) and (b) respectively.  

 

(a) Deviations at the input nodes (µm) 
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(b) Evaluation errors (µm) 

Figure 4.16 Reconstruction errors of RBF approximation 

In order to compare the fitting accuracy quantitatively, the corresponding error 

parameters are calculated for the exact interpolation and approximation, as listed below. 

Reconstruction Exact interpolation Approximation 

Number of centres 1733 1232 

Fitting 
Errors 
/µm 

Sa 1.281e-10 0.015 

Sq 1.698e-10 0.037 

Sz 1.670e-9 0.816 

Evaluation 
Errors 
/µm 

Sa 0.0213 0.014 

Sq 0.088 0.029 

Sz 1.687 0.567 

Reconstruction time /sec 8.611 6.441 

Evaluation time /sec 6.445 4.376 

 Table 4.3 Comparison of reconstruction errors 

Due to the reduction of the centre number, the RBF system becomes over-determined, 

that is to say, the fitting values at the input data cannot be all satisfied. Their deviation 

now comes to the order of 0.1 µm. But the accuracy of the whole surface is significantly 

improved, achieving the order of 0.1µm as well. The errors at the boundary approach the 
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same order with the interior area. This effectively proves the validity of the boundary 

enhancement technique. 

Furthermore, sparser centres are sampled and a smaller design matrix is built, thereby 

speeding up the surface reconstruction and numerically stabilizing the system. In the table 

we can see that the reconstruction and evaluation of the new RBF system are both about 

two seconds quicker than the exact interpolation. In fact, the complexity of evaluation is 

proportional to the numbers of the evaluation points and centres, whilst the running time 

of matrix inversion when calculating the weighting vector is in the order of O(M2
N-M3/3), 

as stated in Section 2.4. Here M and N indicate the numbers of the input data and centres 

respectively. More time spent on RBF approximation is to obtain the boundary circle 

with the modified Graham scan technique, whose complexity is O(Nlog(N)). The time of 

other operations, e.g. resampling uniform points and pushing boundary circle outward is 

very little, thus can be neglected. 

If the surface is very smooth, it is acceptable to resample the centres uniformly. When 

the shape variation of the surface is rather large or the data distribution is very irregular, 

the optimal centre densities will be related with the distribution of data points and the 

shape of the surface. Therefore, a manipulation of centre selection is required. 

Example 2 Centre Selection of RBF 

The MATLAB built-in function peaks is applied very extensively in numerical 

computations. Its representation is, 

])1(exp[
3

1
)exp()

5
(10])1(exp[)1(3),( 222253222

yxyxyx
x

yxxyxf −+−−−−−−−+−−−=       (4.33) 

We adopt the following function as a model surface, 

)
8

,
8

(),(
yx

peaksyxfz ==                                                                           (4.34) 
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Figure 4.17 Reconstruction surface 

1623 points are randomly selected within the domain 40022 ≤+ yx  as data points. See 

Figure 4.18. 
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Figure 4.18 Randomly sampled data 

Firstly the centres are uniformly sampled in the area 44122 ≤+ yx  with spacing 

0.1=h , yielding 1373 centres. The calculation of weighting parameters costs 6.277 

seconds and the fitting errors at the data locations are illustrated in Figure 4.19 (a). In 
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order to check the reconstruction quality more completely, some new locations are 

uniformly sampled with spacing 3.0=h  and the corresponding deviations with respect to 

the ideal surface are given in Figure 4.19 (b). 

 

(a) Fitting error 

 

 (b) Evaluation error 

Figure 4.19 Reconstruction errors of uniform centres 

These centres fit the given data points very well, and the resultant error is at the order 

of 10-4. But due to the high irregularity of the data points, the evaluation error is rather 

large. That is to say, this RBF system is not stable and the resultant over-fitting 

phenomenon is unacceptably serious. 
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In order to make the centres distributed better and sparser, the orthogonal least 

squares basis hunting (OLS-BH) technique is adopted to select centres recursively. 417 

centres are finally obtained in the programme, as depicted in Figure 4.20. It is interesting 

that the centre distribution is in high accordance with the surface shape. The centres are 

denser at plateau and valley regions (curved areas) and sparser at transitional regions 

(smoother areas). There are also some centres outside the domain of data, which are 

involved to overcome the boundary effect. From another respect it also justifies the 

necessity and validity of our proposed adding-one-circle method to improve the boundary 

behaviour. 

 

Figure 4.20 Selected centres using the OLS-BH method 

To compare its reconstruction quality with the case of uniform centres, the fit errors 

and evaluation errors are also calculated, as plotted in Figure 4.21. The quantitative 

comparison by their error parameters is presented in Table 4.4. It can be seen that the 

interpolation errors in the two cases are in the same order, whereas the evaluation 

accuracy by the selected centres is four orders higher than uniform centres. That is to say, 

the reconstructed surface of the selected centres is much smoother and more faithful to 

the original model surface. 
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(a) Fitting error 

 

 (b) Evaluation error 

Figure 4.21 Reconstruction errors of the OLS-BH method 
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Cases Uniform centres Selected centres 

Fitting 
errors 

Sa 1.510e-4 4.376e-4 

Sq 2.833e-5 5.861e-4 

Sz 3.501e-4 6.490e-3 

Evaluation 
errors 

Sa 0.2014 6.442e-4 

Sq 3.640 9.864e-4 

Sz 233.6 1.708e-2 

 Table 4.4 Comparison of reconstruction errors 

Every time this algorithm selects only one new centre and the randomly generated 

candidate centres have to be checked successively, so that the program runs very slowly. 

In this example, the running time of point selection is as long as 173.186 seconds. The 

yielded centre set is very sparse, thus the numerical stability can be significantly 

improved. When sampling points from the RBF surface, the programme will run much 

faster than exact interpolation because of its much smaller centre number. 

4.5 Summary 

RBF has no specific requirements on the distribution of data points and thus is a very 

useful tool of surface reconstruction for scattered data. 

The arrangement of centres is the key factor influencing the reconstruction quality. 

Exact interpolation, i.e. adopting all the given data as centres usually causes an unstable 

system or prones to over-fit the template surface. Hence it is necessary to resample the 

centres. When the surface is very smooth and the data points are distributed very 

uniformly, the centres can be uniformly sampled on the domain of interest; otherwise a 

point selection procedure called the orthogonal least squares basis hunting will be 

performed to recursively sample a new set of optimal centres. 

The reconstruction quality near the boundary region is usually very poor compared 

with the interior domain. It is suggested that adding some auxiliary points outside the 

domain of data is able to overcome this problem effectively. In addition, RBF behaves 

very poor at sharp edges and corners. When the boundary of the surface is very irregular, 

severe errors may also arise at the sharp-turn areas. 

In contrast with NURBS, RBF takes all the data points and centres as a whole, thus 

leading to a very large-sized interpolation matrix. The solution may be very unstable, 
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computationally complex, and memory consuming. For this reason RBF will only be 

employed when the data points are no more than several thousand. If the data size is very 

large, the whole data set can be divided into several regions and processed separately. 

Fortunately RBF requires to select centres and to calculate weights only one time. 

Once the RBF system has been established, an explicit representation is obtained for the 

surface. When implementing interpolation, it just needs to substitute the abscissa of the 

evaluated location into the interpolation matrix, thus is very efficient. This is particularly 

attractive during the iterative fitting algorithm, which interpolates the free-form surface 

many times. By contrast, although a NURBS system is very efficient and easy to be built 

up, it is a parametric model. Point inversion is essential for surface interpolation, thereby 

greatly hindering the efficiency of the program. 

4.6 References 

Barker, R. M., Cox, M. G., Forbes, A. B. and Harris, P. M. 2004 Discrete Modelling and 

Experimental Data Analysis. Ver 2. NPL Report 

Baxter, B. J. C. 1992 The Interpolation Theory of Radial Basis Functions. Ph.D Thesis. 
Cambridge University 

Bishop, C. M. 1995 Neural Networks for Pattern Recognition. Oxford University Press 

Björkström, A. 2007 Regression Methods in Multidimensional Prediction and Estimation. 
Ph.D Thesis. Stockholm University 

Broomhead, D. S. and Lowe, D. 1988 Multivariate functional interpolation and adaptive 
networks. Complex Systems. 2(3): 321-355 

Chen, S., Hong, X., Harris, C. J. and Sharkey, P. M. 2004 Sparse modelling using 
orthogonal forward regression with PRESS statistic and regularization. IEEE Trans on 

Sys, Man and Cybernetics B: Cybernetics. 34(2): 898-911 

Chen, S., Wang, X. W. and Harris, C. J. 2008 NARX-based nonlinear system 
identification using orthogonal least squares basis hunting. IEEE Trans on Cont Sys 

Technol. 16(1): 78-84 

Crampton, A. 2002 Radial Basis and Support Vector Machine Algorithms for 

Approximating Discrete Data. Ph.D Thesis. University of Huddersfield, UK 

de Castro, L. N. and Von Zuben, F. J. 2001 An immunological approach to initialize 
centres of radial basis function neural networks. Proc of V Brazilian Conf on Neural 

Networks. 79-84 

Duchon, J. 1977 Splines minimising rotation-invariant seminorms in Sobolev spaces. In 
Schempp, W. and Zeller, K. Editors. Lecture Notes in Mathematics. Springer. 571: 85-
100 

Fedoseyev, A. I., Friedman, M. J. and Kansa, E. J. 2002 Improved multiquadric method 
for elliptic partial differential equations via PDE collocation on the boundary. Comp 

and Math with Appl. 43(3-5): 439-455 



 

 

125 

 

Fornberg, B., Driscoll, T. A., Wright, G. and Charles, R. 2002 Observations on the 
behaviour of radial basis function approximations near boundaries. Comp and Math 

with Appl. 43(3-5): 473-490 

Franke, R. 1982 Scattered data interpolation: tests of some methods. Math of Comp. 
38(157): 181-200 

Graham, R. L. 1972 An efficient algorithm for determining the convex hull of a finite 
planar set. Info Proc Lett. 1(4): 132-133 

Hangelbroek, T. 2007 Error estimates for thin plate spline approximation in the disc. 
ftp://ftp.cs.wisc.edu/Approx/TPSerror.pdf  

Hardy, R. L. 1971 Multiquadric equation of topography and other irregular surfaces. J of 

Geophysical Research. 76(8): 1905-1915 

Lee, S., Wolberg, G. and Shin, S. Y. 1997 Scattered data interpolation with multilevel B-
splines. IEEE Trans Visual and Comp Graphics. 3(3): 1-17 

Light, W. 2001 Computing with radial basic functions the Beatson-Light way! In 
Levesley, J., Anderson, I. J. and Mason, J. C. Editors. Algor for Approx IV. 
Huddersfield, UK, 220-235  

Micchelli, C. A. 1986 Interpolation of scattered data: Distance matrices and conditionally 
positive definite functions. Constructive Approximation. 2(1): 11-22 

Morandi, R. and Sestini, A. 2001 Geometric knot selection for radial scattered data 
approximation. In Levesley, J., Mason, J. C. and Anderson, I. J. Editors. Algor for 

Approx IV. Huddersfield, UK, 244-251 

Orr, M. J. L. 1996 Introduction to Radial Basis Function Networks. Technical Report. 
Centre for Cognitive Science, University of Edinburgh 

Samozino, M., Alexa, M., Alliez, P. and Yvinec, M. 2006 Reconstruction with Voronoi 
centred radial basis functions. Eurographics Symposium on Geometry Processing  51-
60 

Schaback, R. 1995 Error estimates and condition numbers for radial basis function 
interpolation. Adv in Comput Math. 3(3): 251-264 

Valdés, J. L., Biscay, R. and Jimenez, J. C. 1999 Geometric selection of centres for radial 
basis function approximations involved in intensive computer simulations. 
Mathematics and Computers in Simulation. 48(3): 295-306 

Wendland, H. 1995 Piecewise polynomial, positive definite and compactly supported 
radial basis functions of minimal degree. Adv in Comput Math. 4(1): 389-396 



 

 

126 

 

CHAPTER 5 INITIAL MATCHING OF FREE-FORM 

SURFACES 

Given measurement data and the corresponding nominal template, a correct matching 

should be established so that the relative deviation between them can be obtained. The 

purpose of initial matching is to supply a reliable rough guess for the relative position 

between the two surfaces. 

Due to the complexity of free-form surfaces, it is not appropriate to use one single 

method to deal with all kinds of surfaces. Here free-form surfaces are classified into three 

categories: structured surfaces, smooth surfaces and non-smooth surfaces. Structured 

surfaces are composed of simple surface patches and can be segmented into regions. Each 

region can be fitted individually into a quadric and its form error is assessed thereafter by 

the corresponding shape parameters and residuals. As regards smooth and non-smooth 

surfaces, a generalized feature called Structured Region Signature is proposed to find a 

correct matching position between the measurement surface and the design template. 

5.1 Segmentation Method 

Most working surfaces of engineering products are smooth ones. But there exist some 

structured surfaces which are constituted of a group of simple surfaces, e.g. Fresnel lens 

developed for lighthouse, and the image slicer used in the James Webb Space Telescope 

[Shore 2006], as shown in Figure 5.1. Therefore the entire surface cannot be represented 

simultaneously using one single function. If measuring the surface as a whole, the data 

can be divided into smooth surface patches and then processed separately. Segmentation 

is a manipulation which partitions a scale limited surface into distinct regions [ISO/DIS 

25178-2: 2007]. Here we introduce a surface segmentation algorithm based on discrete 

curvatures. 
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(a) Fresnel lens                                       (b) Image Slicer 

Figure 5.1 Examples of structured surfaces 

5.1.1 Definition of Discrete Curvatures 

In differential geometry, the coefficients of the first and second fundamental forms of 

the surface at a point x on a continuous surface ),( vuS  are defined as [Struik 1950], 
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where 
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=  is the normal vector at x. 

The Gaussian and mean curvatures are defined as, 
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and the two principal curvatures are 

KHH −+= 2
1κ  and KHH −−= 2

2κ                                               (5.3) 

Here, 1κ  and 2κ  are the two principal curvatures, i.e. the maximum and minimum 

curvatures at the point x along different directions. In fact, the corresponding directions 

of the two principal curvatures (called principal directions) are perpendicular to each 

other. 
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In previous equations, the calculation is carried out based on differentiation, which 

requires a global continuous function of the surface. However, measurement data are 

generally in discrete forms. Continuous representations are not straightforwardly 

available for structured surfaces. Therefore, some discrete curvatures are defined. The 

discrete point set is organized with Delaunay triangulation [Delaunay 1934] and the 

connecting relationship between data points is thereby established. As presented in Figure 

5.2, the neighbour points of an arbitrary vertex x is supposed to be },,{)( 21 KN xxxx L= . 

The central angle associated with the j-th face at x is jθ   and the two round angles 

opposite to the edge jxx  are jα  and jβ  respectively. 

According to the Gauss-Bonnet theorem, the integral Gaussian curvature can be 

obtained by [Desbrun 2000], 

∑∫∫ −=
)(

2
xN

j

AM

KdA θπ                                                                                        (5.4) 

In this equation, MA  (called finite volume) is a family of special regions contained 

within the 1-ring neighbourhood of x . Normally there are two types of finite volume: 

barycentric cell and Voronoi cell. In Figure 5.3 (a), the dot inside each triangle of the 1-

ring neighbourhood of x  is the barycentre of the triangle; whereas in Figure 5.3(b), the 

dot denotes the circumcentre of each triangle. It is proved that the Voronoi cells provide 

provably tight error bounds under mild assumptions of smoothness. The Voronoi area can 

be calculated by, 
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Figure 5.2 Neighbourhood of a vertex x  
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(a) Barycentric area                                       (b) Voronoi area 

Figure 5.3 Two common definitions of finite volume region 

It is apparent that the circumcentre of an obtuse triangle locates outside the triangle, 

and then the corresponding Voronoi area will become meaningless. In order to guarantee 

a proper accuracy for the discrete curvatures in the presence of obtuse triangles in the 1-

ring neighbourhood, a mixed area mixedA  is adopted: if a triangle is obtuse, take its 

barycentric area to define the finite volume region; otherwise, adopt its Voronoi area. As 

a consequence the discrete Gaussian curvature becomes, 
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As regards the mean curvature, the Laplace-Beltrami operator is employed, 

)()(2)( xnxx HLB =                                                                                         (5.7) 

where )(xH  is the mean curvature and )(xn  is the normal vector at the vertex x . 

It can be worked out as follows, 
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The normalized vector of the above equation provides a good approximation of the 

normal vector )(xn . From Equation (5.7) it is known that the mean curvature is half of 

the magnitude of )(xLB , 
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5.1.2 Segmentation Procedure 

When the discrete curvatures at all the vertices are calculated, this point set is ready to 

be segmented into patches. 

(a) Curvature Classification 

For each vertex, the two principal curvatures are calculated with Equation (5.3), and 

they are regarded as a 2D point. Then these curvature points },,1|{ Nii L=c  are 

clustered into different groups using the k-means clustering method [MacQueen 1967]. 

This algorithm constructs clusters in an adaptive way: 

Step 1: Given a point set }{ ic , pre-assign the number of the 

clusters k and initialize the seed points },,2 ,1|{ kjj L=m  for these 

clusters. 

Step 2: For each point 
ic , find the corresponding cluster j it 

belongs to, 

jij mc −= minarg                                                                                   (5.10) 

Step 3: Update },,2 ,1|{ kjj L=m  by the gravity centre of all the 

points located in each cluster. 

Repeat Steps 2 and 3 until all the seed points converge. 

 

It is demonstrated that for a fixed cloud of points, the clustered result is not affected 

by the initial selection of the seed points [MacQueen 1967]. Hence in practice the seed 

points can be randomly sampled from the input points. An example of constructing two 

clusters from ten 2-D points is depicted in Figure 5.4. 
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(a)                                                 (b)                                                (c) 

 

 (d)                                                (e) 

Figure 5.4 Dividing ten points into two clusters 

(b) Region Growing 

The vertices lying on sharp edges or corners will possess one or two rather large 

principal curvatures. Such vertices are termed ‘sharp’ and the other vertices are termed 

‘normal’. Through k-clustering, normal and sharp vertices can be classified into different 

groups. A triangle is regarded as a seed triangle if it has three normal vertices in the same 

curvature cluster or has one normal vertex and two sharp vertices. All seed triangles are 

then labelled with the curvature cluster label j of its normal vertices. 
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Figure 5.5 Region growing mechanism 

When encountering a seed triangle tL, a new region L is created, as depicted in Figure 

5.5. If one of its edge ie is not a sharp one, check the opposite triangle it . The triangle it  

will be integrated into the region L if the vertex ix  is sharp or also located within the 

same curvature cluster with region L. This process is repeated for every seed triangle until 

all the regions cannot grow further. At the end, some triangles may have not been labelled 

yet. A simple crack filling process will be performed to assign region labels onto these 

triangles according to their neighbourhoods. 

(c) Region Merging 

In order to overcome over-segmentation occurred at the region growing step, the 

regions which are adjacent and have close discrete curvatures with each other can be 

merged into larger ones. 

Firstly a region adjacency graph is established. Two regions sharing one common 

edge are linked in the graph. A region distance is defined on two adjacent regions to 

measure the necessity of merging them [Guillaume 2004], 

rsrsrsrs SNDCD ⋅⋅=                                                                                    (5.11) 

In the equation, rsDC  measures the difference between their curvatures, 

rssrsrrsDC cccc −+−=                                                                        (5.12) 

with 
rc , sc , and rsc  indicating the average curvatures of regions r, s and their boundary 

respectively. 

tL ti 

ei 

xi 

Region L 

Growing direction 
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rsN  measures the nesting between these two regions, 

rs

sr

rs
P

PP
N =                                                                                                  (5.13) 

with 
rP , sP , and rsP  indicating the perimeters of the regions r, s and the size of their 

common boundary respectively. 

rsS  is used to accelerate fusing the smallest regions, 



 <

=
otherwise1

),min( minAAA
S

sr

rs

ε
                                                                    (5.14) 

Here 
rA  and sA are the areas of the two regions, minA  is a user-set minimum area and 

ε  is a very small positive value. 

Two adjacent regions with very small distance 
rsD  can be merged into one larger 

region and their region curvatures are then averaged, so that the whole surface is divided 

into large surface patches. These regions are separated by sharp edges or have different 

curvatures. In fact, the final segmentation result is mainly determined by the merging 

criteria instead of the initial number of clusters k [Guillaume 2004]. Therefore, this 

segmentation procedure is very stable and insensitive to local point distribution. 

5.1.3 Fitting of Quadric Surface Patches 

After surface patches are extracted with the segmentation algorithm, the form quality 

of each patch and the relative positional error between them will be evaluated 

respectively. The shape of the patch is generally a simple geometry, e.g. planes, cones, 

spheres, cylinders etc. To recognize the shapes of the patches, each segment is firstly 

fitted with a general quadric function. 

Recall the quadric surface fitting introduced in Subsection 2.3.1, the general function 

of a quadric surface is, 

0)( 222 =+++++++++= JIzHyGxFyzExzDxyCzByAxQ x         (5.15) 

It can be rewritten into, 
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with T
zyx ][=x  and a normalization constraint ++ 22 BA ++ 22

DC ++ 22 FE +2G  

+2
H  +2I

2
J  1= . The equation is solved with the generalized eigenvector technique 

[Taubin 1991]. 

Now transform Equation (5.16) into a standard form so that the cross terms can be 

eliminated. According to the Spectral Theorem, the eigenvectors of a real symmetric 

matrix compose an orthogonal space [Halmos 1963]. So that we implement eigen-

decomposition onto the quadric form, 
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                                                                    (5.17) 

In the equation, S  is a diagonal matrix },,{ 321 σσσdiag=S with its diagonal entries 

321 σσσ ≥≥  being the eigenvalues. Here U is a 3×3 unitary matrix. We enforce its 

determinant be positive, so that U can be regarded as a rotation matrix in the 3-D 

Euclidean space and the coordinate system will not be reflected from right-handed to left-

handed. Assume xUx T=~ , so that, 

[ ] 0~~~)( =++= JIHGQ T xUxSxx                                                            (5.18) 

It is rewritten as, 
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• The following standard form emerges when 0321 ≠σσσ , 
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The parameters 1σ , 2σ , and 3σ are used to recognize the surface shape. Without 

losing generality, we assume 0321 >σσσ . If 04 ≠a , the function is normalized into 

1|| 4 =a . Otherwise the function is normalized with 12
3

2
2

2
1 =++ σσσ , so that for a given 

quadric function, a unique set of parameters { 1σ , 2σ , 3σ } can be obtained. 

• If any one of the three shape parameters vanishes, say 03 =σ , Equation (5.20) will 

be in the form of, 
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Equation (5.21) is normalized into 11 =σ . We force the condition 0231 ≥++ σσσ  

are always satisfied here, so that 01 ≠σ . If 02 =σ , the function can be processed in the 

same manner.  

• If only one of the three shape parameters is non-zero, it can only be 01 ≠σ  under the 

condition 0231 ≥++ σσσ  

( ) 0~~~~~)( 4
2

11 =+++−= azIyHaxQ σx                                                        (5.22) 

The data will be rotated further about the x~  axis with a matrix 
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So that the new data is 
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V  and the standard function becomes, 

( ) 0ˆ~~ˆ)( 4
222

11 =+++−= ayIHaxQ σx                                                 (5.24) 

The only non-zero shape parameter 1σ is normalized into +1. The relationships 

between surface shapes and shape parameters in different cases are summarized in Table 

5.1.  

1σ  2σ  3σ  Shape 

01 >σ  

1σ = 2σ  

2σ = 3σ  sphere 

2σ > 3σ >0 oblate spheroid 

3σ =0 
≠I

~
0 circular paraboloid 

=I
~

0 cylinder 

1σ > 2σ >0 

2σ = 3σ  prolate spheroid 

2σ > 3σ >0 ellipsoid 

3σ =0 
≠I

~
0 elliptic paraboloid 

=I
~

0 elliptic cylinder 

2σ =0 

≠H
~

0 
3σ =0 parabolic cylinder 

3σ <0 hyperbolic parabolid 

=H
~

0 

3σ =0 two parallel planes 

3σ <0 
≠4a 0 hyperbolic cylinder 

=4a 0 two intersecting planes 

2σ <0 

2σ = 3σ  

>4a 0 one-sheet hyperboloid of revolution 

=4a 0 cone 

<4a 0 two-sheet hyperboloid of revolution 

2σ > 3σ  

>4a 0 one-sheet hyperboloid 

=4a 0 elliptic cone 

<4a 0 two-sheet hyperboloid 

1σ =0 2σ =0 3σ =0 plane 

 Table 5.1 Determine the shape of quadrics according to the shape parameters 

Once all the shape parameters have been obtained, the specific shape of each surface 

segment can be decided. The correspondence relationship between the segments of the 

measurement data and patches on the design template is thereby established. 

In practice the fitted parameters may not be exactly equal to the theoretical values due 

to measurement noise and computational errors. Hence a small tolerance ε  is set 

accordingly. An actual shape parameter will be regarded to be zero if it is very small or 
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thought to be equal to the nominal one if they are very close to each other within a 

tolerance ε , i.e. | 3σ |< ⇒ε 3σ =0 and | 1σ - '1σ |< ⇒ε 1σ = '1σ .  

As shown in Figure 5.1, segments of structured surfaces may be very small and 

narrow, yielding very large uncertainty and bias in the fitted parameters. Thus each 

surface patch shall be fitted further with a type specific algorithm to work out their exact 

positional and form errors. Orthogonal distances can be employed in the error metric and 

outliers will be handled separately, so that the measurement data can be aligned with the 

design model according to the positional parameters, e.g. the centre of a sphere or the 

axis of a cylinder. In this way the shape quality of a structured surface can be evaluated. 

The orthogonal distance fitting and overcoming outliers are in the scope of final fitting, 

which will be discussed further in Chapter 6. 

5.2 Structured Region Signature Method 

If the measurement surface is a general smooth free-form surface, it will have no 

shape or positional parameters straightforwardly available as quadric surfaces do. 

Moreover, salient features or reference datums may not exist to be used for aligning the 

measurement data with the design template. Motivated by the point signature technique 

by Chua and Jarvis [Chua 1997], we propose a generalized feature called Structured 

Region Signature (SRS) for partial matching of smooth free-form surfaces. 

It is assumed that the template consists of discrete points and it should be a smooth 

free-form surface, i.e. its normal vectors are continuous and there are no occlusions. 

5.2.1 Definition of SRS 

Firstly, given measurement data |{ ipP =  i=1,2,…, N}, a point T
cccm zyx ],,[=c  is 

chosen at the centre of the measurement surface and an inscribed sphere with radius mR  

is placed with its centre at mc . Here mR  should be as large as possible, while the sphere 

should be always contained within the boundary of the measurement surface. In practice 

mR  is taken to be the smallest distance from mc  to the boundary, as illustrated in Figure 

5.6 (a).  

The measurement points lying within the sphere (termed region points, denoted with 

crosses in Figure 5.6 (b)) constitute a region mREG . A plane 0=+++ dczbyax  is fitted 

through the region, such that, 
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arg),,,( =dcba  ∑
∈
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+++

mi REG

iii

cba

dczbyax

p

222

2)(
min                                          (5.25) 

where T

iiii zyx ],,[=p is an arbitrary point within the region mREG . 

 

(a) Inscribed sphere                                                    (b) Region 

   

(c) Projection                                                             (d) Signature 

 Figure 5.6 Creating a signature 

Practically, this equation is solved with the generalized eigenvector method [Taubin 

1991]. 

The gravity centre of the region is, 

d

θ
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where NR is the number of the region points. 

A 3×3 symmetric covariance matrix is thereby constructed,  

T
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−−=
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ppppA ))((                                                                     (5.26) 

The normal vector of the plane T

m cba ],,[=n is taken to be the normalized 

eigenvector associated with the smallest eigenvalue of the matrix A , assuming it is 3v  

[Taubin 1991]. If the z component of 3v  is negative, - 3v  will be adopted instead, so that 

the representation of the fitted plane can always be guaranteed to be unique.  

A new plane mP  is defined by moving the fitted plane to go through the centre point 

mc , without changing its orientation. The function of mP  is, 

0)()()( =−+−+− ccc zzcyybxxa                                                              

or rewritten as 

0'=+++ dczbyax                                                                                     (5.27) 

with )(' ccc czbyaxd ++−= . 

Then an appropriate number NC of region points lying nearest to the sphere surface 

will be selected to constitute a circle, see Figure 5.6(b).   

These circle points {aj, bj, cj }, j=1, …, Nc  are projected onto the plane mP  and the 

signed projection distances are 

Cjjjj Njdczbyaxd ,,2,1,' L=+++=                                                     

yielding CN  projection points, 
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To make the signature independent of the orientation and position of the surface, a 

local coordinate system is defined by setting the signature centre mc  as the origin 

T]000[ and defining the normal vector of the plane as the positive z axis T]100[ , 

consequently yielding the projection plane mP  to be the X-Y plane.  

For simplicity, it is implemented in an equivalent way as follows. Firstly the unit 

radial vectors }{ jr  from the signature centre mc  to the projection points are calculated, 

jjj rrr =  with 

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xx

'

'

'

r                                                                   

An auxiliary vector an  is defined as the cross product of mn  and [ ]T

z 100=n , 

zmzma nnnnn ××= /                                                                                

Thus two orthonormal frames  ][ 1nnn am   and ][ 2nnn az  are constructed with   

amam nnnnn ××= /1  and azaz nnnnn ××= /2 . 

Then the pointing vectors }{ jr  can be rotated onto the X-Y plane by [Chua 1996], 

j

T

amazj rnnnnnnr ][][' 12 ×=                                                        (5.29) 

Set T
rjrjj yx ]0['=r , its corresponding polar angle is, 

πθπθ ≤<−

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= j

rj
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j
x

y
  ,arctan                                                                  (5.30) 

Thus the signed projection distances }{ jd of all the circle points form a one 

dimensional function with respect to the polar angles }{ jθ , as shown in Figure 5.6(d). 

This distance profile is called the structured region signature mS  of the measurement 

surface. If this surface is smooth, the theoretical signature curve will be smooth as well. 

In fact, the selected circle points are not exactly lying on the sphere surface and the 

resulting signature curve will contain perturbations. In addition the intervals between the 

adjacent polar angles are not uniform. Therefore a signature curve is modelled from these 

signature points with smoothing techniques, e.g. least squares cubic splines. 



 

 

141 

 

5.2.2 Matching Strategy 

The measurement surface is usually only one part of the template, and the best 

matching position of the measurement data is not supplied. Thus sN  plausible candidate 

locations can be selected uniformly on the template with appropriate spacing. 

Then signatures are similarly generated on the template surface, centred at the 

sampled plausible locations, employing the same sphere radius 
mR  as the measurement 

signature. The template signatures are indicated as },,2 ,1|{ sTk NkS L= . 

The similarity between a template signature and the measurement signature is 

evaluated by the structure function, 

∫− −=
π

π
θθθ dSSErr Tkmk

2)]()([                                                                      (5.31) 

Practically the two coordinate systems of the measurement surface and the template 

are probably misaligned, hence there may be relative angle-shift between their signature 

profiles. 

 

 Figure 5.7 Relative shift between two signatures 

Then the best-matching problem turns out to be a minimization task, 
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                                          (5.32) 

 However, this is very burdensome to calculate, so all the signature curves are 

resampled evenly with an appropriate interval n/π  ( n  is a positive integer). The 
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signature curve 
TkS  will become discrete date sets }2,,2 ,1 |)({ nlS lTk L=θ and the 

relative shift angles are discretized as well, 

nrnr
n

r 2,,2,1 ),( L=−=
π

ϕ                                                                               

Therefore the best matching is the one which occupies the smallest dissimilarity, 
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                                              (5.33) 

The centre of the best-matching template signature TkS  is denoted with Tc , and the 

unit normal vector of the corresponding fitted plane is Tn . 

Then a rotation is performed on the measurement surface to align its normal vector 

mn  with Tn . Three unit vectors are defined subsequently 
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                                                                         (5.34) 

to construct orthonormal frames for the measurement and template signatures 

respectively. The rotation matrix to align the two orthonormal frames is, 

[ ] [ ]T

mT 10201 nnnnnnR ×=                                                          (5.35) 

The measurement surface should be rotated an angle rϕ  about its new normal vector 

T

zyxT nnn ][=n  to eliminate the relative angle-shift between 
mS  and TkS . The 

corresponding rotation matrix is [Grimson 1984], 
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with )sin( rs ϕ=  and )cos( rc ϕ= . Finally the measurement surface is translated to overlap 

the two signature centres, and the new measurement surface is, 

Tm ccPRRP +−= )(' 12                                                                               (5.37) 
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5.2.3 Further Discussion 

(a) Multi-Circle Signature 

The above SRS employs only one single circle to describe the shape of a surface. To 

improve the descriptive capability of the signatures, more shape-information could be 

involved. Actually several concentric circles can be defined at the same signature centre. 

The number of circles is determined by the point number within the region as well as the 

complexity of the surface shape. The ratios between the radii of these circles are set to be, 

LL :3:2:1::: 321 =RRR                                                                    (5.38) 

so that the areas between adjacent circles are approximately the same. Figure 5.8 shows a 

two-circle signature. 

 

 Figure 5.8 A two-circle signature 

(b) Sampling Signature Centres on the Template 

It has been mentioned in Subsection 5.2.2 that the candidate signature centres are 

uniformly selected on the template surface. For planar smooth surfaces, it is appropriate 

to sample centres in this manner. However, at some sharp areas of non-planar surfaces, 

the SRS may vary greatly even if they are located very near to each other. In this case the 

density of the centre points is determined by the local density of template points and the 
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local shape variation on the template surface, in another word, by the curvatures near the 

signature centres. Furthermore, if the rough position of the best matching is known 

already, signature centres will be placed with a higher density at this area. 

The matching accuracy of translation is determined by the density of the signature 

centres. Using a higher centre density, the translation error can be restricted within a 

smaller area, thereby improving the matching accuracy. However, it yields more 

signatures to be created and compared, consequently reducing the matching efficiency. 

To overcome this problem, the signature centres can be sampled in a coarse-to-fine 

approach. Initially, the signature centres are selected using a larger distance (not greater 

than mR /2). When a rough position TC  is found, new signature centres are placed around 

its neighbourhood with a smaller spacing, as shown in Figure 5.9. This is repeated until 

the spacing is small enough to give a sufficiently good matching result. 

 

 Figure 5.9 Sampling centres in a coarse-to-fine way 

(c) Matching-Residual-Checking Strategy 

For nearly symmetric surfaces, the SRS matching method fails because the signature’s 

domain of interest is a small part of the measurement surface; there may be many 

locations occupying nearly the same signatures. As a result of measurement noise and 

numerical computation errors, the candidate location with the best-matching signature 

may be an incorrect one. That is to say, the correct matching location usually has a high 

signature similarity, but the location occupying the highest signature similarity is not 

necessarily the correct matching. 

To overcome this problem, all the plausible locations are sorted in an order such that 

the locations occupying higher signature similarities are put at the front of the list. Then 

TC
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the matching residual of each location is checked successively. Once the matching 

residual satisfies a user-set threshold, the checking process is terminated and a correct 

matching location is found. Here, the Root Mean Squared Error of the residual is adopted 

as a metric to assess the goodness of matching. 

Figure 5.10 highlights the scheme of the SRS algorithm with residual check. 

 

 Figure 5.10 Flowchart of the SRS algorithm 

5.3 Simulation and Experimental Results 

Example 1 Segmentation Method 

A micro Fresnel lens is measured with a Wyko NT 2000 Optical Profiler. It consists 

of three spherical sections. 

Sample centres  
on template 

Compare dissimilarities Sort template SRS 

Calculate template  
SRS {ST} 

k=1 

Check residual of  
k-th ST 

Criterion  
satisfied? 

k=k+1 

Construct meas. SRS 

Y 

N 

ST is the 
Best matching 

end 
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 Figure 5.11 Fresnel lens 

The measurement data are regularly distributed on a grid and it is straightforward to 

obtain the connection relationship between the data points. The mean and Gaussian 

curvatures are calculated for each vertex respectively, as shown in Figure 5.12. 

 

(a) Mean curvatures 
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(b) Gaussian curvatures 

 Figure 5.12 Discrete curvatures 

The three segments of this Fresnel surface are all spherical, thus all the vertices within 

each surface section have approximately the same curvature values, except at segment 

boundaries. In fact, the curvature values are polluted by the measurement error and 

missing data. When the measurement data are very noisy, local perturbations will 

dominate and submerge the real information of the surface shape. Therefore, pre-

processing is required to deal with the missing data and outliers, and the data will be 

smoothed if necessary. Another approach is to sample less data points and use a larger 

spacing, so that the effect of measurement errors can be restrained. Additionally, the 

discrete curvatures can be post-processed with median filtering. 

Then k-means clustering is implemented onto the curvatures and all the vertices are 

grouped into four clusters. It is obvious that the red dots in Figure 5.13 denote segment 

boundaries. Dispersed red dots at the outer region are caused by missing data and spikes, 

thus they will be neglected. 
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 Figure 5.13 Clustering points based on the curvatures 

The triangles within the clusters 1, 2, and 3 are regarded as seed triangles. They are 

organized into four regions using the region growing technique. We have known 

beforehand that the two outer sections are on the same spherical surface; hence they are 

combined into one segment, as depicted in Figure 5.14.  
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 Figure 5.14 Surface segments 

These three segments are fitted with functions of spheres respectively and the 

corresponding parameters are given in Table 5.2. Here regions I, II, and III refer to the 

central, medium and outer sections respectively. In fact, these parameters are not very 

accurate because of outliers and missing data. Taking these rough parameters as initial 

solutions, each section can be fitted further with robust and non-biased techniques. This 

will be discussed in detail in Chapter 6. 

 Table 5.2 Parameters of the three segments 

Figure 5.15 presents the residuals of the measurement data with respect to the fitted 

sphere surfaces. 

region Region I Region II Region III 

point number 901 2485 1162 

sphere centre/mm (0.8996, 1.1683, -54.8061) (0.9017, 1.1663,-55.4256) (0.9017, 1.1641,-56.0859) 

Sphere radius/mm 54.810 55.431 56.098 
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 Figure 5.15 Fitting residuals 

The program is coded with Matlab 2007a and run on the NEC PC. The running time 

for calculating curvatures, clustering, region growing, and fitting spheres is 6.903 s, 0.377 

s, 0.6763 s, and 0.003 s respectively. 

As we know, Fresnel zones are located on a spherical or an aspheric surface, with 

different offsets. Table 5.2 indicates that the fitted radii and the x and y coordinates of the 

sphere centres are approximately the same, only their z values are distinctively different. 

It can be seen in Figure 5.15 that the fitting residuals are very small and planar, which 

suggests that the fitted spheres faithfully represent the real shapes of the three spherical 

sections. From the measurement data we see that the borders between sections are not 

strictly vertical. Instead, there are data points located on the steep slopes of the interim 

parts. That is why we can see apparent gaps between sections in Figure 5.14. But in fact 

they are not so wide. This is caused by the median-filtering of the discrete curvatures. 

Therefore, post-processing is required to carefully put sharp points into appropriate 

sections if necessary according to the relative heights between these points and their 

neighbourhoods. 

Another distinct advantage of this curvature-based segmentation algorithm is that 

more geometric information can be involved. For example, if two adjacent regions with 

different shapes are tangent to each other, with no obvious height-step between them, in 
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this case it is not sufficient to check only the relative height differences between 

neighbour points, but this segmentation algorithm can still apply. 

Example 2 Simulation of the Structured Region Signature Method 

A simulation is given for the Structured Region Signature method. A free-form 

template surface is simulated with the function, 

400

400
320/)4/sin()200/cos()240/cos( 2

≤<

≤<
−+=

y

x
xyxyxyz

            (5.39) 

A small part of 22.5 mm×22.5 mm is taken from this template as measurement data 

(Figure 5.16(a)) and Gaussian noise )2,0( mN µ  is added as measurement error. The 

measurement surface is moved to an arbitrary location as the initial position before 

matching (Figure 5.16(b)). 

 

(a)  Ideal position                            (b) Transformed to a new position     

 

(c) Measurement SRS                       (d) Best-matching template SRS 
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(e) Coarse matching result                          (f) Coarse matching residual          

 

 (g) Fine matching result                      (h) Fine matching residual 

 Figure 5.16 Simulation of SRS matching 

A SRS is firstly constructed for the measurement surface, and its radius is set to be 

Rm=11 mm, as shown in Figure 5.16 (c). If candidate signature centres are sampled 

uniformly with a distance D=Rm/3 on the template, the best-matching SRS on the 

template is given in Figure 5.16 (d). The matching result and residuals are shown in 

Figure 5.16(e) and (f) respectively. For the matching residual, its Root-Mean-Squared 

Error Sq is 0.1396 mm and the Max-Min Error Sz is 0.4206 mm. Compared with the ideal 

position, the translational error is [0.2550, -0.8939, -0.0423]T mm and the rotational angle 

error is [-0.0523, -0.7345, 1.5388]T ˚. The Matlab program ran 1.703 s to find the best 

matching position. 

If the spacing between the template signature centres is decreased down to D=Rm/8, 

the matching result and residuals are illustrated in Figure 5.16(g) and (h). In this 

circumstance, Sq is 0.0499 mm and Sz is 0.2761 mm. The errors of translation and 

rotation are [0.2562, -0.0240, -0.0344]T mm and [-0.0216, -0.3991, 1.6537]T˚ respectively. 
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It can be seen that adopting a coarse-to-fine approach, the translation accuracy is 

greatly improved, but the errors in the rotation angles are still very large. Its reason is 

apparent: the sampling interval on each signature curve is unchanged. In order to get 

higher rotation accuracy, with increasing the density of the template signature centres, the 

sample density on each signature curve should also be increased simultaneously. 

This simulation demonstrates the validity of the SRS method. The matching accuracy 

of translation is restricted by the sampling density of signature centres, whilst the rotation 

accuracy is controlled by the sampling density of the angles from signature curves. 

Example 3 Experimental Result of the SRS Method 

Figure 5.17 presents the bearing surface of a total knee joint replacement bearing 

couple.  

 

 Figure 5.17 Total knee joint replacement model 

A nearly spherical part is measured on this joint replacement with spacing d=0.5mm 

using a Carl Zeiss PRISMO CMM. Radial basis functions are employed to represent the 

design template and the SRS algorithm is used to match the measurement data with the 

template. In order to reject false matching caused by the spherical symmetry, the residual 

checking strategy is applied. The spacing between signature centres on the template is 

adopted to be D=Rm/8. Figure 5.18 (b) plots the situation which has the most similar SRS 

with the measurement surface. Obviously it is a false matching. In fact the real 

correspondence position is found to have the eighth best-matching signature. The 

matching result and residual error are shown in Figure (c) and (d). Sq and Sz parameters 
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are 36.30 µm and 159.53 µm respectively.  The running time of the Matlab program is 

2.861 s. 

 

(a) Relative position before matching  

 

(b) False matching result  
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(c) Correct matching result  

 

 (d) Matching residual (mm) 

 Figure 5.18 Matching a knee joint replacement 

This example shows the necessity and validity of the residual checking strategy. For 

nearly symmetric surfaces, the location with the most similar signature is not necessarily 

the best matching. Sorting the candidate locations by their signature similarities, the best 

matching location is usually at the front of the list and not many template signatures need 

to be checked. Therefore the efficiency of the matching algorithm will not be influenced 

much, but the reliability of the matching result can be greatly improved. 

5.4 Summary 

To improve its accuracy and efficiency, the whole fitting procedure is divided into 

two phases, initial matching and final fitting. 

If the measurement surface is structured and composed of simple geometries, the 

surface qualities of different sections cannot be assessed globally; hence a segmentation 

approach will be applied. 

After establishing the connectivity relation between the data points, discrete 

curvatures can be calculated for each vertex of the data mesh. Then these vertices are 

grouped into several clusters based on their curvatures and organized into several 

segments using the region growing method. Then each segment can be fitted with a 

quadric function and processed individually. 
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When the measurement data are very dense or noisy, measurement errors will have 

serious influence on the discrete curvatures. Thus pre-processing is required to eliminate 

local perturbations. Sparser data points are sometimes preferred to restrain the errors in 

curvatures caused by the measurement noise. 

Global features can be defined to match smooth free-form surfaces. A new initial 

matching technique called Structured Region Signature (SRS) is proposed. Compared 

with Chua and Jarvis' Point Signature [Chua 1997], it does not need to calculate 

intersection curves between the spheres and surfaces, so that the computational cost is 

greatly decreased. More importantly, no reference vectors are employed to indicate the 

zero polar angles, which are prone to false matching. The similarity between two 

signatures is assessed by successively shifting the polar angles from –π to π, so that the 

relative rotation about the normal vector can be worked out. 

Compared with the well known Spin Image Method [Johnson 1997], the SRS method 

does not need to construct lots of spin images, which are very computationally expensive 

and memory consuming. Additionally, the spin image is a local feature of surfaces. Even 

for non-symmetric surfaces, it may still lead to false correspondences. If the points are 

not dense enough or the point density varies greatly on the template, the spin images will 

not be sufficiently descriptive and may lead to an incorrect matching. On the contrary, 

SRS is a global feature of the surface and applies an approximate approach to select circle 

points, even when the region points are not uniformly distributed and the number of the 

points within a signature sphere is reduced down to 100, this algorithm is still able to find 

a correct matching location. 

To improve the descriptive capability of SRS, several concentric circles can be 

defined at one signature centre. The translational accuracy is restricted by the sampling 

spacing of signature centres on the template and the rotational accuracy is determined by 

the sampling density of the polar angles from signature curves. Candidate locations can 

be sampled in a coarse-to-fine way on the template surface. To reject false matching, a 

residual checking approach can be employed. It works well for nearly symmetric surfaces. 

If the measurement surface is a long and narrow patch, the radius of the signature will 

be relatively very small and not much information is involved in the sphere region of the 

signature, so that SRS cannot represent the surface shape very well. Fortunately, this case 

rarely occurs in practice. 
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CHAPTER 6 FINAL FITTING OF FREE-FORM SURFACES 

When a rough matching between the measurement data and template is provided, 

final fitting follows subsequently to improve the matching accuracy. Two kinds of final 

fitting methods are explored in this thesis, the Iterative Closest Point (ICP) method and 

derivative based methods. 

ICP has become the most popular technique for registration. It has no particular 

requirement on surface shape and works well for various data formats, e.g. continuous 

functions, discrete point clouds, triangular meshes etc [Jost 2002]. However, it has also 

some serious drawbacks: local minimum problem and high computational cost. 

As a result, the derivative based methods will be adopted when the template is 

represented with a continuous function or it is easy to be reconstructed. These techniques 

can efficiently achieve very high fitting accuracy through only several iterations. The 

reason is evident: more information is incorporated in the templates of continuous 

formats than discrete ones. 

6.1 The Iterative Closest Point Method 

We assume that the template },,2,1|{ Mjj L== qQ  and the measurement data 

},,2,1 |{ Nii L== pP are all constituted of discrete points. The ICP algorithm establishes 

correspondences between the data and template points, and then gets an optimal 

transformation to match these point pairs [Besl 1992]. This procedure is repeated until the 

motion parameters converge, as depicted below. 
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 Figure 6.1 Flowchart of ICP 

6.1.1 Closest Point Searching with K-D Tree 

For each measurement point ip , the closest template point iq  is taken as its 

correspondence point. As mentioned in Subsection 2.3.2, it will be very inefficient if 

directly searching the closest points all over the whole template, with complexity )(MNO , 

where M and N are the point numbers of the template and measurement data respectively. 

In order to speed up the closest point searching, the k-D tree technique is adopted 

[Bentley 1990]. 

K-D tree is a multidimensional binary search tree constructed by dividing the 

elements at the median on an axis where the elements have the highest variance. The 

division of median is repeated until the number of data in each node is less than a given 

threshold. 

Since the measurement data are usually measured in the X-Y plane and the ranges of 

the x and y coordinates are much greater than that of the z coordinates, a 2-D tree in X-Y 

plane is sufficient in most occasions. Thus the template points are divided with the 

medians of the x and y coordinates alternately. The tree nodes are arranged in such an 

Find the correspondence qi for pi, i=1,2,…, N 

Calculate motion R(k), t(k) 

P
(k+1)=R

(k)
P

(k)+t
(k) 

k=0 

Converged? 
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no 
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start 

end 
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order that the nodes with smaller x and y coordinates have smaller indices. A 2-D tree 

example with eight nodes is given in Figure 6.2. 

 

 Figure 6.2 Constructing a 2-D tree 

If the point number in each node is set no greater than a user-set threshold n, the 

searching complexity is, 

( )MNO
n

M
NnO loglog =















                                                                         (6.1) 

Theoretically, it is fastest to set the node size to be n=1, i.e. each node contains only 

one point. However, it will make many nodes be dull in practice; as a consequence the 

back-tracing problem arises. Following the suggestion of Greenspan [Greenspan 2003], 

the node size is set to be 20. 

Once a k-D tree is constructed for the template surface, the corresponding node is 

sought for each measurement point. For the sake of simplicity, the 2-D tree in Figure 6.2 

is taken as an example. The query process to find the corresponding node for an arbitrary 

measurement point pi(x, y, z) is illustrated in Figure 6.3. 
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 Figure 6.3 2-D tree query process 

The point ip  is assumed to lie in node 2, then all the template points in node 2 are 

checked and the closest one to ip  can be normally regarded as its correspondence. But 

the correspondence iq  is not always located in the same node with ip , especially when 

ip  is very near to the node boundaries. Therefore, the template points in the neighbour 

nodes should be checked as well. The searching procedure for the closest point is, 

Find the closest point ip  in node 2 

if iixx qp −<− 2  

% the distance from ip  to node 1 s ’ boundary is nearer than to 

iq , the real correspondence may be in node 1 

   find the closest point 1iq  in node 1 

   if iiii qpqp −<− 1  

      1ii qq ←  

      % 1iq is the real correspondence point 

   end 

end 

if iixx qp −<− 1  

% the distance from ip  to node 5 s boundary’  is nearer than to 

iq , the real correspondence may be in node 5 

   find the closest point 5iq  in node 5 

   if iiii qpqp −<− 5  

      5ii qq ←  

      % 5iq is the real correspondence point 

x>x1 

y>y1 y>y2 

x>x2 x>x3 x>x4 x>x5 

1 2 3 6 7 4 5 8 

Y 

Y 
Y 

N 

N 
N 

N Y Y N Y N Y N 

pi(x,y,z) 

 



 

 

162 

 

   end 

end 

if iiyy qp −<− 1  

% the distance from ip  to node 4 s boundary’  is nearer than to 

iq , the real correspondence may be in node 4 

   find the closest point 4iq  in node 4 

   if iiii qpqp −<− 4  

      4ii qq ←  

      % 4iq is the real correspondence point 

   end 

end 

It can be seen that node 7 also shares a piece of common boundary with node 2, but 

the probability that the nearest point lies in node 7 is very low. For simplicity, only the 

"main" neighbour nodes 1, 4 and 5 are considered. 

6.1.2 Calculating Motion Parameters 

When the correspondence relationship between the point pairs has been established, 

optimal motion parameters 33),,( ×ℜ∈zyx θθθR  and T

zyx ttt ],,[=t  are then calculated to 

minimize an error metric which is used to measure the quality of match. The most widely 

used error metric is the sum of squared Euclidean distances between correspondence 

pairs, 

∑
=

−+
N

i

ii

1

2
min qtRp                                                                                    (6.2) 

Due to the nonlinearity of this problem, it seems natural to solve the motion 

parameters using recursive techniques, such as the Newton algorithm, but these methods 

are somewhat onerous. Some closed-form solution techniques have been developed for 

this particular purpose. They show superiorities over recursive algorithms in term of 

efficiency and stability. David W. Eggert et al compared four closed-form solutions and 

asserted that the Singular Value Decomposition (SVD) method achieves the highest 

matching accuracy [Eggert 1997]. Therefore this technique is adopted here. 

To solve the nonlinear problem in Equation (6.2), firstly the centroids of the two point 

sets are moved to the origin, 
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Hence the translation vector t can be neglected and Equation (6.2) becomes, 

   ∑
=

−
N

i
ii

1

2
min qpR

R
                                                                                                     

= ( )∑
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−+
N

i
i

T

ii

T

ii

T

i
1

2min pRqqqpp
R

                                                                                   

because the orthogonal matrix R satisfies R
T
R=I. This is called the orthogonal 

procrustes problem [Golub 1996]. It is demonstrated to be equivalent to maximizing the 

trace of RH , where 33×ℜ∈H  is the correlation matrix, 

∑
=

=
N

i

T

ii
1

qpH                                                                                                 (6.5) 

If the singular value decomposition of H  is T
USVH = , the optimal rotation matrix 

will be, 

TVUR =                                                                                                       (6.6) 

It is evident that the optimal translation vector is, 

cc Rpqt −=                                                                                                   (6.7) 

6.1.3 Convergence Rate of ICP 

Suppose the ideal motion parameters are ],,,,,[* ******
zyxzyx tttθθθ=m  and the solution at 

the k-th iteration is )(k
m . It is demonstrated that ICP exhibits a linear convergence rate 

[Pottmann 2006], 

** )()1( mmmm −≤−+ kk C                                                                       (6.8) 

The positive decay constant is given locally by 
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)1)(1(

cos2

n

m

n

t dd
C

κκ

φ

−−
=                                                                                 (6.9) 

In the equation, φ  is the relative angle between two correspondence normal vectors, 

d is the distance between the two correspondence points, and n
tκ and n

mκ  are the local 

normal curvatures at the template and the measurement surface respectively. 

When the residual is zero and the minimiser is approached tangentially, we have the 

worst case C=1. A tangential approach occurs in an exact way only for surfaces which are 

invariant under a uniform motion. That is to say, the solution will be trapped at a local 

minimum, and a false matching result will be caused. The false matching shown in Figure 

2.9 is for the same reason. 

On the other hand, if the two surfaces are planar, which is common for smooth free-

form surfaces, the normal curvatures will be relatively small. So that the convergence rate 

will be very slow if the relative angle φ  between the two surfaces is small as well. 

Unfortunately, the Structured Region Signature rough matching will lead to such a 

situation, i.e. the two surfaces have an apparent relative lateral shift and a small relative 

angle. Therefore, ICP is not suited for final matching of two planar smooth surfaces 

which have only relative lateral shift between them. If such a case is encountered, the 

template surface will be reconstructed into a continuous function and the derivative based 

algorithms will be adopted. 

6.2 Derivative Based Methods 

Due to the slow convergence rate and local minimum problem of ICP, the derivative 

based algorithms are instead employed to fit smooth free-form surfaces. Here derivative 

information is needed for calculating the increment of the solution, therefore a continuous 

representation should be provided for the nominal template. If the template is in a form of 

discrete points or a mesh, a reconstruct procedure will be undertaken.  

6.2.1 The Levenberg-Marquardt Algorithm 

Definition 

If the analytical function of a template is 

T
yxfz ],[ ),( == xx                                                                                      (6.10) 
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it is intuitive to calculate the optimal motion parameters [ ]Tttt zyxzyx ,,,,, θθθ=m             

by minimising, 

∑
=

−==
N

i

ii

T fzE
1

2)]([ xee                                                                          (6.11) 

where 1×ℜ∈ N
e  is the residual vector and ix  is the abscissae of an arbitrary measurement 

point ip . 

A local minimum can be obtained via 02 ** =
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Ignoring higher order terms, the Newton algorithm (also known as Newton-Raphson 

or Newton-Fourier algorithm) iteratively updates the solution by [Fletcher 2000] 

( ) eJSJJm
TT 1−

+−=δ                                                                                 (6.13) 

In the equation, 
m

e
J

∂

∂
=  is the Jacobian matrix and 66×ℜ∈S  with

ji

T

ij
mm

S
∂∂

∂
=

e
e

2

. 

The Newton algorithm exhibits a quadratic convergence rate, which is the fastest 

among all the iterative algorithms [Fletcher 2000], 

2)()1( ** mmmm −≤−+ kk C                                                                       (6.14) 

In spite of its remarkable convergence rate, the Newton algorithm has also some 

serious drawbacks. One shortcoming is that the second order derivatives need to be 

calculated at each iteration, which is very expensive when the function of the surface is 

rather complicated. As a consequence the term S in Equation (6.13) is sometimes ignored, 

and this leads to the Gauss-Newton (G-N) algorithm [Chong 2001], 

( ) eJJJm
TT 1−

=δ                                                                                         (6.15) 

The validity of the G-N method depends on the accuracy of the second order 

approximation. Given an initial guess of the variables sufficiently close to the solution, 
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the G-N method has a super-linear convergence rate. That is to say, the G-N method 

behaves similarly with the Newton algorithm when S is very small. However, a poor 

starting value may lead to divergence. 

Another iterative technique is the steepest gradient descent method (SGD) [Chong 

2001]. This method regards the objective function E as a scalar field in the space of the 

variables. The solution is incremented recursively along the direction of the negative 

gradient, 

eJm
T1−−= λδ                                                                                            (6.16) 

The parameter λ controls the step-length at each iteration. This method can guarantee 

to reduce E each time, providing the step-length is sufficiently small, i.e. λ is sufficiently 

large. However, near the optimum, the convergence rate will become very slow. 

Based on a suggestion of Kenneth Levenberg, Donald Marquardt developed a new 

method, called the Levenberg-Marquardt (L-M) algorithm [Marquardt 1963].  

This method combines the G-N and SGD methods together, and updates the solution 

iteratively by 

eJDJJm
TT 1)( −+−= λδ                                                                               (6.17) 

where λ is a damping factor and D  is a diagonal matrix with entries equal to the diagonal 

elements of JJ
T . In practice, it is feasible to set D  as an identity matrix. 

When the damping factor λ changes, this algorithm smoothly switches between the 

Gauss-Newton and the steepest gradient descent method. A large value of λ corresponds 

to a small safe gradient descent step, and when 0→λ , this algorithm moves towards the 

Gauss-Newton method and allows faster convergence near the minimum. 

A common technique to select λ is as the following hypothesize-and-test paradigm 

[Press 2002], 

(a) Calculate the current fitting error )(mE . 

(b) Initialize λ , e.g. 001.0=λ . 

(c) Calculate mδ  using Equation (6.17), and recalculate the error 

)( mm δ+E . 

(d) If )()( mmm EE ≥+ δ , k×← λλ ,reject this update and return to (c). 

(e) If )()( mmm EE <+ δ , k/λλ ← , accept this update and return to (c). 
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Here k is a user-defined factor, e.g.  5=k . 

Convergence Region 

Now we discuss the convergence domains of the above algorithms. 

 

Figure 6.4 Convergence regions of recursive methods 

In this figure, the blue, red and green curves indicate the functions )(xf , )(' xf , and 

)(" xf  respectively. The solid and dashed arrows denote the convergence directions of 

the Newton and the steepest gradient descent (or L-M) methods.  

For simplicity, a 1-D minimization problem )(min xf  is considered here. The 

Newton algorithm updates the solution by 
2

2

x

f

x

f
x

∂

∂

∂

∂
−=δ . Its incremental directions at 

different regions are shown in Figure 6.4 with red solid arrows [Ahn 2004].  If the current 

solution x lies at the region B, the solution of the Newton method moves toward the 

global minimum 2x . However, a local maximum will be caused at the regions A and C 

where 0
2

2

<
∂

∂

x

f . By contrast, the SDG method is always capable of updating the solution 

along the downhill directions and thus its convergence domain is as large as D. As for the 
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L-M algorithm, 0
2

2

>+
∂

∂
λ

x

f  can always hold true as long as the damping factor λ  is 

properly selected. Therefore, its convergence region is D as well. 

It is worth noting that the L-M method converges at a local minimum 4x  when the 

current solution 3xx > . To overcome this problem, several initial solutions can be 

supplied at different regions, and the solution which yields the smallest error metric is 

regarded to be the optimal solution. A correct global minimum can certainly be obtained 

when at least one initial solution is located at the convergence domain of the L-M 

algorithm. 

For multi-variable minimization problems, such as the six-variable problem of 3-D 

fitting in this thesis, a necessary condition 02

2

>+
∂

∂
λ

x

f
 for a local minimum becomes: 

the second order derivative matrix IJJA λ+= T  should be positive definite [Fletcher 

2000]. 

Implementation 

Now we go back to the six-variable problem of free-form fitting in Equation (6.11). The 

L-M algorithm is adopted. At each iteration, the measurement points and motion 

parameters are updated by 
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1R  and  

[ ]Tzyx ttt δδδδ ,,=t . The key part of the programme is to calculate the Jacobian matrix, 
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In the equation 
i

T

iii zyx p=],,[ is an arbitrary measurement point and ),( iii yxff = . 

Since JJ
T  is a positive semi-definite Hermitian matrix, its singular value 

decomposition result is the same with the eigen-decomposition TT
USUJJ = , where 

66×ℜ∈U  is a unitary matrix, },.,,{ 621 σσσ Ldiag=S  is a diagonal matrix, and 

0621 ≥≥≥≥ σσσ L  are the singular values [Golub 1996]. According to the matrix 

theory, JJT  is positive definite if and only if 06 >σ  [Chong 2001]. It is evident that, 

TT UISUIJJ )( λλ +=+                                                                            (6.20) 

Therefore SVD does not need to be performed twice and the new singular values are 

λσσ += ii ' . So that the damping factor λ  can be properly selected to guarantee 

0' 66 >+= λσσ . A very large λ  will decrease the step length of the motion parameters, 

thereby reducing the convergence rate; whilst a very small singular value will make the 

solution unstable. Hence λ  is selected according to the smallest singular value 6σ . 

If εσ <6 , where ε  is a user-defined threshold, e.g. 10-5, set 6σελ −= ; otherwise set 

0=λ  [Hansen 1998]. Figure 6.5 highlights the fitting procedure. 
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 Figure 6.5 Scheme of the L-M fitting 

6.2.2 The Orthogonal Distance Fitting of Explicit Surfaces 

In the previous subsection, only the deviation in the z direction is considered, which is 

called algebraic fitting [Ahn 2001]. This approach is extensively applied in the metrology 

field because of its ease of implementation. However, its definition of error-distance does 

not coincide with measurement guidelines. The estimated fitting parameters will be 

biased, especially in the case there exist errors in the explanatory variables [DIN 1986, 

Ahn 2001, Sun 2007]. Consequently researchers have developed the orthogonal distance 

fitting (also termed geometric fitting) method. This technique intends to minimize the 

sum of the squared orthogonal distances from the measurement points to the nominal 

surface. 
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(a) Algebraic fitting                                          (b) orthogonal distance fitting 

Figure 6.6 Comparison of algebraic and geometric fitting 

It can effectively overcome the bias problem of the algebraic fitting. Most researchers 

paid attention to the fitting of simple geometries like quadric surfaces, whose orthogonal 

distances can be directly calculated via closed-form methods [Ahn 2004, Sun 2007]. But 

the orthogonal distances are not so straightforward to find for free-form surfaces, and the 

computational cost may be dramatically increased if calculating the orthogonal projection 

points with recursive techniques. 

Suppose that the explicit function of a template is given as ),( yxfz = . We aim to find 

an optimal rotation matrix R and a translation vector t to minimize the sum of the squared 

orthogonal distances from all the measurement points to the template, 
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' qpqtRp                                                         (6.21) 

Here T

iiiii zyx ]',','[' =+= tRpp is an arbitrary measurement point after motion 

and iq  is its corresponding closest point on the template. If the geometry model of the 

template has been known, some intrinsic characteristics (shape parameters) 1×ℜ∈ pa  may 

need to be fitted as well. 

The coordinates of iq are represented as T

iiiiiiiii yxfyx )];','(,','[ aq ζξζξ ++++=  

and the weighting technique is incorporated for the sake of robustness. Then the error 

metric in Equation (6.21) becomes, 
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with 1×ℜ∈ Ng : Niyxfzwg iiiiiii ,,1 )],','('[ L=++−= ζξ                                  
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and 12 ×ℜ∈ N
h :





=−

−=−
=

++

Niv

Niu
h

ii

ii

i 2,,4,2

12,,3,1

2/2/

2/)1(2/)1(

L

L

ζ

ξ
 

So that }{ iξ  and }{ iζ  can be taken as unknown variables and solved simultaneously 

with the six motion parameters zyx θθθ ,, , zyx ttt ,,  and the intrinsic characteristics a. 

Paul T. Boggs et al [Boggs 1987] proposed an efficient method to solve this nonlinear 

least squares problem based on the Levenberg-Marquardt algorithm. 

Denoting the shape and motion parameters with a vector 1)6( ×+ℜ∈ pm  and denoting 

}{ iξ  and }{ iζ  with a vector 12 ×ℜ∈ N
β , Equation (6.22) can be solved iteratively by, 
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Here 0>λ  is a damping factor and )6()6( +×+ℜ∈ ppS  and NN 22 ×ℜ∈T are two scaling 

matrices related with the Levenberg-Marquardt algorithm. In practice, we set 

)6()6( +×+= pp
IS  and 0T = . 

The normal function of Equation (6.23) is, 
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So that, 

)()( 11
hVDgMJIMJJm

−− −+−= TT λδ                                                  (6.25) 

and       ])([ 12 DhhVDmJgMVDβ +−+−= −− δδ T                                                     (6.26) 

with TT VDVVVIM 12 )( −+−= . In fact, it is proved to be a diagonal matrix, 
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This algorithm avoids calculating orthogonal projections successively, and the 

correspondence points }{ iq  can be straightforwardly obtained from the measurement 

points. Thus the computational cost of this method is in the same order with the algebraic 

fitting. 

6.2.3 The Orthogonal Distance Fitting of Parametric Surfaces 

The above algorithm works well for the orthogonal distance fitting (ODF) of explicit 

surfaces. However, explicit functions are not always available for free-form surfaces. 

Parametric representations are more common, for instance NURBS surfaces. In most 

situations, the Cartesian coordinates are nonlinear with respect to the location parameters  

}{ iu  and }{ iv . Additionally, the number of measurement points in practice is probably 

very large, sometimes over a million points, which makes the size of the observation 

matrix increasing dramatically. Then the computational cost and memory usage will be 

rather tedious. As a consequence it is practical to use a nested iteration scheme— to solve 

the foot-point parameters alternately with the motion parameters, 

2
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i
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=

                                                                                   (6.28) 

That means, firstly find the closest template point (projection point) corresponding to 

each measurement point in the inner iteration, and then work out the optimal motion 

parameters and intrinsic characteristics at the outer iteration. 
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Some closed form techniques have been developed to calculate the orthogonal 

projection points for simple geometries [Ahn 2004]. Whereas for general shaped 

parametric functions, the iterative Newton-Raphson algorithm can be adopted. For 

example, the two-stage approach stated in Subsection 2.3.2 can be employed to solve the 

point-projection problem of NURBS surfaces. 

After all the projection points }{ iq  are obtained, the motion and shape parameters 

will be updated subsequently. We define 13 ×ℜ∈ N
g , 
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Hence Equation (6.28) can be rewritten as, 
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It can be solved with the Levenberg-Marquardt algorithm, 
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The three rows of the Jacobian matrix )6(3/ +×ℜ∈∂∂= pNmgJ  associated with the 

point ip  are 
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Here T
iii vu ],[=u  are the foot-point parameters of iq . When the measurement point 

ip  moves, its closest point iq  moves as well, so that the corresponding foot-point 

parameters iu  shall be updated simultaneously. That means the foot-point parameters of 

{ iq } are relevant with the motion parameters m  in each iteration. Here the parameter 

dependency mu ∂∂ /i  will be derived as follows. Each pair of points are nearest to each 

other and the following relation always holds true [Ahn 2004], 
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For the sake of clarity, the subscript i is omitted and the partial derivatives uq ∂∂ /  is 

written as uq , so that, 
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Substituting Equation (6.33) into (6.31), then the increment of the solution in 

Equation (6.30) will be obtained. 

A necessary condition for Equation (6.29) to converge at a local minimum is that the 

observation matrix IJJA λ+= T  is positive definite, so that the damping factor λ can be 

selected according to the smallest singular value of the matrix JJ
T .  

For a uniform NURBS or B-spline surface, the explicit representations of the second 

order derivatives in Equation (6.33) can be obtained. They are even simpler to calculate 

than the first order derivatives, and will be reserved when the template is represented as a 

NURBS or B-spline surface, thus leading to a damped Newton minimization. However, 

for most general-shaped parametric surfaces, the second order derivatives are rather 

tedious to be derived from the complex surface functions. Therefore, they will be 

neglected when the residuals are very small and the surface is very smooth, i.e. 
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uu  is much smaller than uuqqT . To guarantee convergence in this 

case, the damping factor needs to be adapted carefully. In the program we update it in a 

hypothesize-and-test scheme as introduced in Subsection 6.2.1. 
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6.3 Robust Fitting 

The sum of the squared distances between corresponding point pairs is used above as 

the error metric of fit. It is easy to implement and, more importantly, unbiased when the 

error is normally distributed [Barker 2004]. However, its solution is very sensitive to 

large errors. Measurement data may contain outliers or missing data due to improper 

operation, poor reflectivity of the specimen or environmental noise.  The workpiece can 

also have manufacturing defects, such as pits and troughs involved in honed surfaces. As 

a result, the fitting result will be distorted or even break down. 

To improve the robustness of the fitted results, various techniques have been proposed 

[Rey 1983]. Among these methods, the l1 norm pays less attention to the wild points and 

concentrates on the vast majority of the data points; therefore it has attracted extensive 

attention. But it has discontinuous derivatives and thus is difficult to solve. Hunter and 

Lange proposed an algorithm based on the Majorize-Minimize theory [Hunter 2000]. A 

continuous surrogate function is adopted to approximate the initial l1 norm objective 

function, which is easy to code and shows distinctive computational superiority. 

Therefore it is adopted here. 

Suppose we want to minimize an objective function )(mf  with 1×ℜ∈ pm . If the 

current solution at the k-th iteration is )(k
m , the majorize-minimize theory defines a 

surrogate function )|( )(kg mm  satisfying 
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Here )|( )(kg mm is said to majorize )(mf  at  )(k
m . In the next iteration, a new 

solution )1( +k
m is found to minimize )|( )(kg mm . Since the surrogate function 

)|( )(kg mm  can be selected much simpler than the initial objective function )(mf , thus 

the complexity of the optimization problem can be greatly reduced. 

For the l1 norm fitting problem, 
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The cost function for each point is ii r=ρ . A small perturbation 0>ε  is introduced 

into the error metric, 

)ln()ln( iiiii rrr +−=+−= εεεερρ ε                                            

The resultant change in the objective function is 
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thus the constant ε  can be properly selected based on the overall error  threshold defined 

on the change of the objective function τ . 

If the surrogate function is chosen to be, 
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where )(k
ir  is the current residual at the k-th iteration and the constants }{ ic are selected 

properly so that εε ρi

k

ii rrg =)|( )( . Then the new objective function turns out to be, 
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It is evident that the fixed constants }{ ic  and coefficient 1/2 do not influence the 

solution, and Equation (6.36) is equivalent to the reweighted least squares problem, 
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Therefore, all the algorithms in this chapter can be modified accordingly. Firstly we 

consider the SVD technique of the ICP algorithm. The centroids of the two surfaces are 

now calculated in this way, 
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and the correlation matrix of Equation (6.5) becomes, 
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 Figure 6.7 Flowchart of robust ODF of explicit surfaces 

As regards the Levenberg-Marquardt algorithm, only (6.17) is changed into a 

weighted form, 

WeJDWJJm TT 1)( −+−= λδ                                                                       (6.40) 
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It is worth noting that the weighting factors in the Subsection 6.2.2 are a little 

different. They should be calculated as, 
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}{ iu  and }{ iv  are chosen according to }{ iw  and the quotient between the lateral and 

vertical errors. The l1 norm ODF fitting of explicit surfaces is shown in Figure 6.7, 

The solution of the motion parameters in Equation (6.30) appears similar with the 

explicit-surface fitting, but they are not the same. The residual vector is 13 ×ℜ∈ N
g , 

therefore the weighting matrix is  

},,,,,,,,,{ 222111 NNN wwwwwwwwwdiag L=W ,
ii
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The fitting procedure of the l1 norm ODF of parametric surfaces is presented in Figure 

6.8, 

 

Figure 6.8 Flowchart of robust ODF of parametric surfaces 
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It needs to be emphasized that this leads to an approximate l1 norm regression, i.e. the 

cost function behaves like least squares and approaches l1 norm when the residuals get 

larger. This technique is not the only way to improve the robustness of the solution. The 

l1 norm corresponds to the maximum likelihood estimation for a double exponential error 

distribution (Laplace distribution) [Norton 1984]. However, the actual distribution of the 

measurement data is not easy to define in practice. We do not intend to model the specific 

distribution of error, but to overcome the influence of outliers and defects. Of course, if 

the actual distribution of error has been known beforehand, the corresponding optimal 

error metric will be adopted. In this case the technique introduced here still works, as 

long as the error metric can be transferred into a reweighted least squares form, and 

appropriate weights can be assigned accordingly. 

6.4 Simulation and Experimental Results 

Example 1 Comparison of ICP and L-M Methods 

Firstly we compare the performance of the Iterative Closest Point technique and the 

Levenberg-Marquardt algorithm. 

A femoral knee joint replacement is taken as an example. The coordinate system of 

this model is given in Figure 6.9. The directions of the three axes are defined based on the 

planes of the brass support, thus they can be aligned very well. But there is no salient 

reference datum to localize the origin of the coordinate. In the CAD model, the origin of 

the x-axis is defined as the central point of the inter-condylar notch between the two 

condyles of femur, and the origin of the z axis is defined at the ultimate point of the 

workpiece. When establishing the measurement coordinate system manually, it is very 

difficult to find the exact position of the notch’s mid-point and the ultimate point of the 

condyles. Actually we measured five points at the arc of the notch by the Carl Zeiss 

PRISMO CMM, and fitted a circle with CALYPSO. This circle’s centre was applied to 

define the x origin. Then a cloud of points were scanned at the top of the lateral condyle 

of femur. The point with the greatest z coordinate was employed to localize the z origin. 
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 Figure 6.9 CoCr femoral knee joint 

2642 data points were measured with spacing d=0.5 mm at the top of the lateral 

condyle of this joint. CMM evaluates its form error using the software HOLOS, as 

plotted in Figure 6.10. 

 

Figure 6.10 Residual map plotted by HOLOS 

In this figure the peak-to-valley error is greater than 1.0 mm. It is obvious that a 

misalignment exists between the two coordinate systems. To work out the correct form 

quality of this workpiece, we will transform the measurement data properly to find a best 

matching between the data and the template. 58×90 points are uniformly sampled with 

spacing D=0.4 mm at the same part of the CAD model. Of course, the sampled area of 
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the template needs to be greater than the measurement data. The model points are 

reconstructed into a uniform NURBS surface with reconstruction error within ±2.0 µm.  

In this NURBS system 32×22 control points are applied. 

Then we fit the measurement data with this NURBS template using the L-M 

algorithm presented in Section 6.2.1. The residual’s amplitude parameters Sa, Sq, and Sz 

are employed to measure the goodness-of-fit. The fitting programme is coded in Matlab 

and run on a NEC PC with Intel Pentium 4 CPU 3.00GHz, 2.00GB of RAM. It runs eight 

iterations and takes 3.362 seconds. The increments of the six motion components and the 

resultant error parameters at each iteration are given in Table 6.1. 

Iterat Num δθx / ˚ δθy / ˚ δθz / ˚ δTx/µm δTy/µm δTz/µm Sa/µm Sq/µm Sz/µm 

0 0 0 0 0 0 0 287.96 336.91 1364.7

1 2.4801 -1.0719 2.4348 -28.560 -42.723 -45.343 16.05 20.76 226.06

2 -6.4676 0.9543 -0.1090 29.883 130.598 51.004 227.45 227.98 236.85

3 1.5000 0.8889 -2.7419 25.760 6.526 18.347 22.26 25.36 245.86

4 0.8735 -0.2046 0.0202 -6.877 -18.710 -13.365 11.05 15.25 195.20

5 0.2672 -0.1345 -0.1778 -3.871 -3.016 -7.945 8.76 14.24 190.39

6 0.0253 -0.0819 -0.2353 -2.372 2.652 -4.504 8.709 14.22 189.00

7 0.0116 -0.0397 -0.1035 -1.133 1.161 -2.155 8.70 14.22 188.31

8 -0.0015 -0.0096 -0.0107 -0.272 0.176 -0.518 8.69 14.22 188.18

Table 6.1 Parameter update of the L-M algorithm 

This L-M algorithm converges after eight iterations. The relative deviation between 

the two surfaces is reduced by more than one order of magnitude. Actually the residual 

map contains the reconstruction error of the NURBS surface. Since the reconstruction 

error is relatively much smaller and the manufacturing error of the workpiece dominates 

in the fitting residual, thus it is acceptable to evaluate the form quality of the knee joint 

replacement via the fitting residual map.  
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(a) fitting result                                                 (b) residual 

Figure 6.11 Fitting result and error map of the L-M method 

In contrast, the ICP method directly matches two sets of discrete points, consequently 

causing no reconstruction error. But we need to gain the residuals so as to assess the 

fitting quality, thus a continuous representation of the template is also required. It needs 

to be clarified that surface reconstruction is implemented here to calculate the final 

matching residual and it is not necessary in the ICP matching procedure. 

We sampled template points uniformly with spacing D varying from 0.2 mm to 0.8 

mm. The k-D tree was applied to accelerate the closest-point searching and the SVD 

technique was adopted to update the motion vector in each iteration. The Matlab 

matching programme ran 20 iterations in each case. Table 6.2 lists the obtained error 

parameters of the residual and the positional transformations with respect to the initial 

location. Here N indicates the number of the template points and Time refers to the 

running time of the Matlab programme. 

It can be seen that the matching result is not significantly affected by the density of 

the template points, and a very small spacing does not necessarily lead to a better 

matching result, whilst yielding lower efficiency. Thus we recommend to adopt 

dDd 2<< . Here d and D are the densities of the data and template points respectively. 

D/mm N θx / ˚ θy / ˚ θz / ˚ Tx/µm Ty/µm Tz/µm Sa/µm Sq/µm Sz/µm Time/sec 

0.2 20406 1.899 -0.036 0.240 47.22 97.39 27.44 8.56 14.88 192.80 3.713

0.3 9044 1.974 -0.119 0.216 -2.32 55.86 21.44 9.00 14.82 192.65 3.668



 

 

184 

 

0.4 5130 1.864 -0.028 0.237 48.14 111.88 29.93 9.29 14.88 193.22 3.377

0.5 3312 2.194 -0.449 0.204 -197.72 -120.73 -16.65 15.82 20.31 187.77 3.479

0.6 2280 1.998 -0.071 0.681 44.69 21.38 23.02 8.47 15.13 194.57 2.965

0.7 1683 1.953 -0.117 0.306 7.56 59.61 20.73 8.52 14.98 190.15 2.795

0.8 1305 1.920 -0.024 0.195 49.98 96.40 27.51 8.50 15.06 195.09 2.801

0.9 1040 1.947 -0.131 0.348 -8.18 62.07 15.57 9.13 15.61 194.00 2.791

1.0 828 1.753 -0.001 0.206 56.11 127.74 30.15 16.99 21.62 191.54 2.790

Table 6.2 ICP matching results with different model densities 

The matching result seems unsatisfactory when D=0.5 mm, i.e. when the densities of 

the measurement data and template points are equal. This is not hard to understand. ICP 

intends to draw the measurement points toward their correspondences so as to minimize 

the Euclidean distances between them. In practice, the actual positions of the two points 

in one pair are rarely coincident with each other. If the densities of the two point sets are 

different, the pull force exerted on these measurement points is averaged, so that the 

lateral force caused by the relative X-Y shifts in point pairs can be cancelled.  Hence their 

overall effect is: the measurement surface is moved toward its correct matching location. 

However, when the two point sets have the same density, the lateral shifts between 

correspondence pairs are along the same direction. It was made worse, as the coordinate 

variation in z direction is less than x and y, so the X-Y deviations will play a main role in 

the Euclidean distances. Therefore the ICP turns out to overlap the X-Y coordinates of the 

point pairs, instead of their correct positions in accordance with the surface shape, i.e. a 

local minimum is caused. To avoid wrong matching results, the template points should be 

in a different distribution scheme with the measurement data (e.g. one raster, and the 

other circular), or at least have different sampling densities. 

Figure 6.12 shows the ICP fitting result with D=0.6 mm. Its error map is almost the 

same with the L-M technique. 
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(a) fitting result                                         (b) residual 

Figure 6.12 Fitting result and error map of the ICP method 

This example demonstrates that ICP may be trapped at a local minimum. It converges 

slowly and usually needs more than 15 iterations. In contrast, the L-M algorithm is able 

to get a more accurate and more stable fitting result with a faster convergence rate. Its 

main shortcoming is the template surface requires a continuous representation, which is 

essential to construct a Jacobian matrix. For a smooth surface, even if the template is 

provided as a discrete point set, it is still recommended to firstly reconstruct it into 

continuous functions, and then fit the data using the Levenberg-Marquardt algorithm, 

instead of directly matching the two surfaces with the ICP method. 

Example 2 Verification of the ODF Algorithm for Explicit Surfaces 

In the previous example, only the noise in the z direction is considered, i.e. the x and y 

coordinates of the measurement data are taken as ideal values. But this does not hold true 

in practice; instead, some instruments have larger uncertainty in the lateral directions than 

the vertical one. If only taking the z deviation into the error metric, the fitted parameters 

may be biased, so that the orthogonal distance fitting (ODF) algorithm can be adopted. 

In order to make the added noise more ‘real’, the Fractional Brownian Motion is 

employed [Mandelbrot 1968]. A normalized fractional Brownian motion (fBm) )(xB
H  

on ℜ∈TT ],,0[  is a continuous-time Gaussian process starting at zero, with mean zeros 

and a correlation function of, 
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Here ]1,0[∈H  is called the Hurst index or Hurst parameter. In this example, it is set 

to be H=0.5. 

Figure 6.13 illustrates the topography of random noise calculated by fBm. Its standard 

deviation is σ=3.0 µm. 

 

 Figure 6.13 Adding fractal Brownian motion as measurement noise 

The upper part of a cylinder with axis r=10.0 mm and length l=15.0 mm is adopted to 

verify the ODF algorithm. The width of this section is set to be w=18.8 mm, as plotted in 

Figure 6.14. The steepest slope is °== 05.70)0.10/2/8.18arcsin(α . 
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Figure 6.14 A cylinder model 

Data points are sampled on the cylinder with spacing 0.4 mm in the x direction and 

0.3 mm in the y direction. Then fBm noise with σ=3.0 µm is introduced into the x, y, and 

z coordinates of the data to simulate the measurement error. The data is written into a 

SDF file and fitted with the standard commercial metrology software Talymap. It is 

known that Talymap fits geometries using the nonlinear algebraic least-squares algorithm. 

A radius r̂ =9.997 mm is recovered from the noisy data. If we fit the same data using the 

ODF algorithm introduced in Section 6.2.2, a better result of r̂ =9.998 mm is obtained. 

Then we change the standard deviation of the noise into 10.0 µm and 30.0 µm 

respectively. The obtained radii of AF and ODF methods are listed below. 

Method σ/µm r̂ /mm 
Vertical residuals/µm 

Sa Sq Sz 

 
 

AF 
 
 

3.0 9.997 2.374 3.289 35.67 

10.0 9.990 7.919 10.975 118.92 

30.0 9.970 23.814 33.045 356.92 

ODF 

3.0 9.998 2.368 3.255 34.20 

10.0 9.994 7.894 10.846 114.41 

30.0 9.982 23.712 32.565 341.35 

 Table 6.3 Comparison of AF with ODF 

It can be seen that the fitted radii of ODF are always better than AF. This effectively 

demonstrates the capability of the ODF algorithm on overcoming the bias in the fitted 

parameters. In order to examine the quality of fit more completely, we calculate the 
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residuals of these two algorithms 22 xrze −−= . Their Sa, Sq, and Sz values are also 

given in Table 6.3. It is evident that the ODF technique attempts to minimize the 

orthogonal errors, instead of the vertical residuals, thus ODF does not show distinctive 

superiority over AF on minimizing the residual errors. 

Talymap does not develop programs to fit cylinders at non-standard positions. Our 

ODF programs can straightforwardly solve this problem. Now we fix the magnitude of 

the noise to be σ=3.0 µm and rotate the cylinder along the x and z axes with different 

angles. It is worth noting that this cylinder is translationally and rotationally symmetric 

about the y axis, hence only the remaining four degrees of freedom are considered in the 

fitting programme. The fitted results in different cases are presented in Table 6.4. 

The quality of the fitted radius is not significantly influenced by the initial position of 

the cylinder. Since the uncertainty of the fitted result is mainly affected by the magnitude 

of the measurement noise, whilst the rotation angles determine the convergence property 

of the fitted result. It is proved that even if the rotation angle is as large as 20˚, the ODF 

algorithm can still obtain a correct result. 

zx θθ  ,  r̂ /mm xθ̂ /˚ 
zθ̂ /˚ 

Vertical residuals/µm Orthogonal errors/µm 

Sa Sq Sz Peak-to-valley 

θx =-0.5˚, θz=0.8˚ 9.9980 -0.501 0.799 2.373 3.258 34.173 20.090 

θx =-5.0˚, θz=3.0˚ 9.9980 -5.001 2.998 2.406 3.302 34.163 19.757 

θx =20˚, θz=-4.5˚ 10.0009 20.018 -4.497 2.573 3.829 88.090 21.567 

Table 6.4 ODF fitting results of the cylinder at non-standard positions 

This ODF algorithm is a general-purposed method and works for any smooth shapes 

with explicit and differentiable functions. To fit standard geometries like cylinders or 

spheres, some specific algorithms are recommended. Here an example of cylinder is 

given only to validate the effectiveness and non-biasedness of this ODF algorithm. When 

the measurement data is highly curved and contains some rather steep regions, this fitting 

technique is preferable if we are interested in restoring the shape parameters. But if our 

purposes are only to remove the form from the data and to analyze the micro-topography, 

or the surface is sufficiently planar, or the explanatory coordinates of the data are much 

more accurate than the z values, in such circumstances the traditional algebraic fitting 

method is preferred. 

Example 3 Simulation of the ODF Algorithm for Parametric Surfaces 
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This numerical simulation is the robust orthogonal distance fitting of a parametric 

surface. The Matlab built-in function peaks mentioned in Section 4.4 is adopted again as 

a template surface, 

)
20

,
20

(4
yx

peaksz = , ,400,2020 mmymmxmm <≤<≤−                      (6.48)             

It is represented using a bi-cubic NURBS surface with 18×18 control points. 60×60 

points are sampled on the template surface with spacing h=0.3mm as measurement data. 

They are transformed with °=°=°−= 5.1 ,5.2 ,2 zyx θθθ and t=[1, -0.8, 1.5]T mm as the 

initial position, i.e. to indicate the misalignment between the two coordinate systems, as 

shown in Figure 6.15. 

   

 Figure 6.15 Template and data 

Gaussian noise of ))6.0(,0( 2
mN µ  is introduced into the z coordinates as measurement 

errors. To simulate measurement outliers, 200 points are randomly sampled and Gaussian 

error of ))6(,0( 2
mN µ  is added onto these points. Defects in the order of millimetre are 

also involved as illustrated in Figure 6.16. The errors in the x and y coordinates are 

supposed to be ))9.0(,0( 2mN µ .The Monte-Carlo simulation is employed and the fitting 

procedure is run 15 iterations 300 times.  
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Figure 6.16 Defects and noise 

In Section 6.2.3, the dependency between the foot-point parameters and motion 

parameters is derived from the closest-point constraints. If we ignore it, the motion 

parameters are much easier to calculate. This problem thereby becomes matching two 

fixed point sets in each iteration, so that the singular value decomposition technique for 

ICP discussed in Subsection 6.1.2 will be applied. 

Three algorithms are compared here: the robust Orthogonal Distance Fitting, the 

robust Singular Value Decomposition and the l2 norm Orthogonal Distance Fitting.  The 

corresponding fitting bias and uncertainty in the rotation angles and translation 

components are listed in Table 6.5. It is obvious that the SVD method obtains the worst 

result. At each iteration, it endeavours to minimize the distances between the 

corresponding point pairs. However, the projection point is already the closest one on the 

template associated with each measurement point. Thus this algorithm will be trapped at 

a local minimum and lead to an incorrect result. Therefore it is not proper to directly 

neglect the dependency between the projection points and the transformation parameters. 

The ordinary least squares technique is also biased, especially for the rotation angles. 

Adopting the robust estimator, the influence of the defects can be greatly reduced and the 

fitting accuracy of the motion parameters may be two orders higher.  It can be seen that 

the uncertainty is roughly in the same order for the three algorithms, since it is mainly 

determined by the amplitude of the introduced random noise. This simulation clearly 

validates the high accuracy and reliability of the proposed robust ODF method. 
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Method Robust ODF Robust Norm SVD l2 Norm ODF 

Bias 

θx 3.068×10-5 ° 0.2562° -2.5834×10-3° 

θy -2.802×10-6 ° 0.5211° -5.6011×10-3 ° 

θz 5.259×10-5 ° 2.2824° -4.2877×10-3 ° 

tx -0.04909µm 0.8329mm -1.8408µm 

ty -0.01835µm -0.2093mm -2.1993µm 

tz 0.10678µm 0.5293mm 2.3557µm 

Uncertainty 
(σ) 

θx 1.371×10-4 ° 6.1952×10-3 ° 2.496×10-4 ° 

θy 2.687×10-4 ° 8.0340×10-3 ° 4.921×10-4 ° 

θz 3.400×10-4 ° 9.2670×10-3° 6.625×10-4 ° 

tx 0.0957µm 1.4528µm 0.1843µm 

ty 0.0617µm 0.7378µm 0.0982µm 

tz 0.0559µm 1.6689µm 0.0777µm 

Running time 47.2057s 42.9947s 45.7937s 

 Table 6.5 Comparison of three fitting methods 

6.5 Summary 

After providing a rough guess for the relative position between the data and template, 

final fitting is implemented to optimize the solution. 

The Iterative Closest Point (ICP) technique is widely adopted for the purpose of 

registration. It applies for different formats of data and has no special restrictions on the 

surface shape. The k-D tree technique can be utilized to reduce the computational cost of 

closest-point searching and the singular value decomposition method is applied to update 

the motion parameters. 

However, ICP has a very slow convergence rate, and usually needs more than 15 

iterations to make the solution achieve a good result. When the surface is relatively planar, 

it does not work well and a lateral translation error may exist in the final result. The 

matching accuracy is influenced by the densities of the template and data points, as well 

as their distribution modes. It is recommended to sample the template points in a different 

distribution scheme to the measurement data. 

Due to its high computational cost and poor accuracy, ICP is not preferred for final 

fitting in precision metrology. The Levenberg-Marquardt (L-M) algorithm can be adopted. 

If the template is provided as a discrete point set, appropriate reconstruction techniques 

like NURBS or RBF will be employed to obtain a continuous representation for the 

nominal surface. 
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The L-M algorithm combines the advantages of the Gauss-Newton and the steepest 

gradient descent algorithms. If setting the damping factor properly, the design matrix can 

be guaranteed to be positive definite. Then the solution will always increment towards a 

local minimum with a super-linear convergence rate. Usually only several iterations are 

sufficient to get a very accurate result for a smooth free-form surface. 

When the explanatory coordinates of the measurement data also contain errors, the 

fitted result will be biased if only considering the z deviations in the error metric, 

especially at steep areas of a surface. Hence the orthogonal distance fitting (ODF) 

algorithm is utilized in this circumstance. The motion parameters (sometimes shape 

parameters are involved as well) will be updated simultaneously with the correspondence 

points, so that the computational complexity is in the same order with the algebraic fitting. 

The previous algorithm needs an explicit function for the template surface, which is 

not always available. If the representation is in a parametric format, the foot-point 

parameters of the template correspondences will be updated in the inner iterate, and the 

transformation is calculated at the outer iterate. This nested procedure is performed 

alternately so that a very accurate solution can be achieved. The dependency between the 

foot-point parameters and the motion parameters is derived from the closest-point 

constraint between each correspondence pair. 

The error metric of least squares is widely applied for its ease of implementation and 

unbiasedness for the normally distributed errors. However, it is not robust against outliers 

and missing data. The l1 norm behaves better under such conditions. But it is not 

differentiable at zero, so that the l1 norm problem cannot be solved using conventional 

derivative-based algorithms such Gauss-Newton or the Levenberg-Marquardt algorithm. 

Here it is transferred into a reweighted least squares problem based on the majorize-

minimize theory. This technique behaves well and is easy to implement in the programme. 

It needs to be emphasized that the practical situation should always be analyzed with 

extreme caution, and the objective function and optimization algorithm be adopted 

accordingly, instead of blindly attempting to minimize the deviation between the data and 

the nominal template. If a region of the measured free-form surface has higher 

manufacturing quality than other areas, larger weights should be assigned onto the data of 

this area; If some parts of the surface has been worn, known as a priori or analyzed from 

the micro-topography, alignment will be implemented based on the unworn region, then 

the wear volume of the whole surface can be obtained from the fitted result. When most 
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of the surface has been worn or the unworn part is not straightforward to be found, 

weights will be assigned separately for the positive and negative residuals, so that all the 

fitted residuals are guaranteed to be consistent with the actual situation. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

7.1 Concluding Remarks 

The aim of this dissertation is to investigate and develop appropriate algorithms to fit 

the measurement data with the design templates and to evaluate the form qualities of free-

form surfaces. 

In practice the area of the measurement surface is usually smaller than the template, 

so that the best-matching position of the measurement surface needs to be found on the 

template surface. Additionally, the coordinate systems of these two surfaces are not 

exactly identical; hence an optimal transformation (a rotational matrix and a translational 

vector) is to be determined.  

The research work accomplished in this thesis is listed below. 

1. Surface Reconstruction 

In order to calculate the derivatives and to assess the precise relative deviation 

between the measurement data and the nominal template, a continuous representation 

needs to be reconstructed for the design template from discrete points. 

(a) We adopt the Non-Uniform Rational B-Spline (NURBS) for regular lattice data. 

To model the NURBS surface as a tensor product, the data points are firstly 

parameterized into a regular grid. As normally points are sampled uniformly in the 

domain of interest, it is appropriate to reconstruct the free-form template using a uniform 

bi-cubic B-spline surface. The explicit representations of the basis functions and their 

first and second order derivatives are all worked out. 

Due to the parametric form of NURBS surfaces, point inversion and projection are 

required when doing interpolation and fitting. It is very difficult to determine the correct 

parameter spans associated with the projection point. We insert multiple knots 

simultaneously using a fast algorithm to decompose a whole NURBS surface into cubic 

Bézier patches, so that the convex-hull property can be applied. A ‘jumping’ approach is 

proposed to find the correct incremental direction of the foot-point parameters if the 

current parameter-span is not a correct one. 
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(b) The Radial Basis Function (RBF) technique is explored to reconstruct a 

continuous surface patch from scattered data points. It does not require the data points to 

distribute regularly and applies to multi-dimensional approximation problems. 

To reduce the size of the observation matrix and overcome the over-fitting problem of 

RBF, a sparser set of centres is selected for a given point cloud. If the surface is relatively 

smooth and the input points are uniformly distributed, centres can also be uniformly 

located in the domain of interest; otherwise, the orthogonal least squares basis hunting 

technique is utilized to sample centres subsequently from a candidate point set. 

The reconstruction quality near the surface boundary is usually much worse compared 

with the inner region. In order to solve this problem, a new circle of auxiliary centre 

points are proposed to be added outside the region of interest. The Graham scan 

technique is modified to find the boundary points for a point cloud and these boundary 

points are extended outward to form a circle of new centres. 

When the number of data points exceeds several thousand, the observation matrix 

tends to be ill-conditioned. Thereby the Rank-Revealing QR Decomposition is utilized to 

solve the weighting vector for a medium or large sized problem, whilst the Truncated 

Singular Value Decomposition method is adopted for a small-sized problem. 

2. Initial Matching 

Initial matching is implemented first to supply a rough guess for the relative position 

between the measured data and the design template if an approximate position is not 

provided. 

(a) When the surface is structured and each section is of a simple geometry, a 

discrete-curvature-based segmentation technique is introduced to divide the measurement 

data into smooth patches. 

Each section is fitted by a general quadric function using the linear least squares. A 

shape-recognition approach is developed to obtain the shape parameters of a general 

quadric surface and the function is then transformed into a standard form. Subsequently a 

specific quadric function is fitted through these data to work out the accurate intrinsic 

characteristics of different sections and the correspondence relationship between the data 

and template patches. 
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(b) A rough matching algorithm called Structured Region Signature is proposed. One 

single signature is generated for the measurement surface and many candidate signatures 

are calculated at sampled locations on the template. The plausible location which 

possesses the most similar signature with the data is regarded as the best matching 

position. For the sake of simplicity and efficiency, the signature profiles are sampled 

uniformly so that the difference between signatures can be calculated by summation, 

instead of integration. The accuracy of rotation is determined by the sampling density of 

points on each signature profile, whereas the accuracy of translation is restricted by the 

sampling spacing of the candidate signature centres on the template. For nearly 

symmetric surfaces, the residual checking strategy is adopted to avoid false matching. 

This method has some remarkable benefits, 

• It represents the surface shape with a one-dimensional signature profile, thus is very 

efficient and straightforward to implement.  

• The signature is calculated from the intersection curve between the surface and its 

inscribed sphere, and is invariant under rotation and translation. 

• The signature is a global feature of a surface, and not sensitive to measurement 

noise and local surface variation. 

• This technique is very versatile. It has no particular restriction regarding the surface 

shape and format. A continuous representation is not required for the surface. 

• It is flexible in practice. According to the specific surface shape, multi-circle 

features can be employed so that more information is involved in one signature. 

3. Final Fitting 

The purpose of final fitting is to improve the accuracy and reliability of the matching 

result. 

(a) When the template’s shape is very complicated or it is difficult to be reconstructed, 

the Iterative Closest Point (ICP) algorithm is adopted. 

In order to save time spent on searching for closest points, a k-D tree is constructed 

for the design template. The motion parameters are updated iteratively using the Singular 

Value Decomposition technique. 

(b) Due to the slow convergence rate and high computational expense of ICP, a 

derivative based approach is carried out. The discrete template is reconstructed into a 
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continuous representation as a nominal surface and then the Levenberg-Marquardt 

algorithm is applied to calculate the optimal motion. By adjusting the damping factor, 

this method switches between the Gauss-Newton and the steepest gradient descent 

methods. Its design matrix can be guaranteed to be positive definite, i.e. the solution 

always converges toward a local minimum. 

Compared with ICP, this method converges much faster. The solution can be 

particularly good through only several iterations. 

(c) If the shape of a free-form surface is highly curved, and its intrinsic characteristics 

are of our particular concern, the orthogonal distance fitting is accomplished to overcome 

the bias problem of the traditional algebraic fitting. An efficient algorithm is adopted to 

update the correspondence points simultaneously with the motion parameters (and 

intrinsic characteristics if necessary). The computational complexity of this method is in 

the same order with the algebraic fitting. 

(d) When the function of the design template is supplied in a parametric form and 

moreover, the coordinates are nonlinear with respect to the foot-point parameters, it will 

be unacceptably tedious to solve the projection points simultaneously with the motion 

parameters. Hence the solution can be updated alternately in a nested approach. Firstly a 

closest point is found on the template for each measurement point, and then the motion 

parameters are incremented. This procedure is repeated until the solution converges. 

With the measurement points moving, the projection points will be changed at the 

same time. That is to say, the foot-point parameters of the projection points are related 

with the motion parameters. The dependency relationship is derived from the closest-

point constraint. 

(e) The least squares method is extensively applied for its ease of implementation. 

The solution is unbiased when the error obeys the Gaussian distribution. However, the 

solution of least squares is not robust enough, and outliers may make the solution 

distorted, or even break down. 

The l1 norm (least absolute deviation) pays less attention to large errors and thus is 

much more stable. But it has discontinuous derivatives and is very difficult to solve. Here 

it is transferred into a reweighted least squares problem based on the majorize-minimum 

theory. 
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The fitting strategy of free-form surfaces is summarised here. Appropriate methods 

need to be adopted according to the shapes and applications of the free-form components. 

(a) Structured Surfaces If a free-form surface is structured and composed of small 

sections, the entire surface can be firstly segmented into continuous sections and each 

section is individually fitted with a simple quadric function. Thus alignment can be 

established by comparing the intrinsic characteristics (shape parameters) and overlapping 

the correspondence features (centre points, rotational-symmetric axes etc). 

(b) Non-Smooth Surfaces Non-smooth surfaces are very difficult to represent using 

analytical functions. Hence the design template is sampled with discrete points. The 

iterative closest point technique can be utilized to match the nominal points with 

measurement data. It is worth noting that the distribution modes and sampling densities 

of the two point sets should not be the same, otherwise a false local-minimum matching 

result will be caused. 

(c) Smooth Surfaces Here a continuous representation is required for the reference 

template. NURBS and RBFs are adopted for regular and scattered point sets respectively 

if the design template is supplied as a CAD model. In order to avoid false fitting results, 

the whole fitting procedure is divided into two stages: initial matching and final fitting. 

Firstly the structured region signature technique is applied to find a rough guess for the 

relative position between the template and measurement data. Then the solution is refined 

with the Levenberg-Marquardt algorithm. If the fitted shape parameters (intrinsic 

characteristics) and motion parameters are of special importance, the orthogonal distance 

fitting can be applied to reduce the bias in the solution. Additionally, an appropriate 

robust estimator can be used to overcome the outliers and missing data. 

7.2 Future Work 

In this dissertation effective fitting algorithms have been proposed and proper 

techniques have been developed to evaluate the form qualities of free-form surfaces. 

However, there still exist some problems to be solved. Here we point out some directions 

for future research. 

1. The reconstruction accuracy of RBF depends heavily on the distribution of the 

input data points. Large oscillations may arise between the data because of over-fitting. 

Practical and reliable regularization techniques will be developed for surface 
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reconstruction of RBF, so that the resultant surface is guaranteed to be smooth and close 

to the ideal surface. 

2. For structured surfaces, the segmentation technique cannot properly divide the 

boundary points between sections. New techniques are needed to recognize the boundary 

points more rigidly. Wavelet or morphological algorithms can be adopted to divide 

structured surfaces. 

3. When the measurement surface is relatively planar, and the template and data 

points are not properly distributed, the ICP algorithm will converge very slowly and 

obtain a poor result. Hence special techniques shall be developed to speed up its 

convergence rate and to overcome its local-minimum problem. 

4. A free-form surface may be represented with an implicit function, rather than 

explicit or parametric forms, although this is not common in practice. Some special fitting 

algorithms will be developed to fit this particular type of surfaces. These methods are 

required to be sufficiently efficient and accurate. 

5. The quality of the fitted result is closely related to the error distribution. Hence the 

relationship between the fitting accuracy and the distribution of measurement noise will 

be investigated carefully. Proper error metrics will be adopted for different error models, 

and appropriate solution techniques will be applied accordingly. 
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