
University of Huddersfield Repository

Wilson, David

A Framework for the Definiton of a Generative Design Pattern

Original Citation

Wilson, David (2008) A Framework for the Definiton of a Generative Design Pattern. Post-Doctoral
thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/6969/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

A Framework for the De�nition of a Generative Design Pattern
David Wilson

A dissertation submitted in partial ful�llmentof the requirements for the degree ofDotor of Philosophy
The Shool of Computing and EngineeringThe University of Hudders�eldSupervisorDr Gary AllenDr Adrian JaksonJune 2008

To Helen xxxHelen, thy beauty is to meLike those Niean barks of yore,That gently, o'er a perfumed sea,The weary, way-worn wanderer boreTo his own native shore.On desperate seas long wont to roamThy hyainth hair, thy lassi fae,Thy Naiad airs have brought me homeTo the glory that was Greee,And the grandeur that was Rome.Lo! in yon brilliant window-niheHow statue-like I see thee stand,The agate lamp within thy hand!Ah, Psyhe, from the regions whihAre Holy-Land! `Edgar Allen Poe'

DECLARATION

In presenting this dissertation in partial ful�llment of the requirements for the degree of Dotor ofPhilosophy at the University of Hudders�eld, I delare that this work has not been submitted for adegree at this or any other University, and that unless otherwise stated, it is entirely my own work.David WilsonJune 2008

ACKNOWLEDGMENTS
First and foremost I would like to thank my supervisor, Dr. Gary Allen for his advie, support andfeedbak throughout this projet.I would also like to thank Professor Lee MCluskey and Dr. Christopher Newman for their support,advie and oasional feedbak.I am grateful to the University of Hudders�eld and the aademi sta� in the Department of Computingand Engineering for their support and oasional advie, and to the tehnial department for providingthe resoures on whih to develop my researh work.Muh of my time was spent in the main researhers oÆe in the Computing and Mathematis building,and I would like to extend my appreiation to my fellow researhers for making my stay there a pleasantone.Most of all, I would like to thank Dr Adrian Jakson, who provided me with the opportunity andfunding to study for this projet and the opportunity it gave me to pursue a areer in aademia.My deepest appreiation goes to my wife Helen, who's support throughout my degree and this researhprojet has been invaluable. I would like to thank her for her time, her �nanial support and for herunwavering ommitment when times were hard.And �nally, I would like to thank my hildren Kelly, Skye and Ailsa just for being there when I neededthem.

ABSTRACTConventional design patterns found in many pattern atalogues are stati omponents of reusable designknowledge. They are fully desriptive of the problems they will solve, but the desriptive knowledgeand design they provide does not desribe how they an work with other patterns in a design anddevelopment proess. Therefore, the ontention of this thesis is that the knowledge ontained withinstati design patterns is inadequate for the purpose of applying the patterns to generate a softwarearhiteture with the intention of developing software systems.The fous of this researh has been the investigation of Design Patterns and their potential ontributionto a generative development pattern language. Generative design patterns are ative and dynami: theydesribe how to reate something and an be observed in the resulting systems they help to reate.To this end, a framework is presented that identi�es the notational qualities that an be applied toa design pattern for the bene�t of implementing arhitetural design. The impratiality of statidesign patterns for arhitetural design is addressed by revising the standard design pattern with anotation that desribes the pattern as a generative omponent. The notation required for this revisionis abstrated in part from the rih set of design notations and knowledge ontained within:(a) the quality driven proesses ontained in development methods that ontributed to the now standardUni�ed Modelling Language (UML),(b) the desriptive ontent of two distint pattern lassi�ationsi Design Patterns: Elements of Reusable Objet-Oriented Software[45℄,ii A Catalogue of General-Purpose Software Design Patterns[104℄ and() a known study of relationships between design patternsi Relationships Between Design Patterns[119℄.

TABLE OF CONTENTSList of Figures viList of Tables ixChapter 1: Introdution 1Chapter 2: Exploring The Link Between Software Development Methods And Pat-terns 62.1 Introdution . 62.1.1 Pattern / Method Analogy . 62.2 Objet-Oriented Software Development Methods . 72.3 Contemporary Software Development Methods . 92.3.1 Rational Uni�ed Proess . 92.3.2 Agile Methods . 142.3.3 Model Driven Arhiteture (MDA) . 222.4 Summary . 25Chapter 3: Understanding Design Pattern Notation 273.1 Introdution . 273.2 Patterns in Objet-Oriented Software . 273.2.1 The Pattern Conept . 273.2.2 Idioms . 283.2.3 Pattern Catalogues { (Design Patterns) . 28i

3.2.4 Pattern Systems . 303.2.5 A Pattern Language . 323.2.6 Design Pattern Struture . 353.2.7 Narrative Form (Portland) . 373.3 De�ning a Template . 403.4 Summary . 55Chapter 4: Relationships Between Patterns 564.1 Introdution . 564.2 Classi�ation of Design Patterns . 574.2.1 High Level Classi�ation . 574.2.2 Low Level Classi�ation . 594.3 Individual Relationships . 644.4 Pattern Map . 684.5 Desribing Relationships . 694.5.1 Classi�ation . 704.5.2 Problem Solving . 714.5.3 Assoiation Type . 744.6 Summary . 76Chapter 5: Pattern Modelling 775.1 Introdution . 775.2 Sequene Diagrams . 785.3 Class Diagrams . 825.4 Summary . 88ii

Chapter 6: A Generative Design Pattern 906.1 Introdution . 906.2 Generative Proess . 916.2.1 Summary of Chapter Two . 916.2.2 Summary of Chapter Three . 916.2.3 Summary of Chapter Four . 916.2.4 Summary of Chapter Five . 926.3 Generative Pattern Format . 926.4 Composite as a Generative Design Pattern . 946.5 Conlusion . 1046.6 Summary . 105Chapter 7: Evaluation 1067.1 Introdution . 1067.1.1 Evaluation Strategy . 1077.2 Metris . 1087.3 Stati vs. Generative Patterns . 1107.3.1 Introdution . 1107.3.2 A Simple Case Study using Composite and Deorator 1127.3.3 A Simple Case Study using Composite, Command and Builder 1157.3.4 A Case Study using Composite, Command, Deorator and Builder 1197.3.5 An Alternative Case Study using Composite, Command, Deorator and Builder 1247.4 Conlusion . 1307.5 Summary . 132
iii

Chapter 8: Conlusion 133Chapter 9: Future Work 1359.1 Introdution . 1359.2 To label patterns by their Classi�ation, Problem and Assoiation type 1369.2.1 Problem type . 1369.2.2 Classi�ation type . 1369.2.3 Relational type . 1379.3 A de�nitive standard or formula for ombining or exluding ombinations of patterns . . 1389.4 Develop a ase tool for design using generative patterns 1399.5 Formal Mathematial Spei�ation of generative patterns 1399.6 Consideration of design patterns for de�nition and usability 140Bibliography 141Appendix A: Composite ombines Command 150Appendix B: Composite ombines Builder 158Appendix C: Builder ombines Command ombines Composite 166Appendix D: Builder Uses Command 177Appendix E: Relationship Trees 186E.0.1 Strutural . 186E.0.2 Creational . 187E.0.3 Behavioural . 188Appendix F: Pattern Soure Code and Senarios 189iv

F.1 Soure Code { Senario 1 . 189F.2 Senario 2 . 193F.3 Senario 3, based on Ekel[39℄ . 199Appendix G: Software Metri Suite 208G.1 Basi[16℄ . 208G.2 Cohesion[16℄ . 209G.3 Complexity[16℄ . 210G.4 Coupling[16℄ . 213G.5 Enapsulation[16℄ . 218G.6 Halstead[16℄ . 219G.7 Inheritane[16℄ . 220G.8 Inheritane-Based Coupling[16℄ . 220G.9 Maximum[16℄ . 223G.10 Polymorphism[16℄ . 223G.11 Ratio[16℄ . 224G.12 Test Coverage[16℄ . 225Appendix H: Additional Case-Studies 226H.1 A Simple Case Study using Composite and Builder . 226H.2 A Simple Case Study using Command and Builder . 229H.3 A Simple Case Study using Composite and Command 232Appendix I: An Example Design Pattern 235I.1 Faade (Based on Gamma[45℄) . 235
v

LIST OF FIGURES2.1 MDA Development Lifeyle[66℄ . 232.2 MDA Transformation Proess[66℄ . 244.1 Relationships Between Design Patterns . 584.2 Creational Pattern Information Hierarhy . 614.3 Behavioural Pattern Information Hierarhy . 624.4 Relationships Between Design Patterns (Based on Zimmer[119℄) 654.5 Pattern X uses, is used by . 664.6 Patterns Related to Composite . 694.7 Relationship between Composite and Deorator . 755.1 Sequene Diagram for the Broker Pattern . 785.2 Sequene Diagram for the Broker Pattern . 795.3 Sequene Diagram for the Dispather View Pattern . 805.4 Dispather in Controller Strategy . 805.5 Dispather in View Strategy . 815.6 Composite Class Diagram . 835.7 Grand's Composite Class Diagram[48℄ . 845.8 Reverse Engineered Composite Class Diagram[48℄ . 855.9 Composite Pattern . 865.10 Grand's Deorator Class Diagrams . 875.11 Grand's Builder Class Diagrams . 88vi

6.1 Struture of the Composite Pattern . 966.2 Relationship between Composite and Deorator . 1006.3 Use-Case Diagram - Composite ombines Deorator . 1016.4 Class Diagram - Composite ombines Deorator . 1027.1 Generative vs. Stati { Composite and Deorator . 1127.2 Generative vs. Stati { Command + Composite + Builder 1157.3 Generative vs. Stati { Command + Composite + Builder + Deorator 1197.4 Example Appliation using Stati Design Patterns . 1247.5 Example Appliation using Dynami Design Patterns . 125A.1 Relationship between Composite and Command . 151A.2 Use-Case Diagram - Composite ombines Command . 151A.3 Class Diagram - Composite ombines Command . 152A.4 Sequene Diagram - Composite ombines Command . 153B.1 Relationship between Composite and Builder . 159B.2 Use-Case Diagram - Composite ombines Builder . 159B.3 Class Diagram - Composite ombines Builder . 160B.4 Sequene Diagram - Composite ombines Builder . 161C.1 Relationship between Builder, Command and Composite 167C.2 Use-Case Diagram - Builder ombines Command ombines Composite 168C.3 Class Diagram - Composite ombines Command . 169C.4 Sequene Diagram - Composite ombines Command . 170D.1 Relationship between Builder and Command . 178vii

D.2 Use-Case Diagram - Builder uses Command . 178D.3 Class Diagram - Builder uses Command . 179D.4 Sequene Diagram - Builder uses Command . 180E.1 Strutural Hierarhy . 186E.2 Creational Hierarhy . 187E.3 Behavioural Hierarhy . 188F.1 Use-Case Diagram - Composite ombines Deorator . 193F.2 Class Diagram - Composite ombines Deorator . 194F.3 Use-Case Diagram - Composite ombines Deorator . 199F.4 Class Diagram - Composite ombines Deorator . 200G.1 The relation among the di�erent types of supplier lasses 217H.1 Generative vs. Stati { Composite and Builder . 226H.2 Generative vs. Stati { Command and Builder . 229H.3 Generative vs. Stati { Command and Composite . 232I.1 Faade as an Interfae . 235I.2 Message Creator as Faade . 236

viii

LIST OF TABLES3.1 Design Patterns' Notation[45℄ . 293.2 Bushmann's Pattern Notation[20℄ . 313.3 Bushmann's alternative ategories of Notation[19℄ . 323.4 Alexander's Pattern Notation[3℄ . 333.5 Coplien's Pattern Notation for a Generative Development-Proess[29℄ 343.6 Meszaros' Criteria on Pattern Struture[79℄ . 363.7 Varying Uses of Notation . 413.8 Amalgamating Notation . 453.9 Rejeted Notation . 493.10 Rejeted Amalgamated Notation . 513.11 Aepted Notation . 534.1 Design Pattern Classi�ation[45℄ . 574.2 Logial Information for a Generative Design Pattern - Iteration 1 594.3 Logial Information for a Generative Design Pattern - Iteration 2 624.4 Logial Information for a Generative Design Pattern - Iteration 3 674.5 Conrete Information for a Generative Design Pattern - Iteration 1 714.6 Conrete Information for a Generative Design Pattern - Iteration 2 744.7 Conrete Information for a Generative Design Pattern - Iteration 3 747.1 General statistis for the Generative and Stati versions of Composite and Deorator . . 1137.2 Individual statistis for the Generative and Stati versions of Composite and Deorator 114ix

7.3 Code statistis for the Generative and Stati versions of Command + Composite + Builder1167.4 Individual statistis for the Generative and Stati versions of Command, Composite andBuilder . 1187.5 Code statistis for the Generative and Stati versions of Command, Composite, Deora-tor and Builder . 1217.6 Individual statistis for the Generative and Stati versions of Command, Composite,Deorator and Builder . 1237.7 Code statistis for the Generative and Stati versions of a touh sreen ash register . . 1277.8 Individual statistis for the Generative and Stati versions of Command, Composite,Deorator and Builder . 130H.1 General statistis for the Generative and Stati versions of Composite and Builder . . . 227H.2 Individual statistis for the Generative and Stati versions of Composite and Builder . . 228H.3 General statistis for the Generative and Stati versions of Command and Builder . . . 230H.4 Individual statistis for the Generative and Stati versions of Command and Builder . . 231H.5 General statistis for the Generative and Stati versions of Command and Composite . . 233H.6 Individual statistis for the Generative and Stati versions of Command and Composite 234

x

1
Chapter 1INTRODUCTIONGenerative programming is a onept familiar to software engineers and is an ideologial goal forsoftware development. Generative programming has attrated a onsiderable amount of researh anddevelopment over the years ulminating in a number of sophistiated CASE tools. Czarneki[37℄ de�nesgenerative programming as:A software engineering paradigm based on modelling software system families suh thatgiven a partiular requirements spei�ation, a highly ustomized and optimized end-produtan be automatially manufatured on demand from elementary, reusable implementationomponents by means of on�guration knowledge.Czarneki goes on to de�ne a Generative Domain Model that onsists of a problem spae, a solutionspae and on�guration knowledge, whih maps the two together.� The solution spae onsists of the implementation omponents with all possible ombinations. Theimplementation omponents maximize ompatibility, maximize reuse and minimize redundany.� The problem spae onsists of the appliation-oriented onepts and features that are required toful�l a spei�ation.� The on�guration knowledge spei�es default ombinations, illegal ombinations, developmentrules, dependenies and optimizations[37℄.The onept of generative programming maps adequately to the onept of generative design patterns,whih have a problem / solution pair held together by the ontext in whih the pair an be applied(the on�guration knowledge).The on�guration knowledge is partiularly useful in that there may be default ombinations, illegalombinations and spei� rules that need to be applied to any given ombination of patterns.

2However, in the sheme of life-yle development, programming is edging towards the output phaseof development. Prior to development omes analysis and design, yet generative design has attratedless researh and development than generative programming. The amount of researh into generativedesign through design patterns is extremely limited by omparison to design patterns in general.The designs pattern found in software engineering (An example design pattern an be seen in AppendixI) are analogous to those desribed in arhiteture by Christopher Alexander[2, 3, 4℄. Patterns, likethose de�ned by Alexander, are desribed as being generative, mainly beause they will generate stru-tures. That is, a olletion of patterns an be brought together to reate a new struture. Softwaredesign patterns, like those of Alexander, are a development priniple that ontains the knowledge of ex-perts who have used reurring design onstruts in development projets. These experts have reordedneessary information about these patterns for others to use in their own development projets. How-ever, although these design patterns are abstrated from appliation design, they are not desribed insuh a way that they an be used to design appliations. Expert knowledge desribes them as beingonstruts that an be slotted into an appliation, but the knowledge to do that is missing from thepatterns. The fat is that design patterns annot be used to generate the arhitetures from whihthey are abstrated. They do not desribe how pattern A will ollaborate with pattern B. They do notdesribe how separate patterns may share resoures or design omponents. There is a need to intro-due additional knowledge into design patterns to empower them with the ability to generate systems.The majority of design patterns used in software development are stati, they desribe a problem thatexists, but do not desribe muh beyond their own environment | they will mention a relationship toother patterns but little else. In other words, they are not adequate for generating new environments.Appleton[6℄ provides a simple aount of generative and non-generative patterns:Generative patterns are ative and dynami: they tell us how to reate something and anbe observed in the resulting system arhitetures they helped shape. Non-generative patternsare stati and passive: they desribe reurring phenomena without neessarily saying howto reprodue them. We should strive to doument generative patterns beause they not onlyshow us the harateristis of good systems, they teah us how to build them!As suh, the use of stati design patterns as a means of developing systems is problemati, in that thedesign pattern is stati and needs to be generative. Therefore, the aim of this thesis is to ontribute tothe methodology of software systems development by introduing into design patterns design knowledgethat failitates ommuniation between separate design patterns.

3Fundamental to this aim is the assertion that:Generative design patterns will assist in improving software design when ompared to using stati designpatterns.In support of this assertion, both generative and stati design patterns are ompared and assessed ina number of appliation development ase-studies. From the ase-studies a further assertion is madethat:Generative design patterns provide a more eÆient software solution to that of stati design patternswhen ommuniation between separate design patterns is required.This assertion is supported by the metris alulated in omparative studies on generative and statidesign patterns. The metris on�rm that there is an overall improvement in systems design andsoftware eÆieny for the generative patterns examined.The main ontribution to this thesis, and to generative design patterns, is a notation that has beenabstrated from a range of pattern styles. A means of pattern lassi�ation has been inluded in thegenerative pattern desription to identify their ontribution to systems funtionality. Problem solvingnotation has been added to the patterns to identify appropriate development ontexts in whih thepatterns an be applied. And �nally, relational notation has been added to the generative pattern toidentify how separate patterns will ommuniate.The re-engineered notation has been applied to four di�erent design patterns as examples of how touse the notation, and are inluded within the thesis in Chapter Six and Appendies A, B, C and D. Anexample of a stati design pattern from the Design Patterns[45℄ atalogue an be seen in Appendix I.This thesis is organised as follows:Chapter Two onsiders software development methods, whih have been studied as a means of �ndingqualities that ould be applied to the notation of a generative design pattern. Although there are largenumbers of di�erent development methods, they all have a ommon goal and that is a quality produt.Many use similar tehniques to ahieve their goal whilst others use alternative tehniques or are spei�to a partiular phase in the development life-yle.Chapter Three looks at pattern notation with a view to understanding where the notation omesfrom and how it is applied in spei� types and styles of patterns. Beause software design patterns arenot de�ned as generative, there are no guidelines on how to doument them as generative. Therefore,in order to �nd a suitable doument notation for generative design patterns, multiple pattern notationsare explored for lues to a quality driven design proess.

4Chapter Four onsiders the funtionality and the relationships between patterns. Di�erent typesof patterns have di�erent funtions; therefore some property of the pattern needs to desribe therelationship that exists between di�erent funtional types. Some of these patterns form the body of asystem whilst others perform some operational requirement of the system. Whatever type of patternthey may be, all di�erent types need to de�ne how they ollaborate.Chapter Five looks at the modelling notation that is used within patterns. Many software patternsuse only a lass diagram in the notation of a pattern although there are many modelling notations inthe Uni�ed Modelling Language that ould be used to help desribe the usability of a design pattern.Quite often, pattern writers who reprodue the patterns originally desribed in the Design Patterns[45℄atalogue will modify the design notation in their interpretation of the pattern to meet the needs oftheir example. However, what is evident from some of these interpretations is that the example odethey provide does not math the design notation that they use.Chapter Six integrates the work desribed in Chapters Two to Five. The work from the previoushapters is summarised and a generative pattern is de�ned from the desired notation and the require-ments of the de�ned relationships. Three separate examples of generative design are provided withdi�erent on�gurations of design. Further examples are provided in the Appendies.Chapter Seven evaluates the approah taken in de�ning a generative pattern, reeting on the on-strution proess used for the framework and the examples that were produed to support the generativepattern onept.Chapter Eight onsiders the work still to be done in the area of ommuniation between spei�lassi�ations of patterns. A ustomised Computer Aided Software Engineering tool is proposed aswell as some alternative researh that an be onduted in relation to generative design patterns.Chapter Nine onludes the work undertaken in de�ning a generative pattern.Appendix A provides an example of a Composite ombines Command design pattern.Appendix B provides an example of a Composite ombines Builder design pattern.Appendix C provides an example of a Builder ombines Command ombines Composite design pat-tern. This pattern also ombines with the Composite pattern and is also an example of a Creational,Behavioural and Strutural pattern working together.Appendix D provides an example of a Builder uses Command design pattern.Appendix E desribes the Relationship Trees from the hierarhy of lassi�ations. The hierarhyinludes only the patterns de�ned in the Design Patterns[45℄ atalogue.

5Appendix F ontains the soure ode for the generative patterns desribed in Chapter Six.Appendix G desribes the metris that are available for assessing software quality.Appendix H ontains three sets of paired patterns that have been used in the evaluation proess ofgenerative design patterns.Appendix I ontains an example of a stati design pattern from the Design Patterns[45℄ atalogue.

6
Chapter 2EXPLORING THE LINK BETWEENSOFTWARE DEVELOPMENT METHODS AND PATTERNS2.1 IntrodutionIn this hapter an overview of software development methods is presented with the purpose of exploringthe expert knowledge and quality driven aspets ontained within the methods. Consideration is givento development methods as a means of determining if expert knowledge ontained within methodsan be appended to the expert knowledge ontained within design patterns. From this study it hasbeen determined that there are similarities between methods and patterns. It is found that there arequalities in some methods, mainly design aspets and oding priniples, whih an be used to enhanethe quality of a design pattern.In Setion 2.2 a representative seletion of early Objet-Oriented development methods is listed, o�er-ing an historial insight into the evolving pratie of quality driven software development. Several ofthe methods listed represent the driving fore behind the Uni�ed Modelling Language[15, 54℄ (UML),elements of whih feature in design pattern notation. The authors of the original methods that on-tributed to the UML are seen as experts in the �eld of software engineering and the methods theydevised have been a signi�ant inuene in the development of modern methods. The same expertsthat devised the UML made a signi�ant ontribution to IBM's1 Rational Uni�ed Proess[89℄ (RUP),a ontemporary development method, whih is explored further in Setion 2.3.Setion 2.3 examines several ontemporary methods: RUP, Extreme Programming[9, 10℄ (XP) andSrum[12℄ as well as the Objet Management Group's[53℄ (OMG) Model Driven Arhiteture[55℄(MDA).2.1.1 Pattern / Method AnalogyThe priniple of a software development method is to impose disipline, preditability and eÆienyon a projet. In most ases, the methods that are used to develop a software system often followsome life-yle proess, whih in many ases will expand upon the subjets of Analysis, Design and1International Business Mahines

7Development. By following these methods, whih are often de�ned by experts in their �eld, who havetried, tested and re�ned the proesses that failitate the e�etiveness of the method, the likelihoodof projet failure is often redued. In this respet, there is a simple omparison that an be appliedbetween a method and a design pattern:� Expert knowledge: design patterns are the doumentation of expert knowledge.� Failure redution: design patterns are tried and tested examples of quality design.The onept of software design patterns and the expert knowledge that they ontain are desribed ingreater detail in Chapter Three.By examining design pattern atalogues and the patterns ontained within, it is not obvious to thereader that the patterns ontain simple methodial priniples of software development. The simplereason for this is that patterns are not methods and no evidene has been obtained to suggest thatthey were ever intended to be methods. However, the analogy is there. For example:� Many patterns ontain the setions Problem and Fores, whih analyse the situation in whih apattern an be applied { (Analysis).� In many software design patterns there is often some form of design using a lass, sequene and/orother diagrams { (Design).� And, quite often there will be implementation details in the form of sample ode { (Development)Working on this priniple, it an be seen that methods and patterns share some ommon ground andin taking advantage of this ommon ground it is oneivable that methods and patterns ould worke�etively as a uni�ed subjet in the �eld of software development.2.2 Objet-Oriented Software Development MethodsWith the emergene of the objet-oriented software paradigm ame many objet-oriented developmentmethods. In the period 1988{1995 at least 19 objet-oriented methods had been proposed in book formand many more were proposed in onferene and journal papers[115℄. To abstrat good pratie forthe assimilation of methodial proesses into design patterns a thorough review of all suh methods

8ould be applied in order to obtain the best and most appropriate aspets of these methods. How-ever, this line of researh would be extensive and would detrat from the main purpose of de�ning agenerative pattern. In addition, during this period 1988{1995, many studies were onduted into thestate of objet-oriented development methods and omparisons made between them | A Comparisonof Objet-Oriented Development Methodologies[13℄ by Berard of The Objet Ageny[1℄ lists seven suhstudies whilst being a study in its own right. Brighton University[107℄ douments signi�antly moreomparative studies, whih itself inludes a list of development methods. Therefore, onduting yetanother omparative study is unlikely to provide any new and usable information that would be ofbene�ial use within the urrent researh program. However, by examining previous studies, an insightinto some of the more ommon and popular development methods has been established.The list below has been onstruted primarily from the list presented by Berard[13℄, although not inits entirety, and represents some of the early, more ommon objet oriented methods | asertainedthrough their repeated inlusion in omparative studies.� Objet Modelling Tehnique[97℄ (OMT). OMT was originally reated as a method for developingobjet-oriented systems. It uses many of the design tehniques that beame part of the UML.� Objet-Oriented Software Engineering[63℄ (OOSE). OOSE is very similar to OMT and employsUse-Cases to drive design. OOSE Beame one of the key omponents of the Uni�ed ModellingLanguage.� Objet-Oriented Analysis and Design[14℄ (OOAD). OOAD onentrates on the analysis and designphases but exempli�es the proesses with existing appliations. OOAD represents a good exampleof applying expert knowledge | a ommon theme in design patterns. OOADS is another design-oriented method that evolved into the Uni�ed Modelling Language.� Berard Objet-Oriented Method[100℄ (BOOM). BOOM is a set of integrated methodologies suhas OOSE and OOAD among others.� Business Objet Notation[113℄ (BON). BON was designed to work seamlessly with the program-ming language Ei�el[80℄ and has been used suessfully with other programming languages.� Objet-Oriented Analysis, Objet-Oriented Design, Objet-Oriented Programming[23, 24, 25℄ (OOA, OOD, OOP). OOA / OOD / OOP overs the priniples of objet-orientedtehnology through basi life-yle proesses of Analysis, Design and Programming.

9� Shlaer-Mellor[101℄. Shlaer and Mellor devised an OOA / OOD method to ompensate for thepereived de�ienies in the strutured analysis and strutured design tehniques that were beingused in the late 1980s, suh as SSADM[47℄ and YSM[117, 118℄.� Wirfs-Brok[116℄. Wirfs-Broks method is a design proess that an be applied to both objet-oriented and non objet-oriented development.� Fusion[28℄. Fusion is an objet-oriented analysis and design method that integrates features fromexisting methods suh as OMT and OOAD.Several of these methods fous on design and therefore have a strong design ontent, whih is a primefeature of design patterns. Three of the methods listed above have between them reeived over 2200known itations[86℄ and were the forerunners of the Uni�ed Modelling Language[15, 54℄ (UML) namely,OOAD, OOSE and OMT. It is design elements from these traditional methods that have been appliedto design patterns. However, only limited elements have been utilised in a design pattern, namely, lassand interation diagrams.As a result of ontinuous development and revision some of the above listed methods have evolved intoontemporary working praties that an be found in methods suh as the RUP. Agile methods suhas XP an also be onsidered as ontemporary but these too have long rooted histories[26℄. Althoughnot based on Objet-Oriented methods suh as those above, Agile methods were a reation to rigid,heavyweight methods of the day[44℄, whih often adapted the lifeyle framework of the Waterfall modeldevised Roye[96℄. The RUP and other ontemporary methods are disussed in setion 2.3 below.2.3 Contemporary Software Development Methods2.3.1 Rational Uni�ed ProessAbout the Rational Uni�ed ProessThe Rational Uni�ed Proess is a life-yle proess that provides a disiplined approah to assigningtasks and responsibilities within a development team. Its aim is to ensure the development of qual-ity driven software that meets the requirements of end-users[62, 67℄. The RUP provides every teammember with aess to a knowledge base. By having all team members aess the same knowledgebase, irrespetive of whether a team member is working with requirements, design, testing, projetmanagement, or on�guration management, the proess ensures that all team members share a om-mon view of how to develop software. Rather than fousing on the prodution of doumentation, the

10RUP emphasizes the development and maintenane of models. That is, the Rational Uni�ed Proessis a guide on how to use the Uni�ed Modelling Language, whih was developed by the same team thatreated the RUP. Like design patterns, whih will be disussed in Chapter Three, the RUP is the resultof expert knowledge and, as will be shown in the following text, de�nes a number of similarities betweenthe two onepts and ontains modelling elements that an ontribute to an appropriate notation forgenerative design patterns,Four Phases of the ProessThe Rational Uni�ed Proess attempts to apture what is onsidered to be best praties in modernsoftware development within a four phase strategy:� Ineption phase� Elaboration phase� Constrution phase� Transition phaseIneptionDuring the ineption phase a business ase for the system is proposed and the sope of the projet isidenti�ed. In this, all external entities with whih the system will interat are established (ators). Theinteration with external entities involves identifying prominent use ases and desribing those that willhave a signi�ant impat on the system[62, 67℄. The outome of the ineption phase is, among otherthings:� A doument of the projet's requirements, key features, and main onstraints. (Analysis)� An initial use-ase model. (Design)� An optional domain model. (Design)� One or several prototypes. (Implementation)� A number of projet plans and business related models.

11ElaborationThe purpose of the elaboration phase is to analyze the problem domain, establish an arhiteture,develop the projet plan, and eliminate high risk elements of the projet. Arhitetural deisions have tobe made with an understanding of the whole system: its sope, major funtionality and non-funtionalrequirements suh as performane requirements.At the end of this phase, the analysis and design aspets are onsidered to be omplete and deisionsare made on whether or not to ommit to the onstrution and transition phases. While the proessmust always aommodate hanges, the elaboration phase ensures that the arhiteture, requirementsand plans are stable, and risks have been assessed.In the elaboration phase, an exeutable prototype is built in one or more iterations, depending on thesale of the projet, whih at minimum should address the ritial use-ases identi�ed in the ineptionphase. Whilst a prototype of a prodution-quality omponent is always the goal, one or more throw-away prototypes may be produed as a means of testing design and requirements trade-o�s.The outome of the elaboration phase is:� A use-ase model where all use ases and ators have been identi�ed, and most use-ase desrip-tions have been developed.� Identi�ation of supplementary requirements that are not assoiated with spei� use-ases.� A software Arhiteture.� An exeutable prototype.� A revised risk list and business ase.� A development plan.� An optional user manual.ConstrutionDuring the onstrution phase, all remaining omponents and appliation features are developed andintegrated into the produt, and all features are thoroughly tested. The onstrution phase is a proesswhere emphasis is plaed on managing resoures and ontrolling operations to optimize osts, andquality.

12Often, projets are large enough that onurrent onstrution plans an be implemented. These parallelativities an hasten the availability of deployable releases; however, they an also inrease the om-plexity of resoure management and workow synhronization. This is one reason why the balaneddevelopment of the arhiteture and the plan is stressed during the elaboration phase.The outome of the onstrution phase is a produt ready to put in the hands of its end-users. Atminimum, it onsists of:� A software produt on�gured for desired platforms.� User manuals.� A desription of urrent releases.TransitionThe transition phase is onerned with plaing the software into the hands of the users. One theprodut has been given to the end user, issues usually arise that require the team to develop newreleases, orret problems, or omplete any features that were postponed.The transition phase is entered when a produt is suÆiently robust that it an be deployed in theend-user domain. This typially requires that a prototype of the system has been ompleted to anaeptable level of quality and that user doumentation is available. This inludes:� Testing; to validate the new system against user expetations.� Parallel operation with a legay system that it may be replaing.� Conversion of operational data stores.� Training of users and those involved with maintenane.� Roll-out the produt to the marketing, distribution, and sales teams.Typially, this phase may inlude several iterations, inluding beta releases, general availability releases,maintenane releases and enhanement releases. At this point, e�ort will be put into developing userdoumentation, user training, user support in produt use, and reating to user feedbak. User feedbakis usually on�ned to produt tuning, on�guring, installation, and usability issues.

13The primary objetives of the transition phase inlude:� Ahieving self-support from the user.� Ahieving stakeholder agreement that deployment requirements are omplete and onsistent withthe evaluation riteria.� Ahieving a �nal produt as rapidly and ost e�etively as pratial.This phase an range from being simple to omplex, depending on the produt. For example, a newrelease of an existing desktop produt may be very simple, whereas developing a nation's medialreords system would be very omplex.ConlusionAording to DeMaro[38℄, \Analysis is the study of a problem, prior to taking some ation" - a familiaronept in terms of design pattern notation in that a problem is identi�ed and a solution provided.Aording to Coad[24℄ Analysis is a proess of extrating system requirements from the major stake-holders in the system under development. Therefore, the main onern of analysis is to determine whatis required in order to develop the system that is being ommissioned. On investigating the RationalUni�ed Proess it an be seen from the authoritative texts that the proess is heavily weighted towardsanalysis with emphasis on analysing the business proesses involved in systems development. However,the RUP does not dwell heavily on problems but onentrates signi�antly on a generi solution toquality driven systems development. In this respet there are few similarities between the RUP anddesign patterns as there are in many of the early Objet-Oriented methods suh as OOAD, OMT andOOSE, whih ontributed towards the UML. However, the onept of Solution, whih is a signi�antaspet of RUP, is also a signi�ant aspet of design patterns, whih presents in one aspet a similaritybetween this partiular method and design patterns.What an be seen in the RUP, whih stands out signi�antly against other aspets of the proess isthe use-ase. The originators of the RUP have put great emphasis on the use-ase, whih is usedthroughout the early stages of proess in most aspets of the analysis and design lifeyle. This isbaked up by the authors of the RUP who desribe the Uni�ed Proess as being \Use-Case Driven,Arhiteture-Centri, Iterative and Inremental[62℄. In this respet, the authors of the method areputting arhiteture and how they realise that arhiteture at the forefront of the RUP. One of the keyaspets of the generative pattern is arhiteture, in that ollaborating patterns an be used to de�ne thearhiteture of a software system. From this, one an onsider that there is a orrelation between design

14goals in RUP and the design goals of generative design patterns. This notion is supported by the Uni�edSoftware Development Proess[62℄ (USDP), an early version of RUP, that looks at arhiteture fromvarious viewpoints. This aspet is similar to one of the quality aspets ontained within the PatternOriented Software Arhiteture[20℄ (POSA)atalogue of design patterns in that alternative views of asolution are onsidered. Given this orrelation between these quality aspets of RUP and the POSAdesign patterns it is oneivable that multiple views of generative design should be inorporated intogenerative design patterns. The dynami aspets of the POSA design patterns and how these aspetsan be inorporated into a generative design pattern will be disussed further in Chapters Three andFive.2.3.2 Agile MethodsAbout Agile MethodsA ritiism of early objet-oriented methods desribed them as being too bureaurati. As a reationto this ritiism a number of new methods appeared. These new methods are referred to as lightweightor agile methods[44℄. The new agile methods are a onession between no proess and too muhproess, providing just enough proedure to gain a reasonable ompromise. The result is that agilemethods have some signi�ant hanges in emphasis from lifeyle methods. One of the ore aspets ofagile software development is the use of light but suÆient rules of projet behaviour and the use ofhuman and ommuniation-oriented rules[26℄. One of the most visible aspets of this is that they are lessdoument-oriented, usually emphasizing a smaller amount of doumentation for a given task. Aordingto Fowler[44℄, they are rather ode-oriented: following a route that says the key part of doumentationis soure ode. whilst some methods an be quite rigid, agile methods enourage exibility in theirproedures. What may be suitable for one projet may not be the right proess for every projet orsituation. Therefore, the agile team is enouraged to re�ne and reet as it goes along, onstantlyimproving its praties in its loal irumstanes.Extreme Programming (XP)About XPIn the early days of XP the method was de�ned with the distint setion headings of Problem, Solutionand Implementation | ommon notation used in many design patterns. The method looked at theproblems of software development, proposed some solutions to those problems and desribed how toimplement the method. There were four values, �fteen basi priniples, and twelve praties[9℄. In theontemporary version of XP the distint aspets of Problem, Solution and Implementation are removed

15in name whilst the ore aspets of values, priniples and praties that underpin the method have beenrede�ned. The very basi XP paradigm of adaptation and hange has been applied to XP itself[10℄.There are now �ve values, fourteen priniples, thirteen primary praties and eleven onsequentialpraties. Of the twelve original praties, two have been abandoned, whih gives the revised methodfourteen new praties with whih to apply the method[10℄. In fat, whilst the newer version of XPretains its original values, the whole method has been re�ned in terms of its priniples and its praties.Just as it is expeted that patterns will evolve, and as will be shown they an evolve into generativepatterns, XP has evolved and may ontinue to evolve, whih demonstrates a similarity that patternshave with this partiular method. The original onept of XP was divided into three founding setions:1. Problem: where the values and priniples of XP are explained and ativities de�ned.2. Solution: where good praties are applied following the guiding values and priniples.3. Implementation: how the strategies disussed in the solution an be put into pratie.Although these onepts are removed in name, the underlying essene of the method is still evident inthat the basi ontent of the method that underpinned these three setions is still evident. Referenesare still made to problems but the emphasis of where the problem lies has been rede�ned. When onethe problem was de�ned in terms of where weaknesses may be evident in the development proess, theproblem is now de�ned in terms of a developer's inability to ope with hange[10℄, and the solution isXP itself. The solution in regards of XP begins by �rst understanding the ore onepts of the methodwhih are represented by values, priniples and praties.Five ValuesThe basi root elements of XP are �ve ore values that are deemed to be strategially important forthe suessful development of software. These ore values are guidelines for XP as a method and afoal point for development itself. The �rst four values are retained from the original XP, and respetis added as an additional value. The values for the ontemporary version of XP are:1. Communiation: Most problems and errors are aused by lak of ommuniation.2. Simpliity: The main guideline is to keep the system simple and do not plan too far ahead. Newfeatures, when needed, an be added to a simple system with greater ease.

163. Feedbak: Feedbak is seen as being an important omponent of ommuniation in that whenyou ommuniate you are in a position to gain feedbak. Feedbak also ontributes to simpliityin that the simpler a system, the easier it is to get feedbak about it.4. Courage: If fear is expressed about a projet, then the burden of takling the projet beomesmuh bigger. However ourage alone is not enough to takle a projet and should be baked upby ommuniation, simpliity and feedbak.5. Respet: If members of a team do not are about eah other and their work, the hanes ofdevelopment failure are muh greater.The �ve values that support XP as a method do not give spei� advie on how to manage a projet,or how to write software. To this end, what are required are praties. However, bridging the gapbetween values and praties are priniples[10℄.Fourteen Priniples1. Humanity: Software is developed by people for people, so human fators are taken into onsid-eration in attempting to deliver quality software.2. Eonomis: Ensure that what is being developed has business value, meets business goals andmeets business needs. Someone has to pay and they want value for money.3. Mutual bene�t: All ativities should bene�t both developers and lients alike, both in thepresent and in the future4. Self-Similarity: Try opying the struture of one solution into a new ontext, even at di�erentsales.5. Improvement: XP asks for exellene in software development through ontinuous improvement.6. Diversity: Teams should inlude a variety of skills attitudes and viewpoints in order to identifyproblems and provide solutions.7. Reetion: An e�etive team should ask themselves how they are working, and why they areworking in that way. They need to analyze the reasons behind suess or failure without hidingtheir mistakes and learn from them.

178. Flow: The praties of XP assume a ontinuous ow of software by engaging in all ativitiessimultaneously, rather than a sequene of disrete phases.9. Opportunity: Problems must be seen as an opportunity for learning and improvement.10. Redundany: Critial and diÆult problems should be solved in several di�erent ways. Thus,if one solution fails, another solution may prevent a disaster.11. Failure: Failure should not be viewed as failure but an opportunity for learning. Failure is nota waste if it imparts knowledge.12. Quality: Sari�ing quality is not an e�etive means of ontrol. Projets do not go faster byaepting lower standards. In addition, team members need to do work they are proud of.13. Baby Steps: One of the reasons behind baby steps is that a small step in the wrong diretionis easier to reover. A big step that fails an damage a projet. It is more prudent to proeediteratively in baby steps. Baby steps do not mean proeeding slowly. A team proeeding in babysteps an take a lot of them in a short period of time.14. Aepted Responsibility: Aepted Responsibility is about being responsible. Responsibilityshould only be taken if you are on�dent enough to aept it.Priniples are a means of providing a better understanding of praties and to improvise omplementarypraties when a pratie annot be found for a given purpose. They also give a better idea of whatthe pratie is intended to aomplish[10℄.Twenty Four PratiesThe updated version of XP de�nes thirteen primary praties, and eleven orollary (onsequential)praties. The primary praties must be applied �rst, and eah of them may add to an improvementin the software development proess. Consequential praties require expertise in primary praties,and may be diÆult to apply without �rst having onsidered the primary ones. All twenty four pratiesare an integral part of the method, and should be fully applied in order to obtain the maximum bene�tof XP.Thirteen Primary praties1. Sit Together: The working environment should be an open spae that is able to host the wholeteam.

182. Whole Team: A team should be omposed of members that have all the skills neessary for theprojet to sueed.3. Informative Workspae: The workspae should be supplied with information on the status ofthe projet and the tasks to be performed.4. Energized Work: The team must respet a work { life balane, so that they an fous on theirjob and be produtive.5. Pair Programming: Code should be written by two team members at one workstation.6. Stories: The system should be desribed using short desriptions of funtionalities that areaessible to the ustomer.7. Weekly Cyle: At the beginning of the week a meeting should take plae where the funtional-ities (Stories) to develop in the week are hosen by the ustomer.8. Quarterly Cyle: Development is planned on a lager time sale. This onsiders feedbak onthe team, the projet and what progress is being made.9. Slak: Avoid making promises that annot be ful�lled. Consider tasks that an be dropped ifthe plan falls behind shedule.10. Ten-Minute Build: The build and testing of a system should only take minutes.11. Continuous Integration: Teams should be integrating hanges regularly.12. Test-First Programming: Before updating or adding ode, tests should be written in order toverify the ode.13. Inremental Design: XP is opposed to produing a omplete design prior to development andsuggests that design should be done inrementally during oding.Eleven Corollary Praties1. Real Customer Involvement: Stakeholders who are a�eted by the system must beame apart of the team. They an ontribute to quarterly and weekly planning.

192. Inremental Deployment: When replaing a system, start by replaing some of the funtion-ality and gradually replae all the system.3. Team Continuity: Development teams should remain intat throughout several projets.4. Shrinking Teams: As a team beomes more produtive, gradually redue its size, sending freemembers to form new teams.5. Root-Cause Analysis: When a defet is deteted, �nd the auses of the defet and eliminatethem.6. Shared Code: Any member of the development team must be able to hange any part ofdevelopment at any time.7. Code and Tests: Code and tests are permanent artefats and have to be preserved.8. Single Code Base: There should be only one version of the system. Temporary systems an bereated but must not be preserved.9. Daily Deployment: New software should be put into prodution every night. A gap betweenwhat is on a programmer's desk and what is in prodution is a risk.10. Negotiated Sope Contrat: Contrats should be written for software development that have�xed time, osts and quality, but all for an ongoing negotiation of the sope of the system.11. Pay-Per-Use: The ustomer usually pays for eah release of the software.Aording to Bek[10℄, the primary and orollary praties are not everything that is needed to su-essfully develop software. They are however, ore elements of exellene in software development. If aproblem arises that is not overed by one of the praties then one should look bak at the values andpriniples to ome up with a solution.ConlusionWhat is evident with XP and partiularly the updated version is that there is a strong emphasis appliedto the management of the method. The method does not go into detail about analysis or design andhow to ondut these aspets of software development. Appliation of knowledge and how to applysuh aspets as analysis and design, as XP relates, is in the hands of the experts who are following themethod.

20One thing that stands out in the original version of Extreme Programming[9℄ is the emphasis that wasput on de�ning the method in terms of Problem and Solution. In this respet, XP had very obvioussimilarities with design patterns, in that Problem and Solution is representative of the expert knowledgeontained within them.Another signi�ant aspet of XP in both new and older versions is that oding is seen as a key ativityof the method. This, from the point of view of the authors of the method, is one of the strengths ofXP. What will be shown in Chapter Six is that the generative design pattern will utilise this strengthto demonstrate oded examples of generative design. The onept of oded examples is supported bythe onluding omments on RUP in Setion 2.3.1, where it is noted that multiple views an be appliedto a generative pattern. In this respet, multiple views refer to multiple oded examples.SrumAbout SrumSrum is an agile proess that an be used to manage and ontrol produt development using iterativeand inremental praties. The method is apable of produing a set of funtioning artefats at the endof every iteration. Srum failitates the development of the best possible software from the availableresoures with aeptable quality within required release dates. Produt funtionality is delivered at theend of what is known as a sprint, whih may last between �fteen to thirty days, depending on the sizeof the projet. As requirements and design are evolving so the produt will evolve. The name Srumrefers to the srum in rugby { a tight formation of forwards who bind together in spei� positionswhen a srum down is alled.RolesThere are three primary roles in the Srum development proess:� The Srum team: The team normally onsists of 5-9 people. The team members deide how thework is arranged and how assignments are distributed. There are no set projet roles, everyoneshould be able to swap tasks with another member. The team is self-organized and the membershave a joint responsibility for the results.� Produt owner: The produt owner represents the ustomer and ensures that the Srum Teamis working e�etively from a business perspetive. The Produt Owner administers a ProdutBaklog, a to-do list, where all the spei�ations for a produt are listed and prioritised. Beforeeah Sprint, the highest prioritized goals are transferred to a Sprint Baklog. The Produt Baklogis visible to the whole organization so that everyone is aware of what to expet in future releases

21of the produt.� Srum master: The Srum Master meets with the team every day in brief meetings known asdaily srums. When someone from outside the projet has an issue to disuss with the team,the Srum Master ensures that the team are disturbed as little as possible in their work. Aftereah Sprint, the Srum Master holds an evaluation meeting with the Srum team, during whihexperienes and onlusions are reviewed. The purpose of the evaluation meeting is to raise theteams level of knowledge and strengthen motivation prior to the next Sprint.The Srum Proess� Creating a baklog: The Produt Owner ompiles requests and spei�ations that are thebasis of the produt, suh as any new funtionality or bug �xes. After goals have been de�ned,the spei�ation is broken down into hunks of work ahievable in a sprint. The Produt Ownermakes a to-do list arranged aording to how market demands and ustomer requests may hangeover time and deides in what order any hanges should be made and delivered. Eah sprintshould reate in-part a working sub-setion of the produt. When it is time to start a new Sprint,the Produt Owner freezes the leading items on the to-do list and summons the Srum Team toa meeting.� The sprint phase: Of the Sprints 15 to 30 days period, the �rst one or two days are set asideto reate a Sprint Baklog. When the tasks have been determined, the Produt Owner releaseswork to the development team. From that point, the team works under its own responsibility. Ifthe team has been properly omposed, the work should be self organising.� Daily Srum: Every day, usually at the same time in the morning, the Srum Master and theSrum Team have a brief meeting. The purpose is to try and eliminate any restritions thatmay have developed within the group. Eah of the partiipants should in some way answer threequestions:1. What have you done sine the last meeting?2. What will you do between now and the next meeting?3. Is there anything preventing you from doing what you have planned?The �rst two questions give the partiipants an insight into how the projet is progressing. Thethird question provides a basis for problem solving that may range from damaged resoures to

22organizational hanges at the ompany. Anyone may attend and listen at the meeting, but onlythe Srum Master and the team members may have some input.� Demonstration and evaluation: Eah Sprint �nishes with a demonstration of funtioningsoftware. Attending at the demonstration will be the Produt Owner, users and possibly rep-resentatives of orporate management. This is in e�et an evaluation meeting and the startingpoint for the next Sprint.ConlusionLike XP, the fous of Srum is signi�antly direted towards failitation of the method and the ativitiesof the team, whilst leaving the proesses of analysis, design and development in the hands of the expertsthat are using the method. This pratie an be seen in most of the agile methods. Beause this andother similar methods are more onerned with their own proesses they have little to o�er in terms ofexpert ontent that an be appended to a design pattern.2.3.3 Model Driven Arhiteture (MDA)About MDAThe Objet Management Group's Model Driven Arhiteture is a standards driven proess to build sys-tems from models using model transformations. A omplete MDA spei�ation onsists of a platform-independent model (PIM), one or more platform-spei� models (PSM) and a set of interfae de�nitions,eah desribing how the PIM is implemented on a di�erent platform. MDA development looks at thefuntionality and behaviour of a system, independent of the platform or platforms on whih it will beimplemented. Thus, it is not neessary to repeat the proess of de�ning a system's funtionality andbehaviour when new platforms or tehnologies are developed. With MDA, funtionality and behaviourare modelled only one[55℄.The whole ethos of the MDA is to design an arhiteture and generate an appliation or systemfrom that arhiteture. Therefore, MDA models must be extremely detailed: the appliation will begenerated from it, and will inlude only those funtional omponents that are expliitly represented inthe model. MDA works by separating the business logi of an appliation (the ode that implementsits funtionality) from the infrastruture in whih it is deployed. One aptured, the business logi anbe reused in other ways with other appliations, as long as they adhere to the standards. The MDAapproah aptures business logi in reusable models that are written in a standard modelling language,suh as UML. These models form the metadata desribing the struture and harateristis of a system.

23The metadata is then used by the MDA tools to generate and deploy the appliation.MDA Development Life CyleThe MDA development life yle is not muh di�erent from the traditional life yle of many devel-opment methods. Requirements are gathered and analysed, a design is reated, ode is written andthe system is tested and deployed. The major di�erene lies in the nature of the omponents that arereated during the development proess. The omponents are formal models that an be understoodby omputers[66℄. Figure 2.1 below illustrates the MDA development lifeyle.
Requirements Analysis DeploymentTestingCoding

Low-level
design

Document PIM PSM Code Code

Figure 2.1: MDA Development Lifeyle[66℄The formal models of the MDA are:� PIM - desribes a software system that supports some business.� PSM - for eah spei� tehnology platform a separate PSM is generated.� Code - eah PSM is transformed into ode that �ts the platform tehnology.The PIM, PSM and Code are shown in Figure 2.1 as artefats of di�erent steps in the developmentlifeyle and represent di�erent abstration levels in the system spei�ation.ModelsThe UML ontains both stati and dynami modelling notation and an be used to provide stati anddynami views a software system. However, MDA makes no distintion between stati and dynamimodels. MDA regards di�erent diagrams in UML as being a view of the same model, if they are allwritten in the same language. That is, the MDA will make no distintion between a retangle thatrepresents a stati lass in a lass diagram and a retangle that represents an objet instane of a lassin an interation diagram. Models in MDA are not restrited to UML, for example, a Petrinet or ER

24model ould be used to desribe a system[66℄. If a partiular modelling language is not apable ofde�ning a spei� aspet of a system then more than one model will have to be used to de�ne thesystem.TransformationsThe MDA proess as desribed in Figure 2.1 is very similar to traditional development where transfor-mations from model to model or model to ode are done by hand. With MDA the transformations aredone by tools. Transferring a PSM to ode is nothing new, there are several very sophistiated, andnot so sophistiated, tools on the market that will do this (Together[16℄, Visual Paradigm[85℄, RationalRose[61℄). What is new is transferring PIMs to PSMs. Figure 2.2 below shows the three major stepsin the MDA transformation proess.
PIM Transformation

Tool
CodePSM Transformation

ToolFigure 2.2: MDA Transformation Proess[66℄A transformation tool takes as input a PIM and returns as output a PSM. A seond transformationtool, or the same tool depending on the level of sophistiation, transforms the PSM to ode. Withinthe tool(s) there is a transformation de�nition that desribes how the model should be transformed.ConlusionWhat stands out about MDA is that it is driven by design, but more signi�antly it uses tools totransform designs and generate ode. MDA is not so muh a method, but a proess to be usedin generating systems and any well-written modelling language an be used to model a system. Ameta-modelling language is used to transform models to models and models to ode. So long as themeta-modelling language is well-written in the same language as the model, a model an be transformedby the transformation tool. MDA itself makes no distintion about how to analyse or put together amodel of a system, it leaves that up to the expert. However, MDA an be used with the RUP or otheragile methods suh as XP. Indeed, beause hanging a model means hanging the software, the MDAapproah helps support agile software development[66℄.MDA is a step loser to the utopian goal of generating systems from reusable omponents but isworking mostly at the generative programming level as disussed by Czarneki[37℄, and not at a level ofgenerative design, whih is proposed in this thesis. For MDA to work, someone has to reate an initial

25design for a proposed system, whih is then fed into a transformation tool. A tool designed to buildarhitetures from generative design patterns ould be used to reate the models that are fed into atransformation tool.2.4 SummaryIn the study on methods it is shown that a method is a way of using an ordered set of instrutionsto selet and apply a number of tehniques and tools to identify and analyse a problem and onstruta solution to that problem. It is also shown that there are numerous development methods fromwhih to hoose. Many of the methods viewed represent what their authors see as being good softwaredevelopment pratie. The study provided a summary of those methods that gave birth to the standarddesign notation, the UML. What is evident in many of the older Objet-Oriented methods is thatthe design notations from these methods, and the UML, are not used to their fullest extent withindesign patterns, partiularly state, objet interation and use-ase diagrams. The summary on objet-oriented methods found that there are signi�ant similarities between patterns and methods. BothObjet-Oriented methods and patterns have analysis, design and implementation details ontained intheir doumentation. With modern agile methods the similarities between patterns and methods is notas strong as it is with the older methods. Where a pattern has analysis, design and implementationdetail ontained in its doumentation, whih follows the lifeyle detail of some older methods, modernmethods do not onern themselves with how to analyse or design a system.However, modern methods do have something to o�er in providing quality aspets for a generativepattern. The following points represent praties from these ontemporary methods that an be usedto doument generative patterns:� Setion 2.3.2 omments on developers who found older methods too bureaurati. As a result,many of the modern development methods are ode-oriented rather than doument-oriented. Thisaspet an be applied to a generative design pattern in that disussions about the Problem andSolution aspets of a pattern ould be kept to a minimum. More emphasis an be put intodesign and implementation, rather than analysis. In this respet, generative patterns ould movetowards a more graphial notation than textual notation { however, this aspet is an issue forfurther investigation.� One aspet that stands out with agile methods is soure ode. Again, as ommented upon inSetion 2.3.2, many of the praties of these agile methods onentrate on praties that support

26oding. Borrowing from this, more emphasis ould be put into using soure ode to demonstratethe usability of a generative pattern.� Providing more examples of soure ode supports use of the quality aspets of USDP/RUP dis-ussed in Setion 2.3.1 in that di�erent views of an arhiteture an be used to demonstrate thegenerative onept of a pattern. In this respet, several di�erent examples of soure-ode ouldbe used to explain how several patterns an work together.� Design is a key aspet of design patterns and is used to emphasise the struture of a pattern, yetdesign is used sparingly in many design patterns. The Rational Uni�ed Proess makes onsiderableuse of design tehniques, partiularly the use-ase diagram. From this it an be onsidered thatthe use-ase is a useful modelling aspet that an be used in a design pattern. The use-ase anbe used to illustrate a business aspet that is being demonstrated in a soure ode example ofollaborating design patterns.One of the funtional aspets of agile methods is exibility, in that methods an be adapted to meetthe needs of di�erent projet situations. Based on the idea of thinking in terms of di�erent projetsituations and adapting to those, whih aounts for some of the exibility of agile methods, it isoneivable that the same generative design patterns an be rede�ned with alternative examples toover a spei� software domain. For example, patterns that are aimed at desktop appliations anbe de�ned with a di�erent set of examples to patterns that are aimed at, for instane, lient / serverappliations { again, this aspet is an issue for further investigation.

27
Chapter 3UNDERSTANDING DESIGN PATTERN NOTATION3.1 IntrodutionWithin the design pattern ommunity there have ome several stylisti forms of patterns | the mostommon being the style used in the Design Patterns[45℄ atalogue. This format is often referred to asthe GoF Format (Gang of Four), whih is a referene to the four authors of the Design Patterns[45℄atalogue. Another format is referred to as Alexandrian Form | the style of pattern written by theArhitet Christopher Alexander[2℄, whose pattern language has inspired muh of the growth in writingdesign patterns. Yet another form, and one that is often used in non-software patterns and patternsthat are only disussed in brief, is the Portland Form, whih is purely narrative.How patterns are written is only one fator in understanding the nature of the pattern itself. Thishapter is an exploration of design patterns, explaining their origins, their purpose and their distintions.In attempting to understand the nature of design patterns, four di�erent pattern onepts are disussed:Idioms, Design Pattern Catalogues, Pattern Systems and Pattern Languages. Also within this hapter,the rationale behind pattern notation and how that notation should reet the ontext in whih thepattern is desribed is disussed. Knowing why a pattern is desribed in a given way is important fordesribing new pattern types or refatoring existing patterns.This hapter ontinues with a look at how elements of good pratie from within a diverse range ofdesign pattern types and styles an be abstrated for the bene�t of de�ning a generative pattern. Aseletion of pattern writers from di�erent software disiplines and pattern onepts is seleted for study.From this study the most fundamental notation is determined and seleted as being the type of notationthat an be used in a generative pattern without luttering the pattern with unneessary detail.3.2 Patterns in Objet-Oriented Software3.2.1 The Pattern ConeptThe urrent use of the term `pattern' within the software ommunity is popularised from the writings ofthe arhitet Christopher Alexander[2, 3, 4℄ who wrote several books on the topi of patterns in urban

28planning. Although these books are ostensibly about arhiteture and urban planning, many of theonepts aptured therein are appliable to many other disiplines, inluding software development[6℄.Alexander proposed that urban development should be based on a olletion of reusable patterns. Inthe software domain, olletions of patterns an be ategorized by their struture and intent. Based onstruture and intent, a Pattern System is di�erent to a Pattern Catalogue or Pattern Language, whihare de�ned by their spei�ed relationships expressed within the pattern olletions.Eah pattern desribed by Alexander represents a single element in a hierarhy known as a patternlanguage. Alexander's notion of a pattern is that a pattern desribes a problem whih ours over andover again in our environment, and then desribes the ore of the solution to that problem, in suh away that you an use this solution a million times over, without ever doing it the same way twie[3℄.This indiates that a pattern is not a �xed entity and will provide, if required, a unique solution. Whatthis implies is that the patterns an be modi�ed to suit individual needs without losing the essenethat is entral to the pattern.3.2.2 IdiomsWhilst design patterns desribe general strutural problems, idioms are less portable when viewed at thelevel of a programming language. Idioms are the lowest level of abstration in a pattern lassi�ation.Beause idioms are at a low level of abstration they are spei� to a programming language. Theydesribe how to implement partiular omponents, their funtionality, and their relationships to otheromponents in the language itself. They may also depend upon, or represent, features that are notpresent in other programming languages. For example, the pointer mehanism in C++ that has noorresponding feature in the Java programming language. Beause idioms are at the lowest level ofabstration and deal with soure ode, they represent a link between design and implementation.3.2.3 Pattern Catalogues { (Design Patterns)A pattern atalogue is typially a olletion of related patterns. It subdivides the patterns into sepa-rate ategories and may inlude some amount of ross-referening between them[6℄. Design Patterns:Elements of Reusable Objet-Oriented Software[45℄ is a benhmark example of a pattern atalogue andtypi�es the onept of the Design Pattern in software.The motivation for design patterns and/or the pattern atalogue is the onept of software reuse. Asoftware design pattern names, abstrats, and identi�es the key aspets of a ommon design struturethat make it useful for reating reusable objet-oriented systems[45℄. In a pattern language, the patterns

29are organised by the relationships between the patterns, whilst in a pattern atalogue the patterns areorganised by some lassi�ation sheme[84℄. The patterns in the Gamma[45℄ atalogue are dividedinto Creational, Strutural and Behavioural. These are subdivided by sope as being Class or Objet.The design pattern identi�es partiipating lasses and instanes, their roles and ollaborations andthe distribution of responsibilities. The notation of the pattern desribes when it applies, whether itan be applied in view of other design onstraints and the onsequenes and trade-o�s of its use[45℄.The pattern provides graphial solutions using abstrat modelling and exempli�es solutions with odefragments (whih might be thought of as being equivalent to reommending the type of briks andmortar to use in an Alexandrian solution). Unlike Alexander's pattern language, the Design Patternsatalogue was not without preedent. It follows Alexander's priniples on patterns but adapts the genrefor the software domain.Gamma's pattern atalogue onsists of 23 patterns, whih onform to a thirteen-point struture:Rule DesriptionName A name by whih the pattern is knownIntent The purpose of the patternAlso Known As A pattern of a similar nature but with a di�erent nameMotivation A senario that illustrates the design problemAppliability The situations in whih the pattern an be appliedStruture A standard modelling notation, e.g. UMLPartiipants The di�erent lasses and objets involved in the designCollaborations How the partiipants ollaborateConsequenes The way in whih the pattern supports its objetivesImplementation Pros, ons, hints, tehniques, language spei� issuesSample Code An illustration of how the pattern may be implementedKnow Uses Where the pattern has been applied in the real worldRelated Patterns Other patterns that an be used in ombination with this oneTable 3.1: Design Patterns' Notation[45℄

303.2.4 Pattern SystemsA pattern system (system arhiteture) is an extended onept of the pattern atalogue, but is onestep removed from the ompleteness of the pattern language. Some of the patterns de�ned in a patternsystem link together to form sequenes, similar to those found in a pattern language, whilst otherpatterns within the system have no diret relationship to any other pattern. Therefore, those patternsthat have no relationship with other patterns within a pattern system represent an individual solutionto a problem within the on�nes of that arhitetural onept.Although pattern languages are thought to be omplete, they are not reated omplete; they evolve overtime from pattern systems. Likewise, a pattern system may evolve over time from a pattern atalogue[6℄,indiating that some element of refatoring may take plae within the patterns of a atalogue.The onept of the pattern system is a ohesive set of related patterns that are organized into groupsand subgroups. A system desribes the inter-relationships between patterns and groups of patterns andhow they may be ombined to solve more omplex problems. The patterns in a pattern system needto over a suÆiently broad base of problems and solutions to enable signi�ant portions of ompletearhitetures to be built[6℄.A pattern system is signi�antly similar to a pattern language in terms of the relationships betweenpatterns. However, a pattern language requires that its onstituent patterns over every aspet of itsgiven domain. For example, in some given software domain a pattern language for that domain isomputationally omplete: at least one pattern must be available for every aspet of the onstrutionand implementation within that software domain | that is, there must be no gaps or blanks[20℄.Whereas, in a pattern system the patterns desribed may only over ertain aspets of the givendomain | that is, in some given software domain, that domain will not be omputationally omplete.The pattern system desribed by Bushmann[20℄ separates patterns into two ategories: those thatwill reate a system arhiteture and those that stand alone as design patterns. These patterns arethen sub-lassi�ed by their intent. Bushmann follows both Alexander's and Gamma's priniples onpatterns, adapting the genre for the system arhiteture domain.

31Bushmann's pattern system onforms to the following struture:Rule DesriptionName A name by whih the pattern is knownExample An example of where the pattern is usedContext A situations to whih the pattern appliesProblem A desription of the problemSolution A brief desription of how the solution is ahievedStruture A omplete desription of the omponents used, and any models thatmay aid in desribing omponentsDynamis A number of senarios that illustrate behaviourImplementation Guidelines for implementing the pattern. May be supplemented withabstrat or onrete ode examples.Example Resolved A disussion of the implementationVariants Similar situations where the pattern an be usedKnown Uses Where the pattern has been applied in the real worldConsequenes The way in whih the pattern supports its objetivesSee Also Referenes to related patternsTable 3.2: Bushmann's Pattern Notation[20℄In Bushmann's early writings on patterns[19℄ he had some alternatively named ategories (See Table3.3 on the following page), thereby indiating an evolutionary proess in how patterns are written anddesribed.This evolutionary proess is indiative of the aim set out in this researh program in that standarddesign patterns will be provided with the additional struture, whih will allow the patterns to evolveinto generative design patterns.

32Rule DesriptionRationale The motivation for developing the patternAppliability When to use the patternClassi�ation A pattern is lassi�ed aording to its propertiesDesription Partiipants and ollaborators in the pattern and the responsibilities andrelationships to other patternsDiagram A graphial representation of the pattern's strutureMethodology The steps for onstruting the patternDisussion A disussion of the onstraints in applying the patternTable 3.3: Bushmann's alternative ategories of Notation[19℄
3.2.5 A Pattern LanguageA pattern language an be desribed as being more than just a olletion of patterns. The patternlanguage written by Alexander explains how patterns should be applied to a greater problem thanthe problem solved by a single pattern. Alexander's book, A Pattern Language, also says that nopattern should be an isolated entity[3℄. Eah pattern an exist in the world only to the extent that it issupported by other patterns i.e. the larger patterns in whih it is embedded, the patterns of the samesize that surround it, and the smaller patterns whih are embedded within it[3℄. A popular lih�e maysuggest that the pattern language is greater than the sum of its parts. For instane, any small sequeneof patterns from this language is itself a language for a smaller part of the environment, i.e. a subset ofa higher order of the language. This small list of patterns is then apable of generating, as Alexandersays, a million di�erent elements of that environment[3℄. When patterns are put together in this waythey an reate an in�nite variety of ombinations and, therefore, an in�nite variety of solutions.Alexander also says that eah pattern is a three-part rule[3℄, whih expresses a relation between aertain ontext, a problem and a solution. With this three-part rule we an look at the patterns froma language in two ways:1. As an element in the world, eah pattern is a relationship between a ertain ontext, a ertainsystem of fores whih our repeatedly in that ontext, and some proess that allow these foresto resolve themselves. The fores are the goals that are desired when applying the pattern. Forexample, the study of algorithms in omputer siene, where the main fore to be resolved iseÆieny or time omplexity[70℄.

332. As an element of a language, a pattern is an instrution that shows how this on�guration anbe used over and over again, to resolve the given system of fores, wherever the ontext makes itrelevant[2℄.Alexander's pattern language onsists of 253 patterns, all onforming to the following seven pointstruture:Rule DesriptionName A short meaningful name whih may be an indiation of the solutionPiture An arhetypial example of the solutionProblem A set of fores that our in a given ontextContext Reurring situations to whih the pattern appliesSolution Rules applied to resolve the given foresDiagram The solution in the form of a diagramRelated patterns Higher/Lower order patterns whih onnet to the given patternTable 3.4: Alexander's Pattern Notation[3℄The struture of patterns, the methods and the proesses surrounding them are not exlusive to ar-hitetural design. The interrelationship that exists between ontext, problem, fores, and solutions,makes Alexander's framework an ideal basis for apturing other kinds of design knowledge.In Coplien's \A Generative Development-Proess Pattern Language"[29℄, a pattern language that anbe used to shape a new organization and its development proesses, is also de�ned by seven rules.However, there is no spei� rule for graphis, although graphis may appear within the oasionalpattern. Coplien separates the fores that de�ne the problem from the problem itself. He also introduesa ontext that results from the pattern after it has been applied, and a set of reasons for using thepattern, desribed as a rationale (See Table 3.5 on the following page).

34Rule DesriptionName A short meaningful nameProblem The problem in briefContext Reurring situations to whih the pattern appliesFores A set of fores that apply to the problemSolution Rules applied to resolve the problemResulting Context The result of applying the patternDesign Rationale Reasons for using the patternTable 3.5: Coplien's Pattern Notation for a Generative Development-Proess[29℄The patterns introdued by Coplien are inspired by Alexander's language and priniples. Indeed,some of the patterns in Coplien's pattern language are re�nements of Alexander's ommuniation andorganizational patterns. For example:� The philosophy of establishing stable ommuniation paths aross the industry has strong analo-gies with the Alexandrian patterns that establish transportation webs in a ity (Web of PubliTransportation[3℄). Here, the onern for Coplien is the transportation of information betweenindividuals and groups.� Many of the organization patterns are re�nements of Alexander's irulation patterns whih de�nethe higher-order pattern (Cirulation Realms[3℄). This inspired the pattern \Shaping CirulationRealms", whih ats as a building blok for other patterns in Coplien's language.Pattern languages are generative in nature in that the patterns that a given language ontains generatesystems or parts of systems, or will shape the system arhiteture in whih they are used[30℄. Coplienuses the English language as an analogy in whih he says the English language an generate all possiblepapers in onferene proeedings, so a pattern language an generate all sentenes in a given domain[30℄.That is, the letters of an alphabet work together to form words, a olletion of words form sentenes;sentenes form paragraphs and so forth. Viewed in this way, the pattern language works in the sameway as natural language.Non-generative patterns, suh as those from a pattern atalogue, are stati and passive. They maymake referenes to other patterns or may be related in some way but they are not dependent on otherpatterns, they do not generate arhitetures, and they only provide a solution to a problem in a givenarea.

353.2.6 Design Pattern StrutureBeause design patterns are primarily a ommuniation tool, written within the on�nes of a spei�onept, it is important to have a more or less standard way of desribing them[64℄. However, manystylisti variants of Alexander's pattern desription are possible. Some are written in a literary stylelike Alexander's, whilst others favour a more detailed approah used in Design Patterns[45℄. Otherpatterns may adopt a totally di�erent struture. The attribute shared by all these pattern strutures isjust that - struture[109℄. The most popular format is that used in the Design Patterns atalogue[45℄illustrated in Table 3.1.The pattern forms that exist in software di�er by the kind of template used to emphasize their message,although most forms ontain the basi ategories: name, problem, statement, ontext, desriptionof fores, solution and related patterns[52℄, interspersed with elements spei� to the pattern form.However, a omprehensive struture for a pattern format should provide: a desription of best praties,appropriate generality, evidene that the pattern reurs, sope, onstrutiveness, ompleteness, utility,examples, appropriate level of abstration, lak of originality, appropriate name and larity[70℄. Theseelements are not neessarily headings to be inluded within a pattern template, but represent elementsthat ontain the overall ommuniation riteria for a well-de�ned pattern.Quite often, the di�erenes in pattern types, suh as Arhitetural patterns, Design Patterns or Idiomsare in their orresponding levels of abstration[6℄. That is, the need to desribe the level of detailrequired for a ertain pattern type. For example, a higher level pattern suh as those for softwarearhiteture require more detail than lower level patterns suh as idioms beause an idiom is alreadyspei� to a given area and only needs to desribe its appropriateness to that area.A pattern needs to onvey a message relating to its ontext in the real world and an important step inde�ning an appropriate pattern struture for any given pattern onept is the identi�ation of a TargetAudiene[79℄. One an audiene has been identi�ed, patterns an be written for that audiene withan appropriate pattern struture. For example, patterns written for the target audiene of ataloguessuh as Pattern Oriented Software Arhiteture[20, 99℄, (POSA) or Analysis Patterns[42℄ ould havea slightly di�erent struture to patterns written for the target audiene of the Design Patterns[45℄atalogue.Meszaros and Doble[79℄ have written a number of patterns to assist in writing e�etive patterns. In thisthey de�ne a number of issues, desribed in Table 3.6, relating to the ontent of a pattern or patterntype.

36Pattern ForeMandatory Elements Not all patterns require the same kinds of information to be e�etively ommuniated.Present Capturing all elements regardless of need only lutters many patterns.For a pattern to be truly useful, it must have a minimum set of essential information.These information elements are required to allow patterns to be found when required andto be applied when appliable.If the neessary elements are missing, it beomes muh harder to determine whether thepattern solves the reader's problem in an aeptable way.There is no single orret style or template for patterns; trying to impose one ould stiereativity and get in the way of e�etive ommuniationReaders expet ertain information to be present in a pattern. This is what di�erentiatesa pattern from a mere problem/solution desription.Optional Elements All patterns do not require the same kind of information to be e�etively ommuniated.when Helpful Capturing all elements regardless of need only lutters many patterns.Table 3.6: Meszaros' Criteria on Pattern Struture[79℄The fores within the pattern \Optional Elements when Helpful" reiterate the �rst item of the foreswithin \Mandatory Elements Present", indiating that a pattern should onvey a �nite amount ofinformation but an be extended with elements aeptable within that pattern's domain, when requiredto onvey additional information.Patterns in the form adopted by Gamma, Bushmann, and other pattern writers are muh longer thanAlexander's so, although they share a ommon literary style, they provide a more detailed seletionof onrete information. Table 3.4 represents the pattern struture proposed within arhiteture fordesribing towns and buildings, whilst Table 3.5 modi�es that struture to desribe patterns relat-ing to a development proess. For software and arhitetural-software patterns, whose strutures aredesribed in Table 3.1 and 3.2, the template (the struture of the pattern) is rede�ned to inlude im-plementation details. The design pattern template used by Gamma serves to be more desriptive thangenerative. However, design patterns of Gamma and other pattern writers ould be rede�ned to makethem generative[11℄.A pattern needs to balane between providing suÆient and insuÆient understanding. If room isleft for interpretation, then di�erent readers may interpret the same pattern in di�erent ways, or maysee the pattern as being part of some other language. The impliation for the struture of patternssuggests that the struture or template for the pattern is subjet to the intended use of the pattern[92℄.

37Therefore, in order to reate generative patterns from standard design patterns a template appropriateto the intended use of the pattern is required, whih should reet the generative proess of the pattern.3.2.7 Narrative Form (Portland)All pattern forms are a narrative; they are a written desription of the knowledge and experieneof experts in the �eld. Several forms of pattern writing have already been mentioned above whilstdisussing di�erent types of patterns. The Design Patterns[45℄ atalogue and the POSA[20, 99℄ ata-logues by Bushmann use what has beome known as the GoF Format and whih is used extensivelyin one variation or another. Organizational Patterns by James Coplien[29℄, disussed above, use theAlexandrian form.One pattern form that has not been disussed is Portland Form[35, 56℄, named as suh beause theoriginators of the form ome from Portland, Oregon, USA. Portland Form, unlike other forms, is apure narrative and is often referred to as a Narrative Form. Also, unlike other formats, the PortlandForm does not use a full-featured pre-de�ned template with spei�ed headings to disuss the knowledgeontained in a design pattern. The writer of a pattern that is written in a Narrative Form may hooseto write a pattern in a set layout, and all patterns written by that person may follow that layout.However, a di�erent pattern writer may hoose to write with a totally di�erent format in the narrativestyle. Some patterns of the narrative style are written as a step-wise aount of utilizing the knowledgewithin[60℄, whilst others, suh as the Cheks Pattern Language[34, 31℄ and the Caterpillars Fate PatternLanguage[65, 31℄ are written in a few paragraphs desribing how to go about some task. Within patternsof this type, there may or may not be one or more headings that relate to a popular de�nition of apattern - the headings being Problem, Solution, Context as well as several other headings. Woolf hasused suh headings in his Smalltalk ENVY/Developer[110℄ pattern language.What an be seen in patterns of this style is a lak of �ne detail. What is often being written aboutpatterns an, in most ases, only be desribed as an overview or abstrat of what ould be ontainedin the pattern. However, many of the patterns written in this form are patterns for de�ning some formof proess. The Caterpillar's Fate Pattern Language by Kerth[31℄ is a pattern language for makingthe transformation from Analysis to Design. In patterns of this type there will often be some elementrelated to a software proess but there is no real software involved.Whilst patterns of this style provide good reading material for de�ning a software proess, there areseveral atalogues that have applied the style to software omponents. Software atalogues that arewritten in the Narrative Form retain the singular disussion, but will often exemplify the disussion

38with diagrams and in some ases with ode. The disussion of eah pattern is based on the motivatingfators of the pattern itself and any sub-headings that may be written into a pattern are relative tothat pattern only. For example, in the J2EE Design Patterns atalogue by Crawford and Kaplan[33℄the pattern Servie to Worker in J2EE has the following sub-headings:� Models and Views� Ations� The Dispather� The Front ControllerIn the same atalogue, the pattern Composite View has a ompletely di�erent set of sub-headings:� The Composite View Pattern� Implementing Composite Views� Reusing the Front Controller and Dispather� Building the Custom Tags� Using TemplatesThe patterns from this atalogue ontain ode, tips and one or more diagrams. A notable feature ofthis atalogue is that the patterns often ontain more ode than disussion. However, in most ases,the disussion does over vital aspets of why the pattern is useful and what it will ahieve, althoughhow it will ahieve its goal is not disussed in �ne detail, partiularly in respet of other patterns, whihis onsistent with the disussion in most patterns.The EJB Design Patterns atalogue by Marinesu[74℄ also embraes the Narrative Form with mostlywritten disussion, small snippets of ode and the oasional diagram. Although there are no setategories of disussion as there is in the Alexandrian or GoF formats, Marinesu's disussion of patternsdoes have some struture.

39Most of the patterns by Marinesu onform to the following struture:� Name� Identify a need� Promote a question� Disuss the problem relative to the question� Bullet point issues raised from the disussion� Promote a solution� Disuss the solution� Bullet point the bene�ts� Close the disussionNot all the patterns have this exat struture; some ontain more of the struture than others, andin varying levels of detail. For example the pattern Stored Proedures for Auto generated Keys has alengthy disussion of the problem but does not bullet point the issues raised from the disussion. TheUniversally Unique Identi�er for Enterprise JavaBeans (UUID for EJB) pattern has a short disussionof the problem with no issues bulleted, a lengthy disussion of the solution and no losing omment.The basis of this struturing is the identi�ation of a problem and the formulation of a solution,whih represents the onstituent parts of a popular de�nition of a pattern (Solution, Problem, Context,Fores). Although the patterns in this atalogue provide a reasonable disussion with some usefulinformation ontained within the ontent of that disussion, the detail in this atalogue does not mathup to the disussion provided in other atalogues suh as Core J2EE Patterns[5℄, whih may be a resultof the limited way in whih patterns of the Narrative Form are disussed.The atalogue Server Component Patterns by V�olter[112℄ presents patterns in a very similar format tothat of Marinesu. However, V�olter has no spei� points relating to issues raised by the problem orthe solution. However, one interesting feature that V�olter presents in his patterns is a artoon drawingthat summarises the pattern. It would be easy to dismiss this feature as irrelevant, but the lih�e doesmaintain that `a piture paints a thousand words' and the drawings do add some weight to the limiteddisussion of the patterns. Although the drawings add an interesting feature to the patterns it is not

40always straightforward in making the onnetion between the drawing and the purpose of the pattern.When this is the ase then the drawing is not adding signi�antly to the ontent of the pattern. Ifthis type of feature were to be added to the de�nition of a pattern then it would have to be free ofambiguity, whih would be diÆult to maintain given the varying pereptions that people may hold onusefulness of design patterns.3.3 De�ning a TemplateSo far in this hapter a number of di�erent pattern formats, styles and templates have been disussed,the purpose being to form an understanding of the pattern onept. From this understanding it isenvisaged that a template for a generative design pattern an be proposed, the template being thedi�erent notational setions inluded for disussion of the generative pattern itself. As an be seenfrom this hapter, di�erent people have di�erent ideas for what they inlude in the patterns theyare disussing. Eah of these individuals and groups of individuals has their own justi�ation forwhat they disuss in a pattern. This hapter has introdued only a small proportion of the stylistivariants that are available in the disussion of design patterns. For example, there are a numberof Hypermedia[94, 95℄ design patterns that have a template similar to the GoF format as do manyHCI[60, 105℄, User Interfae[106, 114℄ and Multimedia[36℄ patterns.However, as an be seen from the disussion above, the di�erent templates used by various pattern writ-ers inorporate many of the same named ategories, whih arry a similar disussion or have ategoriesof a similar disussion, but are introdued under an alternative name. For example, the GoF templatehas the heading Struture whilst the Alexandrian template uses Diagram. Both headings have thesame intent in that they produe a graphial representation of the solution. V�olter's Server ComponentPatterns, although without named heading, uses a artoon, whih is equivalent to Alexander's Drawingomponent in his template.Table 3.7 lists a seletion of pattern writers and the notation that they use in desribing patterns:

41WritersHCI Hypermedia Multimedia Software User I'fae Web App OtherNotation [60, 105℄ [46, 72, 94℄ [36℄ [20, 45, 48, 102℄ [27, 106, 114℄ [5, 50, 81, 103℄ [3, 29℄Also Known As - - - [20, 45℄ - - -Appliability - [46, 72℄ - [45, 102℄ - - -Appliations - [46℄ - - - - -Bakground [60℄ - - - - - -Bad Example [60℄ - - - - - -Bene�t/Drawbaks - - - [102℄ - - -Collaborations - [46, 94℄ - [45℄ - - -Comments - - [36℄ - - - -Consequenes - [46, 94℄ - [20, 45, 48℄ [27℄ [5, 50, 103℄ -Consider ... [60℄ - - - - - -Context [105℄ - - [20, 48℄ [27℄ [50, 81℄ [3, 29℄Desription - - - [102℄ - - -Design Rationale - - - - - - [29℄Diagram - [46℄ - - - - [3℄Dynamis - - - [20℄ - - -Example - - - [102℄ - - -Example (Graphi) [60, 105℄ [72℄ [36℄ [20℄ [106, 114℄ - -Example Resolved - - - [20℄ - - -Fores [105℄ - - [48℄ [27℄ [5, 50, 81, 103℄ [29℄How - - - - [106℄ - -Implementation - [72, 94℄ - [20, 45, 48, 102℄ - [50, 81, 103℄ -Table 3.7: Varying Uses of NotationContinued on next page.

42Varying Uses of Notation ontinued: WritersHCI Hypermedia Multimedia Software User I'fae Web App OtherNotation [60, 105℄ [46, 72, 94℄ [36℄ [20, 45, 48, 102℄ [27, 106, 114℄ [5, 50, 81, 103℄ [3, 29℄Introdution - - - [102℄ - - -Intent - [46, 72, 94℄ - [45℄ - [103℄ -Known Uses - [46, 94℄ - [20, 45℄ [27℄ [50℄ -Motivation - [46, 72, 94℄ - [45℄ - - -Notes [105℄ - - - - - -Partiipants - [46, 72, 94℄ - [45℄ - [5, 103℄ -Piture - - - - - - [3℄Post-ondition - - [36℄ - - - -Pre-ondition - - [36℄ - - - -Problem [60, 105℄ [94℄ [36℄ [20℄ [27, 114℄ [5, 81, 103℄ [3, 29℄Properties - - - [102℄ - - -Purpose - - - [102℄ - - -Rationale - [46℄ - - - - -Related Patterns - [72℄ - [45, 48, 102℄ [27℄ [5, 50, 81, 103℄ [3℄Resulting Context [105℄ - - - - [81℄ [29℄Sample Code - - - [45, 48℄ - [5, 50, 103℄ -See Also - - - [20℄ - - -Solution [60, 105℄ [72, 94℄ [36℄ [20, 48℄ [27, 114℄ [5, 50, 81℄ [3, 29℄Struture - [46, 94℄ [36℄ [20, 45℄ - [5, 103℄ -Synopsis - - - [48℄ - [50℄ -Thumbnail - - - - [27℄ - -Table 3.7 Varying Uses of Notation - ContinuedContinued on next page.

43Varying Uses of Notation ontinued: WritersHCI Hypermedia Multimedia Software User I'fae Web App OtherNotation [60, 105℄ [46, 72, 94℄ [36℄ [20, 45, 48, 102℄ [27, 106, 114℄ [5, 50, 81, 103℄ [3, 29℄Variants - - - [20, 102℄ - - -When to Use - - [36℄ - [106, 114℄ - -What - - - - [106℄ - -Why - - - - [106, 114℄ - -Table 3.7 Varying Uses of Notation - ContinuedAlthough the list of notations desribed in Table 3.7 ould be extended further by inluding notationsused by all known pattern writers and known atalogues, it is felt that extending the table would notadd to the goal of �nding an aeptable list of usable notations for a generative pattern. Some of thenotations that are displayed in the above table represent similar information but have been disussedunder an alternative name by di�erent pattern writers. For example, Problem, whih is used by themajority of writers listed and Introdution, used by Stelting[102℄ are essentially the same | they disussa reurring problem. Synopsis by Grand[48, 50℄ and Bakground by Hong[60℄ also share similar intentin their detail in that they provide an overview of the patterns in whih they our. Although di�erentpattern writers use di�erent headings in their notation, they are not providing dissimilar informationin what they write under those spei� headings. Therefore inluding all notations would only add tothe task of �ltering out related and lesser-used notations.A unilateral deision ould be made on what notation to inlude in a generative design pattern, howeverit would be useful to �nd out what di�erent notations have to o�er in the way of desribing a designpattern. From this understanding of what an be desribed as good pratie in desribing patternsa deision an be made on what to inlude in the notation of a generative pattern. Some notationsdisplayed in the above table are obsure and only used by a single pattern writer, whilst only a smallminority of writers may use some notations. Other notations are used by a majority of writers and aretherefore pereived as being an important fator in desribing spei� types of pattern. In the ase ofSolution and Problem, these are indiative of a ommon de�nition of a pattern | that it is a Solutionto a Problem in a Context. Others suh as Sample Code are indiative of patterns that an providethis type of information.

44Two riteria an be used for �ltering out related and obsure notation:1. Amalgamate related information.2. Remove obsure and seldom used notation.From this position a portfolio of notation an be aquired that will serve as an appropriate soure ofinformation for desribing a generative pattern. The notation that is left in the list will have beendevised by experts, be used by multiple experts and used in a range of di�erent pattern styles.Firstly, related information an be amalgamated into a single notation. The reason for amalgamatingnotation �rst is that some amalgamated notation may still ome under the riteria of being obsureand seldom used. For example, \See Also" and \Consider..." both represent similar information aboutthe patterns they desribe. \Consider..." is in a HCI pattern and \See Also" is in a Software pattern.Although both of the pattern types relate to software through design and development, they don'tadd to the general information of an individual design pattern | they are only direting the reader tosome other pattern. Although they have been amalgamated, they an still ome under the ategory ofobsure and seldom used, as there is still only a small minority of writers who have used this type ofnotation.For the purpose of larity, any amalgamated notations are given the name of one of the notations fromthe group that is amalgamated. In all ases the most popular name has been hosen to represent thegroup of amalgamated notations. For example, in the group `Consequenes', Consequenes is used bynine of the pattern writers, whilst di�erent writers use the other notations in the group sporadially.

45Table 3.8 represents the related notations that an be amalgamated into single notations.Notation Original Notation About the Notation NotesRelated Consider ...[60℄ Provides a list of patterns that The notation refers to other patterns thatPatterns omplement the existing pattern. provide a similar solution. In the ase ofRelated Patterns Names other patterns, whih an be used Consider... the notation provides a list of[3, 5, 27, 45, 48℄ with the existing pattern. More often other patterns but does not indiate a[50, 72, 81, 102℄ names patterns that perform a similar ollaboration or variation. Both Bushmann[103℄ funtion to the existing pattern [20℄ and Stelting[102℄ have dual entries.See Also[20℄ A referene to patterns that solve similar It is felt that a variation of a pattern isproblems, and to patterns that re�ne the a pattern in its own right that holds someexisting pattern onnetion to the existing pattern.Variants[20, 102℄ Other patterns that are assoiated with orare variations of the existing patternIntent Bakground[60℄ Some rudimentary information desribing The notations that ome under Intent, as theythe need for the pattern. are used by most writers, represent some formIntent[45, 46, 72℄ A short statement relating to design issues of introdution to the pattern. The brief[94, 103℄ or problems that the pattern may address. desriptions that are used under this notationIntrodution[102℄ A desription of the problem where the are providing an overview of the pattern relatingpattern might be used as a solution. to its purpose and what an be ahieved throughPurpose[102℄ A short statement relating to design issues its use. Some writers have inluded informationor problems that the pattern may address. about the problem and several have brieySynopsis[48, 50℄ A brief desription of the pattern that desribed a solution. Whilst most patternonveys the essene of the solution. writers provide just a few lines of introdution,Thumbnail[27℄ Brief notes on the problem and solution Stelting[102℄, provides a deeper insight into theWhat[106℄ A short statement of design issues problem and solutionTable 3.8: Amalgamating NotationContinued on next page.

46Amalgamating Notation ontinued:Notation Original Notation About the Notation NotesExample Diagram[3, 46℄ A piture or sketh that shows the Bushmann[20℄ has a written explanation of(Graphi) possible output from using the pattern. the example but always provides a skethExample[20, 114℄ An example in the form of a graphi. to bak up his argument. Alexander[3℄ shows[36, 60, 72, 106, 105℄ Can be a sketh or a piture. how the pattern an be applied and how itPiture[3℄ A snapshot of a known example of has been applied. Some writers provide anwhere the pattern has been used. image but do not put it under a heading.Comments Comments[36℄ Additional omments about the pattern Tidwell's[105℄ Notes are more anedotal whilstthat have no plae in the main notation Cybulski's[36℄ Comments and Bushmann's[20℄Example Resolved Aspets about the pattern that are not Example Resolved are more additional to the[20℄ overed in the main notation. existing notation. Mirosoft[81℄, uses ResultingNotes[105℄ A disussion about the environment Context to disuss bene�ts and liabilities.in whih the pattern an be appliedFores Appliability[45℄ Situations in whih the pattern an be In most ases, Fores an be seen asapplied. pre-onditions for the solution. An alternativeFores[105, 48, 27℄ Considerations that lead towards a view ould see Fores as being a list of[5, 50, 81, 103, 29℄ solution, often written as a number requirements. Therefore Fores ould be seenof one line statements. as being a short form of requirements analysis.When to use[36℄ Situations in whih the pattern is Analysis is a life-yle feature that is mentionedappliable. in Chapter Two and inluded as part of thegenerative pattern in Chapter SixTable 3.8 Amalgamating Notation - ContinuedContinued on next page.

47Amalgamating Notation ontinued:Notation Original Notation About the Notation NotesConse- Bene�ts/ The onsequenes of using the pattern The various notations under Consequenes are-quenes Drawbaks[102℄ and issues that may arise from its use. disussing the bene�ts and drawbaks of usingConsequenes[46℄ Trade-o�s, results and issues of the pattern. An alternative way of looking at this[45, 94, 20, 48, 27℄ using the pattern, inluding any element of notation is to see it as a onlusion to[5, 50, 103℄ bene�ts and drawbaks. the desriptive nature of the pattern. However, ifRational[46℄ Bene�ts of using the pattern. Consequenes is viewed this way then it shouldWhy[106, 114℄ The bene�ts the pattern will bring. appear at the end of the pattern desription.Resulting Context The expeted results of using Germ�an[46℄ uses both Consequenes and Rational.[105, 81, 29℄ the pattern.Problem Context[20, 48, 105℄ The situations in whih a problem There are di�erent interpretations on what is[27, 50, 81, 3, 29℄ may exist, or a desription of a de�ned as being Context and Problem. Grand[48℄problem addressed by the pattern. states diretly that Context \desribes the problemthat the pattern addresses". Bushmann[20℄ usesDesription[102℄ A disussion of the pattern and/or one line of text to desribe the ontext in whih thethe problem. pattern applies, and follows up with a long passageon the Problem. Grand[48℄ on the other hand usesMotivation[46, 72℄ A disussion of the problem and Context to desribe the whole problem and follows[94, 45℄ the situations in whih the problem up with a signi�ant disussion of Fores. Coldeweymight our. [27℄ and Mirosoft[81℄ use a short passage forContext, whih desribe a number of problems, thenProblem[60, 105℄ A general disussion of a problem desribes the Problem as a question. Tidwell[105℄[94, 36, 20, 27℄, [29℄ that may apply in a development also asks a question of the Problem but only has[114, 5, 81, 103, 3℄ proess one or two sentenes relating to the Context.Table 3.8 Amalgamating Notation - ContinuedContinued on next page.

48Amalgamating Notation ontinued:Notation Original Notation About the Notation NotesPartiipants Collaborations[45℄ How the various partiipants Most pattern writers that use this notation give a[46, 94℄ in the pattern ollaborate. brief desription of the partiipants. Gamma[45℄Partiipants[45℄ Classes and Objets that Rossi[94℄ and Germ�an[46℄ follow this up with a[46, 72, 94, 5, 103℄ partiipate in the pattern few sentenes on how the partiipants ollaborate.It is interesting to note that Stelting uses thenotation, `Implementation' to disuss partiipants.Implementation Implementation Issues that may arise from Several pattern writers have separate setions for[81, 46, 72, 94, 103℄ implementing this pattern. Implementation and Soure Code. However, these[20, 45, 48, 102℄ May ontain sample ode to notations are omplementary as they both relateillustrate the issue. to the implementation of the pattern. It an alsoSample Code[45℄ A oded example, often be observed that writers are often disussing[5, 50, 48, 103℄ aompanied by the onsequenes of implementing the pattern.implementation issues. Stelting's[102℄ version of `Implementation' is toExample[102℄ A oded example, with disuss partiipants of the pattern.instrutions. Bushmann uses Dynamis to disussDynamis[20℄ Three typial examples of the implementation details.pattern in useKnown Uses Appliations[46℄ Some known appliations of Germ�an[46℄ uses Appliations and Known Usesthe pattern interhangeably.Known Uses[46℄ Some known appliations of[20, 45, 27, 50, 94℄ the patternTable 3.8 Amalgamating Notation - ContinuedFrom the notations that have been ollated, as used by the referened olletion of pattern writers,thirty-seven of the original forty-six notations, desribed in Table 3.7, have been amalgamated into alist of ten distint notations. Eah of the ten notations is derived from notations with similar intent andfuntionality and therefore an be stated as an individual omponent in a design pattern. It is felt that\Fores" and \Problem" are inexorably linked and as suh, Fores ould be stated or desribed as partof the disussion of the problem. Alexander[3℄, who is ited in most disussions on patterns, does not usethe notation Fores in his patterns, although he does refer to the term fores on several oasions. Theuse of the notation Fores stems from early pattern writers who have disussed Alexander, and made

49strong referenes to the term Fores in their desription of Alexander's notation Problem. Lea[69℄, forexample, states of Alexander's Problem notation, \A desription of the relevant fores and onstraints,and how they interat". Hene, several pattern writers have taken it upon themselves to separateout Fores from Problem, inluding Coplien[29℄ | Table 3.5. In an attempt to simplify patterns andrewrite them to be more aessible to novie users, Fores and Problem will be uni�ed under thenotation Problem.From the original olletion of pattern notations, as listed in Table 3.7, there are still nine notationsto onsider. Eah of these nine notations is individual in nature and will not �t neatly into any of thenotations of the amalgamated list. For example, Pre-Condition and Post-Condition ould �t in withComments, but Pre-Condition ould also �t into Intent, Fores or Problem. Therefore it seems �tting toonsider any remaining notation on its own merit. Consideration for the remaining notations is based ontheir frequeny of use by the pattern writers. The riterion for retaining any given notation is that it isused by the majority of writers. Also taken into onsideration at this point is the amalgamated notation.As stated earlier, there are two riteria for �ltering out notation: similarity and obsurity. Some of theamalgamated notation is still obsure and therefore will be �ltered out. There are exeptions to therule for �ltering out obsure notation. For example, Dynamis[20℄, although an obsure notation, isa quality driven onept of a pattern. For a pattern to be aepted as a pattern it has to have threeknown uses and Dynamis, as used by Bushmann[20℄, provides three examples of using the pattern.Table 3.9 below lists the notation that is not onsidered for use in the future de�nition of a generativepattern:Notation About the Notation NotesAlso Known As[20℄ Other names for the pattern. Only used in the atalogues of Gamma[45℄ and Bushmann[20℄, two early[45℄ pattern writers. Adds nothing to the pattern in question and attratsfew entries in their atalogues, partiularly that of BushmannTable 3.9: Rejeted NotationContinued on next page

50Rejeted Notation ontinued:Notation About the Notation NotesBad Example[105℄ Plaes where the pattern has been An obsure notation that is only used by one patternapplied but is not user friendly writer. May be appropriate for HCI patterns, but not forsoftware patterns. However, for software patterns thistype of notation ould be useful in an Anti PatternDesign Rational[29℄ Reasons for using the pattern. Used by Coplien[29℄, Table 3.5, in his Development Proesspattern language. Not stritly a software based notation.Could have been amalgamated with Comments, Intent orFores as it provides some bakground information.How[106℄ A desription of how the pattern ould Used by only one pattern writer. It ould be amalgamatedbe used. with Implementation as it ontains, among otherinformation, instrutions on how to apply the pattern.Post Condition[36℄ What the artefat to whih the pattern Post Condition represents something of a onlusion, whihhas been applied should look like after all good doumentation should have. However, thisappliation of the pattern. notation is only used by one pattern writer, and an bestated as part of the Implementation details.Pre Condition[36℄ Conditions that should exist before the Pre Condition desribes what needs to be in plae beforepattern is applied. the pattern an be applied. It is diÆult to asertain as towhether this notation should �t in with Intent, Problem,Fores or none of these notations.Properties[102℄ The purpose/lassi�ation of the pattern. Used by only one pattern writer. See belowTable 3.9 Rejeted Notation - Continued

51Table 3.10 below lists the amalgamated notation that is not onsidered for use in the future de�nitionof a generative pattern:Amalgamated Notation (Rejeted)Example (Graphi) Used by almost half of the seleted pattern writers but not signi�antly by writers where software odeis being onsidered. Bushmann[20℄ uses a graphi to emphasise a point and Germ�an[46℄ uses a diagramto show partiipants, whih are not, in most ases, lass based omponents. Other pattern writers, are forthe most part, showing a desired or �nished produt as a result of applying the pattern. It is thereforefelt that an example graphi would not add signi�antly to a software based pattern.Comments Used by only a small number of the seleted pattern writers. Comments are often only used to providesome additional bakground information. Any vital information about a pattern an be written into themain ontent of the pattern itself. In Bushmann's[20℄ ase, where he uses Resulting Context, this anbe seen as something of a Conlusion and an be built into the implementation details of a pattern oran be written into a onlusion to the pattern doument. The notation Consequenes is seen assomething of a onlusion and would be an ideal plae to �t any meaningful omments.Known Uses Known Uses is only used by a small number of the seleted pattern writers. This, in the �rst instane,seems to be a problem in the desription of some patterns in that this notation is not onsistently usedthroughout pattern writing. Known Uses is one of the aepted priniples of a pattern in that it shouldhave as a minimum three known uses to be onsidered a pattern. However, some pattern writers useexamples (graphis) to show where a pattern is being implemented | but not always three examples.As just indiated, Known Uses is a priniple onept of a pattern and needs to be retained in someform. However, there are no known uses of generative patterns as they are presented in this thesistherefore, this notation is removed in name. However, the onept of three known uses will be presentedunder the name of Dynamis. That is, Dynamis, as will be used in a Generative pattern, will representthree examples of generative patterns rather than three known uses of generative patterns.Table 3.10: Rejeted Amalgamated Notation
From the original list of used notations desribed in Table 3.7, seven notations have been removedfrom onsideration for use in a Generative pattern on the grounds that they are obsure. Of the ninenotations that were reated through amalgamation, three have been disarded on the grounds that theamalgamated notation is still obsure. However, there are some obsure notations inluding those notyet onsidered (Dynamis and Struture) that deserve speial onsideration.

52� Dynamis[20℄, although an obsure notation, is a quality driven aspet of Bushmann's[20℄ designpatterns. For a pattern to be aepted as a pattern it has to have three known uses and Dynamis,as used by Bushmann[20℄, provides three examples of using the pattern. It would be a fault inthe notation to speify generative patterns in a dynami way and not onsider using Dynamis asa heading within that notation. Dynamis an be amalgamated with Implementation as indiatedin Table 3.8 therefore, Dynamis will be used as the main notation for providing three di�erentsenarios of how two or more patterns will work together, whilst Implementation will be theheading for the inluded soure ode.� Struture, like Dynamis, omes under the ategory of obsure. However, Struture in softwaredesign patterns represents a design notation, often written using a modelling notation suh asUML. One of the key aspets of a design pattern is design and although Struture is not used bythe majority of pattern writers, a software design pattern is not a pratial solution to a designissue without the design notation to demonstrate how the problem is being solved. ThereforeStruture has to be inluded as an element of notation in a design pattern.� Partiipants also omes under the ategory of obsure. However, it would be extremely diÆult todisuss a software pattern and not disuss its partiipants. Therefore, the notation Partiipantsneeds to be inluded in a pattern in some form. In this respet, Partiipants is to be inluded ina pattern as a sub-heading within the Implementation aspets of the pattern - See Chapter Six.� In the ase of Properties[102℄, Properties is used by only one of the listed pattern writers, and isonsidered to be an overlooked aspet of a software pattern. The notation `Properties' refers tothe lassi�ation and sope of a pattern. Gamma[45℄ de�nes eah of his patterns by lassi�ationand sope but does not disuss this under a notation. Although the use of Properties as a notationis extremely limited, lassifying patterns is an important fator of de�ning good quality softwaredesign patterns. Again, although Properties will be �ltered out by name, for a Generative pattern,the properties of a pattern will be revealed by the relationship that any given pattern has withanother pattern - See Chapter Four.The only notation not yet onsidered from the original forty-six notations listed in Table 3.7 is Solution.Solution is the most popular of the doumented notations, used by fourteen of the nineteen listed patternwriters. Of the four software pattern writers, it is only used by two of them. It is interesting to notethat Solution is not used in the Design Patterns[45℄ atalogue despite the authors indiating that apattern has four essential elements, Solution being one of them. As the most popular of the notations

53listed, Solution will be used in the de�nition of a generative design pattern. This links in with theProblem notation in that a pattern is often de�ned as being a solution to a problem { it is �ttingtherefore, that both these notations are to be used.From the original list of forty-six there are a total of nine notations that represent a list of headings thatan be adequately used to desribe a generative design pattern. The list represents the most signi�antnotations that are used by the majority of pattern writers in desribing a design pattern and thosenotations that are not widely used.Table 3.11 below represents the list of nine notations that will be used in de�ning a Generative pattern.The order of the list at this point is not representative of the format for a generative pattern. Formattingof the pattern will be onsidered in Chapter Six.Notation RationalConsequenes A onlusion to the pattern doument, highlighting any advantages or disadvantages of using the pattern.Certain issues may arise from using this pattern therefore they should be disussed at this point.Dynamis Three examples of generative patterns in use, with instrutions on how to implement the pattern.Can be linked to Implementation to give a omplete overview of how patterns are ollaborating.Implementation Examples of soure ode showing how patterns work together. Elements of Struture (design) an beinluded to illustrate how the Partiipants of the pattern ollaborate.Intent Intent represents an introdution to the pattern. It an desribe the origins of the pattern or the need forthe pattern itself. It may outline di�erent Problem senarios or a Solution that will ome from using thepattern. A design pattern is a doument of good pratie and all good quality douments will or shouldome with an introdution. Intent an �ll the plae of an introdution in a design pattern.Table 3.11: Aepted NotationContinued on next page

54Aepted Notation ontinued:Notation RationalPartiipants The individual omponents that partiipate in the de�ned struture of the pattern. Partiipants an bedisussed within a pattern as a sub-heading of the notation Implementation. Within the notation ofPartiipants, how eah omponent ollaborates an also be disussed.Problem A problem that an be addressed by the pattern. Amalgamated with Context and Fores throughinterdependeny. A Solution that is provided by the pattern is derived from a spei� Problem assignation.A Problem is de�ned by the Context in whih it arises and the Fores that drive the Problem. Any hangein Context or Fores reveals a new Problem or leads to an alternative Solution. Eah example in agenerative pattern will require its own Problem spei�ation.Related Patterns In the ontext of a Generative pattern, Related Patterns refers to patterns that will ombine with theexisting pattern, and not to patterns that represent a similar solution. See Chapter Four.Solution The Solution is a resolution of the de�ned problem. A Solution is unique to a problem, therefore, eahexample in a Generative pattern will require its own problem spei�ation. Although the Solution given ineah example may be similar, eah will be di�erent based on the de�ned problem.Struture Struture represents the design onsiderations for the spei� Solution to the de�ned Problem. If a patternis de�ned with three examples, then eah example should be supported by the appropriate design struture.In order to onvey alternative design strutures for the pattern, alternative Problem/Solution pairingsshould be presented.Table 3.10: Aepted Notation ContinuedThe main issue in de�ning a suitable notation for design patterns is interpretation. As has been seenin this disussion, di�erent pattern writers have plaed their own interpretation on how to desribea pattern. Some of the interpretation used has a ommon theme, whilst others are unique to anindividual, or pattern style or type. The de�ning fator in desribing a pattern is onveying relevantinformation about the knowledge represented in a pattern. Meszaros and Doble[79℄, see Table 3.6,desribe the issues relating to de�ning a pattern, and their main issue is not luttering the patternwith unneessary detail. However, as they onvey, spei� information needs to be present within thepattern or the reader will not be able to determine if the pattern will solve their problem. The listof headings in Table 3.11 are drawn from a seletion of experts in their �eld and together provide therelevant information about a pattern without luttering the pattern with unneessary detail. How theseheadings and relevant information are applied to a pattern is disussed in Chapter Six.

553.4 SummaryThe study of design patterns has looked into pattern origins and the di�erent pattern styles andabstrations that have emanated from the onept. The patterns that have now been de�ned rangefrom ode spei� patterns (Idioms), to pattern languages written for a given ontext (Arhiteture,Proess, Software). An integral part of the study of design patterns sought to gain an understandingof the rationale behind a pattern notation. The output from this study lists four di�erent patternabstrations (Idioms, Catalogues, Systems and Languages) and three di�erent pattern styles (GoF,Portland and Alexandrian).All the di�erent patterns onsidered, whether they be type abstrations or partiular styles, are alltext based patterns. However, there are some patterns that have a high degree of graphial notation.The user interfae patterns by Hong and Tidwell use sreenshots to emphasise how the pattern an beapplied or where they should be applied. Larman also uses a high degree of design graphis (UML) indemonstrating Analysis Patterns. As a notation, graphis an be applied if it will serve the purpose ofdemonstrating the uses of the pattern. Cooper, like Hong and Tidwell uses sreenshots to demonstratethe output of using a pattern. It is not inoneivable that a design pattern ould be purely graphial,in that there is a minimum amount of text in the pattern and the majority of the pattern is graphisand design notation, however, no evidene has been found to suggest patterns of suh nature exist.It is also determined within this study that design patterns should be strutured to the ontext in whihthey are being written and the audiene at whom they are aimed. Therefore, spei� types of patterns(HCI, Proess, Software) have alternative notations. However, di�erent types of patterns have manysimilarities and it is these similarities that de�ne the overall ommuniation riteria for a well-de�nedpattern. In ompleting this study a pattern notation has been abstrated that represents the de�nitivenotation used by experts in pattern writing and it is this notation that will be used for de�ning agenerative design pattern.

56
Chapter 4RELATIONSHIPS BETWEEN PATTERNS4.1 IntrodutionThere are potentially hundreds of patterns that ould be rede�ned as generative patterns, whih withinthemselves ould de�ne many hundreds of dynami relationships to the other patterns. It would,therefore, be appropriate to produe a standardised way of de�ning the relationships between olletionsof patterns | the objetive being that a pattern de�ned or rede�ned as generative by any givenindividual, an be read and understood by any other pattern reader, writer or developer, inludingnovie developers.The fous of many researh papers has been on the patterns desribed within the Design Patterns[45℄atalogue. These patterns are aepted by many in the software industry as being benhmark patterns,and have been the inuene for many other pattern writers. There are hundreds of software patternspublished in many di�erent texts but the patterns de�ned by Gamma and olleagues are probablythe best known and therefore make an ideal representative seletion of patterns from whih to disussnew tehniques of pattern de�nition and writing. In modifying stati design patterns to be used asgenerative design patterns it is neessary to establish how pattern X is related to pattern Y. In thefollowing disussion on the de�nition of relationships between patterns, one atalogue and two individualareas of researh are onsidered:� The demaration of patterns based on the type lassi�ation in the Design Patterns[45℄ atalogue.� The demaration of patterns based on the problem solving lassi�ation of Tihy[104℄.� The relationship between patterns based on the lassi�ation of relationships by Zimmer[119℄.Both of the individual areas of researh by Zimmer and Tihy identi�ed above have used the DesignPatterns[45℄ atalogue as their primary soure of material for their own elements of disussion. Thedisussion within this thesis retains the Design Patterns[45℄ atalogue as the patterns hosen for study.Within this hapter the relational requirements of generative design patterns are disussed. This is

57onsidered from the point of view of how stati design pattern notation an be rede�ned to realize theomponent's potential as a generative omponent.4.2 Classi�ation of Design Patterns4.2.1 High Level Classi�ationThere are many di�erent types of patterns with di�erent roles and funtionality. In order to de�negenerative patterns whereby di�erent patterns will work together to produe systems, it is neessaryto establish whih patterns will ollaborate. Patterns as they are urrently de�ned do not providesuÆient information as to whih other patterns they will readily ommuniate with. In order to de�nea ommuniation protool for design patterns, and thereby use them to build systems, it is neessarythat the purpose of the design pattern is established. If we an determine what a pattern does, then wean establish some rules on whether it an be applied in ollaboration with another pattern. Rules arerequired as it may be possible for two patterns to work together although there is no pratial reasonfor them to do so. However, determining pratiality an be established through experimentation andexpliitly written into the details of a pattern.The atalogue of Design Patterns[45℄ referred to in Chapter Three by Gamma and olleagues arelassi�ed by two riteria; Purpose and Sope. Sope spei�es whether a pattern is appliable to a lassor an objet.
Purpose

Creational Structural Behavioural
Factory Method Adapter (class) Interpreter

Template Method

Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Stratergy
Visitor

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Abstract Factory
Builder
Prototype
Singleton

Class

Object

Scope

Table 4.1: Design Pattern Classi�ation[45℄However, the main interest for this body of researh, in lassifying design patterns, reets what thepattern does in terms of the purpose of the pattern, whih is the riteria being sought. Table 4.1,

58presented by Gamma and olleagues, sets out the lassi�ation of the patterns in the Design Patternsatalogue.As an be seen from the table there are three di�erent types of pattern de�ned by the Design Patterns[45℄atalogue; Creational, Strutural and Behavioural. Although the atalogue and the patterns themselvesmay desribe why a pattern is Creational, Strutural and Behavioural the immediate informationprovided by the pattern is not suÆient to desribe a relationship to another pattern. If the relationshipbetween pattern types is de�ned at this level of abstration then it ould be argued that all relationshipsbetween individual patterns are the same and that all patterns irrespetive of their type or funtionalitywill ollaborate. It ould be possible that all patterns, irrespetive of their type or funtionality, willollaborate for the simple reason that the ollaboration ould be fored. However, the question arisesas to why one would do this if it is not pratial to do so. For example, it may not be pratial forertain Creational patterns to work with ertain Behavioural patterns. The type abstration within apattern at this level an be seen as a generi lassi�ation where a relationship ould be applied to anypattern within that type or to any pattern of a di�erent type. At a lower level of abstration a patternmay de�ne a relationship that only exists between patterns that solve a partiular type of problem.However, from the Design Patterns atalogue it is known that there are relationships between patternsthat have been de�ned at this level of abstration[45, 119℄.Eah pattern in the Design Patterns atalogue omes under one of these ategories { Strutural, Cre-ational and Behavioural. Figure 4.1 shows the Creational lassi�ation of the patterns within theatalogue.
Creational

Abstract
Factory

Builder
Factory
Method

Prototype SingletonFigure 4.1: Relationships Between Design PatternsIn de�ning the relationships between di�erent lassi�ations of pattern, a given pattern from anylassi�ation has three high-level relational options. For example, a strutural pattern may be relatedto another strutural pattern, a reational pattern or a behavioural pattern. Some patterns may berequired to de�ne a relationship to three di�erent lassi�ations whilst other patterns may only need todesribe one or two relationships. For example, the strutural pattern Composite de�nes a relationship

59to strutural, reational and behavioural patterns whilst the reational pattern Abstrat Fatory onlyde�nes relationships to other reational patterns[45, 119℄.Writing this in terms of the notation of a pattern, we an add this information to the pattern desrip-tion. For the Composite pattern, whih is lassi�ed in the Design Patterns[45℄ atalogue as ObjetStrutural, under the heading Related Patterns we an add information about related patterns andtheir lassi�ation. Table 4.2 below represents the proposed desriptive information for a generativedesign pattern.Related PatternsClassi�ation typesStrutural (Flyweight, Deorator)Commentary......Creational (Builder)Commentary......Behavioural (Visitor, Interpreter, Iterator, Command, Chain of Responsibility)Commentary......Table 4.2: Logial Information for a Generative Design Pattern - Iteration 1
4.2.2 Low Level Classi�ationThe atalogue of patterns presented by Gamma represents a de�nitive olletion of available patterns.Tihy[104℄, on the other hand, de�nes a atalogue of over 100 general-purpose patterns, although thepatterns are not de�ned in detail as in the ase of Gamma. Although Tihy does not de�ne rela-tionships between patterns he does lassify patterns by the problems that they solve. Whilst Gammade�nes three families of purposeful patterns, Tihy's lassi�ation ontains nine separate problem solv-ing ategories[104℄:1. Deoupling: Dividing a software system into independent parts in suh a way that the partsan be built, hanged, replaed, and reused independently.2. Variant Management: Treating di�erent objets uniformly by fatoring out their ommonality.3. State Handling: Generi manipulation of objet state.

604. Control: Control of exeution and method seletion.5. Virtual Mahines: Simulated proessors.6. Conveniene Patterns: Simpli�ed oding.7. Compound Patterns: Patterns omposed from others, with the original patterns visible.8. Conurreny: Controlling parallel and onurrent exeution.9. Distribution: Problems relevant to distributed systems.In the ase of Tihy, there is a deeper level of re�nement in the lassi�ation. In desribing therelationship between di�erent types of patterns, it ould be useful as a desriptive element to disusshow di�erent lasses of pattern interat based on the type of problem they solve, partiularly where sub-systems or non-funtional elements are onerned. This an be ahieved by introduing problem solvingproperties into a pattern based on Tihy's lassi�ation. With the implied detail that is ontainedwithin the problem type lassi�ation, Tihy's lassi�ation an be de�ned at a lower level than thelassi�ation presented by Gamma. By lower level it is implied that Tihy's lassi�ation types area sublass of the Gamma lassi�ation types. Tihy's lassi�ation relates to spei� problems orareas of onern whereas Gamma's lassi�ation is generalised within three areas. For example, aStrutural de�nition, as de�ned by Gamma, indiates that the pattern will represent some aspet ofthe basi framework of a system, whereas the onept of Deoupling, as de�ned by Tihy, provides alevel of detail that desribes how ertain aspets of the base framework an be separated out for easeof development and maintenane.In attempting to determine whih patterns are best suited to ommuniate in a generative patternlanguage, information about the patterns and their purpose is going to play an important role. Figure4.1 shows that ertain patterns, as lassi�ed by Gamma, are de�ned as Creational patterns. We annow add information to those patterns based on the lassi�ation provided by Tihy. Figure 4.2 onthe following page uses the same Creational patterns as is ontained in Figure 4.1 but whih are nowextended with an additional level of information. The information as it is presented is analogous toan inheritane hierarhy where the top level of the tree ontains base information. Lower levels of thehierarhy ontain more detailed information that is spei� to the omponents at that level. To thisend, the tree represents a lassi�ation hierarhy of information.

61
Variant

Management
State Handling

Creational

Abstract
Factory

Builder
Factory
Method

Prototype SingletonImplementation

Problem

Purpose

Figure 4.2: Creational Pattern Information HierarhyAlthough the patterns lassi�ed by Gamma are present within the atalogue of Tihy, the other patternsin Tihy's atalogue have not been lassi�ed in terms of strutural, reational or behavioural. Thereforeonly those patterns lassi�ed by Gamma an be worked into the hierarhy tree. Adding Gamma'slassi�ation types to all the patterns in Tihy's atalogue is an element of future work and will bedisussed further in Chapter Nine, Future Work. The tree desribes three layers in the hierarhy whereeah desending layer is desribed at a lower level of abstration. The highest layer desribes the generalpurpose of the patterns. The intermediate layer desribes the problem area that is best suited to thepatterns, whilst the lowest layer desribes the �ner detail of the patterns.Figure 4.3 on the following page illustrates the information tree based on behavioural patterns at theroot of the tree. It is important to separate information trees to indiate that spei� low-level patternsdo not inherit ontext from multiple parents. Tihy indiates that the pattern lassi�ations that heproposed are mutually exlusive; therefore a pattern annot belong to more than one ategory. Forexample, the Deorator pattern annot be a Deoupling pattern and a Variant Management patternat the same time. The omplete set of relational trees based on strutural, reational and behaviouralpatterns is illustrated in Appendix E.

62
Variant

Management
State Handling

Template
Method

Strategy MementoVisitor

Behavioural

Figure 4.3: Behavioural Pattern Information HierarhyWe an now add this additional riterion to the existing pattern desription that was de�ned earlier.Again, onentrating on the Composite pattern, we an add the problem solving types. Table 4.3 belowrepresents the proposed desriptive information for a generative design pattern.Related PatternsClassi�ation type (Strutural)Commentary on Strutural relationship between patterns......Related Pattern (Flyweight)Commentary on Flyweight pattern......Problem Solving Type (State Handling)Commentary on State Handling relationship between patterns in a Struturalontext......Related Pattern (Deorator)Commentary on Deorator pattern......Problem Solving Type (Deoupling)Commentary on Deoupling relationship between patterns in a Strutural ontext......Table 4.3: Logial Information for a Generative Design Pattern - Iteration 2Continued on next page.

63Classi�ation type (Creational)Commentary on Creational relationship between patterns......Related Pattern (Builder)Commentary on Builder pattern......Problem Solving Type (Deoupling)Commentary on Deoupling relationship between patterns in a Creational ontext......Classi�ation type (Behavioural)Commentary on Behavioural relationship between patterns......Related Pattern (Visitor)Commentary on Visitor pattern......Problem Solving Type (Variant Management)Commentary on Variant Management relationship between patterns in a Behaviouralontext......Related Pattern (Iterator)Commentary on Iterator pattern......Problem Solving Type (Deoupling)Commentary on Deoupling relationship between patterns in a Behavioural ontext......Related Pattern (Interpreter)Commentary on Interpreter pattern......Problem Solving Type (Virtual Mahines)Commentary on Virtual Mahines relationship between patterns in a Behaviouralontext......Related Pattern (Command)Commentary on Command pattern......Related Pattern (Chain of Responsibility)Commentary on Chain of Responsibility pattern......Continued on next page.

64Problem Solving Type (Control)Commentary on Control relationship between patterns in a Behavioural ontext......
4.3 Individual RelationshipsA signi�ant area of interest in identifying how and whih patterns should ommuniate in terms ofa generative pattern is Zimmer's Relationships between Design Patterns[119℄ riteria. Zimmer's las-si�ation explores the relationships between existing design patterns and uses the Design Patterns[45℄atalogue as the role models on whih to de�ne the lassi�ation. In this, three relationship lassi�a-tions are disussed:� Pattern X uses Pattern Y in its solution.� Pattern X an be ombined with Pattern Y.� Pattern X is similar to Pattern Y.The third lassi�ation, desribed above, refers to patterns that have a similar problem/solution pairing.That is, patterns that give details of an alternative solution. This relationship lassi�ation is not takeninto onsideration beause it de�nes an alternative solution to a given pattern and not how solutionsare related, whih represents the work in progress.The pattern map de�ned by Zimmer is illustrated in Figure 4.4 above showing the Pattern X usesPattern Y in its solution lassi�ation and the Pattern X an be ombined with Pattern Y lassi�ation.The third relationship de�ned by Zimmer, Pattern X is similar to Pattern Y, has been left out ofthe illustration to improve the larity of the two elements that are useful as an additional element ofnotation for a generative design pattern.As an be seen from Zimmer's lassi�ation, there are two di�erent types of relationship. However, themap indiates that a pattern only has one type of relationship to any one related pattern. If a givenpattern is related to more than one other pattern then the de�nition for eah relationship needs toreet the type of relationship between eah of the two related patterns.It is an argument within this thesis that the desription of any relationship between patterns shouldreet how patterns are used by other patterns. The argument also maintains that the relationshipbetween the lassi�ation types to whih the patterns belong be de�ned. This argument is founded

65
Abstract Factory Flyweight AdapterProxyComposite

Prototype

Observer

Singleton Template Method

Factory Method

Builder

CommandIteratorVisitor

StrategyMediator

Facade

Interpreter

State

Memento

BridgeChain of Resp

Decorator

KEY

Facade

Singleton

Strategy

Structural

Creational

Behavioural

X Y

X Y

X uses Y in its Solution

X can be Combined with YFigure 4.4: Relationships Between Design Patterns (Based on Zimmer[119℄)on the priniple that the relationship between, for example, two strutural patterns may be di�erentto the relationship between a strutural pattern and a reational or behavioural pattern. Any givendesription within a pattern would �rst desribe how partiular types of patterns ommuniate andseondly how the individual patterns ollaborate to form a bond between the two.When de�ning the relationships between patterns any given pattern requires one desription of a re-lationship for eah pattern to whih it is related. Given the ase that a strutural pattern ould berelated to more than one strutural pattern or more than one behavioural pattern the ontent of thedesription of the relationship between pattern lassi�ations would be repeated { whih is an unne-essary dupliation of e�ort. In this situation therefore, the onsideration desribed above detailing therelationships between lassi�ations of patterns would remove the dupliation of desriptive passages.Within the lassi�ation map in Figure 4.4 there are two de�ned relationships: Pattern X uses PatternY in its solution and Pattern X an be ombined with Pattern Y. However, there is a third relationshipwithin the map that is not disussed. The reason for not extending the relationship as a lassi�ationis beause it is the same relationship as Pattern X uses Pattern Y in its solution but desribed in adi�erent way; namely Pattern X is used by Pattern Y in its solution. The `used by' relationship is

66de�ned by Meszaros[79℄ and further disussed by Noble[83℄, who desribes it as the inverse of the `uses'relationship. On the basis of two individual ommuniating patterns these are idential relationships.It is shown[20, 83℄ that not only an a pattern use another pattern but also a pattern an be used byanother pattern. In eah de�nition of the relationship the fous of attention is on the pattern beingde�ned. In the relationship X uses Y, X is the de�ned pattern. In the ase of X is used by Y, X is stillthe de�ned pattern. Therefore, X is the dominant partner in the two de�nitions of the relationship sothe relationship beomes X uses / X is used by, illustrated in Figure 4.5 below.
Pattern X UsesIs used byFigure 4.5: Pattern X uses, is used byThe `used by' relationship, although only the inverse of the `uses' relationship, provides information ofa known relationship between two patterns. It is not enough when de�ning a generative pattern onlyto disuss whih pattern a given pattern uses | the generative pattern has to desribe known relatedpatterns in order to be generative, inluding those patterns it is used by.By inluding the `used by' relationship, relationships an be de�ned not only by how a pattern isrelated to another pattern but how another pattern is related to the pattern in question. In this way itis possible to de�ne how arhitetures are built from patterns by de�ning mathing join-points betweenpatterns. That is, a relationship an be de�ned within the pattern on how it uses other patterns andhow it is used by other patterns.We an now add this riterion to the existing pattern desription that was de�ned earlier. Again,onentrating on the Composite pattern, we an add the assoiation types. Table 4.4 on the followingpage represents the proposed desriptive information for a generative design pattern.

67Related PatternsClassi�ation type (Strutural)Commentary on Strutural relationship between patterns......Related Pattern (Uses Flyweight)Commentary on how Composite uses the Flyweight pattern......Problem Solving Type (State Handling)Commentary on State Handling relationship between patterns in a Struturalontext......Related Pattern (Combines Deorator)Commentary on how Composite ombines with the Deorator pattern......Problem Solving Type (Deoupling)Commentary on Deoupling relationship between patterns in a Struturalontext......Classi�ation type (Creational)Commentary on Creational relationship between patterns......Related Pattern (Combines Builder)Commentary on how Composite ombines with the Builder pattern......Problem Solving Type (Deoupling)Commentary on Deoupling relationship between patterns in a Creationalontext......Classi�ation type (Behavioural)Commentary on Behavioural relationship between patterns......Related Pattern (Combines Visitor)Commentary on how Composite ombines with the Visitor pattern......Table 4.4: Logial Information for a Generative Design Pattern - Iteration 3Continued on next page.

68Problem Solving Type (Variant Management)Commentary on Variant Management relationship between patterns in a Behaviouralontext......Related Pattern (Combines Iterator)Commentary on how Composite ombines with the Iterator pattern......Problem Solving Type (Deoupling)Commentary on Deoupling relationship between patterns in a Behaviouralontext......Related Pattern (Used By Interpreter)Commentary on how Composite is used by Interpreter pattern......Problem Solving Type (Virtual Mahines)Commentary on Virtual Mahines relationship between patterns in a Behaviouralontext......Related Pattern (Used By Command)Commentary on how Composite is used by the Command pattern......Related Pattern (Used By Chain of Responsibility)Commentary on how Composite is used by the Chain of Responsibility pattern......Problem Solving Type (Control)Commentary on Control relationship between patterns in a Behaviouralontext......
4.4 Pattern MapAs an be seen in Setion 4.3, the omposite pattern alone takes up a full page of text just to highlightthe known patterns with whih it will funtion. This itself is not a problem but, when desriptiveommentary has been added the reader may have diÆulty in �nding and visualising the related patternsthrough the jumble of text. A quik and easy way to visualise the related patterns is to inlude at thispoint a relational map, whih expands on the models desribed in Figures 4.2 and 4.3.

69The Pattern map for the Composite pattern, desribed in Figure 4.6 provides a visual representationof related patterns and the ategories into whih they fall.
Structural Creational Behavioural

State
Handling

Decoupling

Flyweight Decorator

Decoupling
Variant

Management
Decoupling

Virtual
Machine

Control

Builder Visitor Iterator Interpreter Command
Chain of

Responsibility

Composite

U
ses

C
om

bines

Combines

C
om

bines C
o

m
b

in
e

s

Use
d By

U
se

d
 B

y

U
se

d
 B

y

Figure 4.6: Patterns Related to CompositeThe map itself in this urrent form is not over omplex but ould be if patterns from outside the DesignPatterns[45℄ atalogue were also de�ned as part of the Composite pattern. Also the map does not givethe full piture of relationships | it only desribes at this point a relationship to other patterns. Themap ould also inlude attributes of a pattern, for example the partiipating lasses of a partiularpattern.4.5 Desribing RelationshipsIn de�ning a meaningful desription of the relationship to other patterns, three levels of desriptionhave been identi�ed.� A desription of the lassi�ations of pattern.� A desription of the problem solving lassi�ation of patterns.� A desription of the relationship between patterns.As disussed in setion 4.2.1 High Level Classi�ation eah pattern ould desribe a relationship to threedi�erent lassi�ation types, assuming that a lassi�ation of pattern ould be related to a pattern of its

70own lass. To alleviate any possible onfusion and for reasons of pratiality, only those lassi�ationsattributed to related patterns should be disussed in the text of a pattern. For example, if a CreationalPattern is not related to any Behavioural patterns then do not disuss the relationship between Cre-ational and Behavioural lassi�ation types. To disuss non-essential relationships will waste time ande�ort of the pattern reader and will ultimately serve no purpose other than to add onfusion.4.5.1 Classi�ationIn de�ning a relationship or relationships, the pattern should de�ne its own lassi�ation and thelassi�ation types to whih it is related, and what makes that relationship. The relationship betweenlassi�ation types an be de�ned through an assessment of the intent of the pattern, and the intentof the pattern to whih a relationship is proposed. For example, strutural patterns de�ne how lassesand objets an be omposed to form larger strutures. Strutural patterns often use inheritaneto ompose interfaes. Through multiple inheritanes, two or more interfaes an be ombined toform a omposite pattern (that is, a union of two or more patterns and not The Composite Pattern).Therefore, strutural patterns often form a `ombines' relationship with other strutural patterns.However, strutural patterns also use other strutural patterns, whih must be made expliit whende�ning the relationship to other patterns.Therefore, in the meaningful desription, the relationship between lassi�ation types should makeexpliit that the relationship is a Combines relationship or a Uses relationship or a Used By relationship,together with the intent of that relationship. Beause a Strutural pattern, suh as Composite, mayalso be related to Creational and Behavioural patterns as well as to other Strutural, de�ning how thepatterns ooperate (Combines, Uses, Used By) needs to be done at a lower level than the lassi�ationrelationship level.The related pattern information in Table 4.5, on the following page, is an example of the type ofommentary that ould desribe the relationship between Strutural patterns within the setion onrelated patterns for a generative design pattern.

71Related PatternsRelational Classi�ation type (Strutural)The onnetion of two or more Strutural Patterns serves to form a larger struture. For example,multiple inheritanes will mix spei� partiipants from a pattern into one partiipating lass.The result is a single partiipating lass inherited from two or more patterns that ombines theproperties of its parent lasses.Table 4.5: Conrete Information for a Generative Design Pattern - Iteration 1
4.5.2 Problem SolvingThe seond level of desription is the problem type that a pattern may solve. Again the pattern shouldbe lear about the problem that it solves and its relationship to other problem solving types. Types aremutually exlusive so it is unlikely that a pattern will solve more than one problem, although, aordingto Tihy, there are a few exeptions[104℄. Within this setion only those problems that are reognisedas being an attribute of the patterns in the Design Patterns[45℄ atalogue are disussed.DeouplingA large proportion of patterns tend to deal with Deoupling whih helps to divide a system intoindependent units. A system omposed of deoupled parts an easily be extended or adapted byadding or modifying parts[104℄. Deoupling patterns are often strutural or behavioural and mostlyuse or work in ombination with other strutural or behavioural patterns.For a Deoupling pattern the pattern ould inlude:� Why the deoupling takes plae.� How the deoupling takes plae.� What the deoupling will add to a system, or� What the deoupling will modify.Variant ManagementVariant Management patterns treat di�erent objets with a ommon purpose in a onsistent mannerby fatoring out their ommonality. However, Variant Management patterns are often dependent on

72the features of a programming language[104℄. Patterns that solve Variant Management problems omefrom all lassi�ation types and are usually an alternative to another pattern. Variant Managementpatterns usually have a Combines relationships to other Variant Management patterns, whilst a fewpatterns have a Used and a Used By relationship.For Variant Management patterns the desription ould desribe:� What objets are being manipulated.� Why they are being manipulated.� What objets will be manipulated through a Combines relationship and how the ombination willa�et the objet.� How the pattern will use other patterns to manipulate an objet, or� How the pattern will be used by other patterns to manipulate an objet.State HandlingState Handling patterns manipulate the state of objets generially. This means that these patternswork on the state of any objet, independent of their atual purpose. Like Variant Managementpatterns, patterns that solve State Handling problems ome from all lassi�ation types. State Handlingpatterns are most often used by patterns within their own lassi�ation type but rarely use or ombinewith other patterns.The pattern desription for State Handling ould inlude:� The state of an objet prior to a hange of state and after a hange of state.� How the hange of state is a�eted by the pattern that is using the urrent pattern, and� How the urrent pattern might a�et the state of the objets manipulated by a pattern that is beingused.

73ControlControl patterns deal with the ontrol of exeution and the seletion of appropriate methods. Controlpatterns are mostly Behavioural patterns and use other patterns in their manipulation of system fun-tionality. Although Control patterns are mostly behavioural, they do for the most part use Struturalpatterns. Oasionally, Control patterns will ombine to manipulate aspets of funtionality.In desribing aspets of Control the desription ould de�ne:� For what aspets of funtionality it is responsible.� How it uses and/or ontrols the funtionality of other patterns, and� How it will ombine with other patterns to enhane funtionality.Virtual MahinesA Virtual Mahine problem is derived from system proesses. It is mostly an element of funtionalitythat interprets a program written in a spei� language. Like Control problems, Virtual Mahineproblems are Behavioural. They also use other Behavioural and Strutural patterns, but are rarelyused or ombine with other patterns.A Virtual Mahine problem ould desribe:� How its internal funtionality is exeuted, and� How it will use the funtionality provided by a related pattern.Setion 4.5.2 gives a brief desription of the problem type under eah ategory of problem solvingrelationships, as desribed by Tihy[104℄. This however, is inadequate to desribe the relationshipto other patterns. Eah brief desription above provides details of what should be desribed in therelationship to other patterns for a given problem solving type. However, the How, What and Why ofthe relationship will depend on the individual pattern. How Pattern `X' uses Deoupling with Pattern`Y' may be di�erent from how Pattern `X' uses Deoupling with Pattern `Z'. Therefore, this �ner detailof How, What and Why should be desribed in the Relational Assoiation Type setion.The basi detail an now be added to the desription of the problem solving relationship under theheading Related Patterns. The detail in Table 4.6, on the following page, is repeated from previoussetions to show how the de�nition is being built up.

74Related PatternsRelational Classi�ation type (Strutural)The onnetion of two or more Strutural Patterns serves to form a larger struture. For example,multiple inheritanes will mix spei� partiipants from a pattern into one partiipating lass.The result is a single partiipating lass inherited from two or more patterns that ombines theproperties of its parent lasses.Problem Solving Type (Deoupling)Deoupling helps to divide a system into independent units. A system that inludes deoupledelements an easily be extended or adapted by adding or modifying those elements[104℄.Table 4.6: Conrete Information for a Generative Design Pattern - Iteration 24.5.3 Assoiation TypeThe �nal element in de�ning a relationship between related patterns is the type of assoiation and theindividual knowledge of how the partiipating patterns ommuniate. This desription should reetthe individuality of the pattern and its relations. The desription should enapsulate the How, Whatand Why of the relationship as well as desribing what element of Pattern X Uses, is Used By orCombines with Pattern Y. This ould be a general desription or ould be desribed at the oding levelwith an example.Again, we an now add this type detail to the de�nition of the relationship. The detail in Table 4.7 isrepeated from previous setions to show how the de�nition is being built up.Related PatternsRelational Classi�ation type (Strutural)The onnetion of two or more Strutural Patterns serves to form a larger struture. For example,multiple inheritanes will mix spei� partiipants from a pattern into one partiipating lass.The result is a single partiipating lass inherited from two or more patterns that ombines theproperties of its parent lasses.Table 4.7: Conrete Information for a Generative Design Pattern - Iteration 3Continued on next page.

75Problem Solving Type (Deoupling)Deoupling helps to divide a system into independent units. A system that inludes deoupledelements an easily be extended or adapted by adding or modifying those elements[104℄.Assoiation Type (Combines (Deorator))Why the deoupling takes plae.How the deoupling takes plae.What the deoupling will add to a system, orWhat the deoupling will modify.These desriptions an be supported by the generative modelling, disussed in Chapters Two and Five,or more spei� models attahed to an example. Further to this, more spei� Pattern Maps ansupport the whole setion on related Strutural patterns. Figure 4.6 on page 68 shows a ompletepattern map for Composite as a whole. This an be used at the beginning of the setion in its urrentform. To show greater detail in the map it an be broken down for eah individual pattern for whihComposite has a relation | as is shown below in Figure 4.7.Relational Map
Combines

Decoupling()

Structural : Decorator

VariantMan()

Structural : Composite

Participants:
 Component
 ConcreteComponent
 Decorator
 ConcreteDecorator

Participants:
 Component
 Leaf
 Composite
 Client

Composite - Decorator Relationship

Figure 4.7: Relationship between Composite and DeoratorThe setion on Related Patterns as it is de�ned above for the purpose of a generative pattern, is farmore detailed than the Related Patterns setion as it is de�ned in the Design Patterns atalogue, whihis reprinted below.Related Patterns[45℄\Deorator is often used with Composite. When Deorators and Composites are used together, they willusually have a ommon parent lass. So Deorators will have to support the Component interfae withoperations like Add, Remove, and GetChild"[45℄.This ommentary does provide some information, but it is limited in detail. The orresponding text inthe Deorator pattern from the Design Patterns atalogue[45℄ has even less detail.

764.6 SummaryThe relationship between patterns has been disussed on three levels: �rstly at a high level based onthe lassi�ation introdued by Gamma whih divides patterns into three types based on their purpose;seondly at an intermediary level based on the problem solving lassi�ation introdued by Tihy; and�nally on the individual relationships between patterns as de�ned by Zimmer. These relationships areentral to the generative design pattern as they desribe how di�erent patterns interat based on thetype of interation de�ned by the pattern.The relationship trees that have been de�ned break the patterns down into spei� ategories, allowinga pattern to be traed bak to its roots in the relational hierarhy. The trees provide the rationalefor the onditions that have been de�ned in determining the relations of the urrent pattern. Theonditions are supported by a pattern map, whih itself is based on the relational tree.As a result of bringing together a lassi�ation from a popular book and two individual piees of researha way of de�ning relationships between individual patterns has been de�ned.

77
Chapter 5PATTERN MODELLING5.1 IntrodutionChapter Five is an exploration of the modelling notation used in existing software design patterns,partiularly the Class and Sequene diagrams. An important fator in a design pattern is the designstruture of the pattern itself. In existing design patterns suh as those produed by Gamma etal[45℄ and many other pattern writers (for example the Pattern Oriented Software Arhiteture[20, 99℄atalogues and the Pattern Language of Program Design series[31, 41, 76, 110, 111℄) the lass diagramis a signi�ant feature of the pattern. However, it an be seen from these and other atalogues, thatother important models suh as the sequene diagram are not used as onsistently as the lass diagram.Indeed, the wide range of models available in numerous software development methods and the Uni�edModelling Language[54℄, a standard modelling notation, are hardly given any onsideration at all.It is shown in Chapter Five that the lass diagram is used extensively throughout software designpatterns but is not used onsistently throughout pattern atalogues. In some design patterns a lassdiagram is drawn but laks viable disussion[45℄, whilst diagrams within other design patterns aregiven onsiderable thought, and are often disussed with the inlusion of sample ode suh as those byGrand[48, 49℄ and Stelting[102℄. A similar situation an be seen with sequene diagrams in that thereis limited disussion in some design patterns whilst in others they are given a more important role toplay in the disussion of the pattern. For example, Bushmann[20, 99℄ makes signi�ant use of thesequene diagram.From looking at existing modelling notations that are used within design patterns, evidene is presentedin Setion 5.3 to show that not only are lass diagrams used inonsistently but what is being modelledby pattern writers is not onsistent with what is being provided as an example. In most ases, themodel being used and desribed does not math the sample ode that is being provided by the patternwriter (See Figures 5.10 and 5.11). To this end, it is reommended that what is being de�ned in amodel should be developed in the sample ode.

785.2 Sequene DiagramsSequene diagrams may or may not be used in di�erent pattern atalogues or in individual patterns.When they are used in pattern atalogues, they may be used in some patterns but not in others.In the Design Patterns[45℄ atalogue, the sequene diagram is rarely used. There is an example ofa sequene diagram in the Design Patterns[45℄ atalogue of the following patterns: Builder, Chainof Responsibility, Command, Mediator, Memento, Observer and Visitor. The diagram is presentedmostly in the Collaborations setion of the design pattern notation and oasionally in the Motivationsetion. Six of the seven examples are de�ned within Behavioural patterns with the exeption beingBuilder, whih is a Creational pattern. What this represents is the inonsisteny of use of a valuablemodelling tehnique in this partiular atalogue of patterns. However, in the POSA[20, 99℄ ataloguesthe sequene diagram is used far more onsistently. Almost all the patterns present a sequene diagramand it is always ontained within the Dynamis setion of the pattern, whih would appear to be anappropriate plae to display the diagram as the sequene diagram is a dynami modelling artefat[54℄.The sequene diagram that is presented with the Broker pattern from the POSA[20℄ atalogue is shownin Figure 5.1 below. As well as providing the sequene diagram, the dynamis of the interation arealso disussed with a step-by-step aount of what is taking plae in the diagram.
Server Broker

Start

Main
event
loopInitialise

Register_service
Update_repository

Acknowlegement

Enter_main-loop

Possible
process
boundary

Figure 5.1: Sequene Diagram for the Broker PatternAdditionally, most patterns from this atalogue will provide more than one example of the dynamis ofthe pattern, whih is felt to be good pratie and whih is in keeping with the priniple of a minimumof three known uses before being aepted as a pattern. For the Broker pattern, the Dynamis setion

79of the pattern presents three examples. Example number three from the Broker pattern, as de�ned inthe POSA[20℄ atalogue is shown in Figure 5.2 below.
Broker A Broker B

Forward
request

Find_server

Unpack_data

Forward_request

Transmit_message

Possible
process
boundary

Forward_message

Bridge A

Pack_data

Bridge B

Find_server

Figure 5.2: Sequene Diagram for the Broker PatternThe two diagrams in Figures 5.1 and 5.2 represent di�erent senarios on the use of the Broker pattern.By presenting alternative dynamis for a pattern the reader of the pattern an explore di�erent ap-proahes to solving problems or indeed, developing systems. For example, if senario one does not meetthe needs of the reader then there are other senarios that may solve the problem or aid development.A similar situation is evident in the J2EE[5℄ patterns atalogue where the sequene diagram is aompa-nied by a number of oded examples. In the J2EE examples the pattern in question is regularly showninterating with omponents from related patterns, although it has to be said, the separate patternsoften share the same individual omponents. Where the POSA[20℄ atalogue de�nes sequene diagramsunder the Dynamis heading of a pattern, in the J2EE[5℄ atalogue sequene diagrams are presentedunder the heading Partiipants and Responsibilities. Along with the diagram eah omponent of thediagram is aompanied by a short desription. Using the sequene diagram as part of a oded examplean make the pattern easier to understand, as the diagram itself is providing an objetive view that thelass diagram annot portray. This type of diagram is a positive aspet for generative design patternsas generative patterns are intended to be dynami in nature in that they will reate systems.

80The sequene diagram for the J2EE pattern shown in Figure 5.3 below shows the range of objets thatould be used in this partiular pattern.
Client BusinessService

<<Servlet>>
Controller

<<JSP>>
View

Helper Auth Helper

1: Request

1.2.1: Dispatch

1.2.1.1: Retrieve Content

1.2.1.1.1: Get Data

1.2.1.2: Get Property

Dispatcher ValueBean

1.2: Delegate

1.1: Authenticate

Figure 5.3: Sequene Diagram for the Dispather View PatternIt is unlikely that all the omponents desribed in the diagram above will be utilized at any one time inan implementation of the pattern, as is shown by Figures 5.4 and 5.5. The sequene diagram in Figure5.4 below is an example from the Dispather View pattern and represents the �rst of two di�erentstrategies for its use.
Client BusinessService

<<Servlet>>
Controller

<<JSP>>
View

Helper Helper

1: Request

1.1: Dispatch

1.1.1: Retrieve Content

1.1.1.1: Get Data

1.1.2: Get Property

Figure 5.4: Dispather in Controller Strategy

81Figure 5.5 below represents an alternative strategy for using the Dispather View pattern.
Client BusinessService

<<Servlet>>
Controller

<<JSP>>
View

Helper Helper

1: Request

1.1: Dispatch

1.1.1: Retrieve Content

1.1.1.1: Get Data

1.1.2: Get Property

<<JSP>>
View

1.1: Delegate

Figure 5.5: Dispather in View StrategyWithin the setion on Partiipants and Responsibilities eah omponent of the sequene diagram shownin Figure 5.3 is disussed, although in brief. However, unlike the POSA patterns the J2EE patternsdo not provide a step-by-step aount of what is taking plae in the diagram, although eah senariois disussed in general. Also, unlike the POSA patterns the sample ode appears in a setion of thepattern disonneted from the sequene diagram, although there is some disussion of the ode thatdoes relate to the diagram. However, the sample ode and disussion is onfusing as it appears to makereferenes to both strategies as if they were the same implementation. Although the use of sequenediagrams representing alternative senarios is a step in the right diretion, its usefulness as appliedin the J2EE[5℄ atalogue is still not suÆient for providing adequate understanding for the reader,partiularly when the disussion in the Sample Code setion is onfusing.There are many other atalogues on design patterns: some are spei� to Java[33, 48, 49, 50, 74, 102,112℄, whilst others are spei� to .NET[51, 81, 103℄, others suh as the PLoPD[31, 41, 76, 110, 111℄atalogues have no allegiane to any spei� language. What is onsistent among the many ataloguesis inonsisteny, not just in the use of sequene diagrams but in the way design patterns are desribedin general. Many of the atalogues do not use standard UML diagrams whilst others will use UMLdiagrams to emphasise a partiular point.What an be seen in the POSA[20, 99℄ and J2EE[5℄ atalogues an be onsidered as good pratie inproviding knowledge and understanding for a pattern. Whilst some pattern atalogues provide only awritten desription of a pattern or a desription with a limited number of design onsiderations, thePOSA[20, 99℄ and J2EE atalogues provide good additional information that should be exploited in

82de�ning a generative pattern. Eah utilization of the sequene diagram that has been disussed has itsgood and bad points. The good points from these separate on�gurations an be ombined to make apattern easier to understand and use.5.3 Class DiagramsThe lass diagram is a signi�antly important UML omponent for modelling the attributes, operationsand relationships between separate omponents of a software artefat. Any person involved in thedevelopment phase of a software system will use the models of design, partiularly the lass diagram,as a blueprint for writing the software ode. Similarly, the lass diagram is a signi�antly importantomponent of a design pattern; it models the omponents of what is being desribed in the patternitself, and the relationships between those omponents. Without the lass diagram the design patternwould lak redibility as a omponent of expert knowledge beause there would be no key omponent tohold the disussion together. That is, software is built from models of design and without that designthe end produt is open to interpretation.Class diagrams represent an element of onsisteny throughout most pattern atalogues. In any pat-tern atalogue there will be very few software patterns that do not ontain a lass diagram in theirnotation. One suh exeption is the pattern `Identity Map' in the Patterns of Enterprise AppliationArhiteture[43℄ atalogue by Fowler. Indeed, even in individual patterns that are often presented atonferenes and published in proeedings there will be few that do not ontain a lass diagram.In the Design Patterns[45℄ atalogue the notation of the pattern ontains an element `Struture' wherea high-level model of the pattern's omponents are displayed. Struture as de�ned in the DesignPatterns[45℄ atalogue is often nothing more than a single lass diagram. Whereas most pattern at-alogues will inlude a disussion together with the model being displayed, or use a lass diagram toemphasise a disussion, in the Design Patterns[45℄ atalogue, the model is not onneted to any dis-ussion of the design or indeed the proesses or ollaborations between any of the model's omponents.However, the heading `Struture' where the model is displayed is followed up by the heading `Par-tiipants', whih names eah omponent in the diagram and gives a brief summary of the role eahpartiipant plays. In defene of the Design Patterns[45℄ atalogue, they do use additional lass diagramsto further disuss elements of notation suh as `Motivation', where senarios of problems to be solvedare exempli�ed. However, the diagrams used in this area are often there to show how a partiularsystem struture is being ineÆiently utilised. Figure 5.6 below is based on the strutural model of theComposite pattern as de�ned in the Design Patterns atalogue.

83
Client

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Composite

Operation()

Leaf
forall g in children
g.Operation()

Figure 5.6: Composite Class DiagramThe lass diagrams used in the Design Patterns[45℄ atalogue are often used as benhmark designs byother atalogues or people who ontribute to the disussion of design patterns through eduation orother means. However, it an be shown that the model being used to disuss the pattern does notalways math the model that is reated from reverse engineering the supplied ode. In other words,people are interpreting the design put forward in the Design Patterns[45℄ atalogue, but not alteringthe design to math the true implementation, whih adds signi�ant onfusion to the understanding ofdesign patterns, partiularly for novie developers.From the book Patterns in Java: a Catalogue of Reusable Design Patterns Illustrated with UML[48℄, thelass diagram desribed in the Fores and Solution setions of the Composite pattern are a simulationof the lass diagram desribed in the Design Patterns[45℄ atalogue. The only di�erene in the diagramdesribed by Grand[48℄ and that desribed by Gamma et al[45℄ is that the Composite pattern byGrand uses a Composition assoiation and not an Aggregation assoiation. This is understandable asthe example being desribed is a doument, whih requires a Composition assoiation. An illustrationof Grand's Composite lass diagram from the Solution setion of the design pattern an be seen inGraphi A of Figure 5.7. on the following page.

84
*

«interface»
ComponentIF

operation()
...

Component1

operation()
...

Component2

operation()
...

AbstractComposite

add(AbstractComponent)
remove(AbstractComonent)
getChild(int)

ConcreteComposite1

operation()
...

ConcreteComposite2

operation()
...

A. Composite Pattern B. Implementation of Composite Pattern

Document Page Column Frame LineOfText

AbstractDocumentElement

...
getFont() : Font
setFont(font:Font)
getParent() : CompositeDocumentElement
setParent(parent:CompositeDocumentElement)

CompositeDocumentElement

getChild(index:int) : DocumentElement
addChild(child:DocumentElement)
removeChild(child:DocumentElement)
...
changeNotification()
getCharLength() : int

Character

...
getCharLength() : int

Image

...
getCharLength() : int

*

«interface»
DocumentElementIF

...
getFont() : Font
setFont(font:Font)
getCharLength() : int
getParent() : CompositeDocumentElement

Figure 5.7: Grand's Composite Class Diagram[48℄The minor di�erene in the lass diagrams is not a ause for onern, the reader of the pattern, be itnovie or professional, should aept that what is being modelled in the lass diagram is the struturalomposition of the pattern being desribed. However, further reading of the Composite design pattern asdesribed by Grand[48℄ reveals a di�erent lass struture desribed in the Code Example setion to thatde�ned in the Solution setion of the pattern. The lass diagram shown in Graphi B of Figure 5.7 hasaquired an AbstratDoumentElement omponent that implements the interfae omponent. Hene,the Leaf omponents and the Composite omponent extend the newly aquired Abstrat lass. Alsoin the Code Example in Graphi B, the Composition assoiation has hanged bak to an Aggregationassoiation, as an be found in the standard design of the Composite pattern. Also notieable in bothexamples of the design is the lak of a olletion objet in the details of the Composite lass, despitethe model indiating that one exists.Further to the hange in diagram struture to that desribed in the Solution setion of the pattern, theode examples are supplied to the reader from a Web site that ats as a ompanion to the book[48℄. Onreverse engineering the ode example of the Composite pattern, a di�erent lass struture is revealed tothat desribed by Grand in Graphi B of Figure 5.7. Although the supplied ode does math, in part,the ode written in the atalogue, the engineered diagram does not math the diagram that is modelledin the Code Example setion of the pattern. What is revealed in the engineered diagram, shown in

85Figure 5.8, is a struture similar to that in Graphi A of Figure 5.7. Although these di�erenes areminor in this partiular example of a design pattern, there are inonsistenies and these inonsisteniesan be onfusing to a novie developer. Further examples are shown in the next few pages that an beonfusing to both novie and experiened developer.

Document Page Column Frame LineOfText

Character

charLength:int

Image

charLength:int

DocumentElement

font:Font
Parent:CompositeDocumentElement
charLength:int

CompositeDocumentElement

-children:Vector
-cachedCharLength:int

+addChild:void
+removeChild:void
+changeNotification:void

child:DocumentElement[]
charLength:int

Figure 5.8: Reverse Engineered Composite Class Diagram[48℄It is true to say that the lass diagrams of the Design Patterns[45℄ that are dupliated in the book byGrand[48℄ are replias with, in some ases, minor modi�ations. It is also true to say that with fewexeptions, the physial lass diagram abstrated from the ode through reverse engineering does notmath the lass diagram desribed in the book. However, Grand is not alone in his interpretation ofmodelling design patterns. Stelting and Massen[102℄ also interpret the Design Patterns[45℄ in the sameway. In this atalogue of patterns, the lassi model of the Design Patterns[45℄ is desribed in the bookbut the resulting model that is abstrated from the supplied ode is signi�antly di�erent. It is plain tosee that in many of the patterns, several helper lasses have been added to the appliation to embellishthe example. However it is also plain to see that the models provided in the patterns themselves arenot desribing the real interpretation of the oded example.This reworking of the de�ned struture is endemi throughout pattern atalogues and Internet relatededuational and informational disussion pages on design patterns. Consult the majority of web-sites

86that disuss patterns, and a struture that repliates the struture de�ned in the Design Patterns[45℄atalogue will be found. Yet, the resulting ode, if ode is provided, will paint a di�erent piture. Forexample, the implementation of the Composite pattern on the Rie University[108℄ web-site revealsthe standard modelling struture repliated from the Design Patterns[45℄ atalogue, but the resultingmodel abstrated through reverse engineering the soure ode presents a distorted view of the model. Afurther example[82℄ diretly uses the disussion and struture from the Design Patterns[45℄ atalogue,but the resulting struture of the supplied ode is di�erent from the model.Figure 5.9 below is a model of what pattern writers are desribing in their disussion of the Compositepattern. This however, is not what is being reated in their examples. Quite often in examples of theComposite pattern the aggregation assoiation from the omponent to the omposite will be missing orwill just be a ommon assoiation. Furthermore, the lient, if there is one, will be alling the ompositeand leaf lasses diretly. To follow the design that is being modelled, the lient should be interatingwith the Component element of the pattern; delaration of Components within the Client lass shouldbe global; the Leaf and Composite lasses should extend the Component lass; and the assoiationbetween the Component lass and the Composite lass should be an aggregation. The aggregationould be in the form of a stati array or a dynami vetor.

componentVector:Vector
composite:String

Composite
sampleOperation:void
Add:void
Remove:void
components:Enumeration

composite:Component
composite1:Component
composite2:Component

main:void

sampleOperation:void
Add:void
Remove:void

Component

Composite

leaf:String

Leaf
sampleOperation:void

Leaf

Client

Figure 5.9: Composite PatternTo this point, only the Strutural pattern Composite has been disussed, but this situation where apattern is modelled in a partiular fashion, repliated from a popular book, is also evident in otherstrutural patterns. Grand[48℄ again displays the struture de�ned in the Design Patterns[45℄ book forthe Deorator pattern, but does not implement that same struture in the oded example.

87Figure 5.10 provides a omparison of the model for the Deorator pattern as de�ned by Grand[48℄ andthe model abstrated from his oded example.
A. Decorator Pattern

AbstractDoorControllerWrapper

-wrapee:DoorControlerIF

AbstractDoorControllerWrapper
+requestOpen:void
+close:void

DoorControllerWrapperA

-camera:String
-monitor:SurveilanceMonitorIF

DoorControllerWrapperA
+requestOpen:void

«interface»
SurveilanceMonitorIF

+viewNow:void

«interface»
DoorControllerIF

+requestOpen:void
+close:void

B. Implementation of Decorator Pattern

ConcreteService

Operation()
Operation2()
...

AbstractWrapper

Operation()
Operation2()
...

ConcreteWrapperA

Operation()
Operation2()
...

ConcreteWrapperB

Operation()
Operation2()
...

1

«interface»
AbstractServiceIF

Operation()
Operation2()
...

1

Extends

Figure 5.10: Grand's Deorator Class DiagramsChanges to how a partiular pattern is modelled and to how the supplied examples are modelled �ltersthrough to other lassi�ations of models. For example, the Creational pattern, Builder, whih isde�ned in the Design Patterns[45℄ atalogue, also reeives an implementation makeover at the hands ofnumerous authors. This partiular pattern, as an be seen in Figure 5.11 below, reeives suh a hangeto that desribed in the book from whih it was extrated that it is unreognizable as a Builder pattern.Similarly, the implemented struture of Behavioural patterns is a�orded the same implementation shiftfrom that of the original desription. It would appear that the whole ethos of desribing known patternsis to ignore the design written in the struture of the pattern.

88
MIMEParser

Msg:MIMEMessage
builder:MessageBuilder

…..
…..
…..

…..

…..

MIMEMessage

rawMessage:Byte[]

MIMEMessage

Message:byte[]

MessageBuilder

getInstance:MessageBuilder
…..
…..
…..
…..

…..

AbstractBuilder

getInstance():AbstractBuilder
buildPart1()
buildPart2()
...
getProduct():ProductIFdirects

ConcreteBuilder

buildPart1()
buildPart2()
...
getProduct():ProductIF

Director

Build(:Builder):ProductIF

Client
 Request-creation-of-ConcreteBuilder

requestor

creator

1

1

 Request-direction-of-build

director

requestor

Product
Creates

«interface»
ProoductIF

1 1

1

1

1

Uses

1..*

1

0..*

«interface»
OutboundMessageIF

«interface»
send:void

Defined Pattern Actual Pattern

Figure 5.11: Grand's Builder Class DiagramsThe di�erenes that are evident between the publishedmodel of a design pattern and that revealed in thesupplied ode examples is not restrited to Java based design patterns. The same disrepany in modelsalso applies to examples and patterns desribed in C# and other languages. The Composite patternsdesribed on various ommunity web-sites[87, 88, 32℄ also onstrut the model from the pattern as anear replia of the Composite lass model desribed in the Design Patterns atalogue, yet the resultingmodels abstrated from the supplied ode are di�erent.5.4 SummaryThe disussion in Chapter Five began with a review of how sequene diagrams are used and presentedin a range of design pattern atalogues. It was soon established that while they are used in only asubset of atalogues observed, how they are used and presented is an asset to the intended knowledgeonveyed in a design pattern. Whilst some design patterns only pay a passing interest in extendingknowledge with the aid of these diagrams, some pattern writers link the diagrams to di�erent senariosassoiated with the pattern and to alternative oded examples of the pattern in its use. From thepoint of view of de�ning a design pattern, the use of sequene diagrams linked to multiple senariosand oded examples is seen as good pratie and should be o-opted into the standard for de�ning agenerative pattern.Where lass diagrams are onerned, it is easy to observe, through reading multiple atalogues, thatdiagrams of this type are used in almost all desriptions of a software design pattern. However, what

89is not obvious is that what pattern writers are desribing with a lass diagram is not what they areproduing in a oded example. It an be seen that most examples of well-known design patterns, �rstprodued in the Design Patterns atalogue, are rereating the lass diagrams used in that atalogue.What annot be seen, until the oded examples have been investigated and re-engineered, is that writersare not produing an example based on the lassi design they have desribed. They are reating anexample modi�ed from that design but not mathing the ode to the modi�ed design. What an beseen in the desription of many patterns from a diverse range of soures is that the writer is desribingone thing and onstruting another, whih suggests pattern writers are being led by a traditionalaeptane of the lass struture �rst adopted in the Design Patterns[45℄ atalogue. Writers thereforeare not hallenging the traditional view of design notation, whilst they are interpreting the oneptthrough example. Disussing patterns without aknowledging this interpretation is not onduive toextending the knowledge and understanding that is the raison d'etre of design patterns. One of thepriniples of the design pattern is that they are easy for novies to use. However, beause there areoften disrepanies between the supplied ode and the design ontained in many design patterns, thenovie an easily be onfused and turned o� the onept of the design pattern. Furthermore, bybeing inonsistent, one ould all into question the usefulness of design patterns in aiding softwaredevelopment. With this in mind, it is intended that the oded examples produed for the generativedesign patterns desribed in this work will math the design.

90
Chapter 6A GENERATIVE DESIGN PATTERN6.1 IntrodutionIn Setion Two of this hapter, the output from the four previous hapters is brought together to serve asa reminder of the qualities that have been abstrated in order to de�ne a generative pattern. Methodialqualities were disussed in Chapter 2 and a summary of the similarities that exist between softwaredevelopment methods and design patterns is given. In Chapter Three a range of pattern styles andatalogues were disussed and from these styles and atalogues a desired format for a pattern notationhas been abstrated. This desired notation is again summarised prior to applying the notation inSetion 6.4. It was shown in Chapter Four that di�erent types of lassi�ation are attributed to designpatterns and that these lassi�ations an be used to desribe the relationship between two di�erentgenerative patterns. Finally, a summary of Chapter Five is presented where modelling notation isdisussed.In Setion 6.3 and 6.4 the main ontribution to this thesis is desribed in the format of a generativepattern. (The format of the generative pattern an be ompared against the stati pattern example inAppendix I). What distinguishes the generative pattern from a stati pattern is the additional knowledgepresented in the generative pattern. To present this extra knowledge, the generative pattern expandsupon the priniple of pattern lassi�ation by introduing a Problem Solving lassi�ation, as disussedin Chapter Four. Also from Chapter Four the knowledge of how ollaborating patterns an ombine orbe used by other patterns is introdued. An additional ontribution to the generative pattern omesfrom showing, in the oded examples, how patter `X' will ollaborate with pattern `Y'.Having gathered the desired notation and the additional knowledge for a generative pattern, a generativepattern is desribed. Within several of the previous hapters, several referenes are made towards theComposite design pattern. For this reason, the Composite pattern is used here as an example of agenerative pattern. The Composite pattern, as desribed by several authors, is related to the Deoratorpattern. Not only is it related in terms of its appearane as a struture, it an be ombined with theDeorator pattern to form a larger struture. The generative design pattern seen in Setion 6.4 is anexample of two individual patterns, the Composite and Deorator ombining to form a larger struture.

916.2 Generative ProessSoftware design patterns ome in many di�erent styles and eah style has its own way of desribinga pattern. Some styles use what is onsidered to be ommon forms of notation, ommon in thatthe notation is used onsistently in di�erent styles by di�erent pattern writers. Other styles use lessommon notations but make passing referene to notations that are used in other patterns. Somepattern atalogues de�ne a pattern under a spei� set of headings, while other atalogues de�ningthe same patterns will use some of the same headings but present them in a di�erent order. Otheratalogues use a di�erent set of headings altogether. The de�ning issue is that most atalogues willuse what is onsidered a popular design notation as well as obsure notations and it is these popularnotations that have been exploited in de�ning a generative design pattern.6.2.1 Summary of Chapter TwoIn Chapter Two, design patterns were desribed as having a lot in ommon with development methods| the ommon fator being the elements of a life-yle. It was found through analysis of methods thatertain aspets of methods will map to aspets of design patterns and this has served to re-enfore thequalities obtained and disussed in Chapter Three. Some of the design models that are used in softwaredevelopment methods are appropriate notation for a generative design pattern.6.2.2 Summary of Chapter ThreeChapter Three sought to provide an understanding of pattern notation and showed how spei� patternstyles used di�erent types of notation to format a pattern. Many of the notations are not used by allpattern writers but the frequeny of use throughout di�erent pattern notations suggests that the themeis an element of good pratie and should be retained in a refatored pattern notation. The elements ofommon notation that are attributed to a range of design pattern types are to be used in the de�nitionof a generative design pattern.6.2.3 Summary of Chapter FourIn Chapter Four, two lassi�ation protools and a relationship protool were explored and a suitableommuniation diagram was de�ned, where a relationship between di�erent lassi�ations of patternswas established. It was also established how patterns an be lassi�ed by the type of problem theysolve. This type of knowledge is used in deiding if a pattern is suitable to work with another pattern.

92It also provides some idea of the funtion of the pattern itself. Individual relationships between patternswere disussed. From this, three relational types were established.6.2.4 Summary of Chapter FiveFinally, Chapter Five took a loser look at modelling elements ontained within patterns with a viewto obtaining what may be onsidered as best pratie. An element of good pratie that was desribedin Chapter Five was the use of di�erent senarios within a pattern. This, it is felt, is in keeping withone of the priniples of the design pattern in that there should be three known uses of the pattern.Therefore, it is proposed that a generative pattern should desribe, as a minimum, three senarios ofthe pattern in use.6.3 Generative Pattern FormatThe format of the generative pattern is based on what is already ontained within existing stati designpatterns - that of a simple methodial proess. Although design patterns do not present themselves asmethodial omponents, the analogy is there. There are analytial elements, design omponents andimplementation details enapsulated in what is the notation of a pattern. Many of these enapsulateddetails have been on�rmed by examining the details of a range of development methods.A olletion of generative design patterns, if put to proper use, have the potential to produe a soft-ware system or subsystem. Therefore, it is desirable that some methodial proess is engaged in thedevelopment of that system or subsystem. Whilst generative patterns are not intended to represent amethodial proess, the format of the generative pattern is written in suh a way that it mirrors thelife-yle aspets of a methodial proess in terms of analysis, design and development.The �ndings from Chapters Two to Five and summarised in Setion 6.2 above an now be integratedinto the pro�le of the generative pattern. As suh, the pro�le and the desired notation form the urrentversion of the struture of a generative design pattern. As an addition to urrent researh, it is envisagedthat through a proess of re�nements to the generative pattern pro�le a onrete and �nal pro�le willbe established. From this, it is expeted that the pro�le itself will undergo mathematial srutiny fromthe proess of Formal Spei�ation | see Chapter Nine, Future Work.

93Struture of a Generative Design PatternNameClassi�ation TypeProblem Solving TypeAnalysisIntent (Introdution)ProblemSolutionDesignStruture - Class diagram { (Classi View)ImplementationPartiipantsCode exampleRelated Patterns (Dynamis - Three Examples of Generative Design)Senarios 1, 2, 3(Analysis)Details of senario(Design)Use-Case Diagram { (if appliable)Ativity Diagram { (if appliable)Class Diagram { (Required as a model of the applied ode)Sequene Diagram { (if appliable)(Implementation)Details of implementationPartiipantsCoded ExampleConsequenes

946.4 Composite as a Generative Design PatternThe following highlighted setions represent the notation of a generative design pattern. Eah setionis a spei� aspet of the pattern as desribed above in Setion 6.3. The soure ode for eah of thesenarios an be seen in Appendix F.The highlighted setions on pages 94 - 98 represent the pro�le of the named pattern, whih is splitinto four areas. The four areas represent pattern lassi�ation, analysis, design and implementation{ those aspets that de�ne the pattern itself. The highlighted setions on pages 99 - 100 representthe relationship that Composite has with the Deorator pattern. The �nal setions, pages 100 - 104,highlight the Dynamis of the generative pattern as applied in Senario 1.Name { CompositeClassi�ation type Strutural.Strutural patterns are an arrangement of lasses that together form a larger struture.Solves Problem Type Variant Management.Variant Management patterns treat di�erent objets in a uniform manner by fatoring outtheir ommon properties.AnalysisIntentCompose objets into a olletion or olletions of objets.Composite desribes an objet that is omposed of Composite objets. The Composite objet isbuilt as a olletion of objets and an be de�ned by a Colletion, ArrayList, Vetor or simplyan Array among other artefats that de�ne a olletion of omponents. The Composite an bedesribed as being a tree-like struture.Continued on next page.

95ProblemOften, developers require omplex objets that an be manipulated in a dynami fashion byusers during the exeution of a program. For example, in a drawing pakage drawn itemsome in di�erent shapes and sizes and an be added to a drawing, removed from a drawing orresized, reshaped or repositioned. Components of a drawing an be grouped together orungrouped; multiple grouped items an be olleted into a single group. A doument objetmay be omposed of text, images and drawings, whih an be grouped into Chapters, Setionsand Subsetions. The problem is to store these items in a uniform manner as individual itemsin a olletion of items. Eah of these examples represent omplex objets that need to bemanipulated.SolutionProvide a Composite objet to store individual or omposite objets. Clients an build andaess the omposite through an interfae omponent that is implemented by all omponentsin the Composite struture. Colletions suh as ArrayList and Vetor make ideal omponentsto store omposite objets.DesignStrutureThe Struture represents the lassi view of Composite as desribed in the Design Patterns[45℄atalogue.Continued on next page.

96

componentVector:Vector
composite:String

Composite
sampleOperation:void
Add:void
Remove:void
components:Enumeration

composite:Component
composite1:Component
composite2:Component

main:void

sampleOperation:void
Add:void
Remove:void

Component

Composite

leaf:String

Leaf
sampleOperation:void

Leaf

Client

Figure 6.1: Struture of the Composite Pattern
PartiipantsClientA lient an reate or manipulate the omposed olletion through the interfae omponent.ComponentRepresents an interfae for objets in the omposed olletion.De�nes ommon methods for hild omponentsCompositeDe�nes a omposite objet that has hildrenStores the olletion objet.LeafRepresents an individual or leaf objet that has no hildren.Continued on next page.

97ImplementationSample CodeThe following ode, in Java, is a demonstration of how the implementation follows the design:Example 6.1 Client.javapubli lass Clientfproteted stati Component omposite = new Composite(\Composite 0");proteted stati Component omposite1 = new Composite(\Composite 1");proteted stati Component omposite2 = new Composite(\Composite 2");publi stati void main(String arg[℄)ftryfLeaf leaf1 = new Leaf(\Leaf 1");Leaf leaf2 = new Leaf(\Leaf 2");omposite1.add(leaf1);omposite1.add(leaf2);Leaf leaf3 = new Leaf(\Leaf 3");Leaf leaf4 = new Leaf(\Leaf 4");omposite2.add(leaf3);omposite2.add(leaf4);omposite.add(omposite1);omposite.add(omposite2);omposite.sampleOperation();gath(Exeption e)fe.printStakTrae();gggContinued on next page.

98Example 6.2 Component.javapubli lass Componentfvoid add(Component omponent);void sampleOperation()fSystem.out.println(\Component Operation");ggExample 6.3 Leaf.javapubli lass Leaf extends Componentfprivate String leaf;publi Leaf(String leaf)fthis.leaf = leaf;gpubli void sampleOperation()fSystem.out.println(leaf);ggExample 6.4 Composite.javaimport java.util.Vetor;import java.util.Enumeration;publi lass Composite extends Componentfprivate Vetor omponentVetor = new Vetor();private String omposite;publi Composite(String omposite) fthis.omposite = omposite;gpubli void sampleOperation()fSystem.out.println(omposite);Enumeration omponents = omponents();while (omponents.hasMoreElements())f((Component)omponents.nextElement()).sampleOperation();ggpubli void add(Component omponent)fomponentVetor.addElement(omponent);gpubli Enumeration omponents()freturn omponentVetor.elements();gg

99Related PatternsDeorator (See Deorator Pattern)Provide a way of adding funtionality or deoration to an objet.Classi�ation type (Strutural)The onnetion of two or more Strutural Patterns serves to form a larger struture.Problem Solving Type (Deoupling)Why the deoupling takes plae.Deoupling helps to divide a system into independent units. A system that inludesdeoupled elements an easily be extended or adapted by adding or modifying thoseelements.[104℄.What the deoupling will add to a systemThe Deorator provides deorative or funtional embellishment of objets that were reatedseparately. Deoration is applied to the objet rather than being part of the objet.By providing a spei�ed funtional onstrut, deoration of the objet an hange withouta�eting the objet. That is, the deoration is deoupled from the objet.How the deoupling takes plae.An objet an be reated that is de�ned with spei� funtionality. The deorativeomponent an be inluded in that funtionality. However if the objet is modi�ed thenthe deorative funtionality may have to be modi�ed also. For this reason the deorativeomponent is deoupled from the objets onstrution by providing alternative lasses tohandle the deoration.Assoiation Type (Combines (Deorator))The interfae omponents of both Composite and Deorator ombine to form a single interfae.The Composite element of the pattern supplies the olletion objet for the ombined patternswhilst the Deorator element ats as an interfae to the ConreteDeorator omponents. TheLeaf elements of Composite retain their original purpose and funtionality.Continued on next page.

100
Combines

Decoupling()

Structural : Decorator

VariantMan()

Structural : Composite

Participants:
 Component
 ConcreteComponent
 Decorator
 ConcreteDecorator

Participants:
 Component
 Leaf
 Composite
 Client

Composite - Decorator Relationship

Figure 6.2: Relationship between Composite and Deorator
Dynamis { Examples of Generative DesignSenario 1AnalysisSenario 1 illustrates a simple drawing pakage where lines, squares and irles an be drawnwithin a frame. Eah drawing item an be individually deorated or a group of drawing itemsan be deorated. Eah individual item and or groups of items an be olleted into a ompositeobjet.DesignUse-Case DiagramThe use-ase diagram represents a business proess that de�nes the ativities that an beapplied to the drawing senario. In this ase, drawing omponents an be reated, deoratedand displayed.Continued on next page.

101
Create

Drawing
Objects

Add Objects to
Collection

Set Decoration
Object

Print Collection

Client

Compose
Objects

<<Extends>>

<<Extends>>

Figure 6.3: Use-Case Diagram - Composite ombines Deorator
The diagram on the following page shows the lass omponents that ollaborate to form thestruture of the Composite { Deorator drawing senario. Three di�erent drawing omponentsan be reated and an be deorated with olour and or line weighting an be applied(thikness of lines).

102Class Diagram
Client

comp : Shapecomponent

colour: Shapecomponent
size : Shapecomponent

paintComponent : void

 Shapecomponent

Draw : void
addDrawing : void

removeDrawing : void

Drawdecorator

Drawdecorator

Draw : void

Rectangleleaf

x : int
y : int
x1 : int
y1 : int

Rectangleleaf

Draw : void

Circleleaf

x : int
y : int
x1 : int
y1 : int

Circleleaf

Draw : void

Lineleaf

x : int
y : int
x1 : int
y1 : int

Lineleaf

Draw : void

Drawcomposite

Drawings : Vector <Shapecomponent>

Drawcomposite
addDrawing : void
removeDrawing : void

components : Enumeration
Draw : void

Colourdecorator

C : Color

Colourdecorator
Draw : void

Sizedecorator

S : setSize

Sizedecorator
Draw : voidFigure 6.4: Class Diagram - Composite ombines Deorator

ImplementationThis example uses the Composite and Deorator patterns to demonstrate a simple drawing pakage.For the purpose of demonstration the omponents are hard oded into the lient but in a liveappliation the omponents would be reated dynamially.Continued on next page.

103PartiipantsClientThe Client omponent is a simple driver used to reate the drawn omponents. The lientreates the omponent and deoration objets and adds them to the olletion objet.ShapeomponentThe Shapeomponent lass spei�es an Abstrat interfae to the main omponents of theComposite and Deorator. Shapeomponent de�nes three methods that an be implemented byall sub-lasses. The addDrawing(Shapeomponent draw)and removeDrawing(Shapeomponent draw) methodsare implemented in the Composite lass and the Draw(Graphis g) method is implemented in allsub-lasses.DrawompositeDrawomposite has two funtions; one is to add or remove items from the Colletion objet(the Vetor) - private Vetor<Shapeomponent> drawings; and the other is to all bak the items fromthe olletion (print to the frame) - ((Shapeomponent)omponents.nextElement()).Draw(g). In this exampleitems are only added to the olletion - addDrawing(Shapeomponent draw)fdrawings. addElement(draw)g.Lineleaf, Cirleleaf, RetangleleafLeaf omponents represent the drawing objets that are added to the omposite olletion.Eah omponent de�nes its own type of drawing objet, whih is alled in the Draw method- g.drawLine(x, y, x1, y1).DrawdeoratorDrawdeorator spei�es an Abstrat interfae whose Draw method is implemented in the Colourand Size sub-lasses. Like the Shapeomponent lass Drawdeorator is something of a Faadein that aess to sub-lasses is only made through the Faade.Continued on next page

104Colourdeorator, LinestyledeoratorThe deoration objets that are used to set the deoration for the drawn omponents. Eahomponent de�nes its own type of deoration, whih is alled in the Draw method- g.setColor(olour). Beause they are Shapeomponents deoration is added to theomposite olletion as an objet.ConsequenesThe main bene�t of linking Composite and Deorator together is the separation of funtionality intospei� lass omponents. This itself will bring easier maintenane to the system in that leaf itemsan be added or removed without a�eting the deoration and deoration an be hanged withouta�eting leaf items. The drawbak to this is the level of funtionality required within the lient tomanipulate the drawing objets within the olletion.The soure ode for this senario and the remaining two senarios an be seen inAppendix F.6.5 ConlusionRede�ning design patterns as generative has not been as simple a proess as deiding to add somedetail to a pattern and alling it generative. What has been onduted is a systemati study ofdesign patterns to �nd out how to de�ne them appropriately, onsistently and how to implement therelationships between the ollaborating patterns.There are a number of obvious di�erenes between stati design patterns and the generative patternexamples presented in Chapter Six and the Appendies. Notably:� The generative pattern identi�es a life-yle proess (a mini methodial proess) that is not readilyreognisable in a stati pattern.� Some stati patterns are quite omplex and it is diÆult to identify within these patterns whataspets of the notation are the Problem and the Solution. In the generative pattern the Problemand Solution have a prominent position in the notation of the pattern.� Most patterns o�er only one oded example of a working pattern whilst the generative patternhas three suh examples.

105� Studies have shown that design patterns do work well together[22, 77, 91, 98℄, but do not desribeopenly a method of pattern integration. Therefore, whilst stati patterns fous diretly on thenamed pattern, the generative pattern identi�es other patterns with whih it will ommuniateand the omponents of the ollaborating patterns that failitate that ommuniation.� Although stati patterns desribe some problem in their narrative, the pattern only desribeswhat the problem is in relation to the stati nature of the named pattern. The generative patternintrodues a problem type whih o�ers an idea of the funtionality of other ollaborating patterns,thereby failitating a possible solution in onjuntion with another pattern.� In stati design patterns the setion on Related Patterns is extremely brief. The generativedesign pattern by its very nature treats Related Patterns as being the signi�ant ontribution tothe pattern itself.The above points highlight the di�erenes between the stati design pattern and the generative designpattern. An evaluation of the generative design pattern and the example experiments that were arriedout on ollaborating patterns is disussed in Chapter Seven, Evaluation.6.6 SummaryThe onluding aspet for this Chapter is the de�nition of a generative design pattern. To this end apattern has been written that shows the de�nition in use. The Composite pattern has been de�ned in thereated format for the generative pattern and is shown as an example of generative design, ollaboratingwith the Deorator pattern. In omposing the Composite pattern in this generative format a signi�antobservation an be made. The reader will notie that there is a lak of detail in the pattern omparedto other de�nitions of software design patterns ontained in prominent pattern atalogues. There aretwo reasons for this; �rstly, the generative design pattern desribed in this Chapter is not about theknowledge or the ontent of the pattern, it is about the framework of the pattern and how it is de�nedin a generative format; seondly, the ontent of the notation as it is written is not intended to be readin a book-based atalogue, therefore �ne detail has been omitted. That is, if detail is required fordistribution in atalogue form, then detail an be added. However, there is suÆient detail to reognisethe proess of generative design.

106
Chapter 7EVALUATION7.1 IntrodutionStudies have shown that design patterns do work well together[22, 77, 91, 98℄, but do not desribeopenly a method of pattern integration. Although there have been a few attempts to take standarddesign patterns and de�ne them as generative, these attempts are related to tool development that willgenerate ode from design patterns[17, 18, 40, 73℄. The term generative in this ontext relates only tothe fat that patterns are used to generate ode.This hapter onludes the work undertaken in de�ning a generative pattern for the purpose of gener-ating systems. The groundwork has been laid for the re-engineering of design patterns with a view tousing the de�ned notation as a template for design and development. Currently, stati design patternsare used as a solution to an individual problem in the development of a system, but with generativedesign patterns multiple problems an be brought together to simplify the development of a system.However, rede�ning design patterns as generative is not as simple a proess as deiding to add somedetail to a pattern and alling it generative. What has been onduted is a systemati study of designpatterns to �nd out how patterns do or do not work well together, how to de�ne them onsistently andhow to implement the relationships between ollaborating patterns.In Chapter Seven, the patterns that have been onsidered in the main text and the appendies of thisstudy are evaluated for their appropriate quality and usefulness as a development artefat. This qualityand usefulness is determined by omparing the use of stati and then generative design patterns inseveral simple and more omplex ase-studies. Firstly, the omposite and deorator design patterns areevaluated in a simple desktop based senario. Seondly, the use of three and then four design patternsare evaluated using the same simple desktop based senario. Finally, a more omplex appliation isdeveloped and ompared using the same olletion of stati and generative design patterns. Threeadditional paired pattern ase-studies are evaluated in Appendix H, whih ontribute to the overallresults of the evaluation. The stati and generative senarios are evaluated and ompared using metristo establish the quality of the developed appliations in terms of the basi software priniples of oupling,ohesion and omplexity.

1077.1.1 Evaluation StrategyIn an ideal situation the generative design patterns would be independently tested by teams of softwaredevelopers. Team A would develop test appliations using generative patterns and team B develop testappliations using stati patterns. However, this is not a realisti proposition. It is unlikely that asoftware ompany would alloate teams of developers to an evaluation proess for an aademi studywithout payment.However, there are alternatives to seuring the assistane of professional developers. As a seond resortthe evaluation ould be put in the hands of omputing students who ould at as study groups for thetesting of software development projets. However, this itself has its own set of problems:� The students may not be willing to partiipate.� They may lak the neessary eduation in design patterns.� Separate ontrol groups may be unbalaned.� A single group will develop prior learning from the stati or generative pattern developmentproess, whih will enhane the students' ability with the seond example study, thereby reatingan unbalaned omparison.As a neessary alternative to evaluation by independently onduted experiments, dependant experi-mentation an be onduted on the ase-studies. In this instane, the author of the generative designpatterns an develop the ase-studies, ondut the experiments and evaluate the results. A problemwith this is the author ould deliberately or unonsiously put a bias on ensuring the results of anyexperiments were in favour of the generative patterns. To ounter this problem the ode and test resultsan be independently heked and / or the ode and results made available for publi srutiny.The pragmatis of ase-studies and the evaluation proess an be awed for many reasons and at-tempting to overome those aws to ensure unbiased or independent results an be a major task initself. Seuring the assistane of independent developers, whether industrial or aademi, is initiallydependant on the willingness or availability of the persons approahed to do the task. Time is the realproblem in seuring independent evaluation.Self evaluation, although not ideal, is from a pratial point of view the best that an be ahieved giventhe limited time available. Given more time a more independent approah ould have been taken.

108However, this approah was not available. Therefore, a self evaluation has been onduted on thegenerative design patterns.7.2 MetrisMetris as the priniple evaluation riteria have been used to determine the usefulness of generativedesign patterns. The Borland Together[16℄ modelling tool that was used for modelling the generativedesign patterns lists eighty eight di�erent metris tests. The full list of these metris an be seen inAppendix G. Rosenberg and Hyatt[93℄ propose a range of both traditional and objet-oriented metrisfor testing objet oriented systems. The metris they use are useful in a wide range of models andevaluate the following attributes:� EÆieny� Complexity� Understanding� Reuse� Testing� MaintenaneThe metris used for the evaluation of the generative design patterns de�ned in this thesis are a sub-set of the metris proposed by Rosenberg and Hyatt. Although the metris used here are borrowedfrom Rosenberg and Hyatt based on what they onsider to be appropriate metris in objet-orientedenvironments, the metris used are ommonly disussed throughout many papers[8, 21, 90℄ and texts[57,68, 71℄.The following metris are used in this study to evaluate the generative design patterns:1. Coupling Between Objets (CBO) CBO represents the number of other lasses to whih alass is oupled. It ounts the number of referene types that are used in attribute delarations,formal parameters, return types, throws delarations, loal variables, and types from whih at-tribute and method seletions are made. Exessive oupling between objets is detrimental to

109modular design and prevents reuse. The more independent a lass is, the easier it is to reuse it inanother appliation. The larger the CBO �gure for a lass, the higher the sensitivity to hangesin other parts of the design, and therefore maintenane is more diÆult. A measure of oupling isuseful to determine how omplex the testing of various parts of a design is likely to be. The higherthe inter-objet oupling, the more rigorous the testing needs to be. CBO evaluates eÆienyand reusability. The Together modelling tool reommends an upper limit of 30 for this metri,where a higher number represents a higher degree of required testing.2. Cylomati Complexity (CC) Cylomati Complexity[78℄ is used to evaluate the omplexityof methods within a lass rather than the lass itself for reasons of inheritane. Ideally, a lownumber should be returned, preferably below ten. However, there is a slight drawbak to CC inthat a low �gure ould be returned beause deisions are deferred through message passing, notbeause the method is not omplex[93℄.3. Lak Of Cohesion Of Methods (LCOM) LCOM[57℄ measures the degree of similarity be-tween methods in a lass. A low value indiates good lass subdivision, implying simpliity andhigh reusability. A high lak of ohesion inreases omplexity, thereby inreasing the likelihood oferrors during the development proess[16℄. Cohesion an be measured by alulating the perent-age of methods that use a data �eld. Average the perentages, then subtrat from 100. Lowerperentages indiate greater data and method ohesion within the lass. High ohesion indiatesgood lass subdivision. Lak of ohesion or low ohesion inreases omplexity, thereby inreasingthe likelihood of errors during development. Classes with low ohesion ould probably be subdi-vided into two or more sublasses with inreased ohesion. This metri evaluates eÆieny andreusability[71, 93℄. The Together modelling tool reommends an upper limit of 101 and a lowerlimit of 30 for this metri, where a higher number represents lower ohesion.4. Lines Of Code (LOC) Lines Of Code is the number of lines of ode in a lass, inludingomments and empty lines. A large lass may pose a higher risk to understandability, reusability,and maintainability[71, 93℄. There are no reommended �gures for how many lines of ode thereshould be in a lass, although the Together[16℄ modelling tool defaults to a 1000 line upper limit.5. Response For Class (RFC) The size of the response for the lass inludes methods in thelass's inheritane hierarhy and methods that an be invoked on other objets. A lass, whihprovides a larger response, is onsidered to be more omplex and require more e�ort in testingthan one with a smaller response �gure[16℄. If a large number of methods an be invoked inresponse to a message, testing and debugging the lass requires a greater understanding on the

110part of the tester. This metri evaluates understandability, maintainability, and testability[71, 93℄.The Together modelling tool reommends an upper limit of 50 for this metri, where a highernumber represents a higher degree of required testing.6. Weighted Methods Per Class (WMPC)WMPC is the sum of the omplexity of all methodsfor a lass, where eah method is weighted by its ylomati omplexity. The number of methodsand the omplexity of the methods involved is a preditor of how muh time and e�ort is requiredto develop and maintain the lass[16℄. A lass with a large numbers of methods is likely to bespei� to an appliation, whih will limit its possibility of reuse[93℄. This metri measures under-standability, reusability, and maintainability[71, 93℄. The Together modelling tool reommendsan upper limit of 30 for this metri, where a higher number represents greater omplexity.7. Number of Classes The NOC metri is very simple, it ounts the number of lass and interfaeomponents in the appliation.8. Exeutable Size The size of the binary �les in Kilobytes. Although this is not a spei� metri itis used by Arnout[7℄ in her omparison of systems that do and do not use omponentised patterns.In her thesis she presents a set of patterns that have been omponentised into a set of librarylasses. A system is then ompared with and without these lasses and the size of the exeutableappliation is measured.7.3 Stati vs. Generative Patterns7.3.1 IntrodutionThe following evaluation provides statistis and a disussion of eah ase-study / experiment ondutedon the generative patterns using metris. In eah ase-study, the same generative patterns are omparedagainst the same stati patterns in the same senario. The senario is a representation of a o�ee shopwhere a drink an be purhased. When the drink is purhased a desription of the drink and the ostare displayed on the output window of the appliation.All the patterns used in these ase-studies were �rst disussed in Chapter Six and Appendies A toD. The �rst ase-study in this hapter and the three ase-studies in Appendix H onsist of pairs ofpatterns. The seond and third ase-studies ontain three and four patterns respetively. The �nalase-study uses all four patterns but in a larger appliation.For eah ase-study, a omparative model of the generative and stati design patterns is provided.

111The �rst table in eah ase-study provides the general statistis for the ompared appliations. TheTogether modelling tool that provides the metris uses the highest value obtained from the individuallass omponents as the benhmark �gure for the appliation as a whole. Therefore the �gures in the�rst table represent the overall projet statistis.The seond table provides the statistis for two types of individual lass omponents:1. Those that have a like-for-like omponent in the omparative appliation but show di�erentstatistial results.2. Those that have no orresponding omponent in the omparative appliations, where a omparisonannot be made.Both the �rst and seond table of eah ase-study indiates whether there is a positive or negativedi�erene between the omparative examples or whether there is no di�erene at all.Table Key� + Represents a positive result in favour of the generative pattern.� { Represents a negative result against the generative pattern.� / Indiates that there is no di�erene between the omparative examples.� * Indiates that there is no orresponding omponent with whih to ompare.� A blank spae indiates that the metris ompiler did not return a value.� GP A omponent from a generative pattern.� SP A omponent from a stati pattern.

1127.3.2 A Simple Case Study using Composite and Deorator
Generative Design Example Static Design Example

CombinedIF

Small
Drink

Composite

Client

Drink
Decorator

Chocolate
Sprinkle

Whipped
Cream

Medium Large

Steamed
Milk

Foamed
Milk

Espresso

Decorator
Component

Small

Drink
Composite

Client

Drink
Decorator

Chocolate
Sprinkle

Whipped
Cream

Medium Large

Steamed
Milk

Foamed
Milk

Espresso

Composite
Component

Drink
Leaf

Figure 7.1: Generative vs. Stati { Composite and DeoratorFigure 7.1 above provides a lass diagram for the omparative examples of the omposite and deoratorpatterns used in a generative and stati pattern environment. As an be seen from the diagram, thegenerative example on the left has an interfae that is ombined from the two interfae omponentsthat are used in the stati example on the right. The four sub-omponents of the DeoratorComponentfrom the stati pattern example are now leaf omponents to the DrinkComposite lass in the generativepattern example.In order for the two patterns to work together in the stati environment, a deorator objet is reated andadded to a olletion objet in the DrinkLeaf omponent of the omposite pattern. As suh, multipledeorator objets an be added to one or more DrinkLeaf omponents and one or more DrinkLeafomponents an be added to a DrinkComposite omponent. DrinkComposite omponents an be addedto other DrinkComposite omponents as is intended with a omposite pattern.In the generative example, beause any deorator objet that is reated is now a leaf omponent to theDrinkComposite omponent, it an be added diretly to a DrinkComposite objet.Table 7.1 shows the overall results of the metris that were produed from the generative and statiexamples of the omposite and deorator patterns desribed above.

113Metri Generative Patterns Stati Patterns Di�erene (%)CBO 11 13 +CC 2 2 /LCOM 100 100 /LOC 242 278 +12.9%RFC 31 33 +WMPC 5 6 +NOC 12 14 +EXE SIZE 10.0 12.1 +17.4%Table 7.1: General statistis for the Generative and Stati versions of Composite and DeoratorWhat the statistis in Table 7.1 indiate, whih is on�rmed by the CBO and RFC metris, is that thegenerative pattern example will require slightly less testing than the stati pattern example. As an beseen in Table 7.2 the higher values for the CBO and RFC metris omes from the lient of the statiexample, whih is having to ommuniate with two interfae omponents instead of just one interfaeomponent in the generative example.Whilst a like-for-like omparison annot be made between omponents that have no ounterpart, theadditional omponents in the stati example have something of an overhead in terms of omplexity.The overall value of the WMPC metri suggests that the generative example is slightly less omplex.The higher omplexity value in the stati example omes from the CompositeComponent, whih de-�nes two sets of methods (add(Component drink) and remove(Component drink) in the omposite, andadd(Co�eeProdut drink) and remove(Co�eeProdut drink) in the leaf) for the olletion omponentsde�ned in eah sublass of the interfae. Signi�antly, the joint values for the interfae omponents inthe stati example are double that of the single interfae in the generative example.Where the two separate interfaes are onerned (DeoratorComponent and CompositeComponent) inthe stati example, the statistis in Table 7.2 show that the overall testing �gures for the CBO andRFC values are double that of the CombinedIF interfae omponent of the generative example. So,whilst the lient in the stati example will require more testing than that of the generative example,the stati example, yet again, will require more testing in the individual interfae omponents plussome additional testing for the DrinkLeaf omponent.Three other signi�ant points in favour of the generative example are the redution in the number oflines of ode, the redution in the number of lasses and the size of the exeutable �le. As an be seen

114in this example, the exeutable �le for the stati patterns is over 17% higher, whilst it has almost 13%more ode and two extra lasses.Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 11 13 1 1 86 86 56 56 31 33 5 5+ / / / + /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCombinedIF 0 * 1 * * 7 * 4 * 4 ** * * * * *Composite * 1 * 1 * * 10 * 6 * 6Component * * * * * *Deorator * 0 * 1 * * 5 * 2 * 2Component * * * * * *Drink * 4 * 2 * 0 * 28 * 8 * 5Leaf * * * * * *Table 7.2: Individual statistis for the Generative and Stati versions of Composite and DeoratorThe individual lass statistis for the like-for-like omponents in the examples are idential throughoutall metri ategories, therefore they are not inluded in Table 7.2. In this example this equates tothe omponents that make up the deorator and the omposite lass elements of the appliation. Thereason for this is modularity, in that eah orresponding omponent provides idential funtionality.The only exeption in like-for-like omponents is the lient. For the lient there is a minor di�erenein that it ommuniates with two separate interfaes.Three additional paired pattern ase-studies an be seen in Appendix H.

1157.3.3 A Simple Case Study using Composite, Command and Builder
Generative Design Example

Static Design Example

Coffee
Product

Concrete
Builder1

Invoke
Button

Client

Director

CombinedIF

Concrete
Builder2

Concrete
Builder3

Concrete
Command4

Composite

Command
Holder

Command
Holder

Coffee
Product

Concrete
Builder1

Invoke
Button

Client

Director

Builder

Concrete
Builder2

Concrete
Builder3

Concrete
Command1

Command

Concrete
Command2

Concrete
Command3

Concrete
Command4

Component

CompositeLeaf

Figure 7.2: Generative vs. Stati { Command + Composite + BuilderFigure 7.2 above provides a lass diagram for the omparative examples of the omposite, ommandand builder patterns used in a generative and stati pattern environment. This example of the threepatterns is very similar to the ommand and builder examples seen in Figure H.2 of Appendix H.However, other than the inlusion of the omposite pattern, there are some slight di�erenes.In the generative example, both the ommand and builder patterns are being ombined with theomposite pattern, but the builder pattern is still only using the InvokeButton from the ommandpattern. Additionally, although ConreteCommand4 from the ommand pattern shares an interfaewith the omposite pattern, ConreteCommand4 is not stritly a leaf omponent of the omposite as it

116is not pratial to add ConreteCommand4 to the omposite objet. ConreteCommand4 in this instaneis using the omposite to extrat information for later use.The builder and ommand patterns are ollaborating as they do in the ommand and builder exampleseen earlier, exept in this example the Co�eeProdut objet that is being reated is now being storedin the omposite objet.In order for the patterns to work together in the stati environment, a produt objet is built andreated when a ConreteCommand is issued through an InvokeButton ommand. The ConreteCommandinstruts the ConreteBuilder to build the produt; the produt is then added to a olletion objet inthe Leaf omponent of the omposite pattern. As suh, multiple produt objets an be added to oneor more Leaf omponents and one or more Leaf omponents an be added to a Composite omponent.Composite omponents an be added to other Composite omponents as is intended with a ompositepattern.In the generative example, beause any produt objet that is reated is now a leaf omponent to theComposite omponent, it an be added diretly to a Composite objet.Table 7.3 shows the overall results of the metris that were produed from the generative and statiexamples of the omposite, ommand and builder patterns desribed above.Metri Generative Patterns Stati Patterns Di�erene (%)CBO 20 26 +CC 17 17 /LCOM 88 88 /LOC 428 478 +10.5%RFC 14 11 {WMPC 14 11 {NOC 11 17 +EXE SIZE 18 20.7 +12.1%Table 7.3: Code statistis for the Generative and Stati versions of Command + Composite + BuilderThe statistis in Table 7.3 show that the stati pattern will require more testing in respet of theCBO metri than that of the generative pattern. With three patterns in these examples, the lientin the stati example has to ommuniate with two more interfae omponents than the lient in thegenerative example. As suh the CBO metri in the stati example is thirty perent higher than that

117in the generative pattern example. This represents a higher degree of oupling in the stati exampleand a higher degree of testing of the lient.However, as an be seen from Table 7.3, the RFC metri of the generative pattern is thirty perent higherthan the stati pattern. This higher value omes from the CombinedIF omponent of the generativepattern, whih is listed in Table 7.4. This is a result of the CombinedIF omponent de�ning methodsfor three di�erent types of subomponent. As a result, there will be a need for more testing of theCombinedIF omponent. Additionally, the WMPC metri shows that the omplexity of the generativeexample is higher than the stati example. Again the higher value for this metri omes from theCombinedIF omponent whih is ating as a ommuniation hub between the lient and the remaininglass omponents in the example.A signi�ant negative aspet of the generative example is shown in the statistis of the InvokeButton,whih an be seen in Table 7.4. The InvokeButton as it is used in the generative example is providingtwo sets of methods that are used to set the ommands for the ConreteCommand4 omponent and theConreteBuilder omponents:publi void setCommand(Co�eeDiretor omd);publi Co�eeDiretor getCommand();publi void setPrieCommand(CombinedIF omd);publi CombinedIF getPrieCommand();In a regular ommand pattern there would only be one pair of set and get methods. As suh, theLCOM value is signi�antly higher for the generative example - indiating that the InvokeButton of thegenerative example is less ohesive than the stati example. Likewise, the CommandHolder interfaewhih provides the implementation details for the InvokeButton also exhibits the negative values for itsmetris.Whilst the three separate interfaes (Builder, Command and Component) in the stati example still haveolletive values lower than the CombinedIF interfae of the generative example, the stati examplewill require some additional testing and maintenane for the ConreteCommand and Leaf omponents.Although the generative pattern returns a higher omplexity value, the additional omponents in thestati example have some degree of omplexity, whih has to be taken into aount.Whilst there are some negative aspets relating to the InvokeButton in the generative example, thegenerative example exhibits better olletive values in its metri than the stati pattern. This takesinto aount the redution in the number of lines of ode, the redution in the number of lasses and

118the size of the exeutable �le, whih are in favour of the generative example.Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 20 26 17 17 130 130 2 2 2 2+ / / / /Button 7 9 17 17 49 45 14 14 17 17Handler + / { / /Command 2 1 1 1 7 5 4 2 4 2Holder { / { { {Invoke 2 1 1 1 66 0 26 17 4 2 5 3Button { / { { { {Conrete 1 2 1 1 14 14 3 3 2 2Command4 + / / / /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCombinedIF 1 * 1 * * 21 * 14 * 14 *Component * 1 * 1 * * 12 * 5 * 5Command * 0 * 1 * * 4 * 1 * 1Builder * 1 * 1 * * 10 * 6 * 6Leaf * 4 * 2 * 0 * 29 * 8 * 5Conrete * 1 * 1 * * 9 * 2 * 2Commands * * * * * *Table 7.4: Individual statistis for the Generative and Stati versions of Command, Composite andBuilderLike in the previous example, the individual lass statistis for the like-for-like omponents in theexamples are idential throughout all metri ategories, therefore they are not inluded in Table 7.4.In this example this equates to the ConreteBuilder omponents, the Co�eeProdut, the Diretor andthe Composite lass. Again, like the previous examples the reason for this is modularity, in that eahorresponding omponent provides idential funtionality.

1197.3.4 A Case Study using Composite, Command, Deorator and Builder
Generative Design Example

Static Design Example

Composite

Coffee
Product

Concrete
Builder1

Invoke
Button

Client

Director

Builder

Concrete
Builder2

Concrete
Builder3

Concrete
Command1

Command

Concrete
Command2

Concrete
Command3

Concrete
Command4

Component

CompositeLeaf

Decorator

Decorator
Component

Concrete
Decorator1

Concrete
Decorator2

Decorator
Coffee

Product
Concrete
Builder1

Invoke
Button

Client

Director

CombinedIF

Concrete
Builder2

Concrete
Builder3

Concrete
Command

Concrete
Decorator1

Concrete
Decorator2

Figure 7.3: Generative vs. Stati { Command + Composite + Builder + DeoratorFigure 7.3 above provides a lass diagram for the omparative examples of the omposite, ommand,deorator and builder patterns used in a generative and stati pattern environment. This exampleof the four patterns is very similar to the omposite, ommand and builder examples seen in Figure7.2. However, with the inlusion of the deorator pattern, there are some minor hanges to how theexamples operate.Like the previous example on the generative side of the diagram, both the ommand and builder

120patterns are being ombined with the omposite pattern, but the builder pattern is still only using theInvokeButton from the ommand pattern. Again, similar to the previous example, ConreteCommand4from the ommand pattern shares an interfae with the omposite pattern, but is not stritly a leafomponent of the omposite as it is not pratial to add ConreteCommand4 to the omposite objet.The builder and ommand patterns are ollaborating as they do in the previous example, exept inthis example it is not the Co�eeProdut objet that is being stored in the omposite objet. In thisexample it is a deorator objet that is being stored in the omposite objet. With this di�erene, thedeorator omponent is taking as a parameter a Co�eeProdut objet. This in e�et means that theCo�eeProdut is a leaf in the deorator pattern, whilst the Deorator is a leaf in the omposite pattern.However, the Co�eeProdut is still a leaf in the omposite pattern as it ould be added to the ompositeobjet without having deoration applied to it.The situation desribed in the previous paragraph is diÆult to ahieve in the stati example as theleaf omponent has been de�ned to take deorator omponents only in its olletion objet.In order for the patterns to work together in the stati environment, the user has to deide whetherthe sale of a o�ee is to be a drink indoors or a drink out option. Depending on the deision, oneof the deorator objets is reated. Following this, a produt objet is built and reated when aConreteCommand is issued through an InvokeButton ommand. The ConreteCommand instruts theConreteBuilder to build the produt; the produt is then added as a parameter to the previously reateddeorator objet. The deorator objet is added to a olletion objet in the Leaf omponent of theomposite pattern. As suh, multiple deorator objets an be added to one or more Leaf omponentsand one or more Leaf omponents an be added to a Composite omponent. Composite omponents anbe added to other Composite omponents as is intended with a omposite pattern.Table 7.5 shows the overall results of the metris that were produed from the generative and statiexamples of the omposite, ommand, deorator and builder patterns desribed above.

121Metri Generative Patterns Stati Patterns Di�erene (%)CBO 21 28 +CC 23 23 /LCOM 88 88 /LOC 487 543 +10.1%RFC 14 11 {WMPC 14 11 {NOC 13 20 +EXE SIZE 20.5 23.8 +13.9%Table 7.5: Code statistis for the Generative and Stati versions of Command, Composite, Deoratorand BuilderThe statistis in Table 7.5 show that the stati pattern will require more testing in respet of the CBOmetri than that of the generative pattern. With four patterns in these examples, the lient in thestati example is ommuniating with four interfae omponents whereas the lient in the generativeexample only ommuniates with one. As suh the CBO metri in the stati example is onsiderablyhigher than that in the generative pattern example. This represents a higher degree of oupling in thestati example and a higher degree of testing and maintenane of the lient.Like the previous example, the RFC metri of the generative pattern is higher than the stati pattern.This higher RFC value omes from the CombinedIF omponent of the generative pattern, whih is listedin Table 7.6. This is a result of the CombinedIF omponent de�ning methods for four di�erent typesof subomponent. As a result, there will be a need for more testing of the CombinedIF omponent.Again, like in previous examples, the WMPC metri shows that the omplexity of the generativeexample is higher than the stati example. The higher value for this metri again omes from theCombinedIF omponent whih is ating as a ommuniation point between the lient and the remaininglass omponents in the example.The signi�ant negative aspet in this generative example omes from the InvokeButton whih, as isshown in Table 7.6, is quite high in terms of RFC and WMPC metris. This is a result of it providingtwo sets of methods to set the ommands for the ConreteCommand4 omponent and the ConreteBuilderomponents, as desribed in the previous example.Whilst the four separate interfaes (Builder, Command, Component and DeoratorComponent) in thestati example still have olletive values lower than the CombinedIF interfae of the generative example,the di�erene is marginal. When taking all the additional omponents of the stati example into

122onsideration, the stati example will require some additional testing and maintenane. Although thegenerative pattern returns a higher omplexity value, the additional omponents in the stati examplehave some degree of omplexity, whih has to be taken into aount.Whilst there are some negative aspets relating to the InvokeButton in the generative example, thegenerative example exhibits better olletive values in its metri than the stati pattern. This takesinto aount the redution in the number of lines of ode and the size of the exeutable �le, whih arein favour of the generative example.Beause the general metris in this example are so similar to the previous example, it appears thatthe addition of the deorator pattern has not added to the overall value of the general metris, otherthan the lient. However, the addition of extra omponents has inreased the olletive values of themetris, whih inreases additional work that may need to be applied in terms of the attributes listedin Setion 7.2.Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 21 28 23 23 151 151 2 2 2 2+ / / / /Button 9 12 23 23 59 55 16 15 23 23Handler + / { { /Command 2 1 1 1 7 5 4 2 4 2Holder { / { { {Invoke 2 1 1 1 66 0 26 17 4 2 5 3Button { / { { { {Conrete 1 2 1 1 14 14 3 3 2 2Command4 + / / / /Conrete 0 1 1 1 14 14 2 2 2 2Deorators { / / / /Continued on next page.

123Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCombinedIF 1 * 1 * * 21 * 14 * 14 *Component * 1 * 1 * * 12 * 5 * 5Command * 0 * 1 * * 4 * 1 * 1Builder * 1 * 1 * * 10 * 6 * 6Deorator * 1 * 1 * * 5 * 1 * 1Component * * * * * *Leaf * 4 * 2 * 0 * 29 * 8 * 5Conrete * 1 * 1 * * 9 * 2 * 2Commands * * * * * *Table 7.6: Individual statistis for the Generative and Stati versions of Command, Composite, Deo-rator and BuilderLike in previous examples, the individual lass statistis for the like-for-like omponents in the examplesare idential throughout all metri ategories, therefore they are not inluded in Table 7.6 above. Inthis example this equates to the ConreteBuilder omponents, the Co�eeProdut, the Diretor and theComposite lass. Again, like the previous examples the reason for this is modularity, in that eahorresponding omponent provides idential funtionality.

1247.3.5 An Alternative Case Study using Composite, Command, Deorator and Builder
A

pp
G

U
I

In
vo

ke
P

an
el

Sa

le
sP

an
el

Bu

ild
er

P
an

el

D
rin

ks
P

an
el

D

ec
or

at
or

C

om
po

ne
nt

La
rg

e
M

ed
iu

m

Sm
al

l

E
sp

re
ss

o
C

ho
co

la
te

M

ilk

C
re

am

D
rin

kD
ec

or
at

or

C
om

m
a

nd

C
om

m
an

d1

C
om

m
an

d2

C
om

m
an

d
H

o l
de

r

In
vo

ke
C

om
m

an
 d

Bu
 ild

er
 M

ea
lB

ui
ld

er
1

M
ea

lB
u

ild
er

2
M

ea
lD

ire
ct

or

M
ea

lP
ro

du
ct

C
om

po
si

te

Co
m

p
on

en
t

Sa
le

C
om

p
os

ite

E
at

In

Ta
ke

A
w

ay

U
se

r
In

te
rf

a c
e

De
co

ra
to

r
Pa

tte
rn

Bu
 ild

er
 P

at
te

rn

C
om

m
an

d
Pa

tte
rn

C
om

po
si

te

Pa
tte

rn

Figure 7.4: Example Appliation using Stati Design Patterns

125
A

p p
 G

 U
 I

In
 v o

 k e
 P

 a n
 e l

B

u i
ld

 e r
P

a n
 e l

S

a l
e s

 P
 a

n e
 l

D
 r i

n k
 s P

 a n
 e l

E
s p

 re
 s s

 o
C

 h o
 c o

 la
 te

M

 ilk

C
 re

 am

C
 o

m
 m

 a n
 d

H
 o

ld
 e r

In
 v o

 k e
 C

 o
m

 m
 a

 n d

C
 o

m
 b i

n e
 d I

F

S
a l

e C
 o

m
 p o

 s i
te

U
 s e

 r
In

 te
rf

a c
 e

D
 e c

 o r
a t

o r

P
a t

te
 rn

B
u i

ld
 e r

 P
 a t

te
 rn

C
 o m

 m
 a n

 d
P

a t
te

 rn

C
 o m

 p o
 s i

te

P
a t

te
 rn

C
 o m

 m
 o n

 In
 te

 rfa
 c e

fo

 r a
 ll

P
a t

te
 rn

 s

E
a t

In

M
 e a

 lB
 u i

ld
 e r

2
M

 e a
 lB

 u i
ld

 e r
1

M
 e a

 lD
 ire

 c t
o r

C

 o
m

 m
 a n

 d 2

L a
 rg

 e
M

 e d
 iu

 m

S
m

 a l
l

D
 ri

n k
 D

 e
c o

 ra
 to

 r

T
a k

 e
A

w
 a

y
M

 e a
 lP

 ro
 d u

 c t

C
 o m

 m
 a n

 d 1

Figure 7.5: Example Appliation using Dynami Design Patterns

126The examples illustrated by the designs in Figure 7.4 and Figure 7.5 uses the same four patterns asin the previous examples. However, where the design patterns in the previous examples supported asingle funtional aspet of an appliation, the patterns in these examples support several independentfuntions within the ontext of a touh sreen ash register.Other than the omposite pattern that is used to store data relating to di�erent types of sales, thedeorator, ommand and builder pattern eah represents a di�erent sales type:� The deorator pattern reates a small, medium or large drink of o�ee that an be deorated witha range of di�erent additives.drink = new Espresso(new SteamedMilk(new ChoolateSprinkle(new WhippedCream(new Small()))));� The ommand pattern represents the sale of a single item.InvokeCommand ommOne = new InvokeCommand();Command eggs = new EggCommand();ommOne.setCommand(eggs);� The builder pattern represents the sale of several di�erent types of meal that an be built up froma range of di�erent items.BuildEggs()fmealProdut.setBuildEggs("One Egg");gBuildSausage()fmealProdut.setBuildSausage("One Sausage");gBuildBeans()fmealProdut.setBuildBeans("Small Beans");gBuildChips()fmealProdut.setBuildChips("Small Chips");gBuildToast()fmealProdut.setBuildToast("One Toast");gBuildPrie()fmealProdut.setBuildPrie(3.50);gAlthough the three patterns that are mentioned in the list above work together for the appliation as awhole, they do not work together to support a single funtional aspet of the appliation. This approahto using the patterns was deliberate in an attempt to demonstrate how patterns an still ollaboratewhilst supporting di�erent funtionality, whih is di�erent to how the previous examples have beenapplied. There is an exeption to this in that two di�erent implementations of a ConreteCommandhave been used. One implementation supports its own funtionality, whilst the seond implementationreates a deorator objet.

127The generative example shown in Figure 7.5 provides a single interfae omponent to all four of thepatterns as it did in the previous example. However this interfae has four di�erent lients, one for eahpattern. In this respet, the TillComponentIF omponent is ating like a faade[45℄ pattern, providingaess to sub-omponents of the appliation.In the stati pattern example, eah objet that is reated from eah di�erent pattern has two methodsthat return a ost and a desription. A get method is used to extrat the ost and desription fromeah objet and is passed into an instane of a leaf omponent of the omposite pattern, whih anthen be added to the omposite objet.Table 7.7 below shows the metri values that were returned for eah of the generative and statiexamples of the appliation.Metri Generative Patterns Stati Patterns Di�erene (%)CBO 30 30 /CC 4 8 +LCOM 100 100 /LOC 1322 1312 -0.76%RFC 47 47 /WMPC 31 25 {NOC 25 28 +EXE SIZE 56.1 58.4 +3.9%Table 7.7: Code statistis for the Generative and Stati versions of a touh sreen ash registerThe statistis in Table 7.7 show that the testing requirements in respet of the CBO metri are exatlythe same. In previous examples the value of the CBO metri in the general statistis table has omefrom the lient, whih in all ases has been higher in the stati example. However, the examples inFigures 7.4 and 7.5 have a slight di�erene in the lient omponent, partiularly with the stati example,in that the lient for eah of the di�erent patterns is a di�erent JPanel. Where the generative exampleis onerned, eah JPanel lient mathes the funtionality that is provided by the patterns that are usedin the stati example. Therefore, both examples have been developed with the same funtionality inrelation to the patterns.The CBO value in eah of the examples omes from the CashTillGUI omponent where the graphial userinterfae is built. Beause both CashTillGUI omponents are built in exatly the same way, leaving theJPanel extended omponents to maintain funtionality, the CBO values are the same. The value of the

128RFC metri in the general statistis also omes from the CashTillGUI omponent and is of equal value forthe same reasons as the CBO metri mentioned above. Like in previous examples, the WMPC metrishows that the omplexity of the generative example is higher than the stati example. The highervalue for this metri again omes from the CombinedIF omponent whih is ating as a ommuniationpoint between the lient and the remaining lass omponents in the example. This metri, for thegenerative pattern, is above the upper value reommended by the modelling tool where the metriswere taken. This suggests that it may be better to separate some of the funtionality into separateinterfae omponents.In the generative example, the patterns do not share any omponents other than the CombinedIF in-terfae beause eah of the patterns in the generative example is supporting separate funtionality.Therefore, the subomponents in the stati example math the subomponents in the generative exam-ple. However, in the generative example there are three extra ConreteCommand omponents, whihexeute the reation of the deorator pattern objets. So, whilst there is a redution in the number ofinterfae omponents in the generative example there is an inrease in subomponents. For this reason,there is virtually the same number of lines of ode in eah of the examples.The four separate interfaes (Builder, Command, CompositeComponent and DeoratorComponent) in thestati example have a olletive value of thirty for both the WMPC and RFC metri. Although thisvalue is lower than in the generative example, the di�erene is marginal. As suh, the oupling andomplexity aspets of the two examples are very similar. Additionally, the testing and maintenaneaspets are also very similar. There are some minor di�erenes in some of the omponents, whih anbe seen in Table 7.8. These di�erenes are brought about by how the patterns handle the funtionality.In the generative pattern funtionality is aessed or provided through the CombinedIF omponent. Inthe stati example, funtionality is handled through one or more di�erent interfae omponents.

129Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPBuilder 13 12 2 2 130 123 12 11 2 2Panel { / { { /Button 7 6 2 2 20 15 12 9 2 2Handler { / { { /Drinks 11 10 4 8 100 100 132 178 15 12 3 3Panel { + / + { /Button 8 15 4 8 23 50 7 20 4 8Handler + + + + +Invoke 10 11 2 2 100 100 115 115 14 14 3 3Panel + / / / / /Button 7 8 2 2 12 12 8 8 2 2Handler + / / / /Baon 1 2 1 1 18 18 5 5 2 2Command + / / / / /Egg 1 2 1 1 18 18 5 5 2 2Command + / / / / /Continued on next page.

130Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCombinedIF 2 * 1 * * 43 * 31 * 31 *Conrete 3 * 1 * * 15 * 8 * 2 *Commands * * * * * *Composite * 1 * 1 * * 22 * 13 * 13Component * * * * * *Command * 1 * 1 * * 4 * 1 * 1Builder * 1 * 1 * * 28 * 13 * 13Deorator * 0 * 1 * * 5 * 2 * 2Component * * * * * *Table 7.8: Individual statistis for the Generative and Stati versions of Command, Composite, Deo-rator and BuilderLike in previous examples, the individual lass statistis for many of the like-for-like omponents in theexamples are idential throughout all metri ategories, therefore they are not inluded in Table 7.8above. In this example this equates to the ConreteBuilder omponents, MealProdut and MealDiretor,the Composite and Leaf omponents, the Deorator and ConreteDeorator omponents, the SalesPanel,the CommandHolder and the CashTillGUI. Again, like the previous examples the reason for this ismodularity, in that eah orresponding omponent provides idential funtionality.7.4 ConlusionFrom the evidene presented in the evaluation a number of observations an be made. On the wholethere is a positive set of results, as indiated by the metris, in favour of the generative patterns whenompared to the metris for the stati patterns. Where di�erent patterns have been used there areminor di�erenes in metri values and in some ases the metris favour the stati patterns, partiularlywhere individual omponents are onerned. However, taking the metris as a whole the generativepatterns have more plus points than negative points. Where multiple patterns have been used, the gapbetween the positive and negative aspets of the metris for the ollaborating patterns omes down.It would be evident at this point to suggest that using pairs of patterns is more eÆient than usingmultiple patterns. To onlude that as a fat for the majority of patterns would require onsiderablymore testing with pairs and multiples of patterns. However, from the patterns used for this thesis andthe way they have been used, they are better used in pairs.

131Where the four patterns have been used in a single appliation there is a di�erene in results between thegenerative example that supports a single funtion and the generative example that supports multiplefuntions. In the �nal ase-study the four patterns used eah supported a di�erent funtion. Whatwas found was that there was little di�erene between the stati and generative example. Whereasin the previous ase-study using four patterns where the patterns supported a single funtion, it wasfound that there was a favourable result for the generative example. Again, a fatual onlusion annotbe drawn from a single ase-study, but for the patterns used in this thesis, generative patterns thatsupport a single funtion give better results than generative patterns that support multiple funtions.In any development proess, there is always a balaning at between obtaining good oupling, ohesionand omplexity in a system. Coupling problems ould be eliminated by putting all aspets of funtion-ality in one lass, but this would not be good programming pratie and would adversely a�et testingand maintenane of the appliation. On the opposite side of this there ould be multiple lasses eahwith a small piee of funtionality. Again, this would not be good pratie and would serve to inreasethe overall omplexity of the appliation. What is evident from the generative patterns is that there area redued number of lasses without any signi�ant loss of integrity in the aspets of oupling, ohesionand omplexity. There are some minor losses in ertain omponents, mainly the ombined interfae,but overall, the generative patterns provide a better option than stati patterns when multiple statipatterns are used to support a single funtion.The �nal result to these experiments is to onlude, that for the patterns used:they are better used in small numbers to support a single funtion,there is an overall improvement in the oupling, ohesion and omplexity measures.A positive aspet that has ome from the ase-studies and the evaluation is that onduting multipleexperiments has provided information that an be used in providing knowledge that an be suppliedwith the generative patterns. For example, it was found that when the ommand pattern is used withthe builder pattern it is easier to use the Diretor omponent of the builder pattern as a subomponentof the ombined interfae. However, when builder is ombined with the omposite pattern it is betterto use the Produt omponent of the builder pattern as a subomponent of the ombined interfae. Thereason for this is that the Produt is a leaf of the omposite omponent and an be added diretly tothe omposite objet.Therefore, there are ertain pros and ons that an be disussed in patterns as a result of ondut-ing multiple experiments. For example, the ase-study with the four patterns in Figure 7.3 showedthat the InvokeCommand had grown in omplexity beause it was supporting two di�erent types of

132ConreteCommand. Therefore this an be disussed as a on, with a reommendation to provide oneInvokeCommand for eah type of ConreteCommand.7.5 SummaryDe�ning generative patterns an only be done when it is known how two partiular patterns worktogether. The ombinations desribed above are only a small proportion of all possibilities for rela-tionships, but are a start. These pairings and multiple ombinations are desribed with the designknowledge of how they ombine, therefore it is possible to extrapolate a desriptive relationship fromthat design. In the Design Patterns atalogue there are many referenes to ombinations of patternsworking together, suh as the Iterator pattern being used to traverse the Composite pattern, but thedesign knowledge for this is not provided. Some pattern users might say that the design knowledgeontained in a design pattern is the Struture (Class diagram). Others might say that the design pat-tern is more than a lass diagram and some implementation knowledge. If the priniple of the patternis to be maintained then the pattern should onvey more knowledge than the design. This however, isone of the problems with urrent patterns, in that they do not onvey suÆient knowledge[59℄. The ex-periments onduted above are an attempt to provide some of the extra knowledge that an be writteninto a design pattern. Although the experiments onduted have been a omparison of two di�erentdevelopment styles, the experiments have shown that ombining patterns as a generative omponentan provide some additional knowledge for pattern users.

133
Chapter 8CONCLUSIONThe priniple ontributions of this thesis in de�ning patterns as a generative development omponentare:� The notation required for a generative design pattern. This is the ontribution of the work inprogress. The notation ontained in a standard design pattern de�nes a stati struture of areusable omponent. To provide patterns with a dynami struture, quality driven proesses havebeen examined, and elements of these proesses have been integrated into the generative designpatterns. Independent elements of pattern lassi�ations have also been examined and inludedin the generative pattern desription.� The relationships between ollaborating design patterns. There are three primary de�nitions ofrelationship between design patterns, Combines, Uses and Used By. Of these three relationshipsthe Combines relationship has been applied in the experiments on implementing a relationshipbetween patterns. From this it was determined that a Uses relationship was more appropriate inone of the experiments.� The appliation of generative design patterns. The re-engineered pattern notation has been appliedto four separate patterns in seven examples of how to use the notation. The generative patternsthat have been written using the generative notation are inluded within this thesis in ChapterSix and Appendies A to D.Therefore, this hapter onludes the work undertaken in de�ning a generative pattern. The intro-dution in Chapter One made the point that the goal of generative programming is the seletion ofreusable omponents from a oded library for the automation of appliation development. However,the point was also made that in the sheme of appliation development, the preursor to developmentis design. In order to failitate the onept of generative programming the preursor to this ought tobe generative design.The aim of this thesis has been met through the refatoring of a stati design pattern notation toprodue a dynami pattern notation for the purpose of generative design.

134A generative design pattern framework has been onstruted through identifying aspets of ommonnotation and has been applied in the de�nition of a number of generative design patterns. The gener-ative design patterns published in this thesis represent a small number of experiments that have beenonduted into �nding how these stati design patterns will work together in a generative format. Byontinuing with experimentation on design patterns rules an be established that will allow patternwriters to stipulate riteria for their own patterns to be onsidered as a generative design pattern.As a subtext to the framework, a signi�ant ontribution to the output of the work onduted in thisthesis is the implementation details required to support the dynami aspets of the pattern. Relationalqualities have been applied that supports the onept of a relationship that Combines patterns throughollaboration between individual or multiple omponents of the ollaborating patterns.However, it was found that ontrary to published material, in a Uses relationship, ertain patternsdo not use other patterns in their entirety, they may only use an individual omponent from anotherpattern in their ollaboration with that pattern. In addition it was found that the Uses relationship maybe better suited to ertain patterns when attempting to form a ollaboration between those patterns. Itis not essential when ombining patterns that all aspets of the ollaborating patterns have to utilizedin the ollaboration. In this respet the use of an individual omponent from a pattern will be suÆientto form the ollaboration.

135
Chapter 9FUTURE WORK9.1 IntrodutionA thesis an be looked upon as being an apprentieship where skills are �rst developed. After theapprentieship has been ompleted, these skills are expanded upon and re�ned until the pratitionerbeomes the expert they aspire to be. This thesis represents the apprentieship and should be seen as abeginning on whih re�nements an be made. Although design patterns have ontinued to be publishedover the years sine Design Patterns[45℄ was �rst released in 1995, the patterns in the book have nothanged and very little has been done to hange them. Henney's[58℄ view is that re�nements did nothappen with Design Patterns[45℄.Although a generative pattern has been de�ned there is still muh work to be done. The template for thenotation an hange and there is every possibility that as re�nements are made to generative patternsthat the template will hange. To date, only a small number of experiments have been onduted ona small number of patterns from one atalogue of patterns. There is the potential for years of futurework experimenting with ombinations of patterns. Given the seven strutural patterns in the Gammaatalogue, there are twenty one possible ombinations of onnetivity.Calulating the number of potential experiments on patterns uses the formula:((n * (n - 1)) / 2) e.g. 7 x 6 / 2 = 21. Where n = number of patterns.In the Gamma atalogue as a whole, there are twenty three di�erent patterns. If we were to experimentwith ombining every pattern with every other pattern there would be 253 experiments. Maintainingthe priniple of three examples for every possible ombination there are 759 possible experiments. TheGamma atalogue mentions the MVC pattern, add that into the �gures and there are 828 possibleexperiments. The list of patterns presented by Tihy alone has the potential for almost �ve thou-sand experiments on paired ombinations of patterns. As more experiments are onduted so a learerunderstanding of whih patterns will ollaborate and whih should not will be developed and an un-derstanding of best pratie will be developed. This will possibly lead to a revision of the template forthe generative pattern.

136The summary of future work in pursuit of update and revision is as follows:� To label patterns by their Classi�ation type, Problem type and Assoiation type.� A de�nitive standard or formula for ombining or exluding ombinations of patterns.{ Obtained through developing oded examples from related patterns.� Develop a Computer Aided Software Engineering tool for the proess of arhitetural design withgenerative design patterns.The following aspets of future work represent projets separate from the above that ould be under-taken in respet of the development of generative design patterns.� A generative pattern development method.� A formal mathematial spei�ation of generative design patterns.9.2 To label patterns by their Classi�ation, Problem and Assoiation type9.2.1 Problem typeFor many patterns a Problem type lassi�ation is already known | Tihy, who is mentioned in thisthesis, has lassi�ed approximately one hundred patterns. However, Tihy published his work in 1998and sine that time many other patterns have been published but have not been subjeted to the samesrutiny as patterns were from that period. Therefore, known software patterns that have not beensubjet to problem solving srutiny need to be examined and lassi�ed. To do this, publiations thatrelate to appropriate software patterns an be analysed for their ontent and problem solving intent.9.2.2 Classi�ation typeIn looking at the problem solving intent of patterns the lassi�ation type of a pattern an also be deter-mined. The patterns de�ned by Gamma[45℄ are already lassi�ed and are the inspiration for lassifyingpatterns by this type of labelling. However, most patterns, inluding those lassi�ed by Tihy, are notidenti�ed by the Gamma lassi�ation. Although some patterns, other than the Gamma patterns, havebeen given a lassi�ation, analysing published material on patterns will, along with determining the

137Problem type lassi�ation, provide valuable information towards the knowledge ontained within agenerative pattern and as suh, work in this area should ontinue.9.2.3 Relational typeAlthough Zimmer has not instigated an investigation into �nding ommon attributes between patternshe has, through his investigation of the Design Patterns atalogue, detailed a quantity of known re-lationships. However it is evident, through studying the literature on patterns, that there are somerelationships between patterns that are not desribed by Zimmer. For example the Composite / Com-mand ombination in Appendix A has not been identi�ed by Zimmer and is not mentioned in theDesign Patterns atalogue.Of the nine possible ombinations of unidiretional ooperation (See Table 4.2), only six are revealedby Zimmer's lassi�ation of relationships. The relationships suggest, as revealed by Zimmer, thatstrutural patterns do not use behavioural patterns, whilst behavioural patterns do use struturalpatterns. However, this does not mean that other uses relationships do not exist and further experimentswith patterns will assist in revealing aeptable relationships between patterns that are not urrentlyde�ned.The relationships between patterns de�ned by Zimmer are only a small proportion of the relationshipsthat ould exist between all known software design patterns. Zimmer onentrated only on those rela-tionships that were mentioned in the Design Patterns atalogue, negleting other possible relationships.For example, it is reasonable to expet that there might be some form of relationship between the Fa-ade pattern and the Singleton pattern. The fat that this relationship is not doumented is not anindiator that the relationship does not exist. Therefore, further experiments between patterns willreveal as yet unde�ned relationships that may exist between patterns { not only the patterns from thedesign patterns atalogue, but patterns from other atalogues and proeedings.There is also additional work to be onsidered in this area. The experiment with Builder ombinesCommand revealed that the Builder pattern does not ombine with the Command pattern, it only Usesthe Invoke objet from the Command pattern. Further analysis may reveal that other Uses relationshipsbetween patterns may not be as they have been desribed.

1389.3 A de�nitive standard or formula for ombining or exluding ombinations of patternsTo overome the potential volume of work in de�ning relationships between every pattern, some ommonground ould be found that de�nes the relationship between spei� pattern types. In �nding ommonground it an be shown that two previously unrelated patterns an be de�ned as related, beause thetwo patterns meet on the ommon ground. The objetive therefore is not to set out and de�ne therelationship between every possible ombination of patterns, but to �nd the ommon attributes ofpatterns and map them to the attributes of other patterns. However, this task requires experimentingwith ombinations of patterns to determine what, if any, relationship exists between any given patterns,and what attributes an be abstrated from the relationships that are ommon to other patterns andtheir relationships.It is not enough to say that there is, or should be, a relationship between patterns. The proposedrelationship has to be applied and doumented, primarily to be aepted as a generative pattern.De�ning a universal relationship between patterns requires rules in order to meet the needs of theindividual pattern(s) to whih the relationship applies. It ould be the ase that the `uses' relationshipbetween Pattern X and Pattern Y is di�erent to the `uses' relationship between Pattern Y and PatternX. In this situation the rules may de�ne default or illegal ombinations. However, de�ning relationshipsto other patterns as a universal property of the patterns lassi�ation will not aount for any uniqueirumstanes in a relationship or exeptions to the rule.Zimmer reveals in his work that the `Uses' relationship an have two separate meanings. The standardmeaning is Pattern X uses Pattern Y in its solution. However, the relationship ould be: PatternX must use Pattern Y in its solution, or Pattern X might use Pattern Y in its solution. This, asZimmer relates, indiates the strength of the relationship. Noble[83℄, reveals twelve di�erent types ofrelationship between patterns: three primary relationships and nine seondary. Through observationit an be onluded that most of the relationships are re�nements of a Uses or Combines lassi�ation,whilst others indiate that two patterns are similar.It ould be said that there is only one type of relationship between patterns and that is a Combinesrelationship. This is stated on the grounds that: if two or more patterns work together to form asolution, then the patterns `Combine' their resoures to solve the problem. For a generative patternthis train of thought ould make the desription of the pattern easier to de�ne.It may be the ase that Variant Management patterns of the type Behavioural should not work inombination. Until signi�ant testing has been done on these types of patterns a de�nitive answer isnot known and rules that will exlude them in ombination annot be de�ned.

139The intended future work should bring forth rules for de�ning relationships between spei� patterns.By applying the rules to the patterns it should make it a simple task to identify whih patterns willwork together to build an arhiteture. However, the rules will not reveal themselves. A ontinuoussearh of new and existing literature an be onduted to �nd examples of patterns working together.Hands on experimentation an be onduted by developing examples of appliations onstruted fromrelated patterns. This type of work will also provide sample ode for inlusion within a generativepattern.This therefore represents the body of future work. By de�ning examples, ommon attributes an beabstrated from the designs of related patterns, and utilized in the de�nition of generative patterns.9.4 Develop a ase tool for design using generative patternsThere are many CASE tools on the market that an be used to design software. Some are sophistiatedIntegrated Development Environments that an be purhased at a signi�ant prie, whilst others arefree or open soure with an emphasis on simpliity. However, design tools of whatever standard have onething in ommon. They annot be used to develop arhitetures by ombining design patterns. Severaltools do have support for design patterns, suh as Together[16℄ but there is no means of generating anarhiteture from those patterns. The patterns when applied to a design have to be modi�ed in orderto work together.The ultimate output from the work onduted in this thesis ould be a tool that an be used toapply generative pattern design. Although generative design patterns are as yet a proposition underontinued investigation, a tool an be instigated that will apply generative patterns to a design. As moregenerative patterns are de�ned, so the tool an be expanded to inlude additional design omponents.One interesting fator in this proess would be to design the tool from generative design patterns.9.5 Formal Mathematial Spei�ation of generative patternsOne aspet of quality assurane for generative design patterns would be to provide a formal math-ematial spei�ation for generative design patterns. Again, like a generative pattern developmentmethod this is an o�shoot to the urrent projet but is dependent on developing a signi�ant numberof generative design patterns.

1409.6 Consideration of design patterns for de�nition and usabilityMany relationships between the patterns in the Design Patterns atalogue have not been de�ned | notbeause they don't exist, but beause the patterns themselves may be laking in the quality required tode�ne the relationships. Henney[59℄ gave a tutorial on the patterns from the Design Patterns ataloguein whih he:Reets on them, deonstruts them and re-evaluates them from a pratitioner's perspetive.His disussion was aimed at, in his own words:Why patterns suh as Abstrat Fatory, Builder, Flyweight, Command and others are miss-ing vital ingredients to be proper parts of an arhitetural voabulary.He disusses:Why Singleton dereases a system's exibility and testability.Why Iterator is not always the best solution for traversing aggregates.Why State is not the only state pattern.Why some patterns, suh as Bridge, are more than one pattern.Henney onludes that Design Patterns[45℄ was a start to the design pattern ulture and not the endresult; that improvements in design knowledge has lead to a greater understanding of design patterns,and that the Design Patterns atalogue is dated[58℄.In Appendix A the Composite pattern is ombined with the Command pattern. However, aording toGamma[45℄ and Zimmer[119℄ the Command pattern an use the Composite pattern in its implementa-tion. In reality what the Command pattern uses, if it does use the Composite in its implementation,is the Composite objet and not the Composite pattern. This emphasizes the point made earlier byHenney[59℄ that the Design Patterns[45℄ atalogue is not a omprehensive referene guide to designpatterns. In fat there is one visible anomaly presented by Gamma in their desription of the Com-mand pattern. The sequene diagram shows an interation between the Client and the Invoke objet,whih does not appear in the lass struture.To this end, the re-engineering of standard design patterns should not only look at how patterns anbe de�ned as generative but should also look at the pattern itself.

141
BIBLIOGRAPHY[1℄ The Objet Ageny. http://www.toa.om, 2004 [Aessed August 2007℄.[2℄ C. Alexander. The Timeless Way of Building. OUP, 1979.[3℄ C. Alexander, S. Ishikawa, M. Silverstein, M. Jaobson, I. Fiksdahl-King, and A. Shlomo. APattern Language. OUP, 1977.[4℄ C. Alexander, S. Sanford, S. Ishikawa, C. CoÆn, and A. Shlomo. Houses Generated by Patterns.Berkley (Calif.), Center for Environmental Struture, 1970. ISBN x3360704.[5℄ D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Prentie Hall, 2001.[6℄ B. Appleton. Patterns and software: Essential onepts and terminology.http://www.mrossroads.om/bradapp/dos/patterns-intro.html, [Last Aessed June 2008℄.[7℄ K. Arnout. From Patterns to Components. PhD thesis, Swiss Federal Institute of TehnologyZurih, 2004.[8℄ J. Avotins and C. Mingins. Metris for objet-oriented design. In TOOLS (12/9), 1993.[9℄ K. Bek. Extreme Programming Explained. Addison Wesley, 2000.[10℄ K. Bek and C. Andres. Extreme Programming Explained 2nd Ed. Addison Wesley, 2004.[11℄ K. Bek and R. Johnson. Patterns generate arhitetures. In Proeedings of ECOOP 94. SpringerVerlag, 1994.[12℄ M. Beedle and K. Shwaber. Agile Software Development with Srum. Prentie Hall, 2008.[13℄ E. Berard. A omparison of objet-oriented development methodologies.http://www.ipipan.gda.pl/marek/objets/TOA/OOMethod/mr.html, 1995 [Last Aessed June2008℄.[14℄ G. Booh. Objet Oriented Design With Appliations 2nd ed. Benjamin Cummings, 1994.

142[15℄ G. Booh, J. Rumbaugh, and I. Jaobson. The Uni�ed Modeling Language User Guide. AddisonWesley, 1999.[16℄ Borland. Together arhitet.http://www.borland.om/us/produts/together/index.html/, 1994 - 2008 [Last Aessed Novem-ber 2008℄.[17℄ J. Bosh. Design patterns as language onstruts. Journal of Objet-Oriented Programming, Vol.11, No. 2, 1998.[18℄ F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automati ode generation from design patterns.IBM Systems Journal. Vol. 35, No. 2, 1996.[19℄ F. Bushmann and R. Meunier. A system of patterns. In Proeedings of Pattern Languages ofProgramming, 1994.[20℄ F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern Oriented SoftwareArhiteture: A System of Patterns. Wiley, 1996.[21℄ S. Chidamber and C. Kemerer. A metris suite for objet-oriented design. IEEE Transationson Software Engineering., June 1994.[22℄ M. Cline. The pros and ons of adopting and applying design patterns in the real world. Com-muniations of the ACM, Vol. 39, No. 10, 1996.[23℄ P. Coad and J. Nihola. Objet-Oriented Programming. Prentie Hall, 1993.[24℄ P. Coad and E. Yourdon. Objet-Oriented Analysis, 2nd Ed. Prentie Hall, 1991.[25℄ P. Coad and E. Yourdon. Objet-Oriented Design. Prentie Hall, 1991.[26℄ A. Cokburn. Agile Software Development. Addison Wesley, 2002.[27℄ J. Coldewey. User interfae software. In Proeedings of the Conferene on Pattern Languages ofProgramming, 1998.[28℄ D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilhrist, F. Hayes, and P. Jeremaes. Objet-Oriented Development: The Fusion Method. Prentie Hall, 1994.

143[29℄ J. Coplien. A generative development-proess pattern language. In Pattern Languages of ProgramDesign Vol. 1., 1995.[30℄ J. Coplien. Software design patterns: Common questions and answers. The Patterns Handbook:Tehniques, Strategies, and Appliations, 1998.[31℄ J. Coplien and D. Shmidt. Pattern Languages of Program Design. Addison Wesley, 1995.[32℄ C# Corner. Composite patterns in #.http://www.-sharporner.om/Language/CompositPattersnInCSRVS.asp, 1999 - 2008 [Last A-essed June 2008℄.[33℄ W. Crawford and J. Kaplan. J2EE Design Patterns. O'Reilly, 2003.[34℄ W. Cunningham. The heks pattern language of information integrity. In Pattern Languages ofProgram Design Vol. 1., 1995.[35℄ W. Cunningham. Portland pattern repository. http://2.om/ppr/index.html, [Last AessedJune 2008℄.[36℄ J. Cybulski and T. Lynden. Composing multimedia artefats for reuse. In Pattern Languages ofProgramming, Allerton Park, Illinois, USA, 1998.[37℄ K. Czarneki and U. Eiseneker. Generative Programming. Addison Wesley, 2000.[38℄ T. DeMaro. Strutured Analysis and System Spei�ation. Yourdon Press - Prentie Hall, 1978.[39℄ B. Ekel. Thinking in Patterns - Eletroni Book. Brue Ekle, MindView In, 2003.[40℄ G. Florijn, M. Meijers, and P. van Winsen. Tool support for objet-oriented patterns. In EuropeanConferene on Objet-Oriented Programming, Vol. 1241 of LNCS, Springer, 1997.[41℄ B. Foote, N. Harrison, and H. Rohnert. Pattern Languages of Program Design 4. Addison Wesley,1999.[42℄ M. Fowler. Analysis Patterns 2nd Ed. Addison Wesley, 1997.[43℄ M. Fowler. Patterns of Enterprise Appliation Arhiteture. Addison Wesley, 2003.

144[44℄ M. Fowler. The new methodology.http://www.martinfowler.om/artiles/newMethodology.html, 2005 [Last Aessed November2008℄.[45℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of reusable objet-oriented software. Addison Wesley, 1995.[46℄ DM. Germ�an and DD. Cowan. Hypermedia design patterns. In 7th. Mini Conferene on DeisionSupport Systems, Groupware, Multimedia and Eletroni Commere, Brugge, Belgium, 1997.[47℄ M. Goodland and C. Slater. Strutured Systems Analysis and Design Method: A Pratial Ap-proah. MGraw Hill, 1995.[48℄ M. Grand. Patterns in Java, Vol. 1. Wiley, 1998.[49℄ M. Grand. Patterns in Java, Vol. 2. Wiley, 1999.[50℄ M. Grand. Java Enterprise Design Patterns. Wiley, 2002.[51℄ C. Gross. Foundations of Objet-Oriented Programming Using .NET 2.0 Patterns. Apress, 2006.[52℄ D. Gross and E. Yu. From non-funtional requirements to design through patterns. RequirementsEngineering, 1998.[53℄ Objet Management Group. The objet management group. http://www.omg.org, 2004 [LastAessed June 2008℄.[54℄ Objet Management Group. The Uni�ed Modeling Language V. 2.0.http://www.uml.org/#UML2.0, 2004 [Last Aessed June 2008℄.[55℄ Objet Management Group. Model Driven Arhiteture. http://www.omg.org/mda, 2008 [LastAessed Otober 2008℄.[56℄ The Hillside Group. Patterns home page. http://hillside.net/patterns, 2005 [Last Aessed June2008℄.[57℄ B. Henderson-Sellers. Objet-Oriented Metris: Measures of Complexity. Prentie-Hall, 1996.

145[58℄ K. Henney. Patterns in java: One or many.http://www.two-sdg.demon.o.uk/urbralan/papers/javaspektrum/OneOrMany.pdf, [Last A-essed June 2008℄.[59℄ K. Henney and F. Bushmann. Beyond the gang of four. In 18th ACM SIGPLAN Conferene onObjet-Oriented Programming, Systems, Languages and Appliations. From the abstrat., 2003.[60℄ J. Hong, D. Duyne, and J. Landay. The Design of Sites: Priniples, Proesses and Patterns forCrafting a Customer-entered Web Experiene. Addison Wesley, 2002.[61℄ IBM. Rational rose. http://www-306.ibm.om/software/awdtools/developer/rose/index.html,[Last Aessed November 2008℄.[62℄ I. Jaobson, G. Booh, and J. Rumbaugh. The Uni�ed Software Development Proess. AddisonWesley, 1999.[63℄ I. Jaobson, M. Christerson, P. Jonsson, and G. �Overgaard. Objet-Oriented Software Engineer-ing: A Use Case Driven Approah. Addison Wesley, 1992.[64℄ JM. J�ez�equel, M. Train, and C. Mingis. Design Patterns and Contrats. Addison Wesley, 1999.[65℄ N. Kerth. Caterpiller's fate: A pattern language for the transformation from analysis to design.In Pattern Languages of Program Design Vol. 1., 1995.[66℄ A. Kleppe, J. Warmer, and W. Bast. MDA Explained. Addison Wesley, 2003.[67℄ P. Kruhten. The Rational Uni�ed Proess { An Introdution, 3rd ed. Addison-Wesley, 2003.[68℄ M. Lanza and R. Marinesu. Objet-Oriented Metris in Pratie. Springer, 2006.[69℄ D. Lea. Christopher Alexander: An Introdution for Objet-Oriented Designers.http://gee.s.oswego.edu/dl/a/a/a.html, 1997 [Last Aessed June 2008℄.[70℄ D. Lea. Patterns-disussion faq.http://gee.s.oswego.edu/dl/pd-FAQ/pd-FAQ.html, 2001 [Last Aessed June 2008℄.[71℄ M. Lorenz and J. Kidd. Objet-Oriented Software Metris: A Pratial Guide. Prentie Hall,1994.

146[72℄ F. Lyardet, G. Rossi, and D. Shwabe. Patterns for dynami websites. In Pattern Languages ofPrograms Conferene, Montiello, Illinois, USA, 1998.[73℄ S. MaDonald, D. Szafron, J. Shae�er, J. Anvik, S. Bromling, and K. Tan. Generative designpatterns. In 17th IEEE International Conferene on Automated Software Engineering (ASE),2002.[74℄ F. Marinesu. EJB Design Patterns. Wiley, 2002.[75℄ R. Marinesu. An objet oriented metris suite on oupling. Tehnial report, UniversitateaPolitehnia Timisoara, Faultatea de Automatia si Calulatoare, Departamentul de Calulatoaresi Inginerie Software, 1998.[76℄ R. Martin, D. Riehle, and F. Bushmann. Pattern Languages of Program Design 3. AddisonWesley, 1997.[77℄ G. Masuda, N. Sakamoto, and K. Ushijima. Applying design patterns to deision tree learningsystem. In Proeedings of the ACM SIGSOFT Sixth International Symposium on the Foundationsof Software Engineering, 1998.[78℄ T. MCabe. A omplexity measure. IEEE Transations on Software Engineering, Deember 1976.[79℄ G. Meszaros and J. Doble. A pattern language for pattern writing. In Pattern Languages ofProgram Design, vol.3, 1996.[80℄ B. Meyer. Ei�el: The Language. Prentie-Hall, 1992.[81℄ Mirosoft. Enterprise Solution Patterns Using Mirosoft .NET. Mirosoft Press, 2003.[82℄ Vio Open Modelling. Composite pattern.http://vio.org/pages/PatronsDisseny/Pattern[Last Aessed June 2008℄.[83℄ J. Noble. Classifying relationships between objet-oriented design patterns. In In AustralianSoftware Engineering Conferene (ASWEC), 1998.[84℄ J. Noble. Towards a pattern language for objet oriented design. In Proeedings of the Tehnologyof Objet-Oriented Languages and Systems. IEEE, 1998.

147[85℄ Visual Paradigm. Visual paradigm. http://www.visual-paradigm.om/, 2008 [Last AessedNovember 2008℄.[86℄ College of Information Sienes Pennsylvania State University and Tehnology. Sienti� litera-ture digital library. http://iteseer.ist.psu.edu, 2007 [Last Aessed November 2007℄.[87℄ Code Projet. Composite pattern.http://www.odeprojet.om/s/design/CompositePattern.asp, 2006 [Last Aessed June 2008℄.[88℄ Code Projet. Composite pattern.http://www.odeprojet.om/s/design/sdespat 2.asp, 2006 [Last Aessed June 2008℄.[89℄ Rational. Rational uni�ed proess. http://www-01.ibm.om/software/awdtools/rup/, 2004 [LastAessed Otober 2008℄.[90℄ R. Reissing. Towards a model for objet-oriented design measurement. In In ECOOP Workshopon Quantative Approahes in Objet-Oriented Software Engineering, pages 71{84, 2001.[91℄ D. Riehle. Composite design patterns. In Proeedings of the Conferene on Objet-OrientedProgramming Systems, Languages and Appliations, 1997.[92℄ D. Riehle and H. Zullighoven. Understanding and using patterns in software development. Theoryand Pratie of Objet Systems, 1996.[93℄ L. Rosenberg and L. Hyatt. Software quality metris for objet-oriented environments. SoftwareAssurane Tehnology Centre, 1997. published in Crosstalk Journal, April 1997.[94℄ G. Rossi, A. Garrido, and D. Shwabe. Design reuse in hypermedia appliations development. In8th ACM Conferene on Hypertext and Hypermedia (Hypertext 97), Southampton, UK, 1997.[95℄ G. Rossi, D. Shwabe, and F Lyardet. Improving web information systems with navigationalpatterns.http://www8.org/w8-papers/5b-hypertext-media/improving/improving.html, [Last AessedJune 2008℄.[96℄ W. Roye. Managing the development of large software systems. In Reprinted in 9th InternationalConferene on Software Engineering. ACM Press, 1987.

148[97℄ J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Objet-Oriented Modelingand Design. Prentie Hall, 1991.[98℄ D. Shmidt. Using design patterns to develop reusable objet-oriented ommuniation software.Communiations of the ACM. Volume 38, Number 10, 1995.[99℄ D. Shmidt, M. Stal, H. Rohnert, and F. Bushmann. Pattern Oriented Software Arhiteture:Patterns for Conurrent and Networked Objets. Wiley, 2000.[100℄ R. Shultz and E. Berard. Mapping the Berard Objet-Oriented Method into DoD-2167A.http://www.ipipan.gda.pl/marek/objets/TOA/2167a/2167a-BOOM.html, 1995 [Last AessedJune 2008℄.[101℄ S. Shlaer and S. Mellor. Objet-Oriented Systems Analysis: Modelling the World in Data. PrentieHall, 1988.[102℄ S. Stelting and O. Maassen. Applied Java Patterns. Prentie Hall, 2002.[103℄ C. Thilmany. .NET Patterns: Arhiteture, Design and Proess. Addison Wesley, 2004.[104℄ W. Tihy. A atalogue of general-purpose design patterns. In Proeedings of Tehnology ofObjet-Oriented Languages and Systems (TOOLS 23), IEEE Computer Soiety, 1998.[105℄ J. Tidwell. Common ground: A pattern language for human-omputer interfae design.http://www.mit.edu/jtidwell/interation patterns.html, 1999 [Last Aessed June 2008℄.[106℄ J. Tidwell. Designing Interfaes. O'Riley, 2005.[107℄ Brighton University. What are the urrent objet-oriented methodologies?http://burks.brighton.a.uk/burks/pinfo/progdos/oofaq/s37.htm,1996 [Last Aessed August 2007℄.[108℄ Rie University. Composite pattern. http://www.exiton.s.rie.edu/UWisonsin/session2/,2006 [Last Aessed June 2008℄.[109℄ J. Vlissides. Pattern Hathing: Design Patterns Applied. Addison Wesley, 1998.[110℄ J. Vlissides, N. Kerth, and J. Coplien. Pattern Languages of Program Design 2. Addison Wesley,1996.

149[111℄ M. Voelter, J. Noble, and D. Manolesu. Pattern Languages of Program Design 5. AddisonWesley, 2006.[112℄ M. V�olter, A. Shmid, and E. Wol�. Server Component Patterns. Wiley, 2002.[113℄ K. Walden and JM. Nerson. Seamless Objet-oriented Software Arhiteture: Analysis and Designof Reliable Systems. Prentie-Hall, 1994.[114℄ M. Welie. Web design patterns. http://www.welie.om/patterns, 2007 [Last Aessed June 2008℄.[115℄ R. Wieringa. A survey of strutured and objet-oriented software spei�ation methods andtehniques. ACM Computing Surveys. Volume 30, Number 4, 1998.[116℄ R. Wirfs-Brok, B. Wilkerson, and L. Wiener. Designing Objet-Oriented Software. Prentie Hall,1990.[117℄ E. Yourdon. Modern Strutured Analysis. Prentie Hall, 1989.[118℄ E. Yourdon. Yourdon Systems Method: Model-Driven Systems Development. Prentie Hall, 1993.[119℄ W. Zimmer. Relationships between design patterns. In Pattern Languages of Program Design,1995.

150
Appendix ACOMPOSITE COMBINES COMMANDRelated PatternsCommand (See Command Pattern)Add behaviour to an appliation or system by enapsulating a request in an objet.Classi�ation type (Behavioural)Behavioural patterns apply responsibility to objets.Problem Solving Type (Control)� For what aspets of funtionality is the Command pattern responsible?The Command pattern deals with the ontrol of exeution, and the seletion of appropriate methods.� How the Command pattern uses and/or ontrols the funtionality of other patterns.The Command pattern adds funtionality to an appliation or system. The Command pattern antake ontrol of spei� aspets of other pattern omponents by o�ering an alternative to ontrollingbehaviour.� How it will ombine with other patterns to enhane funtionalityThe Command pattern will usually share an interfae. This ould be a ombination of the two interfaesof the ombining patterns or ould be an interfae that has ommon methods.Assoiation Type (Combines (Command))The interfae omponents of both Composite and Command ombine to form a single interfae. TheComposite element of the pattern supplies the olletion objet for the ombined patterns whilst theCommand element invokes funtionality on the Leaf elements of Composite. The reality is that theLeaf omponents beome ConreteCommands that are invoked by a lient that issues a ommand.

151Composite - Command Relationship
Combines

Control()

Behavioural : Command

VariantMan()

Structural : Composite

Participants:
 Command
 ConcreteCommand
 Invoker
 Receiver
 Client

Participants:
 Component
 Leaf
 Composite
 ClientFigure A.1: Relationship between Composite and CommandExamples of Generative DesignSenario 1AnalysisSenario 1 illustrates a simple drawing pakage where lines, squares and irles an be drawn withina frame. Eah drawing item an be individually added to the drawing area by the lik of a button,whih issues a ommand to draw the item. Eah drawn item an be added to the omposite objetwhere it an be used to repaint the drawing area.DesignUse-Case DiagramThe use-ase diagram represents a business proess that de�nes the ativities that an be applied tothe drawing senario. In this ase, drawing omponents are reated on ommand and displayed in thedrawing area.

Create Drawing
Objects

Add Objects to
Collection

Execute Command

Client

<<Include>> <<Extends>>

Invoke Command

<<Include>>

Could execute
one of several
commandsFigure A.2: Use-Case Diagram - Composite ombines Command

152Class DiagramThe diagram below shows the lass omponents that ollaborate to form the struture of the Composite{ Command drawing senario. Three di�erent buttons are reated that are used to issue the ommands.
interface

CommandHolder

getCommand

setCommand

 Shapecomponent

Draw : void
addDrawing : void

removeDrawing : void

Rectangleleaf

x : int
y : int

x1 : int
y1 : int

Rectangleleaf

Draw : void

Circleleaf

x : int
y : int

x1 : int
y1 : int

Circleleaf

Draw : void

Drawcomposite

Drawings : Vector <Shapecomponent>

Drawcomposite
addDrawing : void
removeDrawing : void

components : Enumeration
Draw : void

Lineleaf

x : int
y : int

x1 : int
y1 : int

Lineleaf

Draw : void

InvokeButton

getCommand
setCommand

Client

comp : Shapecomponent
obj: CommandHolder
draw : InvokeButton
line : Lineleaf

Figure A.3: Class Diagram - Composite ombines Command

153Sequene DiagramThe interation diagram shows the sequene of events that our between the various omponents thatare utilized in this pattern ombination. It also shows that the Command deouples the invoking objetfrom the reeiving objet. When the drawing objet has been reated it is then added to the Compositeobjet.
Client Command Invoke Receive

line Command

new Command(this)

store Command(line)

Draw(g)

Draw(g)

Compose

addDrawing(line)Figure A.4: Sequene Diagram - Composite ombines CommandImplementationThis example uses the Composite and Command patterns to demonstrate a simple drawing pakage.For the purpose of demonstration the omponents are hard oded into the lient but in a live appliationthe omponents would be reated dynamially.PartiipantsClientThe Client omponent is a simple GUI used to reate the drawn omponents. The lient implementsthe Command objets and adds the omponents reated on ommand to the olletion objet.ShapeomponentThe Shapeomponent lass spei�es an Abstrat interfae to the omponents of the Composite andCommand. Shapeomponent de�nes three methods that an be implemented by all sub-lasses. TheaddDrawing(Shapeomponent draw) and removeDrawing(Shapeomponent draw) methods are implemented in theComposite lass and the Draw(Graphis g) method is implemented in all sub-lasses.

154DrawompositeDrawomposite has two funtions; one is to add or remove items from the Colletion objet (the Vetor):- private Vetor<Shapeomponent> drawings;and the other is to all bak the items from the olletion (print to the frame)- ((Shapeomponent)omponents.nextElement()).Draw(g).In this example items are only added to the olletion:- addDrawing(Shapeomponent draw)fdrawings. addElement(draw)g.Lineleaf, Cirleleaf, RetangleleafLeaf omponents represent the drawing objets that are added to the drawing area when issued witha ommand to do so. Eah omponent de�nes its own type of drawing objet, whih is alled in theDraw method:- g.drawLine(x, y, x1, y1).InvokeCommandThe InvokeCommand stores the ConreteCommand objet whih is passed to InvokeCommand as aparameter in a setCommand() method. The InvokeCommand omponent asks the Command to arryout a request.CommandHolderCommandHolder ats as an interfae to one or more omponents that an invoke a ommand. In thisexample there is only one Invoke omponent that ativates a button ommand but there ould be otherssuh as menu items.ReeiverThe reeiver in this ase is the panel on whih the drawing objets are drawnClientCommand.java (Client)import java.awt.*;import java.awt.event.*;import javax.swing.*;publi lass ClientCommand implements AtionListenerf Shapeomponent omposite = new Drawomposite();

155CommandHolder obj;InvokeButton drawline;Lineleaf line;publi ClientCommand()f super("Draw ommands");JPanel jp = new JPanel();getContentPane().add(jp);jp.setLayout(new BorderLayout());JPanel bp = new JPanel();jp.add("South", bp);PaintPanel p = new PaintPanel();jp.add("Center", p);drawline = new InvokeButton("Draw Line", this);line = new Lineleaf(30, 30, 50, 50);drawline.setCommand (line);bp.add(drawline);drawline.addAtionListener(this);setBounds(200,200,400,200);setVisible(true);gpubli void ationPerformed(AtionEvent e)f Graphis g = getGraphis();obj = (CommandHolder)e.getSoure();if(obj == drawline)f obj.getCommand().Draw(g);omposite.addDrawing(line);ggpubli lass PaintPanel extends JPanelf publi void paint(Graphis g)f omposite.Draw(g);ggstati publi void main(String argv[℄)

156f new ClientCommand();ggShapeomponent.java (Component)import java.awt.*;publi abstrat lass Shapeomponentf publi void Draw(Graphis g) fgpubli void addDrawing(Shapeomponent draw) fgpubli void removeDrawing(Shapeomponent draw) fggDrawomposite.java (Composite)import java.awt.*;import java.util.Vetor;import java.util.Enumeration;publi lass Drawomposite extends Shapeomponentf private Vetor<Shapeomponent> drawings;publi Drawomposite()fdrawings = new Vetor<Shapeomponent>();gpubli void addDrawing(Shapeomponent draw)fdrawings.addElement(draw);gpubli void remove(Shapeomponent draw)fdrawings.removeElement(draw);gpubli Enumeration omponents()freturn drawings.elements();gpubli void Draw(Graphis g)f Enumeration omponents = omponents();while (omponents.hasMoreElements())f ((Shapeomponent)omponents.nextElement()).Draw(g);ggg

157Lineleaf.java (Leaf)import java.awt.*;publi lass Lineleaf extends Shapeomponentf private int x, y, x1, y1;publi Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawLine(x, y, x1, y1);ggCommandHolder.java (An interfae Component)publi interfae CommandHolderfpubli void setCommand(Shapeomponent omd);publi Shapeomponent getCommand();gInvokeButton.java (Invoker)import java.awt.*;import javax.swing.*;publi lass InvokeButton extends JButton implements CommandHolderf private Shapeomponent btnCommand;publi InvokeButton(String name)f super(name);gpubli void setCommand(Shapeomponent omd) fbtnCommand = omd;gpubli Shapeomponent getCommand() freturn btnCommand;gg

158
Appendix BCOMPOSITE COMBINES BUILDERRelated PatternsBuilder (See Builder Pattern)Simplify omplex objet reation by de�ning a lass whose purpose is to build instanes of anotherlass.Classi�ation type (Creational)Creational patterns provide exibility for what gets reated, what reates it, how it gets reated andwhen[45℄.Problem Solving Type (Variant Management)Variant Management patterns treat di�erent objets with a ommon purpose in a onsistent mannerby fatoring out their ommonality.� What objets are being manipulated.In this example, the Leaf omponents of the Composite pattern are being manipulated. Several di�erentobjets are being used by one builder to reate a pre-de�ned drawing.� Why they are being manipulated.In this instane the system an provide aess to ommon graphial strutures.� What objets will be manipulated through a Combines relationship and how the ombination willa�et the objet.The Composite and Builder share an interfae and the Builder uses the Leaf omponents of Compositeas a produt. An instane of the Composite objet is passed through the Builder to store the drawing.Assoiation Type (Combines (Builder))

159The interfae omponents of both Composite and Builder ombine to form a single interfae. TheComposite element of the pattern supplies the olletion objet for the ombined patterns whilst theBuilder element builds objets from the Leaf elements of Composite.Composite - Builder Relationship
Combines

VariantMan()

Structural : Composite

Participants:
 Component
 Leaf
 Composite
 Client

Varient Management()

Creational : Builder

Participants:
 Builder
 ConcreteBuilder
 Director
 Product
 ClientFigure B.1: Relationship between Composite and BuilderExamples of Generative DesignSenario 1AnalysisSenario 1 illustrates a simple drawing pakage where pre-de�ned graphis an be drawn within a frame.Di�erent graphial representations an be added to the drawing area when the builder objet is alled.Eah graphi item is be added to the omposite objet where it an be used to paint the drawing area.DesignUse-Case DiagramThe use-ase diagram represents a business proess that de�nes the ativities that an be applied tothe drawing senario. In this ase, a graphial is built on request and displayed in the drawing area.

Build Object

Call Object

Add to Collection

Client

<<Include>>

Construct Object

<<Include>>

Multiple objects could be
constructed at start-up and
called on requestFigure B.2: Use-Case Diagram - Composite ombines Builder

160Class DiagramThe diagram below shows the lass omponents that ollaborate to form the struture of the Composite{ Builder drawing senario.
 Shapecomponent

Draw : void

addDrawing : void
removeDrawing : void

buildLine() : void
buildCircle() : void
buildRectangle() : void

getComposite() : void

Rectangleleaf

x : int
y : int

x1 : int
y1 : int

Rectangleleaf
Draw : void

Circleleaf

x : int
y : int

x1 : int
y1 : int

Circleleaf
Draw : void

Drawcomposite

Drawings : Vector <Shapecomponent>

Drawcomposite

addDrawing : void
removeDrawing : void
components : Enumeration

Draw : void

Lineleaf

x : int
y : int

x1 : int
y1 : int

Lineleaf
Draw : void

DrawDirector

Builder : Shapecomponent
Construct : void

DrawHouseConcreteBuilder

buildLine() : void
buildCircle() : void
buildRectangle() : void

composite : Shapecomponent

Client

composite : Shapecomponent

PainPanel

Figure B.3: Class Diagram - Composite ombines Builder

161Sequene DiagramThe interation diagram shows the sequene of events that our between the various omponents thatare utilized in this pattern ombination. When the drawing objet has been built it is added to theComposite objet.
Client ConcreteBuilder Director

new ConcreteBuilder(Composite)

New Director(ConcreteBuilder)

BuildLine()

Construct()

getComposite()

BuildCircle()

BuildRectangle()

Product

new Line(w,x,y,z)

new Circle(w,x,y,z)

new Rectangle(w,x,y,z)

Composite

Composite.add(Product)Figure B.4: Sequene Diagram - Composite ombines BuilderImplementationThis example uses the Composite and Builder patterns to demonstrate a simple drawing pakage. Theomponents are hard oded into the ConreteBuilder and ould be in a live appliation. Alternatively,the omponents ould be reated dynamially and stored for future use.PartiipantsClientThe Client omponent is a simple GUI used to display the drawn omponents. The lient implementsthe Builder whih reates the objet and adds it to the olletion objet.ShapeomponentThe Shapeomponent lass spei�es an Abstrat interfae to the omponents of the Composite andthe ConreteBuilder. Shapeomponent de�nes seven methods that are a ombination of the methodsrequired by both patterns. The addDrawing(Shapeomponent draw) and removeDrawing(Shapeomponent draw)methods are implemented in the Composite lass and the Draw(Graphis g) method is implemented in allsub-lasses of the Composite part of the ombined patterns. The remaining methods are implementedby the Builder part of the ombined patterns.

162DrawompositeDrawomposite has two funtions; one is to add or remove items from the Colletion objet (the Vetor):- private Vetor<Shapeomponent> drawings;and the other is to all bak the items from the olletion (print to the frame)- ((Shapeomponent)omponents.nextElement()).Draw(g).In this example items are only added to the olletion- addDrawing(Shapeomponent draw)fdrawings. addElement(draw)g.Lineleaf, Cirleleaf, RetangleleafLeaf omponents represent the drawing objets that are added to the drawing area when issued witha ommand to do so. Eah omponent de�nes its own type of drawing objet, whih is alled in theDraw method - g.drawLine(x, y, x1, y1).DrawDiretorThe DrawDiretor alls the reational methods on its builder instane to have the di�erent parts of thegraphial objet built.DrawHouseConreteBuilderDrawHouseConreteBuilder implements all the methods required to reate the produt - in this asethe graphial objet.ClientCommand.java (Client)import java.awt.*;import java.awt.event.*;import javax.swing.*;publi lass ClientBuilder extends JFramef Shapeomponent omposite = new Drawomposite();publi ClientBuilder()f super("Draw Builder");JPanel jp = new JPanel();getContentPane().add(jp);jp.setLayout(new BorderLayout());JPanel bp = new JPanel();

163jp.add("South", bp);PaintPanel p = new PaintPanel();jp.add("Center", p);setBounds(200,200,400,400);setVisible(true);gpubli lass PaintPanel extends JPanelf publi void paint(Graphis g)f Shapeomponent omposite = new Drawomposite();Shapeomponent houseBuilder = new DrawHouseConreteBuilder(omposite);DrawDiretor draw = new DrawDiretor(houseBuilder);draw.onstrut();omposite = houseBuilder.getComposite();omposite.Draw(g);ggstati publi void main(String argv[℄)f new ClientBuilder();ggShapeomponent.java (Component)import java.awt.*;publi abstrat lass Shapeomponentf publi void Draw(Graphis g) fgpubli void addDrawing(Shapeomponent draw) fgpubli void removeDrawing(Shapeomponent draw) fgpubli void buildLine() fgpubli void buildCirle() fgpubli void buildRetangle() fgpubli Shapeomponent getComposite() freturn null;gg

164Drawomposite.java (Composite)import java.awt.*;import java.util.Vetor;import java.util.Enumeration;publi lass Drawomposite extends Shapeomponentf private Vetor<Shapeomponent> drawings;publi Drawomposite()fdrawings = new Vetor<Shapeomponent>();gpubli void addDrawing(Shapeomponent draw)fdrawings.addElement(draw);gpubli void remove(Shapeomponent draw)fdrawings.removeElement(draw);gpubli Enumeration omponents()freturn drawings.elements();gpubli void Draw(Graphis g)f Enumeration omponents = omponents();while (omponents.hasMoreElements())f ((Shapeomponent)omponents.nextElement()).Draw(g);ggg//The Leaf omponents of Composite are all very similar. The Retangleleaf will have g.drawRet(x, y, x1, y1);Lineleaf.java (Leaf)import java.awt.*;publi lass Lineleaf extends Shapeomponentf private int x, y, x1, y1;publi Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawLine(x, y, x1, y1);gg

165DrawDiretor.java (Diretor)lass DrawDiretorf private Shapeomponent builder;publi DrawDiretor(Shapeomponent builder) fthis.builder = builder;gpubli void onstrut()f builder.buildLine();builder.buildCirle();builder.buildRetangle();ggDrawHouseConreteBuilder.java (ConreteBuilder)import java.awt.*;publi lass DrawHouseConreteBuilder extends Shapeomponentf Shapeomponent omposite;publi DrawHouseConreteBuilder(Shapeomponent omposite) fthis.omposite = omposite;gpubli void buildLine()f Lineleaf roof1 = new Lineleaf(100, 100, 175, 50);Lineleaf roof2 = new Lineleaf(175, 50, 250, 100);omposite.addDrawing(roof1);omposite.addDrawing(roof2);gpubli void buildCirle()publi void buildRetangle()f Retangleleaf walls = new Retangleleaf(100, 100, 150, 150);omposite.addDrawing(walls);gpubli Shapeomponent getComposite() freturn omposite;gg

166
Appendix CBUILDER COMBINES COMMAND COMBINES COMPOSITEThe Composite in this example is supplemental to the ombining patterns Builder and Command.Related PatternsCommand (See Command Pattern)Composite (See Composite Pattern)Add behaviour to an appliation or system by enapsulating a request in an objet.Classi�ation type (Behavioural)Behavioural patterns apply responsibility to objets.Problem Solving Type (Control)� For what aspets of funtionality is the Command pattern responsible?The Command pattern deals with the ontrol of exeution, and the seletion of appropriate methods.� How the Command pattern uses and/or ontrols the funtionality of other patterns.Adds funtionality to an appliation or system. The Command pattern an take ontrol of spei�aspets of other pattern omponents by o�ering an alternative to ontrolling behaviour.� How it will ombine with other patterns to enhane funtionalityWill usually share an interfae. This ould be a ombination of the two interfaes of the ombiningpatterns or ould be an interfae that has ommon methods.Assoiation Type (Combines (Command) Combines (Composite))The interfae omponents of both Builder and Command ombine to form a single interfae. However,in addition the interfae from the Composite pattern adds to the ombination. The Composite element

167of the pattern supplies the olletion objet for the ombined patterns. The Command element invokesfuntionality on the Diretor element of Builder, whih supplies the method alls on the Conrete-Builders. The Leaf omponents of Composite work as ConreteCommands / Produts that are invokedby a lient that issues a ommand.Builder - Command - Composite Relationship
Combines

VariantMan()

Structural : Composite

Participants:
 Component
 Leaf
 Composite
 Client

Control()

Behavioural : Command

Participants:
 Command
 ConcreteCommand
 Invoker
 Receiver
 Client

Combines Combines

Varient Management()

Creational : Builder

Participants:
 Builder
 ConcreteBuilder
 Director
 Product
 Client

Figure C.1: Relationship between Builder, Command and CompositeExamples of Generative DesignSenario 1AnalysisSenario 1 illustrates a simple drawing pakage where lines, squares and irles an be drawn within aframe. The drawing artefats are reated by the Builder pattern but are not drawn on the frame untilthey invoked by the Command pattern. Eah drawing item an be individually added to the drawingarea by the lik of a button, whih issues a ommand to draw the item. Eah drawn item an beadded to the omposite objet where it is used to paint the drawing area.

168DesignUse-Case DiagramThe use-ase diagram represents a business proess that de�nes the ativities that an be applied tothe drawing senario. In this ase, drawing omponents are reated by the lient and only alled whenan invoke ation is ativated.
Add Objects to

Collection

Execute Command

Client

<<Extends>>

Invoke Command

<<Include>>

Could execute
one of several
commands

Build Drawing
ObjectsFigure C.2: Use-Case Diagram - Builder ombines Command ombines Composite

169The diagram below shows the lass omponents that ollaborate to form the struture of the Builder{ Command { Composite drawing senario. Three di�erent buttons are reated that are used to issuethe ommands.Class Diagram
interface

CommandHolder

getCommand

setCommand

Rectangleleaf

x : int
y : int
x1 : int
y1 : int

Rectangleleaf
Draw : void

Circleleaf

x : int
y : int
x1 : int
y1 : int

Circleleaf
Draw : void

Drawcomposite

Drawings : Vector <Shapecomponent>

Drawcomposite
addDrawing : void
removeDrawing : void
components : Enumeration

Draw : void

Lineleaf

x : int
y : int
x1 : int
y1 : int

Lineleaf
Draw : void

InvokeButton

getCommand

setCommand

Client

comp : Shapecomponent
obj: CommandHolder

draw : InvokeButton
line : Lineleaf

DrawHouseConcreteBuilder

buildLine() : void
buildCircle() : void
buildRectangle() : void

composite : Shapecomponent

DrawDirector

Builder : Shapecomponent
Construct : void

 Shapecomponent

Draw : void

addDrawing : void
removeDrawing : void

Figure C.3: Class Diagram - Composite ombines Command

170Sequene DiagramThe interation diagram shows the sequene of events that our between the various omponents thatare utilized in this pattern ombination. The objets are built and stored in the Composite objet untilthey are drawn on demand. It also shows that the Command deouples the invoking objet from theProdut. When the a button is ativated a ommand is invoked and the omposite objet is alled.
Client ConcreteBuilder Director

new ConcreteBuilder(Composite)

New Director(ConcreteBuilder)

BuildLine()

Construct()

getComposite()

Product

new Line(w,x,y,z)

Composite

Composite.add(line)

Invoke

new Command(this)

setCommand(ConcreteBuilder)

Draw(g)

new Composite()

Figure C.4: Sequene Diagram - Composite ombines CommandImplementationThis example uses the Builder and Command patterns to demonstrate a simple drawing pakage. Thefull Composite pattern is used in the senario. The omposite objet holds the drawing objets whilstthe Leaf objets of Composite at as Produt omponents. For the purpose of demonstration theomponents are hard oded into the lient but in a live appliation the omponents would be reateddynamially.PartiipantsClient (Reeiver)The Client omponent is a simple GUI used to build the drawn omponents. The drawing objets arereated automatially and added to the olletion objet. The lient implements the Command objets,whih alls the olletion objet to display the drawing. The reeiver in this ase is the panel on whihthe drawing objets are drawn.ShapeomponentThe Shapeomponent lass spei�es an Abstrat interfae to the omponents of the Command, Builderand Composite. Shapeomponent de�nes three methods that an be implemented by all sub-lasses.

171The addDrawing(Shapeomponent draw) and removeDrawing(Shapeomponent draw) methods are implementedin the Composite lass and the Draw(Graphis g) method is implemented in all sub-lasses.DrawompositeDrawomposite has two funtions; one is to add or remove items from the Colletion objet (the Vetor):- private Vetor<Shapeomponent> drawings;and the other is to all bak the items from the olletion (print to the frame)- ((Shapeomponent)omponents.nextElement()).Draw(g).In this example items are only added to the olletion- addDrawing(Shapeomponent draw)fdrawings. addElement(draw)g.Lineleaf, Cirleleaf, Retangleleaf (Produt)Leaf omponents represent the drawing objets that are added to the Composite objet during thebuild operation. Eah omponent de�nes its own type of drawing objet, whih is alled in the Drawmethod - g.drawLine(x, y, x1, y1). The Leaf omponents of Composite at as Produt omponents in theBuilder element of the generative pattern.InvokeButtonThe InvokeButton stores the ConreteCommand objet whih is passed to InvokeButton as a parameterin a setCommand() method. The InvokeButton omponent asks the Command to arry out a request.CommandHolderCommandHolder ats as an interfae to one or more omponents that an invoke a ommand. In thisexample there is only one Invoke omponent that ativates a button ommand but there ould be otherssuh as menu items.DrawDiretorThe DrawDiretor alls the reational methods on its builder instane to have the di�erent parts of thegraphial objet built.DrawHouseConreteBuilderDrawHouseConreteBuilder implements all the methods required to reate the produt - in this asethe graphial objet.

172ClientCommand.java (Client)import java.awt.*;import java.awt.event.*;import javax.swing.*;publi lass ClientCommand extends JFramef Shapeomponent omposite = new Drawomposite();CommandHolder obj;InvokeButton drawhouse;DrawHouseConreteBuilder houseBuilder = new DrawHouseConreteBuilder(omposite);DrawDiretor drawHouseDiretor = new DrawDiretor(houseBuilder);publi ClientCommand()f super("Draw Builder - Command");JPanel jp = new JPanel();getContentPane().add(jp);jp.setLayout(new BorderLayout());JPanel bp = new JPanel();jp.add("South", bp);JPanel dp = new JPanel();jp.add("Center", dp);drawhouse = new InvokeButton("Draw House");drawhouse.setCommand (drawHouseDiretor);drawHouseDiretor.onstrut();bp.add(drawhouse);ButtonHandler handler = new ButtonHandler();drawhouse.addAtionListener(handler);setBounds(200,200,800,400);setVisible(true);gprivate lass ButtonHandler implements AtionListenerf publi void ationPerformed(AtionEvent e)f Graphis g = getGraphis();obj = (CommandHolder)e.getSoure();if(obj == drawhouse)fomposite.Draw(g);ggg

173stati publi void main(String argv[℄)f new ClientCommand();ggShapeomponent.java (Component)import java.awt.*;publi abstrat lass Shapeomponentf publi void Draw(Graphis g) fgpubli void addDrawing(Shapeomponent draw) fgpubli void removeDrawing(Shapeomponent draw) fgpubli void buildLine() fgpubli void buildCirle() fgpubli void buildRetangle() fgpubli Shapeomponent getComposite() freturn null;ggDrawomposite.java (Composite)import java.awt.*;import java.util.Vetor;import java.util.Enumeration;publi lass Drawomposite extends Shapeomponentf private Vetor<Shapeomponent> drawings;publi Drawomposite()fdrawings = new Vetor<Shapeomponent>();gpubli void addDrawing(Shapeomponent draw)fdrawings.addElement(draw);gpubli void remove(Shapeomponent draw)fdrawings.removeElement(draw);gpubli Enumeration omponents()freturn drawings.elements();gpubli void Draw(Graphis g)f Enumeration omponents = omponents();while (omponents.hasMoreElements())f

174((Shapeomponent)omponents.nextElement()).Draw(g);gggThe Leaf omponents of Composite are all very similar. The Retangleleaf will have g.drawRet(x, y, x1, y1);Lineleaf.java (Leaf)import java.awt.*;publi lass Lineleaf extends Shapeomponentf private int x, y, x1, y1;publi Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawLine(x, y, x1, y1);ggCommandHolder.java (An interfae Component)publi interfae CommandHolderf publi void setCommand(Shapeomponent omd);publi Shapeomponent getCommand();gInvokeButton.java (Invoker)import java.awt.*;import javax.swing.*;publi lass InvokeButton extends JButton implements CommandHolderf private Shapeomponent btnCommand;publi InvokeButton(String name)f super(name);

175gpubli void setCommand(Shapeomponent omd)f btnCommand = omd;gpubli Shapeomponent getCommand()f return btnCommand;ggDrawDiretor.java (Diretor)lass DrawDiretorf private Shapeomponent builder;publi DrawDiretor(Shapeomponent builder)f this.builder = builder;gpubli void onstrut()f builder.buildLine();builder.buildCirle();builder.buildRetangle();ggDrawHouseConreteBuilder.java (ConreteBuilder)import java.awt.*;publi lass DrawHouseConreteBuilder extends Shapeomponentf Shapeomponent omposite;publi DrawHouseConreteBuilder(Shapeomponent omposite)f this.omposite = omposite;g

176publi void buildLine()f Lineleaf roof1 = new Lineleaf(100, 100, 175, 50);Lineleaf roof2 = new Lineleaf(175, 50, 250, 100);omposite.addDrawing(roof1);omposite.addDrawing(roof2);gpubli void buildCirle()publi void buildRetangle()f Retangleleaf walls = new Retangleleaf(100, 100, 150, 150);omposite.addDrawing(walls);gpubli Shapeomponent getComposite()f return omposite;gg

177
Appendix DBUILDER USES COMMANDRelated PatternsCommand (See Command Pattern)Add behaviour to an appliation or system by enapsulating a request in an objet.Classi�ation type (Behavioural)Behavioural patterns apply responsibility to objets.Problem Solving Type (Control)� For what aspets of funtionality is the Command pattern responsible?The Command pattern deals with the ontrol of exeution, and the seletion of appropriate methods.� How the Command pattern uses and/or ontrols the funtionality of other patterns.Adds funtionality to an appliation or system. The Command pattern an take ontrol of spei�aspets of other pattern omponents by o�ering an alternative to ontrolling behaviour.� How it will ombine with other patterns to enhane funtionality.Will usually share an interfae. This ould be a ombination of the two interfaes of the ombiningpatterns or ould be an interfae that has ommon methods.Assoiation Type (Uses (Command))The Builder pattern is not using the whole of the Command pattern, it is only using the Invokeomponent of Command. The build operation of the Builder pattern has a strong inuene over thefuntionality of the ombined patterns and as suh there is little need for muh of the Commandomponents. As suh, the Invoke operation works on the Diretor from the Builder pattern and not aConreteCommand from the Command pattern.

178
Uses

Varient Management()

Creational : Builder

Participants:
 Builder
 ConcreteBuilder
 Director
 Product
 Client

Control()

Behavioural : Command

Participants:
 Invoker

Figure D.1: Relationship between Builder and CommandBuilder - Command RelationshipExamples of Generative DesignSenario 1AnalysisSenario 1 illustrates a simple operation where partiular styles of o�ee an be seleted. Eah style ofo�ee is seleted at the push of a button, whih is intended to simulate the seletion proess that anbe seen on modern ash registers.DesignUse-Case DiagramThe use-ase diagram represents a business proess that de�nes the ativities that an be applied tothe drinks seletion senario. In this ase, drinks are seleted by the lient at the touh of a button,whih is ontained in the invoke objet.
Execute Director

Client

<<Include>>

Invoke Command

<<Include>>

Could execute
one of several
commands

Build Drink Type

Figure D.2: Use-Case Diagram - Builder uses Command

179Class DiagramThe diagram below shows the lass omponents that ollaborate to form the struture of the Builderuses Command o�ee shop senario. Three di�erent buttons are reated that are used to issue theommands.
interface

CommandHolder

getCommand

setCommand

InvokeCommand

getCommand

setCommand

CoffeeDirector

coffeeBuilder : CoffeeBuilder

constructCoffee : void

CoffeeBuilder

BuildCoffee

BuildMilk
BuildTopping
BuildSprinkle
BuildPrice

LatteConcreteBuilder

BuildCoffee: void
BuildMilk: void

BuildTopping: void
BuildSprinkle: void
BuildPrice: void

Client

obj: CommandHolder
latte: InvokeCommand
latteBuilder: LatteConcreteBuilder

latteDirector: CoffeeDirector
latteProduct: CoffeeProduct

CoffeeProduct

coffee: String
milk: String
topping: String

sprinkle: String
price: int

Figure D.3: Class Diagram - Builder uses Command

180Sequene DiagramThe interation diagram shows the sequene of events that our between the various omponents thatare utilized in this pattern ombination. The objets are built and stored in the Composite objet untilthey are drawn on demand. It also shows that the Command deouples the invoking objet from theProdut. When the a button is ativated a ommand is invoked and the omposite objet is alled.
Client ConcreteBuilder Director

new ConcreteBuilder()

New Director(ConcreteBuilder)

construct()

setCommand(Director)

getProduct()

Product

Build()

Invoke

setProduct()

Figure D.4: Sequene Diagram - Builder uses CommandImplementationThis example uses the Builder and Command patterns to demonstrate a simple drink seletion pakage.The Client reates a ConreteBuilder and Diretor and uses the buttons of the Invoke ommand toselet a given type of o�ee. The Invoke buttons all the onstrut method of the Diretor, whih issuesthe ation to build the drinks.PartiipantsClientThe Client omponent is a simple GUI used to implement the Invoke ommands. Drinks are built anddisplayed when a button is seleted.Co�eeBuilderThe Co�eeBuilder lass spei�es an Abstrat interfae to the omponents of the ConreteBuilder.Co�eeBuilder de�nes �ve methods that an be implemented by all Co�eeBuilder sub-lasses.

181CommandHolderCommandHolder ats as an interfae to one or more omponents that an invoke a ommand. In thisexample there is only one Invoke omponent that ativates a button ommand but there ould be otherssuh as menu items.InvokeButtonThe InvokeButton stores the Diretor objet whih is passed to InvokeButton as a parameter in asetCommand() method. the InvokeButton omponent returns a Co�eeBuilder on request.Co�eeDiretorThe Co�eeDiretor alls the reational methods on its builder instane to have the di�erent parts ofthe graphial objet built.LatteConreteBuilderLatteConreteBuilder implements all the methods required to reate the produt - in this ase the arepresentation of the sale of a drink.ProdutA produt is reated from the spei�ed methods that are alled to reate partiular drink. The produtis alled by the lient and shown in the display area of the lient.Co�eeClient.java (Client)import java.awt.*;import java.awt.event.*;import javax.swing.*;publi lass Co�eeClient extends JFramef Co�eeCommand obj;InvokeCommand latte;LatteConreteBuilder latteBuilder = new LatteConreteBuilder();Co�eeDiretor latteDiretor = new Co�eeDiretor(latteBuilder);Co�eeProdut latteProdut = new Co�eeProdut();proteted JTextArea textArea = new JTextArea(20,60);private �nal stati String newline = "nn";JSrollPane srollPane = new JSrollPane(textArea);publi Co�eeClient()f super("Builder Command Co�ee House");

182JPanel jp = new JPanel();getContentPane().add(jp);jp.setLayout(new BorderLayout());JPanel bp = new JPanel();jp.add("South", bp);JPanel dp = new JPanel();jp.add("Center", dp);dp.add(srollPane);latte = new InvokeCommand("Latte");latte.setCommand (latteDiretor);latteProdut = latteBuilder.getCo�eeProdut();bp.add(latte);ButtonHandler handler = new ButtonHandler();latte.addAtionListener(handler);setBounds(200,200,800,400);setVisible(true);gprivate lass ButtonHandler implements AtionListenerf publi void ationPerformed(AtionEvent e)f obj = (Co�eeCommand)e.getSoure();if(obj == latte)f latteDiretor.onstrutCo�ee();textArea.append(latteProdut.getCo�ee() + newline);textArea.append(latteProdut.getMilk() + newline);textArea.append(latteProdut.getTopping() + newline);textArea.append(latteProdut.getSprinkle() + newline);textArea.append("" + latteProdut.getPrie() + newline);textArea.append(newline);gggstati publi void main(String argv[℄)f new Co�eeClient();gg

183Co�eeBuilder.java (Builder)publi abstrat lass Co�eeBuilderf publi void buildCo�ee()publi void buildMilk()publi void buildTopping()publi void buildSprinkle()publi void buildPrie()gCommandHolder.java (An interfae Component)publi interfae CommandHolderf publi void setCommand(Co�eeBuilder omd);publi Co�eeBuilder getCommand();gInvokeCommand.java (Invoker)import javax.swing.*;publi lass InvokeCommand extends JButton implements CommandHolderf private Co�eeBuilder btnCommand;publi InvokeButton(String name)f super(name);gpubli void setCommand(Co�eeBuilder omd)f btnCommand = omd;gpubli Co�eeBuilder getCommand()f return btnCommand;gg

184Co�eeDiretor.java (Diretor)lass Co�eeDiretorf private Co�eeBuilder builder;publi Co�eeDiretor(Co�eeBuilder builder)f this.builder = builder;gpubli void onstrutCo�ee()f builder.buildPrie();builder.buildCo�ee();builder.buildMilk();builder.buildTopping();builder.buildSprinkle();ggLatteConreteBuilder.java (ConreteBuilder)publi lass LatteConreteBuilder extends Co�eeBuilderf proteted Co�eeProdut o�eeProdut = new Co�eeProdut();publi LatteConreteBuilder()publi void buildCo�ee()f o�eeProdut.setCo�ee("Latte");gpubli void buildMilk()f o�eeProdut.setMilk("Steamed Milk");gpubli void buildTopping()f o�eeProdut.setTopping("");gpubli void buildSprinkle()

185f o�eeProdut.setSprinkle("Vanilla");gpubli void buildPrie()f o�eeProdut.setPrie(200);gpubli Co�eeProdut getCo�eeProdut()f return o�eeProdut;ggpubli lass Co�eeProdutf private String o�ee = "";private String milk = "";private String topping = "";private String sprinkle = "";private int prie = 0;publi Co�eeProdut() fgpubli void setCo�ee(String o�ee) fthis.o�ee = o�ee;gpubli void setMilk(String milk) fthis.milk = milk;gpubli void setTopping(String topping) fthis.topping = topping;gpubli void setSprinkle(String sprinkle) fthis.sprinkle = sprinkle;gpubli void setPrie(int prie) fthis.prie = prie;gpubli String getCo�ee() freturn o�ee;gpubli String getMilk() freturn milk;gpubli String getTopping() freturn topping;gpubli String getSprinkle() freturn sprinkle;gpubli int getPrie() freturn prie;gg

186
Appendix ERELATIONSHIP TREESE.0.1 Strutural

State Handling
Variant

Management
Decoupling

FlyweightComposite

Structural

Facade Bridge Proxy Adapter Decorator

Figure E.1: Strutural Hierarhy

187E.0.2 Creational
Variant

Management
State Handling

Creational

Abstract
Factory

Builder
Factory
Method

Prototype SingletonFigure E.2: Creational Hierarhy

188E.0.3 Behavioural

Strategy MementoVisitor

Behavioural

State HandlingControl
Variant

Management
Decoupling Virtual Machines

Mediator Iterator

Interpreter
Template
Method

ObserverCh of RespState Command Figure E.3: Behavioural Hierarhy

189
Appendix FPATTERN SOURCE CODE AND SCENARIOSF.1 Soure Code { Senario 1DrawPanel.java (Client)import java.awt.*;import javax.swing.*;lass DrawPanel extends JPanelf proteted stati Shapeomponent omposite1 = new Drawomposite();proteted stati Shapeomponent omposite2 = new Drawomposite();proteted stati Shapeomponent omposite3 = new Drawomposite();proteted stati Shapeomponent olour1 = new Colourdeorator(Color.BLUE);proteted stati Shapeomponent olour2 = new Colourdeorator(Color.RED);proteted stati Shapeomponent olour3 = new Colourdeorator(Color.YELLOW);proteted stati Shapeomponent style1 = new Linestyledeorator(8);proteted stati Shapeomponent style2 = new Linestyledeorator(4);proteted stati Shapeomponent leaf1 = new Lineleaf(10, 10, 20, 20);proteted stati Shapeomponent leaf2 = new Retangleleaf(20, 20, 40, 40);proteted stati Shapeomponent leaf3 = new Cirleleaf(50, 40, 20, 20);publi void paintComponent(Graphis g)f omposite1.addDrawing(olour1);omposite1.addDrawing(style2);omposite1.addDrawing(leaf1);omposite2.addDrawing(omposite1);omposite2.addDrawing(olour2);omposite2.addDrawing(style1);omposite2.addDrawing(leaf2);omposite3.addDrawing(omposite2);omposite3.addDrawing(olour3);omposite3.addDrawing(leaf3);

190omposite3.Draw(g);ggShapeomponent.java (Component)import java.awt.*;publi abstrat lass Shapeomponentf publi void Draw(Graphis g) fgpubli void addDrawing(Shapeomponent draw) fgpubli void removeDrawing(Shapeomponent draw) fggDrawomposite.java (Composite)import java.awt.*;import java.util.Vetor;import java.util.Enumeration;publi lass Drawomposite extends Shapeomponentf private Vetor<Shapeomponent> drawings;publi Drawomposite()fdrawings = new Vetor<Shapeomponent>();gpubli void addDrawing(Shapeomponent draw)fdrawings.addElement(draw);gpubli void remove(Shapeomponent draw)fdrawings.removeElement(draw);gpubli Enumeration omponents()freturn drawings.elements();gpubli void Draw(Graphis g)f Enumeration omponents = omponents();while (omponents.hasMoreElements())f ((Shapeomponent)omponents.nextElement()).Draw(g);ggg

191Lineleaf.java (Leaf)import java.awt.*;publi lass Lineleaf extends Shapeomponentf private int x, y, x1, y1;publi Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawLine(x, y, x1, y1);ggCirleleaf.java (Leaf)import java.awt.*;publi lass Cirleleaf extends Shapeomponentf private int x, y, x1, y1;publi Cirleleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawOval(x, y, x1, y1);ggRetangleleaf.java (Leaf)import java.awt.*;publi lass Retangleleaf extends Shapeomponentf private int x, y, x1, y1;publi Retangleleaf(int x, int y, int x1, int y1)f

192this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawRet(x, y, x1, y1);ggDrawdeorator.java (Deorator)import java.awt.*;publi abstrat lass Drawdeorator extends Shapeomponentf publi Drawdeorator()fgpubli void Draw(Graphis g) fggColourdeorator.java (onreteDeorator)import java.awt.*;publi lass Colourdeorator extends Drawdeoratorf private Color olour;publi Colourdeorator(Color olour)fthis.olour = olour;gpubli void Draw(Graphis g)fg.setColor(olour);ggLinestyledeorator.java (onreteDeorator)import java.awt.*;publi lass Linestyledeorator extends Drawdeoratorf private int width;publi Linestyledeorator(int width)fthis.width = width;gpubli void Draw(Graphis g)f Graphis2D g2=(Graphis2D)g;g2.setStroke(new BasiStroke(width));

193ggF.2 Senario 2Senario two is very similar to senario one. The di�erene in the two patterns is in how the Compositeand Deorator lass has been ombined into a single lass in senario two.AnalysisSenario 2 illustrates a simple drawing pakage where lines, squares and irles an be drawn within aframe. Eah drawing item an be individually deorated or a group of drawing items an be deorated.Eah individual item and or groups of items an be olleted into a omposite objet.DesignUse-Case DiagramThe use-ase diagram represents a business proess that de�nes the ativities that an be applied tothe drawing senario. In this ase, drawing omponents an be reated, deorated and displayed.
Create

Drawing
Objects

Add Objects to
Collection

Set Decoration
Object

Print Collection

Client

Compose
Objects

<<Extends>>

<<Extends>>

Figure F.1: Use-Case Diagram - Composite ombines Deorator

194The diagram below shows the lass omponents that ollaborate to form the struture of the Composite{ Deorator drawing senario. Three di�erent drawing omponents an be reated and an be deoratedwith olour and or line sizes an be applied (thikness of lines).Class Diagram
Client

comp : Shapecomponent
colour: Shapecomponent

size : Shapecomponent

paintComponent : void

 Shapecomponent

Draw : void

addDrawing : void
removeDrawing : void

Rectangleleaf

x : int
y : int
x1 : int

y1 : int

Rectangleleaf
Draw : void

Circleleaf

x : int
y : int
x1 : int

y1 : int

Circleleaf
Draw : void

Lineleaf

x : int
y : int
x1 : int

y1 : int

Lineleaf
Draw : void

CompositeDecorator

Drawings : Vector <Shapecomponent>

Drawcomposite
addDrawing : void

removeDrawing : void
components : Enumeration

Draw : void

Colourdecorator

C : Color

Colourdecorator
Draw : void

Sizedecorator

S : setSize

Sizedecorator
Draw : voidFigure F.2: Class Diagram - Composite ombines DeoratorImplementationThis example uses the Composite and Deorator patterns to demonstrate a simple drawing pakage.For the purpose of demonstration the omponents are hard oded into the lient but in a live appliationthe omponents would be reated dynamially.PartiipantsClientThe Client omponent is a simple driver used to reate the drawn omponents. The lient reates theomponent and deoration objets and adds them to the olletion objet.ShapeomponentThe Shapeomponent lass spei�es an Abstrat interfae to the main omponents of the Compositeand Deorator. In this respet Shapeomponent is something of a Faade. Shapeomponent de�nesthree methods that an be implemented by all sub-lasses. The addDrawing(Shapeomponent draw) and

195removeDrawing(Shapeomponent draw)methods are implemented in the Composite lass and the Draw(Graphisg) method is implemented in all sub-lasses.CompositeDeoratorCompositeDeorator has two funtions; one is to add or remove items from the Colletion objet (theVetor) - private Vetor<Shapeomponent> drawings; and the other is to all bak the items from the olletion(print to the frame) - ((Shapeomponent)omponents.nextElement()).Draw(g).In this example items are only added to the olletion - addDrawing(Shapeomponent draw)fdrawings. addEle-ment(draw)g.Additionally, CompositeDeorator is the parent lass to the onreteDeorator omponents.Lineleaf, Cirleleaf, RetangleleafLeaf omponents represent the drawing objets that are added to the omposite olletion. Eahomponent de�nes its own type of drawing objet, whih is alled in the Draw method - g.drawLine(x, y,x1, y1).Colourdeorator, LinestyledeoratorThe deoration objets that are used to set the deoration for the drawn omponents. Eah omponentde�nes its own type of deoration, whih is alled in the Draw method - g.setColor(olour). Beause theyare Shapeomponents, deoration is added to the omposite olletion as an objet.DrawPanel.java (Client)import java.awt.*;import javax.swing.*;lass DrawPanel extends JPanelf proteted stati Shapeomponent omposite1 = new Drawomposite();proteted stati Shapeomponent omposite2 = new Drawomposite();proteted stati Shapeomponent omposite3 = new Drawomposite();proteted stati Shapeomponent olour1 = new Colourdeorator(Color.BLUE);proteted stati Shapeomponent olour2 = new Colourdeorator(Color.RED);proteted stati Shapeomponent olour3 = new Colourdeorator(Color.YELLOW);proteted stati Shapeomponent style1 = new Linestyledeorator(8);proteted stati Shapeomponent style2 = new Linestyledeorator(4);proteted stati Shapeomponent leaf1 = new Lineleaf(10, 10, 20, 20);proteted stati Shapeomponent leaf2 = new Retangleleaf(20, 20, 40, 40);proteted stati Shapeomponent leaf3 = new Cirleleaf(50, 40, 20, 20);

196publi void paintComponent(Graphis g)f omposite1.addDrawing(olour1);omposite1.addDrawing(style2);omposite1.addDrawing(leaf1);omposite2.addDrawing(omposite1);omposite2.addDrawing(olour2);omposite2.addDrawing(style1);omposite2.addDrawing(leaf2);omposite3.addDrawing(omposite2);omposite3.addDrawing(olour3);omposite3.addDrawing(leaf3);omposite3.Draw(g);ggShapeomponent.java (Component)import java.awt.*;publi abstrat lass Shapeomponentf publi void Draw(Graphis g) fgpubli void addDrawing(Shapeomponent draw) fgpubli void removeDrawing(Shapeomponent draw) fggCompositeDeorator.java (Composite/Deorator)import java.awt.*;import java.util.Vetor;import java.util.Enumeration;publi lass CompositeDeorator extends Shapeomponentf private Vetor<Shapeomponent> drawings;publi Drawomposite()fdrawings = new Vetor<Shapeomponent>();gpubli void addDrawing(Shapeomponent draw)fdrawings.addElement(draw);gpubli void remove(Shapeomponent draw)fdrawings.removeElement(draw);g

197publi Enumeration omponents()freturn drawings.elements();gpubli void Draw(Graphis g)f Enumeration omponents = omponents();while (omponents.hasMoreElements())f ((Shapeomponent)omponents.nextElement()).Draw(g);gggLineleaf.java (Leaf)import java.awt.*;publi lass Lineleaf extends Shapeomponentf private int x, y, x1, y1;publi Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawLine(x, y, x1, y1);ggCirleleaf.java (Leaf)import java.awt.*;publi lass Cirleleaf extends Shapeomponentf private int x, y, x1, y1;publi Cirleleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;

198this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawOval(x, y, x1, y1);ggRetangleleaf.java (Leaf)import java.awt.*;publi lass Retangleleaf extends Shapeomponentf private int x, y, x1, y1;publi Retangleleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli void Draw(Graphis g)fg.drawRet(x, y, x1, y1);ggColourdeorator.java (onreteDeorator)import java.awt.*;publi lass Colourdeorator extends CompositeDeoratorf private Color olour;publi Colourdeorator(Color olour)fthis.olour = olour;gpubli void Draw(Graphis g)fg.setColor(olour);ggLinestyledeorator.java (onreteDeorator)import java.awt.*;publi lass Linestyledeorator extends CompositeDeoratorf private int width;

199publi Linestyledeorator(int width)fthis.width = width;gpubli void Draw(Graphis g)f Graphis2D g2=(Graphis2D)g;g2.setStroke(new BasiStroke(width));ggF.3 Senario 3, based on Ekel[39℄AnalysisSenario 3 illustrates a simple o�ee shop where drinks an be ordered to a partiular taste. The basidrink ontained within a small, medium or large mug an be deorated with partiular types of o�ee,milk and additives. The ost of individual drinks is omposed and via the deorator objets and storedin the omposite objet. The omposite objet will display a total sale and the total sales for the day.DesignUse-Case DiagramThe use-ase diagram represents a business proess that de�nes the ativities that an be applied to theo�ee shop senario. In this ase, basi drinks an be reated and extended (deorated) with spei�ingredients.
Select Size Select Coffee

Display Sales
Total

Display All
Sales Total

Client

Select
Additions

<<Extends>><<Includes>>

Total Stored
in Composite

Contained in
Decorator

Components

Figure F.3: Use-Case Diagram - Composite ombines Deorator

200The diagram below shows the lass omponents that ollaborate to form the struture of the Com-posite { Deorator o�ee shop senario. The size of mug an be seleted and deorated with requiredingredients.Class Diagram
Small

getDescription : String
getTotalCost : double

Large

getDescription : String
getTotalCost : double

Medium

getDescription : String
getTotalCost : double

SteamedMilk

cost : double
description : String

SteamedMilk
getTotalCost : double

getDescription : String

WhippedCream

cost : double
description : String

WhippedCream
getTotalCost : double

getDescription : String

ChocolateSprinkle

cost : double
description : String

ChocolateSprinkle
getTotalCost : double

getDescription : String

Espresso

cost : double
description : String

Espresso
getTotalCost : double

getDescription : String

FoamedMilk

cost : double
description : String

FoamedMilk
getTotalCost : double

getDescription : String

DrinkComposite

DrinkComposite
add : void

remove : void
getTotalCost : double

cost : ArrayList
item: DrinkComponent

DrinkDecorator

component : DrinkComponent

DrinkDecorator
getDescription : String

getTotalCost : double

CafeClient

decorator : DrinkComponent
composite : DrinkComponent

main : void

DrinkComponent

getDescription : String
getTotalCost : double

add : void
remove : void

Figure F.4: Class Diagram - Composite ombines DeoratorImplementationThis example uses the Composite and Deorator patterns to demonstrate a simple drinks maker. Forthe purpose of the demonstration the omponents are hard oded into the lient but in a live appliationthe omponents would be reated dynamially.PartiipantsClientThe Client omponent is a simple driver used to reate the drinks omponents. The lient reatesthe drinks as a deoration objet. Eah omponent of the deoration objet is aessed through theDrinkComponent abstrat interfae. The lient reates the omposite omponent, whih is used tostore the deorator objets.DrinkComponent

201The DrinkComponent lass spei�es an abstrat interfae to the Abstrat lass DrinkDeorator andLeaf omponents of the Deorator. DrinkComponent de�nes two methods that are implemented byall deorator sub-lasses. The getTotalCost() and getDesription(). DrinkComponent also spei�es twoother methods add(DrinkComponent item) and remove(DrinkComponent item), whih are implemented by theComposite objet.DrinkDeoratorDrinkDeorator spei�es an Abstrat interfae whose methods are implemented in the Deorator sub-lasses. The getTotalCost() and getDesription() methods are delared abstrat in the Deorator lass asthey have no required return value of their own.SteamedMilk, WhippedCream, ChoolateSprinkle, Espresso, FoamedMilkEah omponent de�nes a spei� type of deoration. getTotalCost() returns the ost of the deorationand getDesription() returns a name for the deoration. The onstrutor of eah deoration objet takesas a parameter a DrinkComponent, whih an be another deoration objet or a Leaf objet of theDeorator. A drink is built up as a omposed objet, with the objet being losed o� by a Leaf nodethat takes no parameters.Small, Medium, LargeThese omponents are Leaf omponents to the Deorator (DrinkDeorator), whih in this example is thedominant pattern of the ombination. The Leaf omponent represents an end node of the omposedobjet. As suh the omponent does not take a parameter in its onstrutor. Like the Deorationomponents, eah method in the Leaf returns a value relative to its purpose.DrinkCompositeDrinkComposite has two funtions; one is to add or remove items from the Colletion objet (theArrayList):- private ArrayList ost = new ArrayList();and the other is to all bak the items from the olletion:- DrinkComponent item = (DrinkComponent)items.next();- total += item.getTotalCost();It is in e�et only a storage area for DrinkComponents.CafeClient.java (Client)

202publi lass CafeClientf private DrinkComponent appuino;private DrinkComponent moha;private DrinkComponent latte;private DrinkComponent java;private DrinkComponent sale1 = new DrinkComposite();private DrinkComponent sale2 = new DrinkComposite();private DrinkComponent total = new DrinkComposite();publi stati void main(String[℄ args)f new CafeClient();gpubli CafeClient()f Sale1();Sale2();Total();gpubli void Sale1()f appuino = new Espresso(new FoamedMilk(new Small()));System.out.println(appuino.getDesription().trim() + ": GBP " + appuino.getTotalCost());sale1.add(appuino);moha = new Espresso(new SteamedMilk(new ChoolateSprinkle(new WhippedCream(new Medium()))));System.out.println(moha.getDesription().trim() + ": GBP " + moha.getTotalCost());sale1.add(moha);System.out.println("Sale 1 Sub Total = " + sale1.getTotalCost());gpubli void Sale2()f latte = new Espresso(new SteamedMilk(new Medium()));System.out.println(latte.getDesription().trim() + ": GBP " + latte.getTotalCost());sale2.add(latte);java = new Espresso(new FoamedMilk(new ChoolateSprinkle(new WhippedCream(new Large()))));System.out.println(java.getDesription().trim() + ": GBP " + java.getTotalCost());sale2.add(java);System.out.println("Sale 2 Sub Total = " + sale2.getTotalCost());g

203publi void Total()f total.add(sale1);total.add(sale2);System.out.println("All Sales Sub Total" + total.getTotalCost());ggDrinkComponent.java (Component)publi abstrat lass DrinkComponentf publi String getDesription() freturn "";gpubli oat getTotalCost() freturn 0.0;gpubli void add(DrinkComponent item) fgpubli void remove(DrinkComponent item) fggDrinkDeorator.java (Deorator)abstrat lass DrinkDeorator extends DrinkComponentf proteted DrinkComponent omponent;DrinkDeorator(DrinkComponent omponent)f this.omponent = omponent;gpubli abstrat double getTotalCost();publi abstrat String getDesription();gEspresso.java (ConreteDeorator)lass Espresso extends DrinkDeoratorf private oat ost = 2.75;private String desription = " Espresso";publi Espresso(DrinkComponent omponent)f super(omponent);

204gpubli oat getTotalCost()f return omponent.getTotalCost() + ost;gpubli String getDesription()f return omponent.getDesription() + desription;ggFoamedMilk.java (ConreteDeorator)lass FoamedMilk extends DrinkDeoratorf private oat ost = 0.25;private String desription = " Foamed Milk";publi FoamedMilk(DrinkComponent omponent)f super(omponent);gpubli oat getTotalCost()f return omponent.getTotalCost() + ost;gpubli String getDesription()f return omponent.getDesription() + desription;ggSteamedMilk.java (ConreteDeorator)lass SteamedMilk extends DrinkDeoratorf private oat ost = 0.25;private String desription = " Steamed Milk";publi SteamedMilk(DrinkComponent omponent)f super(omponent);

205gpubli oat getTotalCost()f return omponent.getTotalCost() + ost;gpubli String getDesription()f return omponent.getDesription() + desription;ggWhippedCream.java (ConreteDeorator)lass WhippedCream extends DrinkDeoratorf private oat ost = 0.25;private String desription = " Whipped Cream";publi WhippedCream(DrinkComponent omponent)f super(omponent);gpubli oat getTotalCost()f return omponent.getTotalCost() + ost;gpubli String getDesription()f return omponent.getDesription() + desription;ggChoolateSprinkle.java (ConreteDeorator)lass ChoolateSprinkle extends DrinkDeoratorf private oat ost = 0.25;private String desription = " Choolate Sprinkle";publi ChoolateSprinkle(DrinkComponent omponent)f super(omponent);

206gpubli oat getTotalCost()f return omponent.getTotalCost() + ost;gpubli String getDesription()f return omponent.getDesription() + desription;ggSmall.java (Leaf)lass Small extends DrinkComponentf publi String getDesription()f return "Small Mug";gpubli oat getTotalCost()f return 0.5;ggMedium.java (Leaf)lass Medium extends DrinkComponentf publi String getDesription()f return "Medium Mug";gpubli oat getTotalCost()f return 0.75;gg

207Large.java (Leaf)lass Large extends DrinkComponentf publi String getDesription()f return "Large Mug";gpubli oat getTotalCost()f return 1.0;ggDrinkComposite.java (Composite)import java.util.ArrayList;import java.util.Iterator;lass DrinkCompositef private ArrayList ost = new ArrayList();private DrinkComponent item;publi DrinkComposite() fgpubli void add(DrinkComponent element)fost.add(element);gpubli void remove(DrinkComponent element)fost.remove(element);gpubli oat getTotalCost()f double total = 0;Iterator items = ost.iterator();while(items.hasNext())f item = (DrinkComponent)items.next();total += item.getTotalCost();greturn total;gg

208
Appendix GSOFTWARE METRIC SUITEThe metris desribed below are the suite of metris ontained in the Together Arhitet[16℄ modellingtool that was used for design omponents seen in the generative patterns. The desriptions below arethose ontained in the help �le of the tool.G.1 Basi[16℄� Class Interfae Width (CIW) CIW is de�ned as the number of members of the lass thatbelong to the interfae of the lass. The members that belongs to the interfae of the lass arethe publi, non-inherited methods and data members of a lass.� Lines Of Code (LOC) LOC is the number of lines of ode in a namespae, lassi�er or method,inluding omments and white-lines.� Number Of Attributes (NOA) Counts the number of attributes. Inherited attributes may beounted optionally. If a lass has a high number of attributes, it may be wise to onsider whetherit would be appropriate to divide it into sublasses.� Number Of Classes (NOC) NOC ounts the number of lasses.� Number Of Construtors (NOCON) Counts the number of onstrutors. You an speifywhether to ount all onstrutors or only publi, or proteted, and so on.� Number Of Import Statements (NOIS) Counts the number of imported pakages /lasses.This measure an highlight exessive importing and an also be used as a measure of oupling.� Number Of Members (NOM) Counts the number of members, i.e. attributes and operations.Inherited members an optionally be inluded in the total. If a lass has a high number ofmembers, it might be wise to onsider whether it would be appropriate to divide it into sublasses.

209� Number Of Operations (NOO) NOO ounts the number of operations. Inherited operationsmay be ounted optionally. If a lass has a high number of operations, it may be wise to onsiderwhether it would be appropriate to divide it into sublasses.� Number Of Parameters (NOP) NOP is the number of parameters that build the signatureof a method.� Number Of Publi Attributes (NOPA) NOPA is de�ned as the number of non-inheritedattributes that belong to the interfae of a lass.� Number of Aessor Methods (NAM) NAM is de�ned as the number of the non-inheritedaessor methods (properties) delared in the interfae of a lass. To �nd aessor methods, NAMrelies on the name onventions.� Pakage Interfae Size (PIS) PIS is the number of lasses in a pakage that are used fromoutside the pakage . A lass uses a namespae if it alls methods, aesses attributes or extendsa lass delared in that namespae.� Pakage Size (PS) PS is the number of lasses whih are de�ned in the measured pakage .Inner lasses are not ounted.G.2 Cohesion[16℄� Aess of Loal Data (ALD) ALD ounts the number of the data aessed in the given method,whih is loal to the lass where the method is de�ned. Inherited data should be ounted too.� Class Loality (CL) CL is omputed as the relative number of dependenies that a lass has inits own pakage. In order to ompute the metri the CBO value is divided by the total numberof lasses on whih the measured lass depends on. Inner lasses should not be ounted.� Lak of Cohesion of Methods 1 (LCOM1) Takes eah pair of methods in the lass anddetermines the set of �elds they eah aess. If they have disjoint sets of �eld aesses, inreasethe ount P by one. If they share at least one �eld aess, then inrease Q by one. Afteronsidering eah pair of methods:RESULT = (P > Q) ? (P - Q) : 0

210A low value indiates high oupling between methods, whih indiates a high testing e�ort beausemany methods an a�et the same attributes and potentially has low reusability. The de�nitionof this metri was provided by Chidamber and Kemerer[21℄.� Lak of Cohesion Of Methods 2 (LCOM2) Counts the perentage of methods that do notaess a spei� attribute, averaged over all the attributes in the lass. A high value of ohesion (alow lak of ohesion) implies that the lass is well designed. A ohesive lass will tend to providea high degree of enapsulation, whereas a lak of ohesion dereases enapsulation and inreasesomplexity.� Lak Of Cohesion Of Methods 3 (LCOM3) Measures the dissimilarity of methods in a lassby its attributes.m - number of methods in a lassa - number of attributes in a lassmA - number of methods that aess an attributeEmA - sum of mA for eah attributeRESULT = 100*(EmA/a-m)/(1-m)The de�nition of this metri was proposed by Henderson-Sellers[57℄. A low value indiates goodlass subdivision, implying simpliity and high reusability. A high laking of ohesion inreasesomplexity, thereby inreasing the likelihood of errors during the development proess.If there are no more than one method in a lass, LCOM3 is unde�ned. If there are no variablesin a lass, LCOM3 is unde�ned. An unde�ned LCOM3 is displayed as -1. Methods that do notaess any lass variables are not taken into aount.� Pakage Cohesion (PC) PC is de�ned as the relative number of lass pair from a pakagebetween whih a dependeny exists.� Tight Class Cohesion (TCC) TCC is de�ned as the relative number of diretly onnetedmethods. Two methods are diretly onneted if they aess a ommon instane variable of thelass.G.3 Complexity[16℄� Attribute Complexity (AC) De�ned as the sum of eah attribute's weight in the lass. Youan set up weights for types, the enum type and the array type separately. Use *" to de�ne

211types of a pakage with all its subpakages . For example, java.lang.* means that the row de�nesall lasses of the java.lang pakage and its subpakages . To proess all types not listed in thetable, speify the last row as *". The row order is important, beause heking of attributes goesfrom the top of the table downwards. (Repetitions of a type aren't ounted, so if a spei� typefollows a more general type that already inluded it, the spei� type isn't ounted. For example,java.lang.* won't be ounted if it omes after java.* .)� Cylomati Complexity (CC) CC represents number of yles in the measured method. Thismeasure represents the ognitive omplexity of the lass. It ounts the number of possible pathsthrough an algorithm by ounting the number of distint regions on a owgraph, meaning thenumber of if, for, and while statements in the operation's body. Case labels for swith statementsare ounted if the Case as branh property is ativated. A strit de�nition of CC (introdued byMCabe[78℄) looks at a program's ontrol ow graph as a measure of its omplexity:CC = L - N + 2Pwhere L is the number of links in the ontrol ow graph, N is the number of nodes in the ontrolow graph, and P is the number of disonneted parts in the ontrol ow graph. For example,onsider a method whih onsists of an if statement:if (x > 0)f x = x + 1;gelsef x = x - 1;gCC = L - N + 2P = 4 - 4 + 2*1 = 2A less formal de�nition is:CC = D + 1where D is the number of binary deisions in the ontrol ow graph, if it has only one entry andexit. In other words, the number of if, for and while statements and number of logial and, andor operators.For the example above:

212CC = D + 1 = 1 + 1 = 2� Maximum Number Of Branhes (MNOB) MNOB is de�ned as the maximum number ofif-else and/or ase branhes in the method.� Number Of Loal Variables (NOLV) NOLV ounts how many loal variables are delaredwithin a method.� Number Of Remote Methods (NORM) Proesses all methods and onstrutors and ountsthe number of various remote methods alled. A remote method is de�ned as a method that isnot delared in the lass itself or in its anestors.� Response For Class (RFC) The size of the response set for the lass inludes methods in thelass's inheritane hierarhy and methods that an be invoked on other objets. A lass, whihprovides a larger response set, is onsidered to be more omplex and require more e�ort in testingthan one with a smaller overall design omplexity. This measure is alulated as the 'Number OfOperations' + 'Number Of Remote Methods'.� Weight Of a Class (WOC) WOC is the number of non-aessor methods in the interfae ofthe lass, divided by the total number of interfae members. Inherited members are not ounted.The members that belong to the interfae of the lass are the publi, non-inherited methods and�elds of a lass.� Weighted Methods Per Class 1 (WMPC1) This metri is the sum of the omplexity of allmethods for a lass, where eah method is weighted by its ylomati omplexity. The number ofmethods and the omplexity of the methods involved is a preditor of how muh time and e�ortis required to develop and maintain the lass. Only methods spei�ed in a lass are inluded,that is, any methods inherited from a parent are exluded.� Weighted Methods Per Class 2 (WMPC2) This metri is intended to measure the om-plexity of a lass, assuming that a lass with more methods than another is more omplex, andthat a method with more parameters than another is also likely to be more omplex. The metriounts methods and parameters for a lass. Only methods spei�ed in a lass are inluded, thatis, any methods inherited from a parent are exluded.

213G.4 Coupling[16℄� Aess Of Foreign Data (AOFD) AOFD represents the number of external lasses from whiha given lass aesses attributes , diretly or via aessor methods . The higher the AOFD valuefor a lass, the higher the probability that the lass is or is about to beome an unfoused-lass.Inner lasses and superlasses are not ounted.� Aess of Import Data (AID) AID the amount of data members aessed in a method diretlyor via aessor-methods , from whih the de�nition-lass of the method is not derived.� Average Use of Interfae (AUF) AUF metri is de�ned as the average number of interfaemembers of a lass that are used by another lass. AUF is omputed by totalling up the numberof used members for eah of lient-lasses and dividing it by the number of lient lasses (COC).� Changing Classes (ChC) ChC metri is de�ned as the number of lient-lasses where thehanges must be operated in result a hange in the server-lass.� Changing Methods (CM) CM is de�ned as the number of distint methods in the system thatwould be potentially a�eted by hanges operated in the measured lass. The methods potentiallya�eted are all those that aess an attribute and/or all a method and/or rede�ne a method ofgiven lass.� Clients Of Class (COC) COC is de�ned as the number of lasses that use the interfae of themeasured lass. Inner lasses are not ounted. In the ontext of this metri, lass A uses interfaeof a lass C if (at least) it alls a publi method or aesses a publi attribute of that lass.� Coupling Between Objets (CBO) CBO represents the number of other lasses to whih alass is oupled to. Counts the number of referene types that are used in attribute delara-tions, formal parameters, return types, throws delarations, loal variables, and types from whihattribute and method seletions are made. Primitive types, types from java.lang pakage andsupertypes are not ounted.Exessive oupling between objets is detrimental to modular design and prevents reuse. Themore independent a lass is, the easier it is to reuse it in another appliation. In order to improvemodularity and promote enapsulation, inter-objet lass oupling should be kept to a minimum.The larger the number of oupling, the higher the sensitivity to hanges in other parts of thedesign, and therefore maintenane is more diÆult. A measure of oupling is useful to determine

214how omplex the testing of various parts of a design is likely to be. The higher the inter-objetlass oupling, the more rigorous the testing needs to be.� Coupling Fator (CF) This measure is from the MOOD (Metris for Objet-Oriented Develop-ment) suite. It is alulated as a fration. The numerator represents the number of non-inheritaneouplings. The denominator is the maximum possible number of ouplings in a system.� Data Abstration Coupling (DAC) DAC ounts the number of referene types used in theattribute delarations. Primitive types, types from java.lang pakage and supertypes are notounted.� Dependeny Dispersion (DD) DD is the number of other pakages on whih a lass depends.The lass depends on a pakage if it depends on one of the lasses from that pakage.� FanOut (FO) FO ounts the number of referene types that are used in attribute delarations,formal parameters, return types, throws delarations and loal variables. Simple types and su-pertypes are not ounted.� Message Passing Coupling (MPC) MPC ounts the number of method all expressions madeinto body of the measured method.� Method Invoation Coupling (MIC) MIC is the (relative) number of other lasses to whiha ertain lass sends messages.MICnorm = nMIC/(N - 1)where N is the total number of lasses de�ned in the projet, and nMIC the number of lasses towhih messages are sent.Viewpoints: (These viewpoints summarize the impat that oupling has on some external at-tributes).1. Maintainability. The maintenane of a strongly oupled lass (high MIC value) is morediÆult to do beause of its dependeny on the lasses it is oupled to.2. Comprehensibility. A strongly oupled lass is more diÆult to understand, as its un-derstanding implies a partial (or sometimes total) understanding of the lasses it is oupledto.3. Error-prone and Testability. Errors in a lass is diretly proportional to the number ofouplings to other lasses. Consequently high oupling has a negative impat on testability.

215Observations:1. The proposed de�nition of MIC is obviously a normalized one. Although this has advantages,but for some viewpoints, like maintainability, it is more important to operate on the absolutevalues, i.e. the number of lasses to whih it is oupled.2. For some viewpoints it might be important to ount only the ouplings of the system touser-de�ned lasses, i.e. exlude the library lasses.Radu Marinesu[75℄� Number Of Client Pakages (NOCP) NOCP is the number of other pakages that use themeasured pakage. A pakage uses another pakage if at least one if its lasses is using thatpakage (i.e. alls methods, aesses attributes or extends a lass delared in that pakage).� Number Of External Dependenies (NOED) NOED is the number of lasses from otherpakages on whih the measured lass depends on. A lass A depends on another lass B, if lassA alls methods and/or aesses attributes and/or extends lass B.� Number of Client Classes (NCC) NCC represents the number of lasses from other pakagesthat use the measured pakage. A lass uses a pakage if it alls methods, aesses attributes orextends a lass delared in that pakage.� Number of import lasses (NIC) The NIC metri ounts the number of external lasses fromwhih the given method uses data.� Pakage Usage Ratio (PUR) The PUR metri is de�ned as the relative number of lasses fromthe measured pakage that are used from outside that namespae. The number of uses lasseswill be divided by the total number of lasses in the pakage: inner lasses are exluded. Thus:PUR = PISPS� Violations of Demeters Law (VOD)Law of Demeter :De�nition 1 (Client) Method M is a lient of method f attahed to lass C, if insideM messagef is sent to an objet of lass C, or to C. If f is speialized in one or more sublasses, then M isonly a lient of f attahed to the highest lass in the hierarhy. Method M is a lient of somemethod attahed to C.

216De�nition 2 (Supplier) If M is a lient of lass C then C is a supplier to M. In other words, asupplier lass to a method is a lass whose methods are alled in the method.De�nition 3 (Aquaintane Class) A lass C1 is an aquaintane lass of method M attahedto lass C2, if C1 is a supplier to M and C1 is not one of the following:1. the same as C2;2. a lass used in the delaration of an argument of M3. a lass used in the delaration of an instane variable of C2De�nition 4 (Preferred-aquaintane Class) A preferred-aquaintane lass of method M iseither:1. a lass of objets reated diretly in M, or2. a lass used in the delaration of a global variable used in M.Realization note: Diret reation means that a given objet is reated via operator new.De�nition 5 (Preferred-supplier lass) Class B is alled a preferred-supplier to method M(attahed to lass C) if B is a supplier to M and one of the following onditions holds:1. B is used in the delaration of an instane variable of C,2. B is used in the delaration of an argument of M, inluding C and its superlasses,3. B is a preferred aquaintane lass of M.

217
 Instance
 variables and
 Argument
 classes

 Aquaintance
 classes to be
 avoided

Preferred-acquaintance
classes

Preferred-supplier
classes

Acquaintance classes

Supplier classesFigure G.1: The relation among the di�erent types of supplier lassesThe lass form of Demeters Law has two versions: a strit version and a minimization version.The strit form of the law states that every supplier lass of a method must be a preferred supplier.The minimization form is more permissive than the �rst version and requires only minimizing thenumber of aquaintane lasses of eah method.Observations.1. The motivation behind the Law of Demeter is to ensure that the software is as modular aspossible. The Law e�etively redues the ourrenes of ertain nested message sends andsimpli�es the methods.2. The de�nition of the Law makes a di�erene between the lasses assoiated with the delara-tion of the method and the lasses used in the body of the method, i.e. the lasses assoiatedwith its implementation. The former inludes the lass where the method is attahed, itssuperlasses, the lasses used in the delarations of the instane variables and the lassesused to delare the arguments of the method. In some sense, there are 'automati' onse-quenes of the method delaration. They an be easily derived from the ode and shownby a browser. All other supplier lasses to the methods are introdued in the body of thefuntion, whih means these ouples were reated at the time of onretely implementingthe method. They an only be determined by a areful reading of the implementation.

218Violations of Demeters Law - VODThe de�nition of this metri is based on the minimization form of the Law of Demeter. Basedon the onepts de�ned there, and remembering that the minimization form of Demeters Lawrequires that the number of aquaintane lasses should be kept low, the VOD metri is de�ned.De�nition 6 (VOD Metri) Being given a lass C and A the set of all its aquaintane lasses,VOD(C) = jAjInformally, VOD is the number of aquaintane lasses of a given lass. Keeping the VOD valuefor a lass low o�ers a number of bene�ts:1. Coupling ontrol. A projet with a low VOD value is the sign of minimal \use" ouplingbetween abstrations. That means that a redued number of methods an be invoked. Thismakes the methods more reusable.2. Struture hiding. Reduing VOD represents in fat the reduing of the diret retrieval ofsubparts of the \part-of" hierarhy. In other words, publi members should be used in arestrited way.3. Loalization of information. A low VOD value also means that the lass information isloalized. This redues the programming omplexity.Radu Marinesu[75℄� Weighted Changing Methods (WCM) For eah method that would be ounted by the CMmetri, a \weight" is given to it. The weight is de�ned as the number of distint members fromthe server-lass that are referened in that method. WCM is omputed as the sum of the weightsof all the methods a�eted by hanges.G.5 Enapsulation[16℄� Attribute Hiding Fator (AHF) This measure is from the MOOD (Metris for Objet-Oriented Development) suite. It is alulated as a fration. The numerator is the sum of theinvisibilities of all attributes de�ned in all lasses. The invisibility of an attribute is the perent-age of the total lasses (exluding the lass owner of attribute) from whih this attribute is notvisible. The denominator is the total number of attributes de�ned in the projet.

219� Method Hiding Fator (MHF) This measure is from the MOOD (Metris for Objet-OrientedDevelopment) suite. It is alulated as a fration. The numerator is the sum of the invisibilities ofall methods de�ned in all lasses. The invisibility of a method is the perentage of the total lasses(exluding the lass owner of method) from whih this method is not visible. The denominatoris the total number of methods de�ned in the projet.G.6 Halstead[16℄� Halstead DiÆulty (HDi�) This measure is one of the Halstead Software Siene metris.It is alulated as (`Number of Unique Operators' / 2) * (`Number of Operands' / `Number ofUnique Operands').� Halstead E�ort (HE�) This measure is one of the Halstead Software Siene metris. It isalulated as `Halstead DiÆulty' * `Halstead Program Volume'.� Halstead Program Length (HPLen) This measure is one of the Halstead Software Sienemetris. It is alulated as `Number of Operators' + `Number of Operands'.� Halstead Program Voabulary (HPVo) This measure is one of the Halstead Software Si-ene metris. It is alulated as `Number of Unique Operators' + `Number of Unique Operands'.� Halstead Program Volume (HPVol) This measure is one of the Halstead Software Sienemetris. It is alulated as `Halstead Program Length' * Log2(`Halstead Program Voabulary').� Number of Operands (NOprnd) This measure is used as an input to the Halstead SoftwareSiene metris. It ounts the number of operands used in a lass.� Number of Operators (NOprtr) This measure is used as an input to the Halstead SoftwareSiene metris. It ounts the number of operators used in a lass.� Number of Unique Operands (NUOprnd) This measure is used as an input to the HalsteadSoftware Siene metris. It ounts the number of unique operands used in a lass.� Number of Unique Operators (NUOprtr) This measure is used as an input to the HalsteadSoftware Siene metris. It ounts the number of unique operators used in a lass.

220G.7 Inheritane[16℄� Attribute Inheritane Fator (AIF) This measure is from the MOOD (Metris for Objet-Oriented Development) suite. It is alulated as a fration. The numerator is the sum of inheritedattributes in all lasses in the projet. The denominator is the total number of available attributes(loally de�ned plus inherited) for all lasses.� Depth Of Inheritane Hierarhy (DOIH) The length of the inheritane hain from the rootof the inheritane tree to the measured lass is the DOIH metri for the lass.� Method Inheritane Fator (MIF) This measure is from the MOOD (Metris for Objet-Oriented Development) suite. It is alulated as a fration. The numerator is the sum of inheritedmethods in all lasses in the projet. The denominator is the total number of available methods(loally de�ned plus inherited) for all lasses.� Number Of Child Classes (NOCC) NOCC ounts the number of lasses diretly or indiretlyderived from the measured lass.G.8 Inheritane-Based Coupling[16℄� Inheritane Usage Ratio (IUR) The IUR metri is a metri de�ned between a sublass and oneof its anestor lasses. It is the relative number of inheritane-spei� members from the anestorlass used in the derived lass. A member of an anestor lass is an inheritane-spei� memberif its usage is related to inheritane. There are two identi�ed inheritane-spei� members:{ proteted data members and methods;{ non-private virtual methods.The IUR is omputed by ounting the number of inheritane-spei� members of the anestorlass that are used in the sublass, and then divide it by the total numbers of inheritane-spei�members from the anestor. The only usages that are ounted are: the aess of proteted datamembers, the all of proteted methods and the rede�nition of a virtual method.� Average Inheritane Usage Ratio (AIUR) AIUR is de�ned for a derived lass as the averagevalue of the IUR metri omputed between that lass and all its anestor lasses.

221� Total Reuse of Anestor perentage (TRAp) & Total Reuse of Anestor unitary(TRAu) Reuse of Anestors.The RA MetriDe�nition 1 (Reuse of Anestor-lass - RA) The RA metri between a lass C and one ofits anestor lasses A.Explanations The RA metri quanti�es the reuse from a super lass by totalizing this reuse fromall of its methods. The degree to whih a method reuses an anestor lass is variable. The way thisreuse degree is alulated depends on the goals of the measurement. The metri is parameterisedwith a family of metris alled Reuse Degree of Anestor-lass (RDA) that evaluates this reusedegree.The RDA MetrisDe�nition 2 (Reuse Degree of Anestor-lass) A funtion expressing the measure of reuseof an anestor lass A in method mthi of lass C is alled Reuse Degree of Anestor-lass A inmethod mthi.RDA : SMFC X SACC {> [0; 1℄where SMFC is the set of all member funtions (methods) in lass C and SACC is the set ofanestors lasses A for lass C.Observations Beause the stability of the anestor-lass plays an important role from the per-spetive of the lient lass, the de�nition of RDA also onsiders the stability of anestors interfae.The Total RA Metri - TRAThe RA metri has two parameters: a partiular lass and one of its anestor lasses. It isneessary to have also a metri that expresses the total reuse (from all the anestors) for a givenlass. The de�nition of this new metri is based on the de�nition of the already de�ned RAmetri.De�nition 3 (Total Reuse from Anestors - TRA) The Total Reuse from Anestors metrifor a lass C is de�ned as the sum of all RA values between lass C and its superlasses.Radu Marinesu[75℄� Total Reuse in Desendants perentage (TRDp) & Total Reuse in Desendants uni-tary (TRDu) Reuse in Desendants.

222The RD MetriDe�nition 1 (Reuse in Desendant-lass - RD) The RD metri between a lass C and oneof its desendant lasses D.Explanations The RD metri quantities the totalized reuse of all the members of a lass C, inone of its desendant lasses. The degree to whih a partiular member is reused in a desendantlass is variable. The way this reuse degree is alulated depends on the goals of the measurement.Analogous to the RA metri, the RD metri is parameterised with a family of metris alled ReuseDegree in Desendant-lass (RDD), that quantities this reuse degree.The RDD MetrisDe�nition 2 (Reuse Degree in Desendant Class) A funtion expressing the measure of reuse of alass membermC lass C in a desendent lass D is alled Reuse Degree ofmC in Desendant-lassD.RDD : SMC X SDCC { [0; 1℄where SMC is the set of all members in lass C and SDCC is the set of desendant lasses D forlass C .The Total RD Metri - TRD In the previous setions the RD metri was de�ned with two param-eters: a partiular lass and a desendant of that lass. In the same way that the TRA is de�nedit is onsidered neessary to de�ne a metri that expresses the total value for the reuse of a lassby all its desendants. There are two viewpoints for the interpretation of this metri.1. Maintainability. A high TRD value for a lass indiates that a hange in that lass has ahigh impat on the underlying lass-hierarhy, i.e. its desendants.2. Degree of Member Reuse. A high TRD for a lass indiates that the very most of itsmembers are reused in the sub-lasses.It is observed that beause their fous is strongly di�erent it would be quite impossible to have asingle de�nition for TRD. Therefore, a de�nition is proposed for eah one of the two viewpoints:De�nition 3 (Desendants-based De�nition of TRD) The Total Reuse in Desendantsmetri for a lass C is de�ned as the sum of all RD values between lass C and its desendants.Radu Marinesu[75℄

223G.9 Maximum[16℄� Maximum Number Of Levels (MNOL) Counts the maximum depth of if, for and whilebranhes in the bodies of methods. Logial units with a high number of nested levels might needimplementation simpli�ation and proess improvements, beause groups that ontain more thanseven piees of information are inreasingly harder for people to understand in problem solving.� Maximum Number Of Parameters (MNOP) Counts the highest number of parametersde�ned for a single operation, from among all the operations in the lass. Methods with manyparameters tend to be more speialized and so are less likely to be reusable.� Maximum Size Of Operation (MSOO) Counts the maximum size of operations for a lass.Method size is determined in terms of ylomati omplexity, meaning the number of if, for, andwhile statements in the operation's body. Case labels for swith statements an be optionallyinluded.G.10 Polymorphism[16℄� Number Of Added Methods (NOAM) NOAM ounts the number of operations added bya lass. Inherited and overridden operations are not ounted. Classes without parents are notproessed. The large value of this measure indiates that the funtionality of the given lassbeomes inreasingly distint from that of the parent lasses. In this ase, it should be onsideredwhether this lass should genuinely be inheriting from the parent or if it ould be broken downinto several smaller lasses.� Number Of Overridden Methods (NOOM) NOOM ounts the number of inherited oper-ations, whih a lass overrides. Classes without parents are not proessed. High values tend toindiate design problems, i.e. sublasses should generally add to and extend the funtionality ofthe parent lasses rather than overriding them.� Polymorphism Fator (PF) This measure is from the MOOD (Metris for Objet-OrientedDevelopment) suite. It is alulated as a fration. The numerator is the sum of overridingmethods in all lasses. This is the atual number of possible di�erent polymorphi situations.A given message sent to a lass an be bound, statially or dynamially, to a named methodimplementation. The latter an have as many shapes (morphs) as the number of times this samemethod is overridden in that lass's desendants. The denominator represents the maximum

224number of possible distint polymorphi situations for that lass as the sum for eah lass ofthe number of new methods multiplied by the number of desendants. This maximum would bethe ase where all new methods de�ned in eah lass would be overridden in all of their derivedlasses.G.11 Ratio[16℄� Comment Ratio (CR) Counts the ratio of doumentation and/or implementation ommentsto total lines of ode (omments are inluded in the ode ount). You an also speify whih typeof omments to use for the ratio.{ Doumentation omments are Javado omments.{ Implementation omments are any other type of omments.� Perentage of Pakage Members (PPkgM) Counts the perentage of pakage members ina lass.� Perentage of Private Members (PPrivM) Counts the perentage of private members in alass.� Perentage of Proteted Members (PProtM) Counts the perentage of proteted membersin a lass.� Perentage of Publi Members (PPubM) Counts the proportion of vulnerable members ina lass. A large proportion of suh members means that the lass has high potential to be a�etedby external lasses and means that inreased e�ort will be needed to test suh a lass thoroughly.� True Comment Ratio (TCR) Counts the ratio of doumentation and/or implementationomments to total lines of ode (all omments are exluded from the ode ount). You an alsospeify whih type of omments to use for the ratio.{ Doumentation omments are Javado omments.{ Implementation omments are any other type of omments.

225G.12 Test Coverage[16℄� JUnit test Coverage (JUC) JUC measures JUnit test overage for methods and lasses. Fora method, the value of JUC is 1 if the method is diretly or indiretly alled from any JUnit testase and 0 otherwise. For a lass, the value of JUC is the perentage of methods heked withJUnit tests.

226
Appendix HADDITIONAL CASE-STUDIESH.1 A Simple Case Study using Composite and Builder

Builder
Component

Mocha
Builder

Latte
Builder

Drink
Composite

Cappuccino
Builder

Director

Product

Client
Builder

Mocha
Builder

Latte
Builder

Drink
Composite

Cappuccino
Builder

Director

Product

Client

Component

Drink
Leaf

Generative Design Example Static Design Example

Figure H.1: Generative vs. Stati { Composite and BuilderFigure H.1 above provides a lass diagram for the omparative examples of the omposite and builderpatterns used in a generative and stati pattern environment. As an be seen from the diagram,the generative example on the left has an interfae (BuilderComponent) that is ombined from the twointerfae omponents that are used in the stati example on the right. The three sub-omponents of theBuilder interfae lass and the Produt lass from the stati pattern example are now leaf omponentsto the DrinkComposite lass in the generative pattern example.In order for the two patterns to work together in the stati environment, a produt objet is reatedand added to a olletion objet in the DrinkLeaf omponent of the omposite pattern. As suh,multiple produt objets an be added to one or more DrinkLeaf omponents and one or more DrinkLeafomponents an be added to a DrinkComposite omponent. DrinkComposite omponents an be addedto other DrinkComposite omponents as is intended with a omposite pattern.In the generative example, beause any produt objet that is reated is now a leaf omponent to theDrinkComposite omponent, it an be added diretly to a DrinkComposite objet.

227Table H.1 shows the overall results of the metris that were produed from the generative and statiexamples of the omposite and builder patterns desribed above.Metri Generative Patterns Stati Patterns Di�erene (%)CBO 18 20 +CC 17 17 /LCOM 88 88 /LOC 376 403 +6.7%RFC 13 11 {WMPC 13 11 {NOC 8 10 +EXE SIZE 14.8 16.1 +8.1%Table H.1: General statistis for the Generative and Stati versions of Composite and BuilderThe statistis in Table H.1 indiate that the generative pattern will require less testing in respetof the CBO metri but will require more testing in respet of the RFC metri. As an be seen inTable H.2, the higher value for the CBO metris omes from the lient of the stati example, whihhas to ommuniate with two interfae omponents instead of just one interfae omponent in thegenerative example. However, the higher value of the RFC metri in the generative pattern omes fromthe ComponentBuilder interfae, whih is now having to de�ne two sets of methods for di�erent subomponents. The �rst set of method de�nitions relate to the Co�eeProdut lass, where values are setfor the reated objet. The seond set of method de�nitions relate to the ConreteBuilder lasses, whihbuilds the values into the Co�eeProdut objet.Although there is less oupling in the generative example, as on�rmed by the CBO metri, there isa higher degree of omplexity. The higher value in the WMPC metri on�rms that the Component-Builder lass is more omplex and will therefore require more testing, and if required, more omplexmaintenane.Whilst the two separate interfaes (Builder and Component) in the stati example still have olletivevalues lower than the ComponentBuilder interfae of the generative example, the stati example willrequire some additional testing for the DrinkLeaf omponent.The overall viewpoint on this pair of patterns is that the generative example has more points in favourthan the stati example. This takes into aount the redution in the number of lines of ode, thenumber of lasses and the size of the exeutable �le, whih are in favour of the generative example.

228Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 18 20 17 17 118 120 2 2 2 2+ / + / /Button 6 7 17 17 43 44 11 13 17 17Handler + / + + /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPComponent 1 * 1 * * 28 * 13 * 13 *Builder * * * * * *Component * 1 * 1 * * 11 * 5 * 5* * * * * *Builder * 1 * 1 * * 14 * 6 * 6* * * * * *Drink * 4 * 2 * 0 * 28 * 8 * 5Leaf * * * * * *Table H.2: Individual statistis for the Generative and Stati versions of Composite and BuilderLike the examples in Chapter Seven, the individual lass statistis for the like-for-like omponents in theexamples are idential throughout all metri ategories, therefore they are not inluded in Table H.2.In this example this equates to the ConreteBuilder omponents, the Co�eeProdut, the Co�eeDiretorand the DrinkComposite lass. Again, like the previous example the reason for this is modularity, inthat eah orresponding omponent provides idential funtionality. The only exeption in like-for-likeomponents is the lient. For the lient there is a minor di�erene in that it ommuniates with twoseparate interfaes.

229H.2 A Simple Case Study using Command and Builder

Coffee
Product

Concrete
Builder1

Invoke
Button

Client

Director

Builder

Concrete
Builder2

Concrete
Builder3

Concrete
Command1

Command

Concrete
Command2

Concrete
Command3

Generative Design Example Static Design Example

Command
Holder

Coffee
Product

Concrete
Builder1

Invoke
Button

Client

Director

Command
Builder

Concrete
Builder2

Concrete
Builder3

Command
Holder

Figure H.2: Generative vs. Stati { Command and BuilderFigure H.2 above provides a lass diagram for the omparative examples of the ommand and builderpatterns used in a generative and stati pattern environment. Although the generative example is beingonsidered as a ombination of the two patterns, this is inorret. In this example, the builder patternis atually using the ommand pattern, as de�ned by the term Pattern X uses Pattern Y in its solution,desribed in Chapter Four. In striter terms the builder pattern is only using the InvokeButton lassfrom the ommand pattern. The evidene for this omes from the CommandBuilder interfae, whih onlyde�nes methods that are appliable to the ConreteBuilder lasses. As suh there is no method in theConreteBuilder lasses that ould be onsidered as being an Exeute method that would be appliableto a ommand pattern.Also note that in this instane of the builder pattern being used in a generative environment, thediretor lass is a sublass of the interfae and not the produt, as in the previous example. In theprevious example, the produt omponent had to be a leaf omponent to the omposite so it ould beadded diretly to the omposite objet.In order for the two patterns to work together in the stati environment, the ConreteCommand om-ponents take as a parameter a Diretor:Builder latteBuilder = new LatteConreteBuilder();

230Co�eeDiretor latteDiretor = new Co�eeDiretor(latteBuilder);LatteCommand latteCommand = new LatteCommand(latteDiretor);Now that the ConreteCommand has an instane of a Diretor, a all to the Exeute method in theConreteCommand will implement the Construt method that will build the Produt in the builderpattern { Exeute()flatteDiretor.onstrutCo�ee();g.Table H.3 shows the overall results of the metris that were produed from the generative and statiexamples of the ommand and builder patterns desribed on the previous page.Metri Generative Patterns Stati Patterns Di�erene (%)CBO 18 22 +CC 16 16 /LCOM 88 88 /LOC 342 375 +8.8%RFC 11 11 /WMPC 11 11 /NOC 9 13 +EXE SIZE 13.7 16.2 +15.4%Table H.3: General statistis for the Generative and Stati versions of Command and BuilderFrom looking at Figure H.2, one might expet that the metris results for the generative example wouldbe onsiderably better than those of the stati example given the inreased number of lasses in thestati example. However, the results for this experiment were not as expeted. The general statistisin Table H.3 indiate that the generative pattern will require less testing and maintenane in respetof the CBO metri only; all other metris, other than LCOM and EXE SIZE, are of equal value.As an be seen in Table H.4 the higher value for the CBO metris omes from the lient of thestati example, whih has to ommuniate with two interfae omponents instead of just one interfaeomponent in the generative example. The equal values in the RFC and WMPC metris seen in TableH.3 ome from the builder lasses in both the generative and stati examples: namely the Co�eeProdutfor the WMPC metri and the ConreteBuilder lasses for the RFC metri. Therefore in respet ofthe general values the generative example is neither more nor less omplex than the stati example.However, the general values are not taking into aount the ommand pattern omponents that donot play a part in the generative pattern example. As suh, there is an overhead in terms of the six

231attributes itemised in setion 7.2, whih have to be taken into aount in omparing the examples.Taking the olletive values of the ConreteCommand lasses and the Command interfae of the statiexample into aount, the stati example is ertainly more omplex than the generative example. Addto this the redution in the number of lines of ode and the size of the exeutable �le, the generativeexample omes aross as an improvement on the stati example.Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 18 22 16 16 115 117 2 2 2 2+ / + / /Button 7 8 16 16 39 40 10 12 16 16Handler + / + + /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCommand 1 * 1 * * 10 * 6 * 6 *Builder * * * * * *Command * 0 * 1 * * 4 * 1 * 1* * * * * *Builder * 1 * 1 * * 10 * 6 * 6* * * * * *Conrete * 1 * 1 * * 9 * 2 * 2Commands * * * * * *Table H.4: Individual statistis for the Generative and Stati versions of Command and BuilderLike previous examples, the individual lass statistis for the like-for-like omponents in the examples areidential throughout all metri ategories, therefore they are not inluded in Table H.4. In this examplethis equates to the CommandHolder interfae, the ConreteBuilder omponents, the Co�eeProdut, andthe Co�eeDiretor lass. Again, like the previous examples the reason for this is modularity, in thateah orresponding omponent provides idential funtionality. The only exeption in like-for-likeomponents is the lient, whih is ommuniating with two separate interfaes.

232H.3 A Simple Case Study using Composite and Command
Command

Component

Invoke
Button

Client Command

Coffee
Command1

Coffee
Command2

Composite

Coffee
Command3

Invoke
Button

Total
Command

Client
Component

Leaf

Generative Design Example Static Design Example

Composite

Coffee
Command1

Coffee
Command2

Coffee
Command3

Total
Command

Command
HolderCommand

Holder

Figure H.3: Generative vs. Stati { Command and CompositeFigure H.3 above provides a lass diagram for the omparative examples of the omposite and ommandpatterns used in a generative and stati pattern environment. As an be seen from the diagram, thegenerative example on the left has an interfae (CommandComponent) that is ombined from the twointerfae omponents that are used in the stati example on the right. The four sub-omponents of theCommand interfae lass from the stati pattern example are now leaf omponents to the Compositelass in the generative pattern example.In order for the two patterns to work together in the stati environment, an objet is reated from theConreteCommand omponents and added to a olletion objet in the Leaf omponent of the ompositepattern. As suh, multiple ommand objets an be added to one or more Leaf omponents and one ormore Leaf omponents an be added to a Composite omponent. Composite omponents an be addedto other Composite omponents as is intended with a omposite pattern.In the generative example, beause any ConreteCommand objet that is reated is now a leaf omponentto the Composite omponent, it an be added diretly to a Composite objet.Table H.5 shows the overall results of the metris that were produed from the generative and statiexamples of the omposite and builder patterns desribed above.

233Metri Generative Patterns Stati Patterns Di�erene (%)CBO 18 20 +CC 2 2 /LCOM 90 90 /LOC 249 294 +15.3%RFC 10 10 /WMPC 9 8 {NOC 9 11 +EXE SIZE 13.2 14.7 +10.2%Table H.5: General statistis for the Generative and Stati versions of Command and CompositeThe omposite and ommand examples above, are very similar to that of the omposite and builderexamples. Like the omposite and builder example the statistis in Table H.5 indiate that the gen-erative pattern will require less testing and maintenane in respet of the CBO metri but in thisinstane are quite even in respet of the RFC metri. Like all previous examples, the higher valuefor the CBO metris omes from the lient of the stati example, whih has to ommuniate with twointerfae omponents instead of just one interfae omponent in the generative example. The valueof the RFC metri in both pattern examples omes from the Composite omponent. Although theCommandComponent interfae has to de�ne di�erent sets of methods to support the Composite lassand the ConreteCommand lasses, the RFC value is less than that of the Composite.Although there is less oupling in the generative example, as on�rmed by the CBO metri, there is ahigher degree of omplexity. The higher value in the WMPC metri on�rms that the CommandCom-ponent lass is more omplex than other omponents in the stati example and will therefore requiremore testing, and if required, more maintenane.However, the two separate interfaes (Command and Component) in the stati example have olletivevalues higher than the CommandComponent interfae of the generative example. In addition, the statiexample will require some additional testing for the Leaf omponent.As in previous examples, the generative example has more points in favour than the stati example.This takes into aount the redution in the number of lines of ode, the number of lasses and the sizeof the exeutable �le, whih are in favour of the generative example.

234Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 18 20 1 1 84 85 2 2 2 2+ / + / /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCommand 0 * 1 * * 13 * 9 * 9 *Component * * * * * *Component * 1 * 1 * * 12 * 5 * 5* * * * * *Command * 0 * 1 * * 10 * 7 * 7* * * * * *Leaf * 4 * 2 * 0 * 28 * 8 * 5* * * * * *Table H.6: Individual statistis for the Generative and Stati versions of Command and CompositeLike in previous examples, the individual lass statistis for the like-for-like omponents in the examplesare idential throughout all metri ategories, therefore they are not inluded in Table H.6 above. Inthis example this equates to the ConreteCommand omponents, the InvokeButton, the CommandHolderinterfae and the Composite lass. Again, like the previous examples the reason for this is modularity, inthat eah orresponding omponent provides idential funtionality. The only exeption in like-for-likeomponents is the lient. For the lient there is a minor di�erene in that it ommuniates with twoseparate interfaes.

235
Appendix IAN EXAMPLE DESIGN PATTERNI.1 Faade (Based on Gamma[45℄)NameFaadeIntentProvide a uni�ed interfae to a set of interfaes in a subsystem. Faade de�nes a higher-level interfaethat makes the subsystem easier to use.Motivation[45, 48, 102℄Struturing a system into subsystems helps redue omplexity. A ommon design goal is to minimizethe ommuniation and dependenies between subsystems. One way to ahieve this goal is to introduea faade objet that provides a single, simpli�ed interfae to the more general failities of a subsystem.

Client ClientClient Client

Facade

ClientClient

Subsystem Classes

Client Classes

Figure I.1: Faade as an InterfaeDividing a system into several subsystems helps deal with omplex systems and provides an opportunityto partition the work. Dividing a system into a number of speialized lasses is a good objet orienteddesign pratie. However, having a large number of lasses in a system an be a drawbak as well.Clients using that system have to deal with more objets thereby inreasing omplexity. The Faadepattern provides a way to shield lients of a set of lasses from the omplexity of using those lasses.The way it does this is to provide an additional reusable objet that hides most of the omplexity of

236working with the other lasses from lient lasses.AppliabilityUse the Faade pattern when:� You want to provide a simple interfae to a omplex subsystem. A faade an provide a simpledefault view of the subsystem that is good enough for most lients. Only lients needing moreustomisation will need to look beyond the faade.� There are many dependenies between lients and the implementation lasses of an abstration.Introdue a faade to deouple the subsystem from lients and other subsystems, thereby pro-moting subsystem independene and portability.� You want to layer your subsystems. Use a faade to de�ne an entry point to eah subsystemlevel. If subsystems are dependent, then you an simplify the dependenies between subsystemsby making them ommuniate with eah other solely through their faades.Struture[48℄
Client

Uses
1

MessageCreator

MessageBody

Attachement

MessageHeaderMessage

Security MessageSender

 Contains

0..*

1

 Contains
1 1 1 1

1

0..1 1

0..*

 Creates

Creates

 Creates

1
1

1 1

1
1

1

0..*
0..1

1 1

1

 Creates
Creates

Creates

 Contains

 Contains

 Sends

sender

sendee

1

Subsystem Classes

Figure I.2: Message Creator as Faade

237Partiipants� Faade{ Knows whih subsystem lasses are responsible for a request.{ Delegates lient requests to appropriate subsystem objets.� Subsystem Classes{ Implement subsystem funtionality.{ Handle work assigned by the Faade objet.{ Have no knowledge of the faade.Collaborations� Clients ommuniate with the subsystem by sending requests to Faade, whih forwards them tothe appropriate subsystem objet(s). Although the subsystem objets perform the atual work,the faade may have to do work of its own to translate its interfae to subsystem interfaes.� Clients that use the faade don't have to aess its subsystem objets diretly.ConsequenesThe Faade pattern o�ers the following bene�ts:1. It shields lients from subsystem omponents, thereby reduing the number of objets that lientsdeal with and making the subsystem easier to use.2. It promotes weak oupling between the subsystem and its lients. Week oupling lets you vary theomponents of the subsystem without a�eting its lients. Faades help layer a system and thedependenies between objets. They an eliminate omplex or irular dependenies. Reduingdependenies with Faade an limit the reompilation needed for a small hange in an importantsubsystem.3. It doesn't prevent appliations from using subsystem lasses diretly if they need to. Thus youan hoose between ease of use and generality.

238ImplementationConsider the following issues when implementing a faade:1. Reduing lient-subsystem oupling. The oupling between lients and the subsystem an beredued even further by making Faade an abstrat lass with onrete sublasses for di�erentimplementations of a subsystem. Then lients an ommuniate with the subsystem throughthe interfae of the abstrat lass. This abstrat oupling keeps lients from knowing whihimplementation of a subsystem is used.An alternative to sublassing is to on�gure a Faade objet with di�erent subsystem objets. Toustomize the faade, simply replae one or more of its subsystem objets.2. Publi versus private subsystem lasses. A subsystem is analogous to a lass in that a lassenapsulates state and operations, while a subsystem enapsulates lasses. It is useful to thinkof the publi and private interfae of a lass. In the same way we an think of the publi andprivate interfaes of a subsystem.The publi interfae of a subsystem onsists of lasses that all lients an aess; the privateinterfae is just for subsystem extenders. The Faade lass is part of the publi interfae, but itis not the only part. Other subsystem lasses are usually publi as well.Sample Code[48℄The following ode represents MessageCreator as the Faade lass shown in the lass diagram in FigureI.2. Instanes of the MessageCreator lass are used to reate and send e-mail messages. It is shownhere as a typial example of a faade lass.publi lass MessageCreatorf publi final stati int MIME = 1;publi final stati int MAPI = 2;private Hashtable headerFields = new Hashtable();private RihText messageBody;private Vetor attahments = new Vetor();private boolean signMessage;publi MessageCreator(String to, String from, String subjet)f this(to, from, subjet, inferMessageType(to));g

239publi MessageCreator(String to, String from, String subjet, int type)f headerFields.put("to", to);headerFields.put("from", from);headerFields.put("subjet", subjet);gpubli void setMessageBody(String messageBody)f setMessageBody(new RihTextString(messageBody));gpubli void setMessageBody(RihText messageBody)f this.messageBody = messageBody;gpubli void addAttahment(Objet attahment)f attahments.addElement(attahment);gpubli void setSignMessage(boolean signFlag)f signMessage = signFlag;gpubli void setHeaderField(String name, String value)f headerFields.put(name.toLowerCase(), value);gpubli void send()fgprivate stati int inferMessageType(String address)f int type = 0;return type;gprivate Seurity reateSeurity()f Seurity s = null;return s;gpubli void reateMessageSender(Message msg)fgg

240Known UsesThe MessageCreator example in the Sample Code setion is a typial example of using faade to reateand send email.Related PatternsAbstrat Fatory an be used with Faade to provide an interfae for reating subsystem objets in asubsystem-dependent way. Abstrat Fatory an also be used as an alternative to hide platform-spei�lasses.Mediator is similar to Faade in that it abstrats funtionality of existing lasses. Mediator's purposeis to abstrat arbitrary ommuniation between olleague objets. It often provides entralized fun-tionality that does not belong to any of them. Mediator's olleagues are aware of and ommuniatewith mediator instead of one another. In ontrast a faade merely abstrats the interfae to subsystemobjets to make them easier to use; it does not de�ne new funtionality and subsystem lasses do notknow about it.Usually only one Faade objet is required. Thus, Faade objets are often Singletons.

