
University of Huddersfield Repository

Xu, Yuanping

The exploration of a category theory-based virtual Geometrical product specification system for
design and manufacturing

Original Citation

Xu, Yuanping (2009) The exploration of a category theory-based virtual Geometrical product
specification system for design and manufacturing. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/6135/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

THE EXPLORATION OF A CATEGORY

THEORY-BASED VIRTUAL GEOMETRICAL
PRODUCT SPECIFICATION SYSTEM FOR

DESIGN AND MANUFACTURING

Yuanping Xu

A thesis submitted to the University of Huddersfield

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

School of Computing and Engineering
University of Huddersfield

February 2009

 I

ACKNOWLEDGEMENT

First of all, I would like to express my sincere gratitude to my director of studies, Prof.

Xiangqian Jiang for setting up this new research direction and the fundamental

research frame. Many thanks also give to her for kindly help, advice and

encouragement.

Great appreciation also goes to my second supervisor, Dr. Zhijie Xu, for his

exceptional support and guidance throughout the project. He gave lots of time helping

me to improve my academic writing and the capability of carrying out professional

researches.

Many thanks give to Prof. Paul Scott in Taylor Hobson Ltd. for his valuable

guidance and in-depth knowledge in Category Theory and verifying the mathematics.

I would like to thank Dr. Yan Wang, in providing data and case studies to test the

VirtualGPS system. I also would like to thank Dr. Jonathan Pickering for proof

reading this thesis.

I would like to show my appreciation to the Centre for Precision in University of

Huddersfield, the School of Computing and Engineering and the Computer Graphics

and Image Processing (CGIP) Research Group in Informatics department for

providing me the opportunity and facilities to carry out this project.

A great deal of consideration and thanks must go to my parents, without my mother

and father’s belief, encouragement, education and financial support, this thesis can

never be finished.

Finally, I would like to thank all my friends in Centre for Precision Technologies

(CPT), CGIP and undergraduate classmates in Chengdu city of China for their kindly

encouragements.

 II

ABSTRACT

In order to ensure quality of products and to facilitate global outsourcing, almost all

the so-called “world-class” manufacturing companies nowadays are applying various

tools and methods to maintain the consistency of a product’s characteristics

throughout its manufacturing life cycle. Among these, for ensuring the consistency of

the geometric characteristics, a tolerancing language − the Geometrical Product

Specification (GPS) has been widely adopted to precisely transform the functional

requirements from customers into manufactured workpieces expressed as tolerance

notes in technical drawings. Although commonly acknowledged by industrial users as

one of the most successful efforts in integrating existing manufacturing life-cycle

standards, current GPS implementations and software packages suffer from several

drawbacks in their practical use, possibly the most significant, the difficulties in

inferring the data for the “best” solutions. The problem stemmed from the foundation

of data structures and knowledge-based system design. This indicates that there need

to be a “new” software system to facilitate GPS applications.

The presented thesis introduced an innovative knowledge-based system − the

VirtualGPS − that provides an integrated GPS knowledge platform based on a stable

and efficient database structure with knowledge generation and accessing facilities.

The system focuses on solving the intrinsic product design and production problems

by acting as a virtual domain expert through translating GPS standards and rules into

the forms of computerized expert advices and warnings. Furthermore, this system can

be used as a training tool for young and new engineers to understand the huge amount

of GPS standards in a relative “quicker” manner.

The thesis started with a detailed discussion of the proposed categorical modelling

mechanism, which has been devised based on the Category Theory. It provided a

unified mechanism for knowledge acquisition and representation, knowledge-based

system design, and database schema modelling. As a core part for assessing this

knowledge-based system, the implementation of the categorical Database

Management System (DBMS) is also presented in this thesis. The focus then moved

on to demonstrate the design and implementation of the proposed VirtualGPS system.

The tests and evaluations of this system were illustrated in Chapter 6. Finally, the

thesis summarized the contributions to knowledge in Chapter 7.

After thoroughly reviewing the project, the conclusions reached construe that the

 III

entire VirtualGPS system was designed and implemented to conform to Category

Theory and object-oriented programming rules. The initial tests and performance

analyses show that the system facilitates the geometric product manufacturing

operations and benefits the manufacturers and engineers alike from function designs,

to a manufacturing and verification.

 IV

CONTENTS

ACKNOWLEDGEMENTS .. I
ABSTRACT ... II
CONTENTS .. IV
LIST OF FIGURES .. VIII
LIST OF TABLES .. X
LIST OF CODES .. XII
LIST OF ACRONYM ... XIII

1. Introduction .. 1
1.1 Project Introduction .. 1
1.2 Aims and Objectives ... 3
1.3 Project Approach .. 5
1.5 Thesis Structure .. 6

2. Research Domain Surveys ... 8
2.1 GPS and Surface Texture Overview .. 8

2.1.1 Introduction of GPS Framework .. 8
2.1.1.1 GPS Definition ... 8
2.1.1.2 GPS Advantages ... 9
2.1.1.3 The Framework of the GPS Standards ... 9
2.1.1.4 Forms of GPS Standards(Matrix) ... 10
2.1.1.5 The Framework of Surface Texture .. 11

2.1.2 GPS Application Difficulties ... 12
2.2 Current Database System Solutions .. 15

2.2.1 Definitions and History .. 15
2.2.2 Relational DBMS ... 16

2.2.2.1 Relational DBMS Standards ... 17
2.2.2.2 Relational DBMS Overview ... 17
2.2.2.3 Advantages ... 18
2.2.2.4 Disadvantages ... 18

2.2.3 Object-relational DBMS .. 21
2.2.3.1 P/FDM Overview ... 21
2.2.3.2 Advantages ... 22
2.2.3.3 Disadvantages ... 23

2.2.4 Object-oriented DBMS .. 23
2.2.4.1 Object-oriented DBMS Standards .. 23
2.2.4.2 Object-oriented DBMS Overview .. 26
2.2.4.3 Advantages ... 29
2.2.4.4 Disadvantages ... 30

2.3 The Survey of Knowledge-based System ... 31
2.3.1 Definition of a Knowledge-based System ... 31
2.3.2 Knowledge-based System Overview ... 32
2.3.3 Knowledge Hierarchy .. 34
2.3.4 Knowledge Acquisition and Representation .. 35

2.4 XML/XSLT .. 37
2.4.1 XML Definition ... 37
2.4.2 Advantages of XML ... 37
2.4.3 XSLT .. 38

 V

2.4.4 DOM .. 38
2.5 Summary ... 38

3. Category Theory Applications .. 39
3.1 Category Theory ... 39

3.1.1 Notation of Category Theory ... 40
3.1.2 Constructs .. 44

3.2 Pilot Researches into Category Theory ... 47
3.3 Category Technique Rationales .. 50
3.4 Cateogrical Object Model .. 53

3.4.1 Complex Class and Object Support ... 53
3.4.2 Attribute and Method ... 54
3.4.3 Object Indentity ... 55
3.4.4 Encapsulation ... 55
3.4.5 Types .. 56
3.4.6 Relationships .. 56
3.4.7 Inheritance/Class Hierarchies .. 59
3.4.8 Implementing Operations ... 59
3.4.9 Physical Storage Linkages ... 61
3.4.10 Integrity/Consistency Checking ... 61
3.4.11 Query .. 61
3.4.12 Statement .. 61

3.5 The Categorical Design Process ... 62
3.5.1 An Example for Building the Categorical Sequence Diagram 66
3.5.2 An Example for Building the Categorical System Deployment Model 67

3.6 Categorical Representation of the Measurement Theory 69
3.7 Categorical Representation of the Knowledge Base .. 74

3.7.1 Knowledge modelling in Function Component for Surface Texture 75
3.7.2 Knowledge modelling in Specification Component for Surface Texture 77

3.8 Categorical Representation for a Database Schema ... 80
3.9 Summary ... 83

4. Implementation of the Categorical DBMS .. 84
4.1 Basic Criteria for Implementation ... 84

4.1.1 Conformability ... 84
4.1.2 Compatibility ... 86
4.1.3 Robustness ... 87

4.2 Native Design of DB4O ... 88
4.3 DB4O Customisation .. 91

4.3.1 Automatic Persistence .. 91
4.3.2 Physically Clustered Objects Storage .. 92
4.3.3 Referential Integrity ... 92
4.3.4 ODL support ... 92

4.4 Implementation of the Categorical DBMS .. 93
4.4.1 Realizing the Categorical Object Model .. 94

4.4.1.1 Complex Classes and Objects .. 95
4.4.1.2 Relationships .. 98
4.4.1.3 Encapsulation ... 100
4.4.1.4 Functors and Natural Transformation for Comparison Processes 100
4.4.1.5 Query Formations ... 103
4.4.1.6 View Mechanism .. 106
4.4.1.7 Physical Storage Structures .. 106

 VI

4.4.2 The Visual Management Interface for Categorical DBMS 107
4.5 Summary ... 108

5. Design and Implementation of the VirtualGPS System 109
5.1 The Design of the VirtualGPS System .. 109

5.1.1 The Categorical Business Map Construction for VirtualGPS 109
5.1.2 The Categorical Analysis Model Construction for VirtualGPS 111
5.1.3 The Categorical Design Model Construction for VirtualGPS 112
5.1.4 The Categorical Sequence Diagram Construction for VirtualGPS 112
5.1.5 The Categorical Deployment Model Construction for VirtualGPS 113

5.2 The Function Component Design ... 115
5.2.1 The Categorical Business Map Construction for Function 115
5.2.2 The Categorical Analysis Model Construction for Function 116
5.2.3 The Categorical Design Model Construction for Function 120
5.2.4 The Categorical Sequence Diagram Construction for Function 121
5.2.5 The Categorical Deployment Model Construction for Function 121

5.3 The Specification Component Design .. 122
5.3.1 The Categorical Business Map Construction for Specification 123
5.3.2 The Categorical Analysis Model Construction for Specification 126
5.3.3 The Categorical Design Model Construction for Specification 129
5.3.4 The Categorical Sequence Diagram Construction for Specification 142
5.3.5 The Categorical Deployment Model Construction for Specification 143

5.4 The Manufacture Component Design ... 143
5.4.1 The Categorical Business Map Construction for Manufacture 143
5.4.2 The Categorical Analysis Model Construction for Manufacture 144
5.4.3 The Categorical Design Model Construction for Manufacture 149
5.4.4 The Categorical Sequence Diagram Construction for Manufacture 150
5.4.5 The Categorical Deployment Model Construction for Manufacture 151

5.5 The Verification Component Design .. 152
5.5.1 The Categorical Business Map Construction for Verification 152
5.5.2 The Categorical Analysis Model Construction for Verification 153
5.5.3 The Categorical Design Model Construction for Verification 158
5.5.4 The Categorical Sequence Diagram Construction for Verification 159
5.5.5 The Categorical Deployment Model Construction for Verification 159

5.6 Implementation of the VirtualGPS System .. 159
5.6.1 Tools and Platform for Developing the VirtualGPS system 159
5.6.2 XML/XSLT Reports ... 160
5.6.3 A Test Case Analysis for Cylinder Liner Design 162

5.7 Summary ... 172
6. Tests and Evaluations .. 173

6.1 Tests and Evaluations on the Categorical DBMS ... 173
6.1.1 Data Model Comparisons .. 173
6.1.2 Test Case 1: Comparing with a Relational DBMS 175

6.1.2.1 Operations on Object Nests .. 175
6.1.2.2 Test on the Comparison Processes in Verification 179
6.1.2.3 Result Analysis ... 181

6.1.3 Test Case 2: Comparing with an Object-relational DBMS 182
6.1.4 Comparing with an Object-oriented DBMS .. 185

6.2 Evaluation of the VirtualGPS System .. 187
6.3 Summary ... 188

7. Conclusions and Future Work .. 189

 VII

7.1 The Summary of Contributions .. 189
7.1.1 A Categorical Modelling Mechanism for Knowledge-based Systems....... 189

7.1.1.1 The Categorical Object Model .. 189
7.1.1.2 The Categorical Software Design Process ... 190
7.1.1.3 The Inference identifying Square .. 190

7.1.2 The Categorical DBMS .. 190
7.1.3 The VirtualGPS Knowledge-based System ... 191

7.2 Future Works .. 192
7.3 Finally .. 193

RELATED PUBLICATIONS .. 194
REFERENCES ... 195

Appendix A Code List for “Measurand” Class Category ... 203
Appendix B Code List for “Callout” Class Category .. 205
Appendix C Code List for “ProductForcallout” Class Category 208
Appendix D Code List for Creating a Database Schema for Callout 210
Appendix E Manufacturing Process PRIMA Selection Matrix 211
Appendix F Parameters Selection Example ... 214
Appendix G Example of Function Corelation .. 215
Appendix H Function Map .. 216
Appendix I Selection of Ra According to Function .. 217
Appendix J Relationship between Surface Function and Quality 218
Appendix K A Comparison Between Relational DBMSs and Categorical DBMS 219
Appendix L The Database Schema Definitions for callouts in the P/FDM 221
Appendix M The Populating Codes for Callouts in the P/FDM 224

 VIII

LIST OF FIGURES

Figure 2.1 An Example of a GPS framework 10
Figure 2.2 Timeline of the history of five data models 16
Figure 2.3 Impedance mismatch problem in Relational DBMSs 20
Figure 2.4 An example of functional database schema 22

Figure 2.5
Unification between object-oriented application and object-
oriented DBMS

30

Figure 2.6 A Classification of information systems 32
Figure 2.7 The hierarchy of knowledge 34
Figure 2.8 The classic architecture for knowledge-based systems 35
Figure 3.1 A basic category 40
Figure 3.2 Diagram representation of the definition of monomorphism 41
Figure 3.3 Diagram representation of the definition of epimorphism 41
Figure 3.4 Commutative diagram for covariant natural transformation 42
Figure 3.5 Commutative cone 43
Figure 3.6 Commutative cocone 44
Figure 3.7 Product diagram 44
Figure 3.8 Commutative product diagram for objects A and B 45
Figure 3.9 Commutative product diagram for two arrows 45
Figure 3.10 Coproduct diagram for object A and B 45
Figure 3.11 Commutative coproduct diagram for objects A and B 46
Figure 3.12 Commutative coproduct diagram for two arrows 46
Figure 3.13 A Limit for a diagram D 46
Figure 3.14 Commutative diagram for message passing 56
Figure 3.15 The relationship R between A and B 57
Figure 3.16 Coproduct diagram for class inheritance 59

Figure 3.17
A part of categorical object model for determining the
manufacturing processes

60

Figure 3.18 The categorical sequence diagram for comparison processes 66
Figure 3.19 Categorical representation of a deployment topological graph 68
Figure 3.20 Categorical representation of ERS 71
Figure 3.21 Comparison between specification and verification 72
Figure 3.22 Categorical view of comparison processes 73
Figure 3.23 The coequalizer for manufacturing process reasoning 74
Figure 3.24 Product order of Function component 76
Figure 3.25 Pullback representation of the constraint “equals” 78

Figure 3.26
Pullback representation of the constraint
“determine_sampling_length”

79

Figure 3.27
Pullback representation of the constraint
“determine_up/low_limit”

79

Figure 3.28 Pullback representation of the “Callout” relationship 80
Figure 3.29 Two level class category construct 82
Figure 3.30 The 5-ary product relationship for the “Callout” 83
Figure 4.1 The architecture of ODMG 3.0 85
Figure 4.2 The architecture of categorical ODMG 88
Figure 4.3 System architecture of the DB4O 90
Figure 4.4 The architecture of the categorical DBMS 93
Figure 4.5 The main interface for the categorical DBMS 107
Figure 4.6 An example for query results in XML format 108
Figure 5.1 The business scope of GPS 110
Figure 5.2 A cyclic surface quality chain 110
Figure 5.3 Overall framework of the VirtualGPS system 111
Figure 5.4 Components in Surface Texture module 111

 IX

Figure 5.5 The sequence diagram for the Surface Texture module 112
Figure 5.6 Overall architecture of the VirtualGPS system 113
Figure 5.7 The business map for Function component 116
Figure 5.8 The function map 118
Figure 5.9 Categorical representation of parameters selection example table 120
Figure 5.10 The sequence diagram for Function component 121
Figure 5.11 The deployment topological graph for Function component 122
Figure 5.12 Complete surface texture callout symbol 124
Figure 5.13 The business map for Specification component 125

Figure 5.14
Example of traverse length, evaluation length and Sampling
length

127

Figure 5.15 Examples of transmission band 128
Figure 5.16 Roughness motifs 136
Figure 5.17 Waviness motifs 137
Figure 5.18 The sequence diagram for Specification component 142
Figure 5.19 The deployment topological graph for Specification component 143
Figure 5.20 The business map for Manufacture component 144
Figure 5.21 The categorical object model for Manufacture component 149
Figure 5.22 The sequence diagram for Manufacture component 151
Figure 5.23 The deployment topological graph for Manufacture component 151
Figure 5.24 The business map for Verification component 153
Figure 5.25 Selection of a measurement instrument 156
Figure 5.26 Categorical representation for “Instrument” class category 157
Figure 5.27 The categorical object model for Verification component 158
Figure 5.28 The main user entry interface 163
Figure 5.29 The Surface Texture working page 164
Figure 5.30 An example of a function performance report 165
Figure 5.31 The new case inputting interface for users 166
Figure 5.32 Output of a specification report 167
Figure 5.33 Inputs of the Manufacture component 168
Figure 5.34 Output of a manufacture report 169
Figure 5.35 Output of a verification report 170
Figure 5.36 Visual representation of an A-W diagram 171
Figure 5.37 Output of a comparison result 172

Figure 6.1
A categorical object model for the linkage between surface
requirements and functional performances

177

Figure 6.2 The query result in tree structure 178
Figure 6.3 The functional data model for callouts generated by the P/FDM 183
Figure 6.4 Output for the semi-completed callout symbols from the P/FDM 183
Figure 7.1 The callout on technical drawing in the autoCAD 193

 X

LIST OF TABLES

Table 2.1
The chain of standards relating to the “size” (the 1st row of the
general GPS Matrix)

11

Table 2.2 Position of surface texture standards in the GPS matrix model 12
Table 2.3 Current relational DBMSs 17

Table 2.4
Comparison of the basic characteristics of three relational
DBMSs

17

Table 2.5
Comparison of operating system supports of three relational
DBMSs

18

Table 2.6
Example of a classification of surface function together with a
relationship table for motif parameters taken from ISO 12085

19

Table 2.7 Current object-oriented DBMSs 26

Table 2.8
A Comparison of the basic characteristics for these four object-
oriented DBMSs

27

Table 2.9
A Comparison of the standards supported by these four object-
oriented DBMSs

27

Table 2.10
A Comparison of the schema modification support for these four
object-oriented DBMSs

27

Table 2.11
A Comparison of the queries support for these four object-
oriented DBMSs

28

Table 2.12
A Comparison of system environment support for these four
object-oriented DBMSs

28

Table 2.13
A Comparison of the accessibility for these four object-oriented
DBMSs

28

Table 2.14 The development milestones for knowledge-based systems 33
Table 2.15 Knowledge types 33
Table 2.16 Knowledge types in VirtualGPS 33

Table 3.1
Categorical terms for representational measurement theory
concept

71

Table 4.1 The Java binding APIs in the categorical DBMS 93
Table 5.1 Examples of functions 119
Table 5.2 Parameters selection example 120
Table 5.3 Parameters based on material ratio curve 126
Table 5.4 Num_cutOff for profile parameters 131
Table 5.5 Num_cutOff for parameters based on material rate curve 131
Table 5.6 Default sampling lengths for profile parameters 132

Table 5.7
Roughness sampling lengths for the measurement of Ra, Rq, Rsk,
Rku, RΔq and curves and related parameters for non-periodic
profiles

133

Table 5.8
Roughness sampling lengths for the measurement of Rz, Rv, Rp,
Rc and Rt of non-periodic profiles

133

Table 5.9
Roughness sampling lengths for the measurement of R-
parameters of periodic profiles, and RSm of periodic and non-
periodic profiles

133

Table 5.10 Sampling lengths for parameters based on material ratio curve 134
Table 5.11 Evaluation lengths for profile parameters 135
Table 5.12 Evaluation lengths for parameters based on material ratio curve 135
Table 5.13 Transmission band for motif parameters 137
Table 5.14 Lower limit for profile parameters 138

Table 5.15
Relationship between the roughness cut-off wavelength λc, tip
radius and roughness cut-off ratio λc/ λs

139

Table 5.16 Lower limit for motif parameters 140
Table 5.17 Lower limit for parameters based on material ratio curve 141

 XI

Table 5.18 Texture lay with typical manufacturing processes 145

Table 5.19
Surface roughness values produced by common production
processes and materials

147

Table 5.20
Choice of cut-off wavelength for a number of common
machining operations

147

Table 5.21
Relationship between the roughness cut-off wavelength λc and
maximum sampling spacing

154

Table 5.22 The characteristics for typical instruments 157
Table 6.1 Comparison of three data models 174
Table 6.2 MySQL query results 176
Table 6.3 Surface parameter Rz calculated on a manufactured cylinder liner 179
Table 6.4 Static vs. dynamic data structures 180

Table 6.5
A Comparison between the categorical DBMS and the object-
oriented DBMSs

186

 XII

LIST OF CODES

List 2.1 The basic format for a rule 36
List 4.1 ODL definition for “ExtractionToFiltration” class category 92
List 4.2 Java codes for “Category” class category 97
List 4.3 Java codes for “Arrow” class category 98
List 4.4 Java codes for “Product” class category 99
List 4.5 Java codes for “Functor” and “ArrowMapping”class categories 101
List 4.6 Java codes for “MeasurandForComparison” class category 101
List 4.7 Java codes for “Value” class category 102
List 4.8 Java codes for “NaturalTransformation” class category 103
List 4.9 Java codes for “Compare()” method 103
List 4.10 Java codes for a “Callout” query process 106
List 5.1 Inference rule No.1 129
List 5.2 Inference rule No.2 130
List 5.3 Inference rule No.3 130
List 5.4 Inference rule No.4 131
List 5.5 Inference rule No.5 132
List 5.6 Inference rule No.6 134
List 5.7 Inference rule No.7 134
List 5.8 Inference rule No.8 136
List 5.9 Inference rule No.9 136
List 5.10 Inference rule No.10 138
List 5.11 Inference rule No.11 138
List 5.12 Inference rule No.12 139
List 5.13 Inference rule No.13 139
List 5.14 Inference rule No.14 140
List 5.15 Inference rule No.15 141
List 5.16 Inference rule No.16 141
List 5.17 Inference rule No.17 142
List 5.18 Equation 5.1 150
List 5.19 Equation 5.2 150
List 5.20 Inference rule No.18 154
List 5.21 A function report in XML format 161
List 5.22 An example of XLST codes for the function report 162
List 6.1 SQL code list for creating linked tables 176
List 6.2 SQL code list for querying linked tables 176
List 6.3 Code list for “SurfaceToFunction” class category 178

List 6.4
Categorical query codes for the linkage between surface
requirements and functional performances

178

List 6.5 P/FDM query clause for the callouts 183
List 6.6 Example for a constraint definition in the P/FDM 183
List 6.7 A direct query for callouts in the categorical DBMS 184

 XIII

ACRONYM LIST
ACID Atomicity, Consistency, Isolation, Durability
ADO ActiveX Data Objects
ADT Abstract Data Type
AFM Atomic Force Microscope
ANSI American National Standards Institute
API Application programming interface

BCNF Boyce-Codd Normal Form

CAD Computer Aided Design
CAM Computer Aided Manufacturing
CASE Computer Aided Software Engineering
CAT Computer Aid Tolerance
CEN European Committee for Standardization
CFI CAD Framework Initiative
CGIP Computer Graphics and Image Processing
CLI Call Level Interfaces
CMM Coordinate Measurement Machine
CORBA Common Object Request Broker Architecture
CPT Centre for Precision Technologies
DBMS Database Management System
DB4O Database For Objects
DDL Data Definition Language
DML Data Manipulation Language
DOM Document Object Model
DTD Document Type Definition
ER Entity-Relationship
ERS Empirical Relational System
FDE Factorial Designed Experiment
GD&T Geometrical Dimensioning and Tolerancing
GPL General Public License
GPS Geometrical Product Specification
HTML HyperText Markup Language
ICT Information and Computer Technology
IDE Integrated Development Environments
ISO International Organization for Standardization
JavaCC Java Compiler Compiler
JDBC Java Database Connectivity

JDO Java Data Objects

MIT
McCarthy developed LISP at Massachusetts Institute of
Technology

NF Normal Form
NQ Native Queries
NRS Numerical Relational System
ODBC Open Database Connectivity

ODL Object Definition Language
ODMG Object Data Management Group

 XIV

ODP Open Distributed Processing
OID Object Identity
OIF Object Interchange Format
OMG Object Management Group
OQL Object Query Language
PCTE Portable Common Tool Environment
PDA Personal Digital Assistant
PDF Portable Document Format
P/FDM Prolog/Functional DATA Model
PRIMA Manufacturing Process Information Map
SDK Software Developer Kit
SDN Sun Developer Network
SEM Scanning Electron Microscope
SME Small Medium–sized Enterprises
SODA Simple Object Database Access
SQL Structured Query Language
STEP Standards for Exchange of Product
STM Scanning Tunnelling Microscope
SWT Standard Widget Toolkit
TC Technical Committee
TDC Top-Dead Centre
TR Technical Report
UI User Interface
UML Unified Modelling Language
USDP Unified Software Development Process
W3C The World Wide Web Consortium
XML eXtensible Markup Language
XSL eXtensible Stylesheet Language
XSLT eXtensible Stylesheet Language Transformation

 1

CHAPTER 1 INTRODUCTION

1.1 Project Introduction

In modern industries, manufacturers are applying various tools and methods to ensure

the consistency of geometric characteristics for the machining products through the

manufacturing life-cycle. To ensure the consistency of geometric characteristics and

to facilitate global outsourcing, a universally accepted tolerancing language should be

adopted to precisely transform functional requirements into manufactured workpieces

and parts based on: mathematical rules and methods, consideration of macro and

micro geometry, possibilities for measuring of quantities (especially tolerance

quantities) and evolution of uncertainty, etc (Durakbasa and Osanna, 2001 [1]). The

Geometrical Product Specification (GPS) is the modern and updated symbolic

language that is used for specifying the functional requirements in technical drawing

(Bennich and Nielsen, 2005 [2]). It is a standardized tolerancing language, which

contains a set of standards organized in matrices. Therefore, some researchers refer to

GPS as the GPS matrix system. It has been reported that GPS can save up to 15% in

manufacturing cost through reducing misunderstandings and the ambiguity in defining

the tolerance requirements (Humienny et al., 2001 [3]).

The initial GPS standards were set up by the International Organization for

Standardization (ISO) to determine geometrical features of workpieces, such as size,

distance and radius (Durakbasa and Osanna, 2001 [1]). It can also be used to verify

workpieces according to their specifications as well as to suggest the measuring

instruments and their calibration methods (Humienny et al., 2001 [3]). A number of

important factors considered in this process include macro and micro geometry,

quantity measures, uncertainty, measurement traceability and so on. In order to further

optimize manufacturing resources through the scientific and economic management of

various production processes and satisfy all the customized requirements of a product,

the next generation GPS standards aim to integrate all the essential steps and data of a

production practice in terms of their properties, such as the top-down or bottom-up

manufacturing processes in the macro or nano scale production have been developed

(ISO/TR 14638, 1995 [4]; ISO TC/213, 2001 [5]; Wang et al., 2004 [6]). However,

the current GPS standards are over complex, abstract, and theoretical for many Small

Medium–sized Enterprises (SME) in the manufacturing industry for following reasons:

 2

 SMEs often lack GPS expertise. The inner relationships between different GPS

matrices are vaguely defined. Hence, only the GPS experts are capable of

cross-referencing and interpreting them to satisfy specific user requirements.

For many SMEs subcontracting for large companies, these difficulties pose a

great financial burden.

 It is difficult for users to apply tolerances on drawings to unambiguously

express the functional requirements, or to interpret the symbolic language of

GPS into various mechanical requirements. The failure to teach these skills

leads to the vast majority of drawings used in industry today are ambiguous

and can not communicate the true functional requirements of parts (Bennich

and Nielsen, 2005 [2]). Therefore, the incorrect and ambiguous definitions of

GPS requirements bring high economical risks to industry.

 GPS standards are often stored in text-based electronic file formats (e.g. PDF)

organized by matrices, which are difficult for users to search and access

without knowing specific search criteria. It is even more difficult for the

application of computer-based knowledge inference processes.

 There are no existing de facto knowledge-based systems to manage this large

maze of GPS standards and to maintain its data integrity and version

consistency for GPS applications. Current efforts and pilot systems used to

resolve these problems do not seem to provide mechanisms for GPS users to

share data remotely; never mention to customise or even add their own new

knowledge relating to certain processes.

As stated above, it is difficult right now to take the full advantages of these powerful

and promising GPS standards to ensure the integrity of a specified product regarding

its functionality, safety, dependability and interchangeability without fundamental

renovations of their obsolete storage and access mechanism using the latest

Information and Computer Technology (ICT).

It is envisaged that a knowledge-based information system for automatically

implementing the GPS standards will facilitate the wider adoption of this tool in

industry (Partridge and Hussain, 1995 [7]). During the last five years, various software

systems have been developed to transform function-dependent demands into

specifications of workpieces based on mathematical rules and methods. Unfortunately,

almost all of them were based on the older technical standards with limited functional

 3

contents and a few simple technical specifications, which kept the system from

automatically finding the appropriate GPS standards (Jiang, 2004 [8]). This drawback

had hampered efforts to keep product specifications consistent with the GPS standards

when the product function changes. Furthermore, the relational databases applied by

all the current engineering aided design and manufacturing software tools can not

support complex data structures to reflect the complicated relationships among parts

and GPS standards, which are essential for comprehensive analysis and data

manipulation to solve practical production problems.

To overcome the aforementioned usability problems, this project aims to develop a

knowledge-based system framework called VirtualGPS system which focuses on

developing an integrated GPS knowledge platform with knowledge generation and

accessing facility based on the GPS matrices defined in GPS standards. Here, the term

“virtual” refers to the effort in integrating the GPS information (especially these

specified in the CEN and ISO standard documentation (ISO TC/213, 2001 [5])) and

the corresponding GPS realization methodologies into a single framework regardless

of their physical storage locations. At this stage, the system takes the surface texture

as an example to demonstrate its functional features. It covered knowledge domains of

GPS in dimensional and geometrical tolerances for surface and related manufacturing

processes/equipments, verification principles, as well as uncertainty and measurement

traceability. In future, it will enrich GPS knowledge domains for form, size and

position. This has led to the emergence of the classical problem of storing and

managing large amounts of data in various complex structures that are difficult or

impossible to be divided into strict formats of flat table relations applied in relational

Database Management Systems (DBMS). To solve the problem, the proposed

VirtualGPS system applied an object-oriented approach based on Category Theory.

1.2 Aims and Objectives

The project aims to investigate a software solution (VirtualGPS) to handle the large

amount of data in various complex structures relating to matrices defined in the GPS.

The VirtualGPS system will focus on solving the design and production stage

problems by acting as a “virtual” domain expert through translating GPS standards

and rules into the forms of computerized expert advices and warnings. This system

can also be used as a training platform for teaching engineers how to utilise

unambiguous tolerance specifications for expressing functional requirements, and how

 4

to apply GPS to guide the integrated manufacturing and measurement processes. As a

core part of the VirtualGPS, the project researched and devised a Category Theory-

based object-oriented DBMS named categorical DBMS to utilize its capability for

handling complex multi-level objects and object relationships, which is of vital

importance in managing large scale geometrical product designs, manufacturing and

measurement data.

It is envisaged that the research will contribute to the domain knowledge by

providing a case study for incorporating state-of-the-art research advancements and

technologies in the information/knowledge-based systems and database fields. Also it

will provide a computerized system which can generate expert knowledge to integrate

product functions, specifications of micro- and nano-geometry, manufacturing

processes and verification procedures. The research objectives of this project can be

classified as follows:

(1) To provide a unified knowledge acquisition and knowledge representation

mechanism to retrieve and organize knowledge from various GPS documents.

(2) To identify suitable data structures for storing GPS knowledge within the final

software system. It covers data from the functional, specification, manufacture

and verification aspects in GPS field. The complex relationships between both

areal and profile specification and metrology, such as profile and areal

standards, filtration, parameter algorithms, instrumentation, measurement

procedures, instrument calibration, and uncertainty will be investigated.

(3) To build a consistent and integrated framework to encompass the data gained

in the process explained in the above point. It is anticipated that an object-

oriented DBMS needs to be built to utilize the Category Theory-enabled

abilities of querying and preserving complex objects and their relationships

(often in the forms of arrows in the schema diagram). Moreover, this approach

should facilitate in solving the complex database problems in object-oriented

DBMSs, such as typing, message passing, view, and query closure. The

categorical DBMS of this project should have both the flexibility for storing

and implementing the complex objects and also has solid mathematical

foundations with formal semantics.

(4) To provide a unified knowledge base for supporting engineering decisions in

choosing appropriate GPS parameters according to the required functional

performances.

 5

(5) To enable an automated querying mechanism for guiding designers with

relevant GPS specifications. For example, it can be used to provide correct and

unambiguous geometrical specification (the technical specification) relevant to

the functional design intent.

(6) To equip a rating and ranking inference engine for locating and retrieving

GPS-recommended manufacturing processes and equipments.

(7) To link similar functions to aid decisions on measurement procedures and

equipment.

(8) To achieve the system functions, the software specification has also included

the following features:

 Client/Server structure for the synergy between geographically dispersed

designers, production engineers and metrologists to work closely.

 User-friendly system interfaces for accessing system functions such as

cross-referencing, reporting and updating.

At present, all of the above eight objectives are using the surface texture part of

GPS as demonstrating and testing examples. After achieving the above eight

objectives, the VirtualGPS system will enable non-experts to use GPS standards in an

efficient manner. It will also ensure that when a product design changes, the relevant

GPS specifications will be updated automatically to remain consistent with relevant

GPS standards. Moreover, with the trend of globalisation in manufacture industries,

the remote data access features and web-based user interfaces of the system will

become the norm.

1.3 Project Approach

The project started with an extensive literature review of the state-of-the-art in GPS

advancements, knowledge-based system evaluations, relational, object-relational and

object-oriented database applications and data-mining practices. The project

development approach has been demonstrated as follows:

(1) Initial Design. Based on the literature review of the problem domains and the

analysis of user requirements on the VirtualGPS system, the overall system

framework has been designed using the Category Theory. To address problems

highlighted in Section 1.1, this project also decided to use the Category Theory

to model knowledge structures and knowledge operations.

(2) Proof-of-Concept/Prototype Development. A proof-of-concept prototype

 6

was developed in the Java language. This has facilitated the refinement and

completion of the system architecture with improved understanding on some

implementation issues. This system also served as a demonstration of the

design concepts and capabilities of the final system with feedbacks from

various tests.

(3) Design Modification. After collecting and analysing feedback from system

tests, the system design on both the conceptual model and the prototype

system was refined.

(4) Development and Implementation. The final system will be produced using

Java and XML as development tools. Java was selected for its comprehensive

functionality, sound stability and open-source nature, whilst XML technology

is used to structure reports and communicate between manufacturing engineers.

In this project, a native manipulation language was developed based on the

Category Theory to match the so-called categorical object model adopted in

this project.

(5) Testing and Validation. The proposed software system VirtualGPS is strictly

tested and verified to evaluate its performance over existing solutions. In this

project, tests were continuously being undertaken during every major phase to

ensure that it has good functionality and stability. The diagram chasing and

algebraic deductions based on Category Theory are used to ensure the integrity

of knowledge base and database schemas of this system. Researchers and GPS

experts in Centre of Precision Technology (CPT) in the University of

Huddersfield were invited to test the software to assess whether the system can

satisfy the demands from industry, as well as whether it meets the aims and

objectives of the project. Further revisions for the proposed system might take

place based on the feedback from these tests.

1.4 Thesis Structure

The following paragraphs provide a brief summary for the remaining chapters of this

thesis.

Chapter 2 highlights the context of various problem domains relating to this

project, which includes both engineering and computer science fields. For the

engineering field, introductions of GPS and surface texture are given. For the

computer science domain, detailed surveys over different database solutions,

 7

knowledge-based systems and XML technology, and their relationships to this project

are discussed.

Chapter 3 focuses on developing a unified categorical modelling mechanism

based on Category Theory for knowledge acquisition/representation, database schema

construction and descriptions of the system frameworks. This chapter starts with a

discussion on the necessary notions of Category Theory and rationales for using the

Category Theory, and then provides a categorical object model for representations of

knowledge and database schemas. A categorical software design process and an

inference identifying square are also defined in this chapter for explaining the design

of the whole software architecture and the modelling of knowledge inferences

respectively. Moreover, examples for applying the categorical object model, the

categorical software design process and the inference identifying square are illustrated

in corresponding sections of this chapter.

Chapter 4 focuses on discussing the implementation of the categorical DBMS.

This chapter starts with a discussion on why DB4O (database for objects) is chose as

the implementing basis for the categorical DBMS. Then, it moves to explain the

categorical architecture for the categorical DBMS, the necessary functional extensions

for DB4O, and how to implement the categorical object model on the categorical

DBMS. This chapter concludes with a demonstration of the visual management

interface for the categorical DBMS.

Chapter 5 focuses on describing the design and implementation of the VirtualGPS

system, which takes the surface texture as an example. The VirtualGPS contains four

modules and each module in turn contains four components (sub-knowledge bases).

The design of each module or component in the VirtualGPS system goes through a

categorical software design process. After specifying the design of the VirtualGPS

system, tools and platforms for implementing the system are discussed in this Chapter.

This chapter concludes with a working case study to assess the design features and

functionality of the system.

Chapter 6 focuses on discussing the tests and evaluations carried out on the

categorical DBMS and the VirtualGPS system.

Chapter 7 deals with the final assessment of the project that focuses on the

summary of its outcomes and contribution to knowledge. A discussion for the future

work is also included at the end of this chapter.

 8

CHAPTER 2 RESEARCH DOMAIN SURVEYS

This chapter focuses on introducing and explaining of the domain knowledge and its

context that are heavily used in this project, which do not just originate in computer

science but also come from the field of precision engineering. It covers: GPS and an

overview of surface texture, evaluation of current Database Management Systems

(DBMS), knowledge-based system review and eXtensible Markup Language

(XML)/eXtensible Stylesheet Language Transformation (XSLT) descriptions. These

research domains provide the foundations to develop the VirtualGPS system.

2.1 GPS and Surface Texture Overview

2.1.1 Introduction of GPS Framework

Traditionally, when a machining part is being designed, designers will only work on

nominal specifications – that is workpieces expressed as ideal geometries without any

geometrical errors, i.e., parts with perfect surfaces. However, any actual parts being

produced in the real world will be far from perfect. Various deviations could exist in

the forms of shape distortions, differences on dimensions and surface roughness, etc.

Furthermore, the process of assembling parts is also error-prone where additional

deviations easily occur, resulting in non-satisfying products. In a real production

scenario, despite these deviations, a product may still be regarded as acceptable if the

errors are properly controlled within certain limitations, which leads to the concept of

tolerances. Therefore, there should have some standards to define these tolerances and

ensure the real geometrical products are limited in certain extent of deviations.

Moreover, during the last a couple of decades, manufacturing industry become more

and more flexible and global through outsourcing. Geographically dispersed (remote)

design and manufacturing practices are rapidly increasing (Humienny et al., 2001 [3]).

This move is another major contributing factor to the generation of a set of universal

standards and rules to unify the characteristics of workpieces using the so-called

Geometrical Product Specification and Verification (GPS) Standards.

2.1.1.1 GPS Definition

The Geometrical Product Specification and Verification (GPS) matrix system is a

tolerancing specification tool for expressing geometrical tolerances in technical

drawings, which currently is the only worldwide symbol language available for

communicating geometrical requirements (Bennich and Nielsen, 2005 [2]). The GPS

 9

is developed based on the Geometrical Dimensioning and Tolerancing (GD&T) with

the addition of more detailed definitions of the requirements. This allows designers to

express functional requirements much more precisely than before.

2.1.1.2 GPS Advantages

Users can gain technical, competitive, and economic advantages by using GPS as the

tolerancing language in their drawings through following points (Bennich and Nielsen,

2005 [2]; Humienny et al., 2001 [3]):

 GPS drawings impose artificial constraints on manufacturing, which can help

users to define non-functional parts. Therefore, GPS can save manufacturing

cost through reducing work stoppages due to non-functional parts jamming

assembly lines or lack of functional parts idling production.

 GPS can greatly improve communications between designers, manufacturers

and metrologists. Therefore, savings come from reducing misunderstandings

amongst the various roles involved in manufactures. This is very important for

those companies that subcontract or outsource the manufacturing of parts to

reduce unqualified products.

 GPS can quantify the ambiguity in a tolerance requirement when it is applied

to a real part through specification uncertainty. This can be used to improve

product designs.

2.1.1.3 The Framework of the GPS Standards

GPS aims to cover the whole spectrum of manufacturing design and production stages

through specifying and verifying parts’ sizes and dimensions, geometrical tolerances,

and surface properties and to ensure the consistency of some essential properties of

products no matter where they are designed and produced (Humienny et al., 2001 [3]).

Generally, GPS standards are applied to ensure the following essential properties of

products:

 Functionality. For example, if elements of a machine tool meet certain

geometrical tolerances such as straightness of bebways, the machine can work

properly.

 Safety. For example, the crankshaft pin is ground according to specifications

concerning vibration to avoid fatigue cracking which will destroy the engine.

 Dependability. This is to guarantee the long work life of a machine.

 Interchangeability. This is to benefit new machine assembly and to facilitate

 10

repair.

Figure 2.1 shows a simplified diagram of a typical GPS standards framework.

Figure 2.1: An Example of a GPS framework.

The key word “tolerance” in Figure 2.1 normally contains three parts: feature,

characteristics and condition. Taking surface texture as an example, the feature is

point, line or surface. It includes the integral feature and the derived feature. The

integral feature is the surface or profile sections on a surface and the derived feature

comprises the centrepoint, median line, median surface or offset feature from one or

more integral features. A characteristic is the single property of one or more features

expressed in linear or angular units. The features are described by characteristics,

including different mathematical parameters and their numerical values, based on a set

of data points from the features under consideration. Conditions are added to define

acceptable limits for the measured value of a characteristic (tolerance values). Thus,

these parts together can be used to determine the functional properties of a surface.

2.1.1.4 Forms of GPS Standards (Matrix)

According to the technical report ISO/TR 14638 published in 1995 (known as the

Masterplan), the standards in GPS can be classified into fundamental GPS standards,

global GPS standards, general GPS standards and complementary GPS standards

(ISO/TR 14638, 1995 [4]). The general GPS standards are the kernel of the

Masterplan. They are ordered in a matrix in which all the rows constitute 18 chains of

standards in total (size, distance, radius, angle etc.) with each column defining various

 11

characteristics of geometrical features. Therefore, the whole GPS (ISO/CEN) is also

called as the GPS matrix system (Humienny et al., 2001 [3]). Table 2.1 shows the

chain of standards relating to size parameter that are grouped into six aspects: the

product documentation indications, definition of tolerances, definitions of

characteristics of actual feature, assessment of the workpiece deviations, measurement

equipment and calibration requirements, and measurement standards. In an ideal case,

based on each chain of standards, the process of manufacturing a part can be clearly

defined by taking into factors such as setting up unambiguous specifications, and

interpreting manufacturing specifications and verification information.

1 2 3 4 5 6

ISO 129
ISO 286-1

ISO 286-1
ISO 286-2

ISO 286-1
ISO 8015

ISO 14660-2
ISO 14253-1

ISO 463
ISO 9121
ISO 9493

ISO 10360-1
ISO 10360-2
ISO 13225
ISO 13385

ISO 14253-1

ISO 3650
ISO 14253-1

Table 2.1: The chain of standards relating to the “size” (the 1st row of the
general GPS Matrix).

The latest version of general GPS matrix system is composed of 108 cells (6 by 18)

and each of them contains at least one standard. In the future, there will be more

standards to be filled into those cells. Hence the GPS matrix system will become more

complex and difficult to be handled.

2.1.1.5 The Framework of Surface Texture

This project intends to research and develop a software solution that will provide a

unified platform for designers and manufacturers to overcome these GPS application

difficulties discussed in Chapter 1. It is intended to benefit industry by allowing the

use of modern GPS standards, e.g. surface texture specification and verification.

As demonstrated in Section 2.1.1.3, the GPS covers three aspects: Dimensional

tolerances, Geometrical tolerance and Tolerances on surface texture. Among them,

surface texture is of the crucial state in the GPS. It represents the local deviations of a

surface from its ideal shape in terms of roughness, waviness and form, which covers a

wide spectrum of production activities, from the design function to specification on a

drawing, from the manufacturing process to verification. It is an important factor in

production for monitoring the production processes, preventing failures of the

products, ensuring surface quality and inferring the functional performance of a

 12

surface. Due to its importance in ensuring the quality of the final product, surface

characteristics are rigorously checked throughout the whole production lifecycle.

Table 2.2 lists the GPS matrix chains relating to surface texture (Humienny et al.,

2001 [3]).

Chain link number

1 2 3 4 5 6 Geometrical
characteristic of
feature

14 Roughness profile ISO1302

ISO 4287,
12085,
13565-1,
13565-2,
13565-3

ISO 4288,
12085,
11562,
13565-1

ISO
4288,
12085

ISO
3274

ISO
5436,
12179

15 Waviness profile ISO1302
ISO 4287,
11562,
12085

ISO
11562,
12085

ISO
12085

ISO
3274

ISO
5436,
12179

16 Primary profile ISO1302
ISO 4287,
11562,
13565-3

ISO 4288 ISO 4288 ISO
3274

ISO
5436,
12179

Table 2.2: Position of surface texture standards in the GPS matrix model.

As the prototype system taken surface texture as an example, the ISO chains in Table

2.2 provided foundation knowledge for the surface texture part of the VirtualGPS

system (see Chapter 5).

2.1.2 GPS Application Difficulties

The aforementioned four major shortcomings relating to applying of ISO/CEN GPS

standards indicate that there is need for development of “new” software systems to

facilitate GPS applications. However, the current computer aided design and

manufacturing software systems are still struggling to meet the demands of the global

and dynamic manufacturing environments and fail to cope with the complexity of the

whole GPS world due to the following reasons:

 Most systems do not provide precise drawing indication. For example, they

have no function associate to drawing indication 30 0.1.

 Different types of measurement methods may lead to very different results.

The lack of effective communications has resulted in wide misunderstanding

between the design concept and the real product. Experience has shown that

the average costs resulting from such shortcomings of incomplete GPS

technical documentation can amount to as much as 20% of the production

turnover (ISO TC/213, 2002 [9]).

 Almost all current computer aided manufacturing software are based on the

 13

old technical standards without applying the modern GPS, such as:

1) STEP: Standards for Exchange of Product Model Data (STEP) is a set of

standardized protocols for computer-interpretable product information

developed by ISO/TC 184/SC4. It relies on CAD vendors to provide

translators that can read and write STEP formats. The product information

defined by the STEP only defines how it can be exchanged between

CAD/CAM systems using standardized protocols. It does not provide

functions such as automatically generating product specifications based on

GPS standards according to the required product functions. It also provides

little support on issues like suggesting manufacturing processes,

verification methods, and calibration equipments.

2) Geometric Tolerance: VisVSA (UGS, 2003 [10]) and CETOL (Sigmetrix,

2002 [11]) are popular commercial packages for tolerance calculation. The

modern CAT (Computer Aid Tolerance) package (CATIA 3D Functional,

VSA-GDT, VisQuality, and VisVSA) is implemented on CAD platforms

(CATIA, UNIGRAPHICS, Pro/Engineer) that utilize solid modelling

representation systems based on variation geometry. These CAT packages

have functions such as associative intelligent, 3D tolerance specifications,

annotation verification, and simulation/ prediction of manufacturing

processes with variations at the assembly level.

3) Limit and Fits: There are a number of software implementations of the

ISO standards for the so-called “Limits and Fits” being developed in

various countries (examples can be found on www.hexagon.de). These

software systems can decode the size limits specified by the tolerance

classes into deviations to calculate the fit clearance/interference, and to

determine the fit type as well as providing tolerance zone visualizations.

4) CMM Software: The latest CMM software permits interactive graphical

inspection planning and programming based on the 3D CAD data with

automation of the probe path generation (Jiang, 2004 [8]). CMM software

such as Umess, Calypso (Zeiss), QUINDOS (Brown&Sharpe) and so on

are often based on 3D CAD/CMM programming software for measuring,

evaluating, simulating, curve-data importing, and model comparison

(Humienny et al., 2001 [3]; Carl Zeiss Industrial, 2004, 2006 [12, 13];

Brown&Sharpe, 2006 [14]). For example, QUINDOS dimensional

 14

measurement software provides flexibility for the inspection of prismatic

parts such as engine blocks or gearboxes. Besides that QUINDOS can also

measure and evaluate special shapes or geometry produced in today’s

industry (Brown & Sharpe, Inc., 2006 [14]). However, these metrology

packages which set the measurement standard through direct and seamless

integration with CAD data, rarely make assessment using ISO geometrical

tolerance definitions (Humienny et al., 2001 [3]; Jiang, 2004 [8]). For

example, when the perpendicularity of a cylinder axis to a plane is

calculated, the associated derived axis is often used rather than the

extracted derived axis required by ISO.

5) Surface Texture Analysis System. An internet-based surface texture

analysis and information system, developed by Center for Precision

Metrology in the University of North Carolina, claimed to solve the

problem that current surface texture analysis systems are weak in

developing process knowledge or mapping the observed effect to causes.

For example, after taking several measurements on a workpiece, users can

use traditional systems to filter the profile at a standard cut_off length and

then get a table of calculated parameter values. However, these systems

can not provide a documentation mechanism to store process parameters

with metrology data for observing how process parameters relate to

variability in the surface parameters. This system focuses on filter selection,

filtering calculations and measured data analysis.

In general, the major software systems at present are still weak on functionality and

relying on ambiguous dimensioning and tolerancing practices based on the nominal

model methodology and geometry theory. Features such as product function, surface

properties and the related verification principles, measuring equipment, calibration

requirements, uncertainty and measurement traceability are often largely ignored. One

of the major reasons for causing these drawbacks is that the traditional database

systems applied by all the current engineering aided design and manufacturing

software tools can not efficiently support complex data structures to reflect the

complicated relationships among parts and GPS standards, which are essential for

comprehensive analysis and data manipulations to solve practical production problems.

The next section will discuss these classical traditional database system solutions with

their advantages and disadvantages demonstrations.

 15

2.2 Current Database System Solutions

2.2.1 Definitions and History

A database is a self-describing collection of integrated data with different structures

designed to meet the information needs of an organization (Martin, 1977 [15]). A

Database Management System (DBMS) is a compute program that controls the

organization, storage and retrieval of data in a database and a database application is a

compute program that interacts with a DBMS (Connolly and Begg, 2001 [16]). DBMS

did not come into the market until 1960’s and the first commercial DBMS − IMS

appeared in early1970 (Lin, 2003 [17]). The modern DBMSs are raised to solve the

problems of file systems, which support retrieving and storage of large amount of data

in a computer (Molina, 2008 [18]). Researchers in the database field found that data

has value and semantic meaning, so data models are required to be introduced to

improve the reliability, security, efficiency of the access (Lin, 2003 [17]). Data

models provide a way to describe what information is to be contained in a database,

how the data organization of information is structured, and how the data will be

related to each other for quick access and efficient management. As every DBMS has

a data model behind it, so DBMSs can be classified into five basic types according to

the data models that they are applying:

 Hierarchical DBMS (e.g. IMS)

 Network DBMS (e.g. CODASYL)

 Relational DBMS (e.g. MySQL, SQLServer)

 Object-relational DBMS (e.g. P/FDM)

 Object-oriented DBMS (e.g. ObjectStore, DB4O)

These data models describe not only the structure of the target databases but also the

operations that can be performed on them. Each database has a “schema” that is a

computing language description of its data model. Therefore, a data model often

contains:

(1) Structure. The structure formed by classes, attributes, inter- or intra-

associations. The structure is represented in both diagrammatic symbols and

expressed as a schema by using a data definition language.

(2) Manipulation/Operation. Manipulation is formed by a query language in terms

of searching, deleting or updating of the database.

(3) Rule. Rule is the restriction on the data model, for example, integrity

 16

constraints.

Figure 2.2 shows the timeline of the history of these five major data models.

Figure 2.2: Timeline of the history of five data models (Tupil, 2008 [19])

The hierarchical and network databases had not become popular in modern database

applications because of several fundamental limitations. For example, in hierarchical

and network databases, data accesses are through low-level pointer operations to link

records. Users need to know the physical database structure to query and update

information. The first generation data models (hierarchical, and network) and the

second generation (relational) are all record based and using simple data types, which

have limited application supports. The third generation of data model (object-oriented)

started in late 1980’s, which can better support complex data types, having band to

object-oriented programming languages such as Smalltalk, C++ and Java. All DBMSs

contain its own Data Definition Language (DDL) and Data Manipulation Language

(DML) (Cattell, et al., 2000 [20]). The DDL allows users to define their data types and

interfaces. The DML allow programs to create, delete, retrieve and update the

instances of those data types. In object-oriented DBMSs, the DDL is called Object

Definition Language (ODL), which defines the characteristics of types (classes)

including their properties and operations. For this thesis, the following sections

concentrate on giving a detailed overview on relational, object-relational and object-

oriented DBMSs.

2.2.2 Relational DBMS

In 1970, E.F. Codd proposed the relational model for databases that enabled database

designers to focus on describing logic aspects (schema) of data without considering

 17

the physical storage strategies (Gray, 1992 [21]). Based on the relational model, a set

of commercial products such as Oracle, DB2, MySQL and Sybase had been developed

during the 1980’s and 90’s. Since then, the relational database has become the

mainstream basis for high performance database applications.

2.2.2.1 Relational DBMS Standards

From the 1986, Structured Query Language (SQL) began to be widely used in

relational DBMSs and in the same year, the American National Standards Institute

(ANSI) standardized SQL (Devarakonda, 2001 [22]). This standard was updated in

1989, in 1992 (called SQL2), and again in 1999 (called SQL3). Standard SQL is

sometimes called ANSI SQL or SQL92 and all major relational DBMSs support this

standard but each has its own proprietary extensions (Stanezyk, 1993 [23]). Thus, the

world wide accepted standard for relational DBMS formed by the SQL (containing

both DDL and DML) and the relational data model. SQL includes statements for data

definition, modification, querying and constraint specification.

2.2.2.2 Relational DBMS Overview

During the development of the last three decades, there are around 40s relational

DBMS products developed by various vendors. This sub-section introduces three most

popular DBMSs: Oracle, SQLServer and MySQL. The Table 2.3 gives a brief

introduction on the background of these three relational DBMS.

Vendors Latest Products Started
Oracle Corporation Oracle (8i) 1979
Sun Microsystems MySQL(5.0.67) 1996

Microsoft SQLServer (2005 SP2) 1989

Table 2.3: Current relational DBMSs.

The Table 2.4 shows a comparison of the basic characteristics of relational DBMSs.

Products Oracle (8i) MySQL(5.0.67) SQLServer (2005 SP2)

Atomicity, Consistency,
Isolation,

Durability(ACID)
YES YES YES

Referential integrity YES YES YES
Transactions YES YES YES

Intersect YES NO YES
Inner joins YES YES YES
Outer joins YES YES YES

BLOB YES YES YES
Interface SQL SQL SQL

Table 2.4: Comparison of the basic characteristics of three relational DBMSs
(Wikipedia, 2006 [24]).

Table 2.5 shows the operating system supports of the three relational DBMSs:

 18

Systems Windows Mac OS X Linux Unix
Oracle (8i) YES NO YES YES

MySQL(5.0.67) YES YES YES YES
SQLServer (2005 SP2) YES YES No No

Table 2.5: Comparison of operating system supports of three relational DBMSs.

The basic features in relational DBMSs are demonstrated as follows:

(1) The relational data model uses the Set Theory as its formal mathematic

foundation.

(2) The relational model uses keys (primary key, component key) to uniquely

represent data records whilst using use foreign keys to form relationships.

(3) Relational DBMSs use 2D “Tables” to represent entities and relationships

between them.

(4) The “Tables” must obey the Normal Forms (such as, 3NF, BCNF).

(5) Relational DBMSs normally use SQL language to query and define data and

data constraints.

2.2.2.3 Advantages

The advantages of relational DBMSs based on the relational data model can be

summarized as:

(1) Relational DBMSs supported by the relational data model are based on

matured and stable mathematic theory (i.e. Set Theory), which enables them to

keep rigor integrity and have good reliability and changeability (Stanezyk,

1993 [23]). This is one of major reasons for the success of the relational

DBMSs.

(2) The relational data model in relational DBMSs disconnects the conceptual data

modelling with physical data storage and its access strategies.

(3) Relational DBMSs often support storage of large amount of data.

(4) Relational DBMSs have easy-to-use query, view, update, addition, deletion

mechanisms. The SQL language and normalization rules can efficiently

support these mechanisms.

(5) There are various powerful relational DBMS commercial products that can

give database users other supplementary features such as storage plans,

concurrency strategies, transaction managements, and backup strategies.

2.2.2.4 Disadvantages

The disadvantages of relational DBMSs are also prominent in the following areas:

 19

(1) The relational DBMSs are limited in dealing with scientific applications and

other applications that involve complex interrelationships of data. In order to

minimize data redundancy, reduce design flaws and ensure the integrity of

databases after addition, deletion, and modification on data sets, relational

DBMSs must follow a certain Normal Forms (such as 3NF, BCNF), so they

are weak in dealing with many-to-many relationships and other complex

nested and embedded structures. It is unavoidable to face the tasks of storing

and accessing those complex forms (as shown in Table 2.6):

Table 2.6: Example of a classification of surface function together with a
relationship table for motif parameters taken from ISO 12085 (ISO 12085,

1996 [25]).

For example, to store information from a complex matrix-style form as in

Table 2.6, a relational DBMS has to divide the matrix into a number of smaller

normalized tables linked via foreign keys, which may cause integration

problems since a “join” operation has to be performed every time when queries

are performed on the “Has-a” relationship between objects. Moreover,

relational DBMSs also extremely inefficient at handling new data types such as

images and video streams.

 20

(2) Relational DBMS applications often suffer from “impedance mismatch”

problem, which means that there is a large gap between object-oriented

programming languages and relational DBMSs. For example, database

applications use object-oriented programming languages to create and manage

object instances that will have difficulties in converting them into table

formats for storage and retrieving. The computing resources cost of relational

DBMSs for converting very complex data structures will be dramatically

increasing when the data volume becomes large. Figure 2.3 demonstrates the

impedance mismatch in relational database applications:

Figure 2.3: Impedance mismatch problem in Relational DBMSs.

(3) Relational DBMSs often use ER (Entity-Relationship) diagrams to model the

static parts of an application and use another distinctive way to model

operations and behaviors for entities in that application, which increases the

difficulty for the modelling processes and prone to breaking the logical

consistencies.

(4) Relational DBMSs are weak in “real word” representation (Lin, 2003 [17]).

For example, relational DBMSs are difficult to represent “inheritance” and

“aggregation” in the real word. Relational DBMS can only store data as

entities. However, modern objects- and rules-based applications such as

various knowledge-based systems for engineering, scientific (molecular

biology) and multimedia applications often have specific operations (e.g.

setZResolution(String zResolution) in the “Instrument” class category). These

 21

data type specific operations are required to be encapsulated with the type

rather than defining the stored procedures in separate way (Fu, 2002 [26]).

(5) Relational DBMSs are also incapable of supporting recursive mechanism and

dealing with information inference (Hirao, 1990 [27]).

(6) As in commercial DBMS area, in order to support advanced applications,

relational DBMS developed by Oracle, Microsoft, SUN and others attempted

to incorporate some object-oriented features. Thus, for advanced applications

supported by relational DBMSs, a large-sized management system has to be

involved, which may cause prolonged running time and heavy system

resources cost.

2.2.3 Object-relational DBMS

To help relational DBMSs to overcome problems highlighted in Section 2.2.2.4,

various database vendors such as Oracle and SQLserver have devised the concept of

“object-relational” DBMSs. The intention of object-relational DBMS is to integrate

object-oriented features into relational DBMS, while still maintaining its relational

DBMS background. There are no independent data models or standards used in

object-relational DBMSs. Data models used in object-relational DBMSs extend the

relational data model by providing additional inclusion of classes, inheritances and

functions (e.g. query for complex data constructs) (Gray, 1992 [21]; Hirao, 1990 [27]).

The functional data model is actually one of these extended data models. Therefore,

this section focuses on discussing the functional data model and a DBMS base on it—

P/FDM (Gray, 1992 [21]).

2.2.3.1 P/FDM Overview

The functional data model views a database as a collection of extensively defined

functions that can be queried by functional query languages (Buneman, 1997 [28]). In

the opinions of researchers attending the functional data model workshop in 1997, the

functional data model is the “lowest common denominator” of data models, which can

be seen as the basis for any other models used in relational, object-relational, and

object-oriented databases (Buneman, 1997 [28]; Gray, 1997 [29]). Therefore, the

functional data model can be used to explain the object-oriented concept. This sub-

section will look in particular at the object-relational system ─ P/FDM, a research

development by the Object Database Group at the University of Aberdeen (Embury,

1995 [30]). The P/FDM is based on functional data model having both a DAPLEX

 22

query interface and a query language in SICStus prolog (Intelligent Systems

Laboratory, 2006 [31]). The basic features of the P/FDM are:

(1) In the P/FDM, database entities are represented as special functions that are

devoid of parameters. Attributes in database entities are represented as

functions that are applied to entities and return values of certain data types as

results. Relationships between entities are also represented as functions that

are applied to entities and return entities as results. Figure 2.4 shows examples

of database entities, attributes and relationships defined in the functional

database schema.

Figure 2.4: An example of functional database schema.

(2) Relationship functions in P/FDM can be reversed.

(3) Most Functional DBMSs are using DAPLEX language as a high-level query

language. DAPLEX is a declarative language allowing non-experts to express

what one wants without considering how the desired result is to be computed.

2.2.3.2 Advantages

The advantages of object-relational DBMSs can be summarized as:

(1) The data models in object-relational DBMSs keep the advantages of relational

data model. For example, the functional data model is based upon functions

and is a conceptual data model, which disconnects conceptual data model

designs from those storage notions such as arrays, lists and other storage types

(Gray, 1992 [21]; Gray, 1997 [29]).

(2) The extended data models in object-relational DBMSs provide better support

for complex objects. For example, the functional data model integrates entities

and behaviors in a unified model. It has capabilities for dealing with complex

data structures such as potential embedded constructions and many-to-many

relationships

(3) Object-relational DBMSs based on functional data model can have a function

compositional query language, which can be recognized as a basis for the

Object Query Language (OQL).

(4) Object-relational DBMSs based on functional data model have ability to

integrate data from heterogeneous models in a multi-database scenario.

 23

2.2.3.3 Disadvantages

The disadvantages of object-relational DBMSs can be summarized as:

(1) As the object-relational DBMSs are developing to offer virtually all the

functionality currently required by object-oriented applications, they have

become very large and cumbersome systems, which affect their usability.

(2) The Set Theory-based relational model has been extended in several ways that

break the essential scope of Set Theory and without a comprehensive

theoretical basis (Nelson, 1998 [32]).

(3) Data models for object-relational DBMSs still lack well-defined graphic

notations and structures to represent complex structures. Complex objects and

abstractions such as inheritance are more naturally represented by graphs than

as sets (Levene and Poulovassilis, 1991 [33]; Poulovassilis and Levene, 1994

[34]).

(4) Data modellings in object-relational DBMSs still have weaknesses in semantic

supports. For example, because the functional data model is the “lowest

common denominator” of data models (refer to Section 2.2.3.1), there is lack

of semantic foundations for knowledge-based applications. Compared to E-R

model, the functional data model cannot clearly represent the stratification of

entities, attributes, and relationships.

2.2.4 Object-oriented DBMS

To solve the problems presented by the aforementioned object-relational DBMSs,

especially for these scientific and engineering applications, the next generation of

database paradigm —object-oriented DBMSs are emerging. Several standards were

proposed to develop object-oriented DBMSs, which include three manifestos, and

standards from Object Data Management Group (ODMG93, ODMG2.0, ODMG3.0)

as well as Object Management Group (OMG).

2.2.4.1 Object-oriented DBMS Standards

There are three manifestos for specifying the object-oriented DBMSs. The first

manifesto provided 13 features that an object-oriented DBMS must include, should

include and may include (Atkinson, 1990 [35]). However, there are no details and

largely ignored the important part of object-oriented DBMSs − the data model. So it is

just a vision not a formal standard (Committee for Advanced DBMS Function, 1990

[36]). The second manifesto detailed the first manifesto and proposed three tenets for

 24

the definition of the third generation DBMS: object-oriented DBMS. However, they

focus too much on the evaluation of relational DBMSs to object-oriented DBMSs and

ignored the intrinsic properties of object-oriented DBMS. It still absents the formal

data model for object-oriented DBMSs. The third manifesto just follows and improves

the earlier two manifests, and introduced how to add object-oriented features in

relational DBMSs according to the different levels of object-oriented suggestions:

object-oriented prescriptions, object-oriented proscription, and object-oriented very

strong suggestions. These three so-called “object-oriented DBMS” manifestos are just

guidance for extending relational DBMSs with object-oriented features, which are not

real standards for object-oriented DBMSs.

The OMG is an international non-profit organization supported by information

systems vendors, software developers and users. OMG was founded in 1989, now has

over 600 member organizations, and meets bi-monthly. OMG provides a widely

supported framework for open, distributed, interoperable, scalable, reusable, portable

software components based on OMG-standard object-oriented interfaces (OMG, 1997

[37]). The object model of OMG provides minimum capabilities for object modelling.

From 1993, the ODMG developed a set of ODMG standards − ODMG93 in 1993,

ODMG2.0 in 1997, ODMG 3.0 in 2000 (Cattell, et al., 1993 [38]; Cattell, et al., 1997

[39]; Cattell, et al., 2000 [20]). After ODMG3.0, the ODMG disbanded in 2001. The

ODMG is a consortium of vendors and related organizations that work on

standardization for object database and object-relational mapping products (Lin, 2003

[17]).The newest ODMG standard−the ODMG 3.0 defines a portability specification

for persistent object storage, which enables portable applications that could run on

more than one product. The ODMG3.0 binds object-oriented languages such as Java,

C++ and Smalltalk, so application developers can entirely develop their database

applications within the native language environment. Unlike to the aforementioned

three manifestos, ODMG 3.0 is not developed on relational model, but directly built

by scratching from object-oriented programming paradigms. It can also satisfy all core

features defined in the first manifesto. The major components of ODMG 3.0 are

(Cattell, 2000 [20]):

1. Object model. The object model defined in ODMG is developed based on the

object model of OMG. The OMG object model is based on a small number of

basic concepts: objects, operations, types, and subtypes (OMG, 1992 [40]),

which is a common basis for Common Object Request Broker Architecture

 25

(CORBA), object-oriented databases, and other object programming. ODMG

refined the OMG’s object model to specially satisfy the demands of object-

oriented DBMSs by adding constructions such as relationships and

transactions.

2. Object specification languages. Two specification languages defined in ODMG

3.0: Object Definition Language (ODL) and Object Interchange Format (OIF).

The ODL is a specification language used to define the specifications of object

types that conform to the ODMG object model. The ODL defined in ODMG is

intended to define object types that can be implemented in a variety of

programming languages, and it is not tied to the syntax of a particular

programming language. The OIF is a specification language used to dump and

load the current state of an object database to or from a file or set of files.

3. Object Query Language (OQL). The OQL is a declarative language for

querying and updating objects developed on SQL-92.

4. Language Binding. The ODMG standard does not provide an Object

Manipulation Language (OML) specification, instead ODMG provides

language bindings. There are bindings of ODMG implementations to C++,

Smalltalk, Java languages respectively. Due to the differences inherent in the

object models native to these programming languages, it is not always possible

to achieve consistent semantics across the different programming language-

specific versions of ODL.

The ODMG Java language binding was the basis for Java Data Objects (JDO), an

API for transparent persistence. The JDO API is a standard interface-based Java

model abstraction of persistence, which developed under the auspices of the Java

Community Process (SUN/JDO, 2008 [41]). The JDO focuses on standardizing the

interfaces between host Java applications and databases. As the JDO has good

portability, application programmers can focus on their domain object model, leaving

the details of persistence (field-by-field storage of objects) to the JDO implementation.

Therefore, JDO actually is the API working with both relational and object databases

and it is not a database or a data model: it is a persistence API that can be used with a

variety of data stores, including relational databases.

Besides standards discussed above, there are several other standards for defining

object models, such as CFI (electrical CAD), PCTE (CASE), and ISO ODP (Lin, 2003

[17]). None of these standards have been widely accepted in the commercial market.

 26

Hence, most of these standards are not specific to object-oriented DBMSs. The formal

data model with mathematical foundation and a visualized diagramming mechanism is

largely ignored in these standards. Nowadays, modern object-oriented programming

languages enable object-oriented DBMSs to be developed more simply than before, so

a data model that can ensure the integrity and consistency of stored objects becomes

very important for object-oriented DBMS developments

2.2.4.2 Object-oriented DBMS Overview

In recent years from 1985, object-oriented DBMSs have received more attention and

many experimental and theoretical practices have been done. An object-oriented

DBMS integrates object-oriented features with database capabilities. It aims to

address the limitations of relational databases by allowing complex data structures

(objects and behaviors) to be stored in the database as objects. The object-oriented

DBMS uses object-oriented programming languages to implement the attributes and

behaviors of objects according to users’ special demands and supports distributed

applications. A number of object-oriented DBMSs come into markets in the past 15

years and Table 2.7 lists four object-oriented DBMS products that dominate today’s

market.

Vendors Latest Products Started
DB4O Db4o (Database for Objects) v7.0 2004

The Ozone Database Project Ozone v1.2 2002
Objectivity, Inc. Objectivity/DB v9.0 1993

Versant Corporation Versant v7.0 1988

Table 2.7: Current object-oriented DBMSs.

The Table 2.8 shows a comparison of the basic characteristics of object-oriented

DBMSs listed in Table 2.7.

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0)
User defined data

types support
YES YES YES YES

Inheritance (IS_A
relationship)

support
YES YES YES YES

Aggregation
(PART_OF
relationship)

Support

YES YES YES YES

Version Support YES YES YES YES
The cardinality
between objects

check
NO NO YES YES

Support of data
replication

YES NO YES YES

 27

Data encryption
support

YES NO YES YES

Languages for
defining attributes

and methods of
objects

JAVA, C# JAVA

C++
JAVA

SMALLTALK
SQL

C, C++
JAVA

SMALLTALK

Application
programming in

JAVA
YES YES YES YES

Store methods of
objects in the DB

NO, METHODS
ARE

STORED IN
THE CLIENT

NO, METHODS
ARE

STORED IN
THE CLIENT

NO, METHODS
ARE

STORED IN THE
CLIENT

YES

Lock strategy OBJECT LEVEL OBJECT LEVEL OBJECT LEVEL
CONTAINER

LEVEL

Table 2.8: A Comparison of the basic characteristics for these four object-
oriented DBMSs.

Table 2.9 shows a comparison of the standards supported by these four object-oriented

DBMSs.

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0)
ODMG ODL

support
NO Partially Partially NO

ODMG OQL
support

NO Partially

YES(supports all of
SQL-92 which
includes sql select
with method
execution, but not oql
typing that differs
from SQL-92)

NO

ODMG Java
bindings

NO YES NO

YES(all basis
capabilities (ref,

relationships,
etc.), but not
collections

SQL query
support

YES YES YES YES

Table 2.9: A Comparison of the standards supported by these four object-
oriented DBMSs.

Table 2.10 shows a comparison of the schema modification support of these four

object-oriented DBMSs.

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0)
Ad-hoc queries
updates of the

database schema
with a GUI

YES NO YES YES

Ad-hoc updates
of the database
schema with a
object-oriented

language

YES YES YES YES

Table 2.10: A Comparison of the schema modification support for these four
object-oriented DBMSs.

 28

Table 2.11 shows a comparison of the queries support of four object-oriented DBMSs.

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0)
Ad-hoc queries

with GUI
YES NO YES YES

Ad-hoc queries
with SQL

YES YES YES YES

Ad-hoc queries
with a object-

oriented
language

YES NO YES YES

Table 2.11: A Comparison of the queries support for these four object-oriented
DBMSs.

Table 2.12 is a comparison of system environment support of these four object-

oriented DBMSs.

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0)
 Architecture

Multi-user
environment

support
YES YES YES YES

Single-user multi-
tasking

environment
support

YES YES YES YES

Client-server
architecture

support
YES YES YES YES

The physical data
can reside on

client side
YES YES YES YES

The application
can run

autonomously on
the client side

YES YES YES YES

 Platform
MS-windows

support
YES YES YES YES

Sun OS support YES YES YES YES

Table 2.12: A Comparison of system environment support for these four object-
oriented DBMSs.

Table 2.13 is a comparison of library file sizes, weak reference cache support and

prices of these four object-oriented DBMSs.

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0)

Library file sizes 3.5M 14M
165.7M(with

objectivity/assist
perspective)

YES

Weak Reference
Cache

YES NO YES NO

Price Open Source Open Source
About 3000$ per

seat
About 3500$ per

seat

Table 2.13: A Comparison of the accessibility for these four object-oriented
DBMSs.

 29

The core features of the object-oriented are highlighted as:

(1) All information is represented in the form of “object” and objects are stored

persistently (Bancilhon, 1992 [42]).

(2) Objects in object-oriented DBMSs have properties (attributes) and behaviors

(methods), which can be regarded as instances of entities in real world. Each

of the objects has a uniquely assigned Object Identity (OID) and objects allow

inheriting and overriding by arbitrary levels (Connolly and Begg, 2001 [16]).

(3) Object-oriented DBMSs combine database principles (Atomicity, Consistency,

Isolation, and Durability) with object-oriented programming language

principles (Encapsulation, Inheritance, and Polymorphism).

(4) Object-oriented DBMSs have query languages for accessing information.

2.2.4.3 Advantages

The advantages of using object-oriented DBMSs can be summarized as:

(1) Object-oriented DBMSs can deal with arbitrary complexity of object structures

and object relationships of the real world in an efficient way ― objects in an

object-oriented DBMSs can hold arbitrary number of data of any types or even

as other objects. Moreover, object-oriented DBMSs can use multi-valued

properties to express complex data structures whilst in the relational model it

can only be achieved by using additional relations and joins.

(2) Object-oriented DBMSs can encapsulate objects and their behaviors as an

integrated whole, which is great benefit for certain types of applications. For

example, multimedia applications use operations stored with objects to ensure

the correct interpretation of special data (Bancilhon, 1992 [42]). It also means

that the object-oriented DBMSs can use one data model to handle both static

(entities and relationships) and dynamic (behaviors) aspects of an application.

(3) There are no impedance mismatch problems in object-oriented DBMSs

applications. The conversions between object-oriented programming

languages and databases (objects to table tuples) are not required since objects

are using a uniform format in both object-oriented programming languages and

databases, hence reducing the time cost for the unification tasks relating to

transfer objects into tuples and vice versa (Obasanjo, 2001 [43]). Figure 2.5

shows an improved model in comparison with the model in the Figure 2.3:

 30

Figure 2.5: Unification between object-oriented application and object-
oriented DBMS.

(4) Object-oriented DBMSs can automatically assign a unique ID for each object,

which cannot be modified by applications and is independent of how an object

is manipulated or structured (Bagui, 2003 [44]). This feature has avoided the

daunting tasks facing by database designers in terms of defining keys. Most

object-oriented DBMSs can convert the ID stored in an object to memory

pointer when the object is loaded into the memory, therefore objects can be

retrieved directly. Furthermore, two objects with different IDs will be

considered as different objects even if their structures and property values are

the same.

(5) Object-oriented DBMSs can naturally use class inheritance concept to model

the hierarchy structures in real applications.

(6) Rather than using joins through primary-foreign key matches between tables,

object-oriented DBMSs use object direct reference (e.g. reference pointer).

(7) Data access can be faster in object-oriented DBMSs than relational DBMSs

since object-oriented DBMSs do not needs to search through tables using the

time consuming join operations as in relational DBMSs. Furthermore, there are

no needs to involve Call Level Interfaces (CLI) such as ODBC, ADO, and

JDBC (Bagui, 2003 [44]).

(8) Additional query languages are not necessary for object-oriented DBMSs. The

object-oriented programming languages such as Java, C# could be used to

express queries − Native Queries (NQ).

2.2.4.4 Disadvantages

The disadvantages existing in object-oriented DBMS are:

(1) At present, object-oriented DBMSs are still lack of universal agreed standards

and a formal basis to ensure the database systems remain a coherent and

reliable system as new knowledge is being added and vendors of object-

 31

oriented DBMSs are all relatively small (McClure, 1997 [45]).

(2) Object-oriented DBMSs are lack of a formal mathematical foundation, which

leads to weaknesses in query and updating supports of object-oriented DBMSs.

(3) A contradiction exists between the encapsulation requirement of object-

oriented DBMSs programming languages and database natures. For example,

the query results are often formed by data values which will break the

encapsulation rules. They are difficult or impossible to be stored back to

object-oriented DBMSs or used in further queries.

(4) Difficulties exist when database schema changes (Obasanjo, 2001 [43]). In

traditional relational DBMSs, the schema updating operations such as creation,

deletion and modification of tables are actually independent with the host

application. However, in an object-oriented DBMS based application,

modifying database schema using similar operations on a persistent class may

cause changes on other classes referring or interacting with the old instances

of the class.

(5) There is a lack of portability. Object-oriented DBMSs are application specific,

which are especially suitable for specific applications with specific purposes

such as image processing, biological analysis, engineering standards handling,

and physics applications. They are not particularly appealing to mainstream

commercial applications.

(6) Due to lack of advanced features such as query facilities, query optimizations,

view supporting, security issues and consistency checking, object-oriented

DBMSs do not have the maturity as relational DBMSs (Bagui, 2003 [44]).

2.3 The Survey of Knowledge-based System

2.3.1 Definition of a Knowledge-based System

There are various definitions of a knowledge-based systems defined by various

authors, researchers and software system experts. In many papers or books, a number

of authors imply that an expert system and a knowledge-based system are equivalent

since knowledge-based systems are used to capture the problem-solving expertise of

human beings, which is closing to the generally accepted definition of expert systems.

In 1989, Mockler gives a definition for a knowledge-based system as “designed to

replace the functions performed by a human expert”. Dym and Levitt in 1991

explicitly make no distinction between a knowledge-based system and an expert

 32

system. They define a knowledge-based/expert system as “a computer program that

performs a task normally done by an expert or consultant and which, in so doing, uses

captured, heuristic knowledge” (Dym and Levitt, 1991 [46]). On the other hand, there

are also definitions that make an explicit distinction between a knowledge-based

system and an expert system. In this project, researchers make an expert system is a

subset of a knowledge-based system, which means that the expert systems have more

advanced inferences than knowledge-based systems in solving decision-making

problems. Therefore, a definition that focuses on the knowledge carrying in systems

rather than broader or advanced inference powers is used in this project (Harmon and

King, 1985 [47]):

“Today’s knowledge systems are confined to well-circumscribed tasks. They

are not able to reason broadly over a field of expertise. They cannot reason

from axioms or general theories. They do not learn and, thus, they are limited

to using the specific facts and heuristics that they were ‘taught’ by a human

expert. They lack common sense, they cannot reason by analogy, and their

performance deteriorates rapidly when problems extend beyond the narrow

task that they were designed to perform.”

Figure 2.6 illustrates the relationship of the knowledge-based system, expert

system and artificial intelligent applications in a tree structure (Partridge and Hussain,

1995 [7]).

Figure 2.6: A Classification of information systems.

2.3.2 Knowledge-based System Overview

Knowledge-based systems originated in 1943, and have evolved during the last sixty

years in several branches: artificial intelligence applications, expert systems, decision

support systems and so on. Table 2.14 lists the milestones related directly to the

development of knowledge-based systems (Partridge and Hussain, 1995 [7]).

 33

Years Milestones

1943
McCulloch and Pitts published the pioneering work that led to neural
networks.

1950 Alan Turing’s article that led to the Turing test.

1956
Newell, Simon, and Shaw developed the general problem solver at Rand
Corporation.

1958 McCarthy developed LISP at Massachusetts Institute of Technology (MIT).

1963
Samuel’s article on the first learning computer program (Samuel’s draughts
program) and in the use of techniques of search and reasoning.

1970 Rousel and Colmerauer developed PROLOG.

1972
Newell and Simon’s book “Human Problem Solving” introduced the general
idea of production systems.

1973
Van Melle, Shortliffe, and Buchanan developed the EMYCIN shell from
MYCIN

1976 Minsky developed the concept of frames for knowledge representation
1977 Forgy created OPS for programming expert systems.

1978
McDermott started developing R1 (later released as XCON, the first large
commercial expert system) at Digital Corporation.

1980 Symbolics started the development of LISP machines.

Table 2.14: The development milestones for knowledge-based systems.

In real world applications, there are many kinds of knowledge-based systems,

which mixed by different kinds of knowledge sources, see Table 2.15 (Partridge and

Hussain, 1995 [7]).

Knowledge Types Characteristics Output Attributes
Relationship of
knowledge to
problem solving

Facts Statement of
existence

What is Truth Data

Heuristics
Rule of thumb

Why and why
not

Discovery Tactics

Rules
Relationship of
factual conditions
and conclusions

What should
be

Conditions
associated
with actions
and
conclusions

Tactics

Procedure How things work How it is done Algorithms Procedure
Declarative(descriptive)

How things are
Why it is done Association

with truth
Strategies

Table 2.15: Knowledge types.

These five kinds of knowledge are all mixed in the VirtualGPS system and Table

2.16 lists examples.

Knowledge Types Examples in VirtualGPS system
Facts Parameter types and tolerance values

Heuristics Patterns in pattern language for function reports

Rules
Constraints between symbols in a completed callout
(e.g. between parameter types and sampling lengths)

Procedures Comparison processes in Verification

Declaratives
Manufacture reports for suggesting manufacture
strategies(manufacturing processes and tools)

Table 2.16: Knowledge types in VirtualGPS.

 34

The next section gives an introduction into the hierarchy of knowledge and their

relationships.

2.3.3 Knowledge Hierarchy

According to Russell Ackoff, a system theorist and professor of organizational

changes, the content of the human mind can be classified into five categories (Ackoff,

1989 [48]):

(1) Data. Data is a symbol set, which is raw and has no significance beyond its

existence. In the computing world, data is records, signals or other encoded

items.

(2) Information. Information is data that has been given meaning by way of

relational connection. This “meaning” can be useful, but does not to be.

(3) Knowledge. The knowledge is application of data and information to answer

“how” questions. Knowledge must have useful meaning.

(4) Understanding. Understanding is an interpolative and probabilistic process,

which human beings can take knowledge and synthesize new knowledge from

the previously held knowledge. The difference between understanding and

knowledge is the difference between the “learning” and “Memorizing”.

Artificial Intelligent systems process understanding in the sense that they are

able to synthesize new knowledge from previously stored information and

knowledge.

(5) Wisdom. The wisdom is an extrapolative and non-deterministic, non-

probabilistic process, which is used to evaluate understandings to make

judgments on understandings.

Figure 2.7 illustrates the hierarchy of data, information and knowledge.

Figure 2.7: The hierarchy of knowledge.

 35

At present, this project not aim to yield wisdom by judging existing knowledge, but

the VirtualGPS focus on representing and inferring knowledge based on rules and

cases retrieved from GPS standards.

2.3.4 Knowledge Acquisition and Representation

Figure 2.8 shows a classic architecture for a knowledge-based system (Partridge and

Hussain, 1995 [7]; Hopgood, 2001 [49]).

Inference engine

Explanation sub-
system

Knowledge base
editor

Knowledge base

General knowledge
base

Case specific
information

Sub-knowledge
bases

Storage

retrieve

Knowledge acquisition

Knowledge representation

Knowledge support

Figure 2.8: The classic architecture for knowledge-based systems.

According to Figure 2.8, knowledge acquisition and knowledge representation are the

first two steps which need to be gone through during the developing process of a

knowledge-based system. Knowledge acquisition is the first step in creating a

knowledge base. There are three distinct approaches to acquiring the relevant

knowledge for a particular domain (Hopgood, 2001 [49]):

 The knowledge is teased out of a domain expert.

 The builder of the knowledge-based system is a domain expert.

 The system learns automatically from examples.

The first approach is commonly used for knowledge acquisitions, but has a major

problem: misunderstandings between knowledge system developers and domain

experts. The communication difficulties can be avoided or alleviated through defining

a clear knowledge representation mechanism. Knowledge bases require special

representations for knowledge. After evaluating common data models such as

 36

hierarchical, network, and relational that are used in DBMSs, Partridge and Hussain

claimed that these traditional data models for DBMSs are not adequate for AI

applications where knowledge is used to make inferences (Partridge and Hussain,

1995 [7]). Therefore, knowledge base developers developed some special data

representations for knowledge like rules, the frame, the semantic network, logic, and

the object-oriented approach. This leads to a gap between data in the database and

data in the knowledge base. Actually, the knowledge representation and knowledge

bases do not replace data representation and databases. Instead, they are all necessary

parts for a knowledge-based system. The DBMS is used to store and manage data for

knowledge-based system while knowledge base uses data stored in DBMS to organize

information or knowledge for users. Hence, researchers in this project devised a

categorical object model that can be used for both in knowledge base for knowledge

representation, and in a DBMS for object and complex relationship modelling. This

project also devised representation mechanism for reasonings based on Category

Theory (coequalizer) that can be used to control the logical manipulations of objects

to generate new knowledge from old (see Section 3.6 of Chapter 3). Another example

on using Category Theory to represent heuristics and theories can be seen in Section

3.7.1 of Chapter 3. Furthermore, while using the categorical object model for

representing inference rules or constraints in a diagrammatical way with certain level

of abstraction, the traditional knowledge representation mechanisms− rule and frame

are also used in this project to specify rule contexts and heuristics in detail. The rule is

a knowledge representation for making inferences as a human expert does, which is

applied to knowledge to get a conclusion or activate an action (Partridge and Hussain,

1995 [7]). The basic format for a rule is (Tansley and Hayball, 1993 [50]):

IF x THEN 1.
ELSEIF y THEN 2.

List 2.1: The basic format for a rule.

Chapter 5 demonstrates a set of rules in the VirtualGPS system. These rules are held

in the knowledge base of this system to inference knowledge from existing knowledge

stored in the categorical DBMS. The frame is a data structure for representing a

stereotyped situation, which contains a set of slots and nodes organized in logic

groups (Partridge and Hussain, 1995 [7]). Slots containing rules, values, pointers to

other frames and procedures are used to define an event or a concept at each node. A

node is a point where an item links to another item. Frames are very useful when the

 37

content of information is important in solving problems containing patterns. The

pattern language (see Section 3.7.1 of Chapter 3) and PRIMA (Manufacturing Process

Information Map) (see Section 5.4.2 of Chapter 5) are two kinds of frames in this

project and they are formatted by using Category Theory.

This section shows that the Category Theory provides a high unification and

abstraction for knowledge acquisition and knowledge representation for this project to

eliminate knowledge design complexity and communication misunderstandings

between knowledge designers and system developers.

2.4 XML/XSLT

2.4.1 XML Definition

Extensible Markup Language (XML) is

“A technology for making up structured data so that any software with an XML parser

can understand and use its content. Data independence, the separation of content

from its presentation is the essential characteristic of XML” (Deitel et al., 2003 [51]).

Like any other markup languages, XML has a set of rules, which the user can use to

add special meanings or provide extra information to a document. However, unlike

HTML, tags used in XML are not pre-defined, users can define their own tags to make

up data and these user-defined tags only relate to the actual content of the document,

not the way to display it. Therefore, “HTML is used to define how a document should

be rendered, whereas XML is used to define the data contained within that document”

(Reynolds, 2000 [52]). Because XML based on user-defined tags, the browser will not

know how to display an XML document, so users often use Extensible Stylesheet

Language (XSL) to tell the browser how to display it. In order to make the XML

document more readable, XML also use Document Type Definition (DTD) or an

XML Schema to define the legal elements in an XML document.

Data often communicates between different platforms, systems, and applications in

different formats. XML can define the content of a document separately from its

formatting and presentation, making it easy for data communication between different

platforms, systems and applications.

2.4.2 Advantages of XML

XML is a nice tool to exchange data. XML documents are simple text files marked up

in a special way, so all applications can use XML data expediently. XML provides a

basic syntax that can share information between different kinds of computers,

 38

applications, and organizations without needing to pass through many layers of

conversion. XML is not complex to use. It has a set of syntax rules, which protect a

developer to build a correct XML document. XML has very good extensibility. The

extensibility of XML shows in two ways: user can use DTDs to define rules for their

own tags and XML can support many other standards such as XSL, XPointer, CSS,

Xlink. Finally, XML is completely open, freely available on the web.

2.4.3 XSLT

The Extensible Stylesheet Language (XSL) provides rules for formatting XML

documents (Deitel et al., 2003 [51]). XSL Transformation Language (XSLT) is a core

part of XSL, which can transforms an XML to other text-based forms such as

XHTML pages, WML cards or PDF files.

2.4.4 DOM

An XML document is represented by a hieratical tree structure in memory. This

structure includes the elements, attributes and content of the document (Deitel et al.,

2003 [51]). Document Object Model (DOM) was developed by W3C, which can

dynamically build a hierarchical tree in memory for a XML document and each node

in DOM tree represents an element, attribute or content of a XML document.

2.5 Summary

This chapter gives a brief overview and discussion on the problem domains relating to

this project. It also illustrates why this project needs to be done and why new

techniques need to be involved.

 39

CHAPTER 3 CATEGORY THEORY APPLICATIONS

This chapter focuses on discussing the Category Theory modelling capability used in

this project. It covers: introduction of necessary notations and constructs of Category

Theory used in this project, discussion of related previous researches of Category

Theory, justification of the rationales for choosing Category Theory in this project,

and explanations for the categorical modelling mechanism. The categorical modelling

mechanism devised in this project contains three parts: the categorical object model,

the categorical software design process and the inference identifying square, which

covers all aspects of object-oriented knowledge-based system modellings.

3.1 Category Theory

Category Theory is a form of constructive mathematics, which is devised to describe

various structural concepts from different mathematical areas in a uniform foundation.

As claimed by Goguen in 1991, Category Theory can contribute the major six points

for the modern computing science (Goguen, 1991 [53]):

 Formulating definitions and theories. The Category Theory provides a

symbolic language with a convenient symbolism that allows for visualization

of quite complex facts in form of diagrams (Adamek et al., 1990 [54]).

 Dealing with abstraction and representation independence. Category Theory

can grasp the essence of the researching targets as it focuses on the properties

of mathematical structures instead of on their detail representations. For

example, the diagram in Category Theory is similar to the graph in Topologic

Theory, which is used to model pairwise relations between objects in a certain

domain instead of focusing too much on precise positions of those objects.

 Carrying out proofs. By using diagram chasing and calculus deductions,

Category Theory can reduce all complex proofs to simple calculations.

 Discovering and exploring relations with other fields. Sufficiently abstract

formulations can reveal surprising connections. For example, an analogy

between Petri nets and the λ-calculus might suggest looking for a closed

category structure on the category of Petri nets (Meseguer and Montanari,

1988 [55])

 Formulating conjectures and research directions. Connections with other fields

can suggest new questions in your own field. For example, if a special functor

 40

has been found, the investigations of its adjoints can be very valuable.

 Unification. Computing science is very fragmented with many different

subdisciplines, so the Category Theory can provide a conceptual unification.

3.1.1 Notations of Category Theory

Category Theory has two basic notations − category and arrow. A category C is for

specifying complex structures and formalisms, which can contain (Barr and Wells,

1996 [56]; Pierce 1991 [57]).

 A collection of internal objects (More specially, if an internal object I in C has

a unique arrow to every other internal object of C, it is defined as initial object

and denoted as 0. The dual notion is the terminal object T denoted as 1 that

there has exactly one arrow X → T for each object X of C).

 A collection of arrows/morphisms (e.g. f: A → B). An arrow in Category

Theory is similar to a function in Set Theory, which defines a mapping from a

source to a target internal object. Functions or behaviors assigning to each

arrow f with an object dom(f) (domain) and an object cod(f) (codomain) (e.g. f:

A → B, dom(f) = A, cod(f) = B), the collection of all arrows with domain A and

codomain B in category C is represented as (,)CHom A B .

 a composition operator on each pair of arrows f and g satisfying cod(f) =

dom(g) (a composite g f : dom(f) → cod(g));

 satisfying the associative law: for any arrows f: A → B, g: B → C and h: C →

D has h (g f) = (h g) f;

 an identity arrow Aid : A → A, for each object A satisfying the identity law as

for any arrow f: A → B, Bid f = f and f Aid = f;

Figure 3.1 shows a basic category:

 Figure 3.1: A basic category.

For an instance, the Set category is a category where the internal objects are sets and

the arrows are total functions. The subcategory S of a category C is a category that

every internal object of S is an internal object of C; for all objects O and O’ in S,

 41

SHom (O, O’) CHom (O, O’).

Arrows in Category Theory have three important types: monomorphisms,

epimorphisms, and isomorphisms (Barr and Wells, 1996 [56]). The definition for

monomorphism (as shown in Figure 3.2) in Category Theory is:

“An arrow f: A → B is a monomorphism (also called a monic morphism or a

mono), if for any object C of the category and any arrows 1g , 2g : C → A such

that f 1g = f 2g implies 1g = 2g .”

 Figure 3.2: Diagram representation of the definition of monomorphism.

The monomorphism in Set category corresponds to the concept of injective

function. The definition for epimorphism (as shown in Figure 3.3) in Category Theory

is:

“An arrow f: B → A is an epimorphism (also called an epic morphism or an

epi), if for any object C of the category and any arrows 1g , 2g : A → C such

that 1g f = 2g f implies 1g = 2g .”

 Figure 3.3: Diagram representation of the definition of epimorphism.

The epimorphism in Set category corresponds to the concept of surjective

function. An epimorphism is a monomorphism in the dual category. The dual category

opC of category C contains all internal objects same as C and all arrows of C inverted.

The inverted arrow means, given an arrow f: A → B then the inverted arrow opf of f is

an arrow opf : B → A. The notion of duality in Category Theory is very useful as it

reduces proof obligations: the dual of a theorem is also a theorem.

The definition for isomorphism in Category Theory is:

 “An isomorphism is arrow f: A → B if there exists opf : B → A, such

that opf f = Aid and f opf = Bid . The objects A and B are isomorphic if there

is an isomorphism between them.”

The isomorphism in Set category is corresponding to the concept of bijective

function.

Category Theory also provides several high-level concepts based upon the above

 42

basic ideas for the “category of categories” scenarios. There are four high-level

concepts which give the multi-level mathematical capability considered relevant to

this project:

 A high-level concept that is a special type of structure preserving mapping

(arrow) between categories named as “functor”. The formal definition of a

functor is (Barr and Wells, 1996 [56]):

“Let C and D be categories. A functor F: C→D is a map taking each object A

in C to an object F(A) in D and each arrow f:A→B in C to a arrow F(f):F(A)

→F(B) in D while holding the following two properties:

 F(Aid) = ()F Aid

 F(g f) = F(g) F(f) for all arrows f:A→B and g:B→C.”

 Functors again can be considered as categories (functorial categories), so an

arrow between functorial categories is the “natural transformation” as shown

in Figure 3.4.

“If F and G are covariant functors between the categories A and B, then a

natural transformation from F to G associates to every object X in A a

arrow : F(X) → G(X) in B called the component of at X, such that for

every arrow f : X → Y in A the following diagram commutes as Y F(f) =

G(f) X ” (Saunders, 1998 [58]).

Figure 3.4: Commutative diagram for covariant natural transformation.

Thus, the Natural transformation provides a way for transforming between

functors while respecting the internal structure of the categories involved

(Saunders, 1998 [58]). The covariant functors indicate that the domain F(X),

G(X) must have same type and codomain F(Y) and G(Y) must have same type.

This is used to ensure the comparison mapping of natural transformation is

meaningful. Thus, natural transformations used in this project are isomorphic,

which map between functors in same structure.

 Category Theory uses the concept of “diagram” to represent complex

 43

structures in a world scenario. Before giving the definition of diagram, the

definition of “graph” should be given first as follows (Rydeheard and Burstall,

2003 [59]):

“A graph is a pair N, E of sets (of nodes and edges) together with a pair of

mappings s, t: E → N called source and target respectively. The f: a b

represents when f is in E and s(f) = a and t(f) = b. A finite graph is one in

which N and E are finite sets.”

Based on the above definition, a definition of diagram can be defined as

(Rydeheard and Burstall, 2003 [59]):

“A diagram in a category C is a graph (N, E, s, t) (its shape) and two

functions f : N →Obj(C), g : E→Arrow(C) which respect sources and

targets in the following sense: For each edge eE, f(s(e)) = As (g(e)) and

f(t(e)) = At (g(e)), where As and At are source and target objects of arrows

in C.”

After analyzing the above definitions, it is clear that the diagram in categorical

view is a similar concept to the indexed family in the Set theory that can be

treated as a functor D: T→C where category T is the index category and the

diagram D is indexing a collection of objects and arrows (morphisms) in C

using pattern T. A diagram is said to “commute” if every path between two

objects in its image can be determined through composition of the same arrow.

 The notion cone can be defined as:

“let D: T→C be a diagram in C and N be an object of C, thus a cone from

N to D is a set of arrows (morphisms) — X :N→D(X) and for each object

X of T such that for every arrow f: X→Y there has D(f) X = Y .”

as Figure 3.5 demonstrating (Saunders, 1998 [58]).

Figure 3.5: Commutative cone.

Therefore, a dual notation of cone is cocone, as shown in Figure 3.6.

 44

Figure 3.6: Commutative cocone.

3.1.2 Constructs

Based on the notations discussed above, a set of fundamental constructs has been

formed, and will be used in this project.

(1) Product. A “product” in Category Theory can be diagrammatically illustrated

by “cone” shown in Figure 3.7.

Figure 3.7: Product diagram.

A and B are internal objects in a category and A × B is also an object formed by

A and B with specific relationships. The 1m and 2m are called as coordinate

projections or simply projections which are functions: 1m : A × B → A and 2m :

A × B → B. A formal definition of a categorical product is:

“The product of two objects A and B is an object U, together with two

projection arrows 1m : U → A and 2m : U → B, such that for any object C

and pair of arrows f: C → A and g: C → B there is an exactly one

mediating arrow <f, g>: C → U making the commute – that is, such 1m

<f, g> = f and 2m <f, g> =g” (Pierce, 1991 [57]).

In the Set category, products are in correspondence to the notion of cartesian

products. See Figure 3.8.

 45

Figure 3.8: Commutative product diagram for objects A and B.

In Figure 3.8, U is the universal product of A × B. A pullback is a product with

restricted objects (See Section 3.7.2). The product construct can also be

applied to arrows:

“A product of two arrows f: A→A’ and g: B→B’ is an arrow f × g : A ×B

→ A’ × B’ such that the following diagram commutes:” (Guo, 2002 [60]).

Figure 3.9: Commutative product diagram for two arrows.

The concept of diagram commutative is of vital importance for researchers to

prove proofs and definitions and express equations.

(2) Coproduct. The construct of a “coproduct” in Category Theory can be

diagrammatically illustrated by “cocone” in Figure 3.10.

 Figure 3.10: Coproduct diagram for object A and B.

The dual notion of a product is coproduct and its formal definition is:

“A coproduct of two objects A and B is an object A + B, together with two

injection arrows 1n : A → A + B and 2n : B → A + B such that for any

object C and pair of arrows f: A → C and g: B → C there is exactly one

mediating arrow [f,g]: A + B → C making the diagram commute – that is,

such 1n [f, g] = f and 2n [f, g] =g ” (Pierce，1991 [57]).

 46

In the Set category, a coproduct corresponds to the notion of disjoint union.

See Figure 3.11.

 Figure 3.11: Commutative coproduct diagram for objects A and B.

This definition for coproduct of objects can also be extended to arrows:

“A coproduct of two arrows f: A→A’ and g: B→B’ is an arrow f + g : A’ +

B’→ A + B such that the following diagram commutes:” (Guo, 2002 [60]).

Figure 3.12: Commutative coproduct diagram for two arrows.

(3) Limit and colimit. “limits” and “colimits” are universal cones/cocones. The

formal definition of limit is (Barr and Wells, 1996 [56]):

“A limit for a diagram D is a cone X : N→D(X) with the property that if

X : L→D(X) is another cone for D then there is a unique arrow v: L→N

such that the following diagram commutes for every object X in D.”

3.13: A Limit for a diagram D.

Figure 3.13 provides a simplified illustration of a limit. The colimit can be

defined as dual notion of a limit. If treating a diagram D with limit as a

category, thus a limit is an initial object. In similar way, a colimit is a terminal

object of a category that is a diagram with colimit. If a category C has an initial

object, then it is unique up to isomophism and same true for its terminal object.

 47

With a limit construct, the finite complete category can be formed when all

finite limits exist (i.e. limits of diagrams indexed by a finite category). Dually,

a category is finitely cocomplete if all finite colimits exist.

The concepts and constructs introduced above demonstrate that Category Theory has

rich set of mathematical notions for both diagrammatic and algebraic theories. These

notions can naturally model object-oriented applications, and are especially good at

modelling multi-level architectures.

3.2 Pilot Researches into Category Theory

Category Theory originally rose in mathematics and was defined as an abstract way to

deal with mathematical structures and relationships between them. It offers a formal

basis and abstraction for handling the passage from one type of mathematical structure

to another through mappings that preserve structures (Barr and Wells, 1996 [56]). It is

still a maturing mathematical subject, which first emerged in 1945 in Eilenberg &

MacLane's paper entitled “General Theory of Natural Equivalences” (Eilenberg and

MacLane, 1945 [61]). In last three decades, Category Theory has found new

applications in the theoretical computer science, algebra and database applications

attributing to its firm mathematical roots, which contributed, among other things, to

the development of semantic programming and new logical systems. In the literature,

several papers has been published on the studies of Category Theory in computer

science area such as database applications, software engineering, semantic algebra,

information flow, etc. A short overview on previous researches relating this project is

discussed in following paragraphs.

In 1985, Cartmell first used the categorical logic in database and then later in 1987,

Ehrich, et.al., discussed using coproducts to model aggregation (Cartmell, 1985 [62];

Ehrich et al., 1987 [63]).

Goguen published a categorical manifesto in 1989, which focuses on discussing

why and how the Category Theory is useful in computing science especially for

expressing programming semantics (Goguen, 1989 [53]). This paper also gave

guidelines for applying seven basic category notions: category, functor, natural

transformation, limit, adjoint, colimit and comma category with some examples.

In 1990, a manifesto for categorizing database theory published by Cadish and

Diskin gave proofs that the Category Theory can be naturally incorporated into object-

oriented database modelling (Kadish and Diskin, 1997 [64]). They highlighted the

 48

graphic, algebraic and polymorphic nature of Category Theory, which can give an

algebraic graph-oriented formal language for specifying structure and dynamics of the

world. However, this manifesto contains too many slogans and lacks real cases or

examples.

In 1991, Lellahi and Spyratos devised a categorical data model supporting

structured objects and inheritance using concepts of graph, category and diagram. The

directed labeled graphs are used to represent the database schemas: using the node

concept in graph to represent class concept in object-oriented database, so these nodes

are structured; directed edges with labels to represent inter-relationships. Then every

structured node will be mapping to the limit of a diagram that is actually a finite

category with limit. The limit of a diagram and limit of universal cone concepts used

in Lellahi and Spyratos’s data model are very valuable for defining the class category

notion in this thesis. However, the gold points − rich semantic constructs and multi-

level mappings of Category Theory are largely ignored in Lellahi and Spyratos’s data

model. The category and diagram concepts are only used to populate the database.

David Nelson and Nick Rossiter (Nelson and Rossiter, 1994 [65]; Nelson et al.,

1994 [66]) developed a semantic data model for object-relational DBMS in 1994,

which is an extension of the functional data model based on the Category Theory.

This research gave the further proofs that Category Theory can be gracefully used in

the database area. A prototype has been built based on P/FDM system. However,

because of the limits of P/FDM, this DMBS is weak in dealing with dynamic aspects

since arrows and functors in the DBMS can only perform static relationships between

internal objects or categories.

In 1996, ter Hofstede designed a conceptual data model using the Category Theory,

which extended the Lellahi and Spyratos’s work (Hofstede et al., 1996 [67]). This

approach devised a type graph, and then populated it with category theoretic

formalizations. The later process mapped the object types in the type graph onto

objects in the instance category, with their edges turn into arrows of the category. This

method actually used a type graph to define the conceptual data model, as well as

using the Category Theory formalizations to handle semantics of the data model.

However, the work only focused on building specialized formalisms based mainly on

graph theory and did not make the full use of the Category Theory to build a uniform

data model for real database applications.

In 2001, Colomb adopted “fibration” concept in Category Theory for data

 49

refinement for data models in information systems (Colomb, 2001 [68]). This project

used his methods to ensure the consistency between initial abstract modelling

diagrams and final implementable modelling diagrams (see Section 3.5).

In 2002, the Guo claimed “in today’s large systems, the variety of encountered

interconnection relationships (such as implements, uses and extends) is very large,

while the complexity of protocols for managing them can be very high”. In addition,

there are three problems for current software designs caused by the failure of many

current tools to recognize software component interconnection as a distinct design

entity. The three problems are: discontinuity between architectural and

implementation models; difficulties in application maintenance; and difficulties in

component reuse (Guo, 2002 [60]). This paper also pointed out that one of the major

reasons for this failure is the lack of expressive means for representing

interdependencies or coordination protocols as distinct and separate entities. In order

to solve this problem, Guo tried to use Category Theory to provide distinct construct

for modelling of the software component dependencies. However, the paper is just

the initial thoughts of the author, which focuses so much on introducing

formalizations of Category Theory, so no real example can be found in this paper.

In 2005, Lu and her colleagues developed types for morphisms and got the typed

category for the abstract description of knowledge and knowledge processing (Lu,

2005 [69]). The paper published by Lu proposed that the typed Category Theory can

be a mathematical abstraction of a set of various knowledge representation

mechanisms such as semantic networks of Quillian, conceptual graph of Sowa, entity

relationship diagrams of Chen and Allen’s time algebra. The typed Category Theory is

proposed differing from traditional Category Theory in two aspects: all morphisms

(arrows) are typed and the composition of morphisms is not necessary to be a

morphism. In this mathematical mechanism, the objects of typed category are

mathematical abstraction of nodes in Quilian semantic networks, Sowa’s concepts,

Chen’s entities or Allen’s events, while typed morphisms are Sowa’s conceptual

relations, Chen’s relationships or Allen’s time interval relations. The morphism types

in this paper refer to abstractions of different semantics inherent in these links and

relationships, such as is-a, part-of and before or after an action. Based on these

definitions, this paper devised a way to model knowledge complexity reducible

process and the mathematical characterizations of knowledge completion. As the

knowledge used in this thesis is all circumscription and default logic based, so the

 50

reduction of the complexity of knowledge is not key issue for the VirtualGPS project.

However, The functors used in areas of linking problem space to solution space or

linking the pieces of isolated knowledge together to get the knowledge completion are

very useful for this project.

These previous works have proved that Category Theory can be used as a formal

mathematical basis for object-oriented knowledge applications. However, these

researchers have focused on specific aspects without providing a unified mechanism

for the multi-functional knowledge-based system, and the implementation part of

these previous works has lagged behind. Moreover, this project focuses on addressing

knowledge interpretation and knowledge processing (e.g. store knowledge) in a direct

manner, without using a mechanism to model them, and then use a separate

mathematical theory to implement these models. Therefore, based on the

aforementioned investigation findings, the researcher in this project devised a

categorical mechanism for modelling and implementing the knowledge-based system,

which contains three major parts: a categorical object model; a categorical software

design process; and an inference identifying square (natural transformation square).

The categorical object model devised in Section 3.4 is used to model structures of

entities in knowledge for knowledge acquisition and knowledge representation.

Section 3.7 and 3.8 are two examples of using the categorical object model to model

structured knowledge for knowledge base design and to model objects for database

schema design respectively. The categorical software design process defined in

Section 3.5 is used to model the whole system architecture and business logics in the

system. The inference identifying square is used to specify how inference properties

are interacted with inference rules in detail. The Section 3.6 is an example of using

this square to model the comparison process by using the comparison rules defined in

GPS.

3.3 Category Technique Rationales

To development of a software system, a suitable system modelling strategy needs to

be chose and clarified in advance for the whole system design process. As the

VirtualGPS is a knowledge-based system, the system design should focus on the

knowledge/application modelling and database modelling. To avoid the error-prone

and misunderstanding process of mapping the data stored in a database into objects in

the knowledge base of the VirtualGPS system or vice versa, researchers in this project

 51

devised a unified modelling mechanism which can be used both on the application

side and on the database side. In this research, Category Theory is used for solving

six important factors relating to the design of the VirtualGPS:

1. Category Theory is applied to define a stable measurement procedure. As

claimed by Kappel and Vieweg, the process modelling step is of vital

importance to manufacturing applications (Kappel and Vieweg, 1994 [70]).

Within which, measurement procedures are key to the final quality of a

manufactured product. Category Theory serves well in terms of improving the

stability of a selected measurement procedure.

2. Category Theory was adopted to acquire and represent the knowledge

extracted from existing GPS matrixes. Category Theory has rich semantic

constructs and notations in both diagrammatic formalisms, as in geometry,

along with symbolic notations as in algebra. Diagrammatic constructs were

used to handle complexity issues whilst symbolic notations were used for

proofs and computation (Nelson and Rossiter, 1994 [65]). It guides

knowledge-base designers a tool to build categorical object models that can

clearly reflect knowledge-base structures with formal mathematical

formulizations. Moreover, the Category Theory can be sufficiently used to

unify traditional knowledge representation mechanisms, such as frames and

rules, to provide a high degree of unification in knowledge acquisition and

representation processes.

3. The system architecture can also be described by Category Theory, with a high

level of abstraction. The knowledge bases, mappings, and database schemas

with multi-level architectures can be more naturally modeled by the multi-

level framework of Category Theory. This can be done by using features such

as subcategories, functors, natural transformations, fibration and adjointness in

the modularized manner. Thus, the multi-level relationships and constraints

will not be lost during the implementation, and it also facilitates the

incremental development (data refinement process) for future expansion.

Designers are able to add new features or update existing features in the

system without requiring major changes on the software structure. The

Category Theory can also devise a topological graph to model the deployment

of system components on computing resources.

4. The categorical object model was also used in the “categorical” Database

 52

Management System (DBMS) developed for the VirtualGPS system. In this

project, system designers used Category Theory to model the software

framework and the knowledge base of the system. So it was wise to use same

modelling mechanism in the database side since there is no need to program

any mapping between the data in the database and the data in the application.

Thus, an object-oriented DBMS fully supporting the categorical object model

is required in this project. Comparing with a conventional relational data

model based on the Set Theory, this categorical DBMS relies on the Category

Theory to provide a rigorous mathematical foundation, which can support

handling of complex data structures and manipulations. For example, as

discussed in section 3.4.3, the identifier for a class category is the vertex

representing a “limit” in the universal cone, so each internal

relationship/method arrow existing between internal objects must commute

with the arrows from the initial object to the corresponding internal objects

that are involved in the internal relationship or method.

5. Both dynamic features (e.g. methods) and static features (e.g. attributes,

objects) of the object-oriented database schemas can be modeled uniformly

using arrows. The type and definition of arrow will determine what its role

actually is. This is much better than Set Theory that uses two different notions

− set and function to represent static and dynamic aspects in separate way.

6. Category Theory is a form of Constructive Mathematics. All notions, no matter

in diagrammatic or symbolic formats, are themselves formal proofs. It

formulates complex object structures and behaviors from basic constructs and

notations. This ensures a clear structure for object storage and the algebraic

manipulations based on categories. Thus, diagram chases and algebra deduces

can be used to prove the integrity and consistency of the whole system after

any updating, deleting or addition operations.

All in all, Category Theory provided a good unified tool that enabled the system

design from high-level system architecture down to the knowledge base, and from

static aspects to dynamic aspects in same mathematic mechanism. Thus, different

modelling powers from different modelling mechanisms can be unified in single

mathematical foundation. Moreover, it provides good abstractions that provide a deep

insight into the essence of knowledge and knowledge processing, which can not be

obtained simply from a large number of details.

 53

3.4 Categorical Object Model

For this project, application objects are extracted from GPS- matrixes, which can be

used to synthetically guide the whole manufacturing life cycle including function,

specification, manufacture and verification. These objects have complex structures

(especially in a hierarchical level format) and relationships with various types. In this

section, a categorical object model will be discussed. This object model is intended to

support the core mandatory features for a data model to be qualified as object-oriented

data model (object model) claimed in the manifesto for object-oriented DBMSs

published by Malcolm Atkinson et al. in 1990 (Atkinson et al., 1990 [35]). Based on

the manifesto and the other data model reviewed in section 2.2 of Chapter 2, the core

features for the categorical object model are summarized as following:

 Complex class and object support

 Attribute and Method

 Object identity

 Encapsulation

 Types

 Relationships/dependencies

 Inheritance/ class hierarchies

 Integrity/Consistency checking

A brief introduction on key notions of Category Theory used in following sections can

be found in section 3.1.

3.4.1 Complex Class and Object Support

The class notion used in the proposed object model is similar to the type notion used

in type system. It contains the common features of a set of related objects. In object-

oriented applications, real world entities are represented as classes and the instances of

entities are represented as objects. From this point of view, the categorical object

model uses the “category” notion to represent a class denoted as iCLS (1 i n, n is

the number of classes in the database schema). The categorical object model

represents all attributes defined in a class as internal objects in a category (internal

objects can be another categories or primitives) and each category iCLS has a

collection of arrows mapping between internal objects where these arrows can either

represent behaviors (methods) or associations (dependencies). A category with a set of

 54

arrows inside in it can be used to describe the structure of a class. All arrow constructs

such as composition and dependency must conform to basic laws defined in Section

3.1.1. The instance category ()
iCLSjOBJ (1 j m, m is the number of objects

created on iCLS) denotes the instance object created on the class iCLS . For example,

if (1)OBJ represents an object, 2CLS represents a class category, so
2

(1)CLSOBJ

indicates that (1)OBJ is the first object created on 2CLS . The notation CLS represents

all class categories defined in the database schema and
iCLSOBJ represents all instance

categories (objects) created on the iCLS . Therefore, this thesis uses the term of class

category equaling to class and the term of instance category equaling to object. The

both kinds of categories are required to be stored in the categorical database: class

categories are stored as metadata and instance categories are stored as real application

data. In practice, the creation of an instance object on a class category iCLS is

actually assigning a functor from a class category iCLS to an instance

category ()
iCLSjOBJ . Every class modeled in the categorical object model is labeled

with a unique meaningful name that is the same as class name defined in object-

oriented programming (e.g. Java programming). The name is a special label used to

identify classes and to convey the meaning of classes. In this model, a class category

is actually a kind of finite complete category.

3.4.2 Attribute and Method

The categorical object model represents all attributes defined in a class as internal

objects in a category. iARR = { jf │1 j v, v is the number of arrows in the

category}} is used to represent all arrows in a category iCLS . Each category iCLS has

a collection of arrows where these arrows can either represent behaviors

(transformations) or associations (dependencies). In this project, behaviors correspond

to methods defined in the class, and associations correspond to dependencies between

attributes of the class. In this model, the notation ME is used to represent a set of

method arrows and DP is used to represent a set of functional dependency arrows.

Each arrow is named uniquely with names of methods or dependencies. As introduced

before in Section 3.1.1, every arrow f has a domain dom(f) and a codomain cod(f).

Thus, if iATT is used to represent all internal objects (attributes) in the category iCLS ,

 55

then iATT is a collection of {dom(jf) cod(jf)} for all { jf │1 j u, u is the

number of arrows in the category}}. The transitivity of functional dependency arrows

must conform to transitivity law defined in Category Theory.

3.4.3 Object Identity

Object identity is a unique key for applications sharing of objects. Assigning a unique

identifier to every instance of database entities (classes) is vital important for object-

oriented DBMS. The vertex of the universal cone (limit) can be used to model the

unique identifier. If viewing the universal cone as a category, the vertex of the

universal cone is actually the initial internal object in this category with an arrow from

itself to every other internal object in the category. This kind of dependency arrows

has an exclusive name − “attribute arrow” in this categorical object model. Therefore,

the unique identifier can be represented by iID (the initial object of iCLS). The initial

internal object stores a unique system automatically generating identifier value. This

ID value cannot be modified by applications and is independent of how an object is

manipulated or structured. By modelling the database in this way, database users have

no need to define keys (primary keys or candidate keys).

3.4.4 Encapsulation

For object-oriented applications, the good encapsulation means both related data part

and operation part should be treated as a unit (class) with clearly defined interfaces, so

related information can be changed as a whole. The “category” notion of Category

Theory can satisfy this encapsulation principle: data part is modelled as a set of

internal objects of a category while operation part is modelled as operation (method)

arrows between internal objects. Furthermore, a message passing is defined as

function arrow mapping from one method arrow to another method arrow. This

mapping can occur within a category (intra-class) or between different categories

(inter-class). In this case, a higher level category can be formed ─ the arrow category,

denoted as C that uses all arrows in the category C as internal objects with function

arrows as internal arrows mapping between internal objects in C (Nelson, 1998 [32];

Barr and Wells, 1996 [56]). For example, if there is a message f delivering

information (function invocation, signals, and data packets) from an arrow

(method pm) in class iCLS to an arrow (method qm) in class jCLS , then f can be

represented as f : pm → qm (pm iME , qm jME , iME and jME are methods arrow

 56

collections in iCLS and jCLS) with diagrams in Figure 3.14 commutes as

qm
domf =

codomf pm .

 Figure 3.14: Commutative diagram for message passing.

In fact, if iCLS and jCLS are different class categories and there is a functor

mapping from CLS to CLS , then the message passing process can be regarded as a

natural transformation mapping between pairs of CLS to CLS functors. In addition,

the types of message senders and recipients conform to the types of method arrows

participating in the message passing.

3.4.5 Types

In Category Theory, one discrete item is identified by the single category 1 (Nelson et

al., 1994 [66]). Hence, typing can be added to show the types upon which the item is

taken from in form of 1TYP, where TYP can be the base types in object-oriented

programming language (e.g. String), other class categories, or other defined

complexity such as arrows, arrays and lists. When 1 denotes class categories or arrows,

the values of 1 are names of these class categories or arrows. Arrows are typed in

form of f: a TYP1 b, where the a is the source internal object, b is the target internal

object, 1TYP is the type. In arrow composition situation, such as the f: a TYP11 b and

g: b TYP21 c, the f g: a TYP2 TYP11 c, where the 1TYP1 × TYP2 is the type

composition.

3.4.6 Relationships

The generalization abstraction between class categories are modeled using “forgetful”

functor mapping from subclass to superclass. Forgetful functor is a structure

preserving mapping from one category to another category with some attributes and

methods dismissed. The aggregation abstraction between class categories are

modeled using “faithful” functors which inject one category into another category

 57

while preserving its structure. For other common relationships occurred at category

level, comparing with relational algebra that defines relationship as projection or

cartesian product, the categorical representation of relationships is product. At

category level, the product is formed by categories and functors instead of internal

objects and arrows defined in section 3.1.2. See Figure 3.15.

 F

 G

Figure 3.15: The relationship R between A and B.

Normally, the F and G are forgetful functors (mapping some of related arrows into

the target category). The product relationships in this object model are also

represented as categories { iREL │1 i w, w is the number of product relationships

in the database schema}. Therefore, in Figure 3.15, A and B are class categories, R is

a relationship category between them. The relationship category R is represented in

the form {< iIDR , r’ >│r’(arrow set in A and arrow set in B)}, where iIDR is the

identifier of the relationship category that is assigned by DBMS automatically, and r’

is any information generated from this link. The link itself contains an element in the

powerset of arrow set in A and arrow set in B. The related arrow compositions in A or

B will be preserved. For every r in R, F(r) = a in instance set of A and G(r) = b in

instance set of B must exist for referential integrity.

The functors shown in the Figure 3.15 can be typed into universal monomorphisms

(M), universal epimorphisms (EP), and universal isomorphisms (an arrow that is both

monomorphism and epimorphsim is called isomorphism, ISO). Therefore, functors F

and G can carry useful information (constraints) relating to relationships:

 If F is in type of M, then each instance of A is involved only once in the

instance set of R. However, if F is not M, then an instance of A may be

involved more than once in the relationship. There may have some instance of

A which does not participate in the instance of R, so the membership of A is

optional. The same situation applies for functor G.

 If F is in type of EP, then every instance of A is involved at least once in the

 58

instance set of R. Therefore, all instances of A participate in the relationship,

which means the membership of A is mandatory. However, if F is not EP,

then not every instance of A is involved in the relationship and the

membership of A is optional. The same situation applies for functor G.

 If F is in type of ISO, then every A must participate once and only once in the

relationship and the membership of A is mandatory. The same situation

applies for functor G.

In the categorical object model, membership is represented by typing of the

functors, which is much formal than the traditional way using labels. This modelling

method can be extended to satisfy the modelling of n-ary relationships by using n-ary

product construction. Multiple relationships between same class categories are

identified by different relationship categories. For example, R1(A×B) and R2(A×B) are

two different relationship categories between class categories A and B. To help

designers to comprehend class category and product relationship between class

categories, the following two rules are devised for calculating the cohesion for a class

category as well as the coupling for a product relationship category:

 The cohesion of a class category (Ce) can be calculated as the average number

of the dependencies and behaviors for each internal object. Let Rn be the

number of dependency and behavior arrows between internal objects in a class

category, which should also include all dependency and behavior arrows of the

sub-categories (except all attribute arrows). Let On be the number of internal

objects in the class category. Then, Ce = Rn/On.

 The coupling of a product relationship (Cp) can be calculated by the using

number of internal objects in a relationship category, which are gathered from

all class categories that participate in this relationship link. Let In be the

number of internal objects in a relationship category, which are gathered from

participating class categories and En be the number of the rest internal objects

in these participating class categories. Then, Cp = In / (In + En), where Cp

range from 0 to 1.

The above two rules illustrate the fuzzy logic applied in the categorical object

model at different hierarchical levels:

1) Attribute values: the [0, 1] interval can be used to express the explicit

uncertainty that affects an attribute value.

2) Class extents: a class category can be extended in a fuzzy way to define its

 59

domain in the interval [0, 1].

3) Relationship coupling: use appropriate truth scales for expressing strength or

connection uncertainty.

3.4.7 Inheritance/Class Hierarchies

The “pushout” construction is an extension of the coproduct construction which

provides the complex sum structures (i.e. amalgamated sums) in the categorical object

model for two or more class categories. This is superior to the simple disjoint unions

(Nelson, 1998 [32]). The inheritance hierarchies in this model can be naturally

constructed by coproduct construct since the ancestry of each class in the hierarchy is

preserved through using the pushout structures. Let 3CLS be a class category

representing a subclass category of class category 1CLS , the 3CLS contains a set of

arrows ARR3 (methods or dependencies) and internal objects 3ATT (attributes). The

coproduct 1CLS + 3CLS is the disjoint union of the arrows (ARR1 + ARR3) and the

attributes (1ATT + 3ATT). Figure 3.16 shows an example that the class category

3CLS inherits from the class category 1CLS .

Figure 3.16: Coproduct diagram for class inheritance.

In Figure 3.16, 1CLS contains all attributes (internal objects) and methods (arrows)

for a parent class category and 3CLS contains attributes (internal objects) and

methods (arrows) for a subclass category. The 1CLS + 3CLS is the disjoint union of

attributes (internal objects) and methods (arrows) of 1CLS and 3CLS combined

together. The arrow inf shows the direction of the inheritance.

3.4.8 Implementing Operations

In order to improve reusability, communication and class sharing, interfaces and

abstract methods are often used in real world applications, especially some large

applications. The interface is like a skeleton, which contains only method signatures

and variables. Methods must be public, abstract and their variables must be public

 60

static final. It is advisable to design relatively large applications using interfaces

because it makes the whole system easier to modify, extend and integrate new features.

To start with, system designers may only have one implementation of a given

interface, but when slightly different behaviours are required in special circumstances

during the design process, designers only need to devise a class that conforms to one

of the existing interfaces and it will drop in place without major modifications.

Interfaces also allow programmers to adopt a class from a different hierarchy to work

in an existing application. The class only needs to declare itself implementing a

specific interface, provide the necessary methods and it can be integrated directly as if

it were created for the job. In the categorical object model, the index category,

category and functor are used to model the interface concept. Interface is modelled as

an index category of a concrete class category, which contains only a collection of

internal objects typed in “1final_static” and a set of methods typed in “1Abstract”. A functor

in type of “1Implements” is used to map from the index category T to the class category C

while preserving the structure of index category T in C. See Figure 3.17.

Figure 3.17: A part of categorical object model for determining the
manufacturing processes.

Figure 3.17 shows an implement functor F1 mapping from the index category

“ManufactureProcessResultInterface” to the concrete class category

“ManufactureProcessResult”. The index category

“ManufactureResultProcessInterface” (interface) contains an indexed arrow (2) and

 61

an indexed method “inference_engine” (1).

3.4.9 Physical Storage Linkages

In the physical storage level, both class categories and their instance categories will be

stored in the files, where class categories store metadata of class and instance

categories store real values. Therefore, there need to define linkages linking metadata

in class categories to metadata in internal objects (attributes/lower level categories)

and class categories to their corresponding instance categories. Functors are used to

record these linkages.

3.4.10 Integrity/Consistency Checking

Integrity or consistency checking in the categorical object model contains two levels:

inner category level and inter category level. Inner category level integrity refers to

ensure that every internal object should be typed and 3NF should be enforced to

eliminate partial and transitive functional dependencies on IDs. To satisfy this,

categorical object models used in DBMS should remove all functional dependency

arrows between internal objects (except those attribute arrows) in those class

categories defined for modelling of the knowledge bases. The inter category level

integrity is the referential integrity that ensures a category (class, instance, relationship)

actually exist when they are referred by other categories. Therefore, by using diagram

chasing, when updating or deleting categories that reside on the target side of arrows

or functors, the source side of these arrows or functors must do the corresponding

deletions or updating.

3.4.11 Query

To provide manipulation capability for the categorical object model, an object query

language is also produced based on functor mappings and functor compositions. In

this query strategy, the inputs and outputs of queries are all instance categories

associated with either certain class or relationship categories. The forgetful functor is

used to choose some of necessary arrows of a class category as the “Select” clause in

SQL language did. The detail example for the query strategy is illustrated in Section

4.4.1.5 of Chapter 4.

3.4.12 Statement

According to the definition, a data model contains logical concepts and mechanisms to

describe how data is represented and accessed. Therefore, the fundamental paradigms

for choosing a suitable data model are (Kappel and Vieweg, 1994 [70]):

 62

 Whether the information of the application can be easily mapped to the data

model.

 Whether the data model is powerful and clear enough to representing complex

data structures.

 Whether the data model is easily to be implemented in the programming.

The above eleven points 3.4.1-3.4.11 have justified that the categorical object model

based on Category Theory is a suitable data model for this project.

3.5 The Categorical Design Process

Because of the large size and high complexity of the VirtualGPS knowledge-based

system, researchers in this project needed to provide a unified theoretical framework

for representing the system through appropriate mathematical formalizations. The

aims for defining the unified theoretical modelling strategy for describing the

VirtualGPS are:

 Reducing the complexity of managing the whole system through clearly and

gracefully representing modules and their interconnections. The modelling

strategy should also facilitate the realization of new modules and extension of

the software system. Moreover, such strategy should be formal and avoid high

level ambiguities.

 Close the gap between software designs and implementations. The

implementation aspect of this system contains a set of modules which in turn

contain a set of components. Therefore, clear definition of the business logics

among different modules or components are of vital importance in the design

stage of the system development.

 Providing rich set of semantic means for easing implementation. By offering

the sufficient semantic constructs with a high level of abstraction, designers

can concentrate on describing the semantic aspects of applications rather than

representational issues.

These aims indicate Category Theory is an excellent tool. The overall VirtualGPS

system architecture contains two major parts: system modularized framework and

system deployment graphs. The system modularized framework focuses on specifying

the functions of all the modules, their mutual interactions and transformations. The

system deployment graph is emphasized on specifying the system allocation and how

system users can access this system. Therefore, the basic categorical principles that

 63

researchers adopt in dealing with these two parts are:

1. As VirtualGPS contains a set of modules which in turn contain a set of

components, modules are corresponding to categories whose internal objects

are corresponding to components. The detail representation of components can

be modeled as lower level categories and functors are used to connect lower

level categories with their higher level categories.

2. The dependencies such as constraints or interactions between different

modules or components are modeled by using the product constructs of

Category Theory. The components, modules and dependencies between them

can be realized by using the two rules discussed in Section 3.4.6. For example,

if the coupling of a product relationship (Cp) between two components are

very high (near to 1), so either a module or a new bigger component should be

organized for holding these two components.

3. The extraction of similarities between different components is modeled by

using the coproduct construct of Category Theory. This can also be useful in

realizing new components or modules. For example, in order to improve the

reusability and independent ability of the system, some fragment programming

codes shared by several components will be removed from the disjoint union

of the corresponding components to form a separate new module.

4. The coordination protocols (e.g. message/signal passing, invocation

mechanism and communication rules) and business logics/rules (e.g.

information exchange or communication) among modules or components are

modeled by using the structure preserving construct − natural transformation.

5. The deployment topologic graphs of the VirtualGPS system are represented by

using the diagram notion of Category Theory.

Based on the above five points, a unified refinement design process can be developed

using Category Theory. In traditional software designs, the Unified Software

Development Process (USDP) is used throughout the whole lifecycle. The USDP is a

software development process, which includes a set of activities needed to transform a

user’s requirements into a software system. It is a generic process framework that can

be specialized for a very large class of software systems, for different application

areas, different types of organizations, different competence levels and different

project sizes. The USDP is component-based design process, which uses the Unified

Modelling Language (UML) when preparing all blueprints of the software system

 64

(Jacobson, 2004 [71]). The basic design steps by using UML in a USDP incremental

development process are:

1. The first step is the business map design. This step is used for capturing the

requirements of users. The outputs of this step are business maps and use cases.

A business map shows the business scope of the target software system. Based

on the business map, a set of use cases can be produced to detail specify the

meaningful interactions within this computerized system. The use cases often

become modules in the final software system.

2. The Second step of USDP process is to create the analysis model from the use

cases model. The analysis model is used to obtain a more precise specification

of requirements than the requirements captured during use case modelling.

The output of this step is a set of the initial analysis classes for the software

system. The analysis classes often become components in the final software

system.

3. The third step is to create the design model from the analysis model. In this

step, the design classes in the design model are defined to trace the analysis

classes in the analysis model. The design classes are refined from the analysis

classes. Therefore, design classes are more adapted to the implementation

environment. Several design classes can be organized together to form a

reusable component.

4. The fourth step is to create the sequence diagram for realization of every

design class in the design model. The sequence diagram shows how the focus-

starting at the upper left corner-moves from design class to design class as the

use case is performed and messages are sent between design classes.

5. The final step is to divide the design classes in the design model into

subsystems based on outputs of points 3 and 4. This step is contributing to

form the topology of the system allocations (deployment model).

Points 1 to 3 are actually a refinement and incremental process to determine the real

design classes (modules or components) for a software system from initial use cases

offered by users. After the components of a software system have been determined,

point 4 is the key step to define the potential inter-relationships or inter-activities

between modules or components, and help to define interfaces for them. Therefore,

the key features of USDP are use-case driven, architecture-centric, iterative and

incremental (Jacobson, 2004 [71]). The categorical design process devised in this

 65

thesis is also an incremental and refinement process. However, unlike to the USDP

from points 1 to 3, the designers need to build different models or diagrams to achieve

this refinement process, the categorical design process start by determining some

high-level general categories and then to elaborate and refine them by:

 In the horizontal level, general categories may need to be separated into

several elaborated small categories. The separated small categories are

required to be linked together by using the product relationship construct.

 In the hierarchical level, the internal objects of some higher level categories

need to be detailed in the form of lower level categories. The lower level

categories are injected into their corresponding higher level categories by

using the “faithful” functor.

This refinement process is used to convert a simplified abstract model into a complex

implementable model. In order to ensure the consistency between two models, the

functor mappings used in this refinement process need to satisfy the following

requirements:

(1) Integrity: every abstract category and abstract relationship/constraint in an

abstract model must map correspondly in its implementable model.

(2) Composition: All the transitive relationships in an abstract model should be

preserved in its implementable model.

(3) Completeness: every target concrete category for a refined relationship in an

implementable model is a target abstract category for its corresponding

abstract relationship in its corresponding abstract model.

(4) Pattern reservation: every concrete category and relationship in the

implementable model is part of a pattern with the same structure as in the

abstract model.

As it has been proved by Colomb, et al., the functor with fibration feature can satisfy

these four requirements above (Colomb et al., 2001 [68]). A functor F mapping from

an abstract model to an implementable model with fibration can be defined in detail as:

 Associates to each object X A (abstract model) with an object F(X) I

(implementable model);

 Associates to each morphism u: X → Y A with a morphism F(u): F(X) →

F(Y) I;

 F(idX) = idF(X) for every object X A;

 66

 F(v u) = F(v) F(u) for all morphisms u: X → Y and v: Y → Z;

 A functor F is a fibration, if and only if for every object F(Y) of I and every

map u: X → Y in A, there exists a Cartesian morphism F(u): F(X) → F(Y) in I.

The Cartesian morphism is used to ensure completeness in an implementable

model.

This refinement process can also be used to refine the categorical object modelling

diagrams defined in this thesis for modelling of structured knowledge refinements.

The examples for demonstrating a complete categorical design process for designing

the VirtualGPS can be referred in Chapter 5. This section focuses on giving detailed

explanations on building a categorical sequence diagram and a categorical system

deployment diagram (see subsection 3.5.1 and 3.5.2 respectively).

3.5.1 An Example for Building the Categorical Sequence Diagram

The detailed description on the design of the VirtualGPS system is given in the

Chapter 5 of this thesis. This section concentrates on giving a detailed explanation for

building the categorical sequence diagram using the example of the comparison

process in the Verification module as illustrated in Figure 3.18.

Figure 3.18: The categorical sequence diagram for comparison processes.

 67

The diagram “ComparisonProcess”, shown in Figure 3.18, is an indexed category

with initial internal object “Interface” and four other internal objects: “Measurand”,

“MeasuredValue”, “ToleranceValue”, and “Comparison”. These four internal objects

are low level categories. Arrows in the categorical sequence diagram are in the type of

message arrow. Message arrows are responsible for sending messages between

internal objects with two default sending properties in form of “<sequenceNo,

messageName>” where “sequenceNo” is used to identify message sending sequence

and messageName is a string to describe this message in general.

3.5.2 An Example for Building the Categorical System Deployment Model

The final stage in the categorical design process is to build the categorical system

deployment models. For example, based on the sequence diagram of Figure 3.18, the

following steps should be adopted to build a categorical system deployment model:

1. Refine the internal objects of the categorical sequence diagram to get the

refined low level categories. In Figure 3.18, the initial object “Interface”

becomes two refined lower level categories “ParameterReceiver” and

“ParameterCreator” that are responsible for receiving and creating

measurand/value pairs. In Figure 3.18, the internal objects “Measurand” and

“SuggestedMeasurand” are holding data in same structure, so these two

internal objects can be merged to form the class category “Measurand”. For

the same reason, the “measuredValue” and “ToleranceValue” become the

class category “Value”. Different functor instances are used to distinguish the

pairs for suggested measurands with tolerance values from pairs for

measurands with measured values entered by users.

2. Link functional related categories to form the components of a software

system. In this case, Figure 3.18 clearly shows the comparison process can be

separated into three components: interface component, natural transformation

square for comparison process, and comparison component. The detailed

discussion of the natural transformation square for the comparison process

(see Figure 3.22) is demonstrated in section 3.6. The interface component

contains the “ParameterReceiver” and “ParameterCreator” categories. The

comparison component contains the class category “Comparison” and the

class category “ComparisonManager” that is responsible for storing the final

comparison results.

 68

3. Link functional related components to form modules or subsystems of a

software system. A module (subsystem) can consist of components, interfaces,

and other modules (recursively).

4. Components and modules are allocated on a system deployment topological

graph to form the deployment model. In the same way as other topological

graphs that are formed by a set of nodes and edges between nodes, the nodes

in the categorical system deployment topologic graph are computational

resources such as servers, clients, processors or similar hardware devices

while the edges represent relationships or communications between nodes

such as Internet, intranet, bus and so on. Figure 3.19 is a categorical

deployment topological graph for the comparison process.

Figure 3.19: Categorical representation of a deployment topological graph.

Figure 3.19 is a deployment topological graph for deploying the software

components relating to the comparison process on the physical computational nodes,

which is formed in a categorical view: every node is a category and edges between

nodes become functors to represent communications. The functors in the deployment

models can have loops (i.e. functors from a category to itself just like identity arrow

notation) and multi-functors (i.e. functors that have the same source category and the

same target category). In Figure 3.19, there contain three categories:

“SurfaceTextureClient”, “SurfaceTextureModuleServer”, and “Categorical DBMS”, as

well as two typed functors: “Internet” and “Intranet”. Any functor F here should

 69

mapping from source node to target node while preserving their structures through

that: (1) for every component A in source catgory S, a component F(A) should be in

the categoty node T; (2) for every relationship or communication f: A→B in S, a

relationship or communication F(f):F(A) → F(B) should be in T; (3) every

relationship or communication composition in S should be preserved in T. According

to Figure 3.19, the VirtualGPS system should provide an interface for users to enter

measured values on the client side. The measured values with measurands will be sent

to “ParameterReceiver” category which in turn communicates with

“ParameterCreator” to create measurand/measured value pairs and suggested

measurand/tolerance value pairs. Then, these pairs will be sent to the

“ComparisonManager” that is responsible for holding pairs and creating natural

transformation squares. The “ComparisonManager” has a product relationship with

“Comparison” to form a relationship category “ComparisonResult”. The

“ComparisonResult” is used to store comparison results based on the comparison

information in “Comparison” and natural transformation squares in

“ComparisonManager”. The detailed information for the construction of these natural

transformation squares can be referred in Figure 3.22. Finally, the comparison results

will be stored in the categorical DBMS through Intranet (sockets).

3.6 Categorical Representation for the Measurement Theory

One of the main attractions of Category Theory in this project is that it provides a

rigorous mathematical foundation to define the measurement theory. As has been

successfully proven in the past, the representational measurement theory can be used

to define the stability of the measurement procedure (Scott, 2004 [72]; Scott, 2006

[73]). The measurement procedures relating to this project contains three key points in

terms of the applied representational measurement theory:

(1) An empirical relational system (ERS); consisting of a set of objects on which a

measurand is defined together with the relations between other relevant

measurands.

(2) A numerical relational system (NRS); comprising numbers (derived values)

and the relationships between them.

(3) A set of mappings; referred as the measurement procedures, map from ERS to

NRS, in such a way that the relationships between measurands are matched by

relationships between numbers.

 70

A measuring procedure is regarded as mathematically stable, when a “small”

difference in the derived values can imply a “small” difference in the measurand.

Relationships between measurement values should reflect functional significant

properties between the measurands; if not, the measurement is rendered unusable

(Scott, 2006 [73]). Since in Topology an open set can be used to define “small”

differences between points, the stability condition of measuring procedure can be

described using the Topology and Set Theory. In 2004, Scott devised stability

corollaries that can be used to justify when a measurement procedure is stable or not

using following rules (Scott, 2006 [73]):

Corollary 1: “Finite sets of measurands and derived values with partial pre-

orders and increasing mappings map one-to-one onto finite topologies with

continuous mappings.”

Stability Corollary: “If for a measurement procedure, the relational structures

of the measurand and the derived values are both partial pre-orders and the

mapping between them are also increasing mappings then the measurement

procedure is stable.”

Based on the above rules, if define topologies on the space of measurands and the

space of derived values, the stability condition is just a continuous mapping from the

measurands to the derived values (if the inverse image of every open set on the

topological space of the derived values is an open set on the topological space of the

measurands, this is a topological definition of a continuous mapping). Researchers in

this project found Category Theory can provide a visual framework to vigorously

represent the corollary1 and stability corollary using notions and constructions

defined in Category Theory. The following points give a short explanation on how

Category Theory represents the stability corollary:

(1) In order to satisfy the stability corollary, both ERS and NRS for a

measurement procedure should be partial pre-orders with properties of

reflexive and transitive, so categories are used to represent ERS and NRS

while arrows inside the category are used to represent partial pre-order.

Moreover, objects in ERS or derived values in NRS are represented as internal

objects of category. See Figure 3.20.

 71

Figure 3.20: Categorical representation of ERS.

In Figure 3.20, the Aid , Bid , and Cid are identity arrows (an identity arrow Aid :

A → A, for each object A satisfying the identity law as for any arrow f: A → B,

Bid f = f and f Aid = f), which are used to satisfy reflexive property of

partial pre-order. For the transitive property, if arrow f: A → B and g: B→ C

represent binary relations in ERS, so g f: A→ C is the categorical

representation of transitive property in partial pre-order.

(2) A high-level notion that is a special type of structure preserving mapping

(arrow) between categories named as “functor”. The formal definition of a

functor can be found in Section 3.1.1 of Chapter 3. From the definition,

functor must preserve identity arrow and the compositions of arrows inside

categories. Therefore, a functor can gracefully represent increasing mappings

between ERSs or NRSs with partial pre-orders defined.

Based on the above two definitions, the categorical way of defining a stability

corollary can be restated as:

“If for a measurement procedure, the relational structures of the measurands

and the derived values are both partial pre-order categories and the mapping

between them is functor then the measurement procedure is stable”.

Table 3.1 gives a summary to show the relation between categorical terms and the

concepts of representational measurement theory.

Category Theory Explanations
Representational

measurement theory

Category
Collection of internal objects and

arrows
Relational System

Functor
Structure preserving mapping

between categories

Structure preserving
mapping between relational

systems
Natural

Transformation
Structure preserving mapping

between functors
Comparison

Table 3.1: Categorical terms for representational measurement theory concept.

 72

The development of the stability corollary in a categorical way is beneficial for

retrieving useful features from the observable data relating to this project, and

ensuring consistency of the knowledge acquisition for this knowledge-based system.

Moreover, by adding the “natural transformation” notion of Category Theory, the

whole verification procedure can be refined as Figure 3.21.

Non-ideal
Surface Model
(Specification)

Real Surface
(Verification)

- Partition
- Extraction
- Filtration
- Association
- Collection
- Construction

Evaluation

- Physical Partition
- Physical Extraction
- Filtration
- Association
- Collection
- Construction

Specified
characteristics

Evaluation

Result of measurement

Comparison for
Conformance

Mirror Operation

Manufacturing
ProcessesFunction

Specification

Figure 3.21: Comparison between specification and verification.

The Figure 3.21 also shows a refined general GPS model for the VirtualGPS

system. To ensure the stability of measurement, relational structures of measurands in

ERS and derived values in NRS of a measurement procedure must be partial pre-order

categories.

In verification module of the VirtualGPS system, the inference rules are

comparison rules, the inferred properties are measurand/value pairs and the inference

results are {accept or not accept}. There are two kinds of measurand/value pairs: the

suggested GPS parameter/tolerance value from Specification component of the

VirtualGPS system and the measurand/measured value inputted by users. The

mappings in each pair should be defined as functors. Therefore, every measurement

procedure must have functors mapping from measurands to the measured values while

preserving the internal partial pre-order structures. As a natural transformation

provides a feasible way for transforming between functors while respecting the

internal structure of the categories involved, the final comparisons are achieved by

natural transformations with comparison rules. Figure 3.22 shows an example of the

comparison process in the categorical view (inference identifying square).

 73

Figure 3.22: Categorical view of comparison processes.

In Figure 3.22, F1 and F2 are functors mapping from partial pre-order category

“Measurand” to partial pre-order category “Value”. The σ is natural transformation

mapping from F1 to F2. The F1, F2 and σ form a natural transformation square. Figure

3.22 also shows a 2-ary pullback relationship structure between a natural

transformation square and a class category “Comparison”.

This example also shows how to model the interrelationships between inference

properties, inference rules and inference results:

(1) Functors are used to link inference properties together.

(2) Natural transformations are used to get the solution space from the problem

space with respect to inference rules while preserving the structures of

inference properties.

In the some simple situations that we do not need to keep the linkage structures

between inference properties, so functors can be directly used to map from problem

space (inference properties) to solution space (results). Moreover, the reasoning power

of Category Theory can be used for the knowledge deduction for the VirtualGPS

system by using the equalizer and co-equalizer constructs (Lu, 2005 [69]). For

example, the Manufacture component of the VirtualGPS can be used to determine the

manufacturing processes: to select suitable manufacturing processes to match the

specification of the designed product. The Figure 3.23 shows an example of

 74

coequalizer diagram for reasoning the suitable manufacturing processes.

Figure 3.23: The coequalizer for manufacturing process reasoning.

In Figure 3.23, the F1 and F2 represent a set of criteria applied to the inference

properties (e.g. material and quantity of PRIMA Matrix or limit value, texture lay and

cut-off wave length gathered from Specification report). If any inference property a

with F1 (a) ≠ F2 (a) (the same property under different inference criteria may get

different manufacturing process suggestions), the coequalizer functor in the

coequalizer diagram can equalize in the way that for all these a, F3 (F1 (a)) = F3 (F2

(a)). This means that the different manufacturing processes suggested by different

criteria for same inference property will be unified with extra considerations such as

economic considerations, and typical applications. If this final unification has multiple

results, F5 is used to link them together with weight value calculations. In real

applications of this case, the coequalizer can be extended to multiple dimensions. In

order to calculate weight of different manufacturing process suggestions, fuzzy logic

is applied in this project. There has a knowledge representation problem for

traditional knowledge-based systems to handle uncertain or incomplete information.

To represent vagueness or uncertainty, fuzzy logic is developed, with a continuous

range of possibilities from 0.0 to 1.0 for uncertainty (an example can be found in

Section 5.4.3) (Sowa, 2000 [74]).

3.7 Categorical Representation for the Knowledge Base

As pointed out by Lu, the development of a mathematical tool to deal with structural

properties of knowledge is a basic part of knowledge science (Lu, 2005 [69]), this

 75

project provides an innovative way for manufacturing engineers to establish

knowledge bases derived from GPS raw standards without requiring specialised expert

computer skills. The knowledge base of the pilot system contains four derived sub-

knowledge bases (modules): Surface Texture, Form, Size and Position and each

module contains four derived sub-components: Function, Specification, Manufacture

and Verification. The detail introduction on the architecture of the VirtualGPS system

can be referred in Section 5.1 of Chapter 5. The following two subsections explain the

modelling of the knowledge in Function and Specification components for the Surface

Texture module in Category Theory terms. The other two – Manufacture and

Verification – were modelled in similar manner.

3.7.1 Knowledge Modelling in Function Component for Surface Texture

In the Function component, Category Theory is applied through representing function

requirements in a so-called “pattern language”, which guides the inference engine to

generate a function performance report highlighting the suggested specific surface

roughness parameters according to the inputted function performance requirements. A

single pattern in a pattern language is defined as a common problem or decision with

its best solution in a target task. Each pattern has a name, a descriptive entry and

cross-references to other patterns. A pattern language is made of several linked

patterns that should be organized in a logical and semantic structure as a spoken

language in a specific problem domain. The pattern language is used here for

facilitating function decomposition and to structure the connection process. This

section gives an example on using the partial order set and the product order of

Category Theory to represent and record decomposition alternatives (Neggess and

Kim, 1998 [75]).

 A partial order is a binary relation R over a set S, which is reflexive,

antisymmetric and transitivity. The set S with a partial order is called a partially

ordered set (poset). The function performance report generated from the Function

component contains six patterns specified in the explained pattern language format.

These patterns are connected with each other by the context of each pattern, and

ordered by the design sequence:

 Pattern 1 specifies the surface requirements.

 Pattern 2 analyses the functional performances according to the output of

Pattern 1.

 76

 Pattern 3 selects suitable specification to ensure the surface functions

correctly.

 Pattern 4 suggests a function correlation approach between surface texture

parameters and the functional performances.

 Pattern 5 provides an alternative route through the surface change monitoring

approach to find the relations between functional performances and surface

parameters.

 Pattern 6 specifies the tolerance values for the parameter selected from

pattern 4 and 5.

In this project, the pattern language provides some possible solutions allowing users to

make their own judgements. Every pattern in the Function component is represented

as a class category which contains seven internal objects: name, context, problem,

solution, forces, examples, next pattern. All of them are represented in posets. As

illustrated in Figure 3.24, all patterns are connected with each other, which form also

an integrated poset.

Figure 3.24: Product order of Function component.

Actually, Figure 3.24 is a product order which is a Cartesian product of two posets:

 77

namely, patterns collection poset and internal object poset. As the transitivity

definition of poset, all arrows among internal objects must commute (e.g. if f:

context1→ name, g: name → problem, so f g must equal to k: context1→ problem).

The Pattern 4 and Pattern 5 are two optional approaches to find the relations between

function performances and surface parameters, which uses injection functors to form

Pattern 6 together. The seven internal objects are key elements in the pattern language

(Rising, 1998 [76]):

 Name: A clear format header to describe the pattern.

 Context: Suitable scenarios to apply the application problem.

 Problem: A statement of the application problem.

 Solution: A viable solution to the problem. Many problems might have more

than one solution. The fitness of a particular solution is determined by the

context of problem domain.

 Example: A case analogy on the problem solution.

 Force: There often exists contradictions when choosing a solution to a

problem. Each solution is ranked with weights described by certain forces.

 Next pattern: Pointing to the next pattern required to form an integrated

pattern language instance.

The discussion above illustrates that the Category Theory can give a complete

implementable representation for a pattern language in the Function component with

an open platform for GPS experts to add more knowledge in future. This pattern

language can help users to find the best way to carry out their tasks with a clearly

guided procedure. Moreover, users can record their valuable knowledge (e.g. a surface

parameter for a specific function) within a logical linked structure.

3.7.2 Knowledge modelling in Specification Component for Surface Texture

The Specification component provides detailed geometrical specifications for the

selected surface parameters including information obtained from partition, extraction

and filtration operations. For example, to satisfy the functional requirements of a

cylinder liner, the Function component of VirtualGPS system suggests using the

surface texture parameter Rz with a tolerance value at 4um. The Specification

component in turn recommends the complete information relating all these operational

procedures such as evaluation length for extraction, and the bandwidth for filtration.

Due to the complexities and intertwined attribute relationships and constraints among

 78

all viable operational procedures, Category Theory is used to model them in diagrams

devised in the categorical object model. Figure 3.25 gives an example of the modeling

diagram when defining a default constraint between the operations of extraction and

partition.

Figure 3.25: Pullback representation of the constraint “equals”.

As shown in Figure 3.25, extraction and filtration are modelled as class categories.

The c1 demonstrates a constraint relationship between extraction and partition, which

is structured by the construct of a “pullback” of Category Theory. A pullback is a

product with restricted objects. In the case of Figure 3.25, the expression “equals::

sampling_length × up_limit” is the name and type of the pullback, where

“Extractionc1×Filtration” is the restricted product over c1 (c1 represents the restricted

object – “ExtractionToFiltration” with restricted condition “equals” here). The

notations 1r and 2r are projections of the product into the initial instance

categories of the “Extraction” and “Filtration” respectively. While 1r , 2r are

represented as arrows injecting the initial instance categories into the pool of instances

of this constraint relationship. The detailed explanations on the construct of

“pullback”, and how it can be used in representing constraints among entities, can be

found in a paper published by Nelson etc. in 1994 (Nelson et al., 1994 [66]). The

reason why knowledge base designers use pullback rather than universal product to

represent the relationships or constraints in modelling of the GPS knowledge base is

that the pullback can express stricter semantic construct for relationship linkages. The

stricter semantic construct is of vital importance for knowledge base designers to

clarify their design thoughts especially in a refinement design process and to

communicate with other designers. In a contrast, the object-oriented database

developers focus more on object-oriented development issues, so they do not need

such strict semantic construct but the well defined relationship category (restricted

object). The restrict object will become relationship category, the restrict condition

 79

will become methods in the relationship category, and the relationship category will

be stored the same as a class category. The detailed example on how to mapping the

pullbacks in knowledge base modellings into categorical products for database schema

is demonstrated in Section 3.8. Figures 3.26 and 3.27 show the other two default

constraints in the Specification component, which are modelled in same way as Figure

3.25.

Figure 3.26: Pullback representation of the constraint
“determine_sampling_length”.

Figure 3.27: Pullback representation of the constraint “determine_up/low_limit”.

A higher level relationship − “Callout” is demonstrated as Figure 3.28.

 80

Figure 3.28: Pullback representation of the “Callout” relationship.

Figure3.28 shows how these three lower level constraints (Figure 3.25, Figure 3.26

and Figure 3.27) form the overall modelling of the knowledge base in the

Specification component. The dashed line arrows in Figure 3.25, 3.26, 3.27, and 3.28

represent method arrows, while the dotted line arrows are functional dependency

arrows between internal objects (except attribute arrows). Thus, by representing

surface texture operational procedures as categories, attributes of them as internal

objects, and the corresponding relationships and constraints as pullbacks between

categories, the whole Specification component can be logically and structurally

expressed. All arrows in Figure 3.25, 3.26, 3.27, and 3.28 must commute in a manner

to ensure consistency.

3.8 Categorical Representation for a Database Schema

After describing the knowledge base in Category Theory terminology, this project

moves on to the next phase of developing an innovative DBMS with the ability of

fully supporting the devised categorical object model. The first step in developing this

 81

categorical DBMS is to do further refinements on these categorical object modelling

diagrams devised in knowledge base design stage. Once these refined object models

are established, the DBMS will have a sound mathematical foundation to ensure the

integrity of the database schema when applying operations such as addition, deletion,

and modification. The object models in categorical DBMS refines object models in

the GPS knowledge base (see Section 3.7.2) by allowing them more computing

focused from following aspects:

 As this project has chosen Java to implement the system and Java is a strongly

typing language, the categorical object model for categorical DBMS should be

added with a typing mechanism. The detail explanation on the typing

mechanism is discussed in Section 3.4.5. The example of defining types for

internal objects can be seen in Figure 3.30.

 The “pullback” construct for relationships or constraints in modelling of a

knowledge base is generalized to be the “product” construct. Compared with

relational algebra which defines relationship as projection or Cartesian product,

the categorical representation of relationships in the categorical DBMS is the

categorical product. As a product for a relationship or a constraint is mapped

on the category level, it is formed by categories and functors, instead of

internal objects and arrows defined in the basic definition. Moreover, the

vertex of the product becomes a category – relationship category. The

relationship categories are stored and managed in the DBMS in the same way

as class categories and instance categories. See Figure 3.30.

 As an object-oriented DBMS assigns a unique identifier to every instance of a

database entity, the vertex of the universal cone (limit) can be used to model

the unique identifiers (see Figure 3.30) (Nelson and Rossiter, 1995 [77]). If we

view the universal cone as a category, the vertex of the universal cone is

actually the initial object in this category with an arrow from itself to every

other internal object (attribute arrows) in the same category, which stores a

unique automatically generating identifier values. These identifier values

cannot be modified by applications at run time and they are independent of

how objects are created and manipulated. By modelling the database in this

style, users have been spared the task of defining keys (primary keys or

candidate keys).

 82

 The categorical object modelling diagrams in the categorical DBMS are also

required to remove all transitive functional dependencies on initial internal

objects in the models used in knowledge base modelling to satisfy the BCNF

normal Form (except the atomic requirement in 1NF). This is achieved by

removing functional dependency arrows in categories through building new

lower level categories, and then linking them with their corresponding higher

level categories by using “faithful” functors. The functional dependency

arrows that need to be removed do not include these attribute arrows. For

example, the arrow d1 in Figure 3.26 indicates that the internal object

“parameter_name” is functional dependent on internal object

“parameter_type” in the class category of “Measurand”, which again make the

“parameter_name” transitive depending on the initial object of “Measurand”.

Therefore, a new class category named “ParameterInfo” needs to be devised

and a faithful functor injects this class category into the “Measurand”. See

Figure 3.29.

Figure 3.29: Two level class category construct.

Based on the above four points, Figure 3.30 gives an example of a refinement of

Figure 3.28 for database schema modelling, which is actually a 5-ary product

relationships ― “Callout :: direction symbol × manufacture type symbol ×

manufacture method × num_cutoff × filter type × up limit × low limit × tolerance

type × parameter type × value × machine allowance”. The P#, E#, F#, CR# and M#

in the diagram are unique identifiers for “Partition”, “Extraction”, “Filtration”,

“Comparion” and “Measurand” respectively. The F1, F2, F3, F4 and F5 are functors

that project from relationship category “Callout” into the five class categories. In

“Extraction” class category, the “evaluation length = num_cutoff sampling_length”

clause indicates the two arrows (m and n) are method arrows and the other arrows are

dependency arrows. In Figure 3.30, 1x indicates primitive types such as double,

 83

integer or string in Java and ClassNamex indicates class category types, arrow types or

other complex data structure types such as Tree, List and Collection.

Figure 3.30: The 5-ary product relationship for the “Callout”.

The detailed implementation explanations (inference rule specifications) for all

method arrows defined in Figure 3.30 can be referred to in Section 5.3.3 of Chapter 5.

Compared with Figure 3.28, Figure 3.30 is more structured and computing oriented,

which focus on objects and relationships or constraints among these objects. However,

Figure 3.28 is more semantic oriented and focus more on system logics and rules.

3.9 Summary

This chapter illustrates how to use Category Theory to model the whole VirtualGPS

system with a set of detailed examples. This chapter also proves that the Category

Theory can serve as a formal mathematical basis for object-oriented knowledge

applications.

 84

CHAPTER 4 IMPLEMENTATION OF THE CATEGORICAL

DBMS

This chapter records in detail the implementation of the categorical DBMS. The

implementation includes discussions on how the DB4O (Database for Objects) was

chosen to be a basis for the implementation, the categorical ODMG architecture for

the categorical DBMS, extensions on the physical level of the DB4O, and how to

implement the categorical object model on it.

4.1 Basic Criteria for Implementation

By making use of the basic features of existing object-oriented DBMS products such

as physical storage mechanism, indexing strategy and transactional controller etc., the

so-called “categorical” DBMS based on Category Theory can be developed in an

efficient manner. As Table 2.9 shown in Section 2.2.4.2 of Chapter 2, it is legitimate

to choose the Objectivity/DB as basis to develop the categorical DBMS for its ODMG

standard compliance. However, this project has chosen the DB4O to form the internal

level of the categorical DBMS for the following reasons:

4.1.1 Conformability

As Table 2.9 highlighted, there are currently no matured DBMSs that can fully

support ODMG 3.0. Figure 4.1 illustrates the architecture of ODMG 3.0.

 85

Object Definition
Language

Object Model

.odl Files

Pre
Processor

Java Language
Bindings

ODMS class files

Object Interchange
Format

Data Set

Database
Object Query

Language

Java
Complier

Java class source codes(.java)Java objects (holding data)

Input
Processor

output
Processor

Figure 4.1: The architecture of ODMG 3.0.

Figure 4.1 also highlighted the development process of an ODMG compliant Object-

oriented Database Management System (ODMS): first, database designers start with

representing object models in a diagrammatic way (e.g. E-R diagram) and then using

an Object Definition Language (ODL) to translate the diagrammatic model into the

programming language independent schema codes. The ODMG compliant ODMSs

should offer a pre-processor that can automatically generate source codes in the form

of Java class declarations according to the schema code generated. After database

programmers bind the detailed implementation codes (methods) into these Java class

declarations, a set of objects holding real data will be created on these Java classes,

and both Java classes and their objects will be compiled by a standard Java compiler.

If required, objects can be saved into a file following an Object Interchangeable

Format (OIF) to enable data sharing in different ODMSs. Finally, the input processor

will link necessary ODMS control files for maintaining objects storing in the

underlying database. The ODMS standard also defined an Object Query Language

(OQL) based on the SQL-92, with the output processor in charge of translating the

OQL into internal codes understandable by the ODMS.

However, there are three main obstacles in this architecture design:

 86

 Object Model Inefficiency. The ODMG 3.0 did not define any specific

diagrammatic facility to represent its object model. Most of the ODMG

compliant ODMSs use E-R or E-R extension diagrams to visualize

representations of applications. Moreover, the object model defined in ODMG

suffers from the same drawback as other object-oriented data models due to

the weak mathematic foundations and lack of semantic constructs to support

new applications. For example, the object model in ODMG can only support

the definition of binary relationships, without supporting n-ary relationships.

In this project, Category Theory was adopted to model the complex

relationships and constraints among GPS standards, which avoided any

mapping code generation between the data in a database and the data from an

application through using the same model mechanism in both sides. Thus an

object-oriented DBMS that can fully support the categorical object model is

required in this project.

 Intrinsic Implementation Obstacles. Some theoretical points defined in the

ODMG standards are difficult to be implemented in ODMSs. For example, it

is challenging to build a pre-processor that can fully support automatic

translating of ODL into object-oriented languages. In Objectivity/DB, the

ODL is actually the standard C++ 3.0 language with extensions to support

persistence-capability and object associations (Objectivity, Inc., 2006 [78]).

Therefore, although several current mainstream ODMSs claimed to be ODMG

compliant, in reality they fall short of the bar.

 Out of date of OIF. The latest version of ODMG was defined in 2000. Almost

at the same time, a “new” universal data interchange technique −XML was

published (XML 1.0) in 1998 (Harold, 2004 [79]). Since then, XML has

become the most studied and adopted standard for describing structured data

to be exchanged between applications (e.g. database application), especially

acrossing the global Internet and World Wide Web (WWW) (Harold, 2002

[80]).

4.1.2 Compatibility

Based on the discussions above, this project needs to devise a new object model which

can represent all potential constructs required in the GPS knowledge base; to develop

a pre-processor to translate the extended ODL codes into standard Java classes; and to

 87

apply XML to substitute the obsolete OIF defined in the ODMG for data exchanges.

This in turn required the internal programming routines of the selected DBMS to be

updated accordingly. Although, Objectivity/DB and Versant are products developed

by large corporations, with lots of extra functions for helping users to create and

manage their databases. They are both pre-packed and do not allow changes to their

internal codes. Moreover, the costs of both products were also prohibitive for such a

research project. Another open source object-oriented DBMS evaluated − Ozone − is

lack of application and learning supports, which have not been improved since Ozone

1.2 released in 2004.

4.1.3 Robustness

DB4O is an open source native object database for Java and .NET, which can support

all features defined in the first manifesto that an object-oriented DBMS must include

and should include (Db4objects, Inc., 2007 [81]). The DB4O can be directly

embedded in the host Java or .NET applications without requiring any extra

installations or setups on local platform in advance. It has small memory foot-print

(500kb library) while supporting object caching, native garbage collection, ACID

transaction (Atomicity, Consistency, Isolation, and Durability), client/server

architecture, automatic management and versioning of database schema (ETH, 2007

[82]). The DB4O provides the General Public License (GPL), which enables easy

download, studying, evaluation and usage of DB4O in GPL compliant projects.

Moreover, DB4O members can get free developer licenses to contribute to the

DB4O’s ongoing developments. It was decided in this research that the DB4O is a

suitable tool and template for implementing the categorical object model devised in

this project. A detailed introduction of DB4O will be presented in Section 4.2.

It was concluded based on the above considerations that this project decided to

produce an ODMG 3.0 extension named “categorical ODMG” for forming the

following architecture as illustrated in Figure 4.2.

 88

Categorical Object
Definition Language

Categorical ODMG
Standard

.odl Files

Categorical
Pre-

Processor

Java Language
Binding

DB4O Library files

XML Parser

Data Set

DB4O Database
Categorical Object
Query Language

Java
Complier

Java class source codesJava objects (holding data)

Input
Processor

output
Processor

Categorical Object
Model

Figure 4.2: The architecture of categorical ODMG.

The customised categorical ODMG extends the ODMG 3.0 with a categorical object

model, an extended ODL which supports all semantic constructs of the categorical

object model (e.g. definition of n-ary relationship and auto-persistent definition), a

series of Java binding Application Program Interfaces (APIs) to support categorical

object model, and a categorical OQL based on functor mappings and compositions.

4.2 Native Design of DB4O

Built on new object database technology, DB4O is currently the only viable database

that is compatible to both Java and .NET for providing cross-platform portability that

liberates users from proprietary vendors' high licensing fees (Db4objects, Inc., 2008

[83]). DB4O (database for objects) was developed by Db4objects, Inc., which is a

privately-held company based in San Mateo, California (Paterson, 2006 [84]). It was

firstly created by the chief software architect Carl Rosenberger and shipped in 2001.

More than one hundred commercial and private pilot customers formed a loyal user

community that endorsed the DB4O from its earliest days and proved it ready for

mission-critical applications prior to its commercial launch in 2004. The visions of

DB4O can be summarized as followings (Db4objects, Inc., 2005 [86]):

 89

 Development of a lightweight, apt object-oriented persistence solution with the

availability of a popular, affordable, embeddable and open source.

 Becoming the mainstream persistence architecture on all mobile and

embedded devices running on Java or .NET.

 Achieving consolidation in a market that overruns with hundreds of vertical

niche vendors offering predominantly outdated or unsuited pre-relational or

relational technology at exorbitant prices at present.

The DB4O provides a wide array of unique, object-oriented database

functionalities by harnessing the benefits of object-oriented programming languages:

seamless object-oriented storage (store any complex object with just one line of code);

object-oriented replication (dRS); and object-oriented queries (e.g. Native Queries,

and Simple Object Database Access (SODA)). The core features of DB4O can be

summarized as followings (ETH, 2007 [82]; Paterson, 2006 [84]):

 No requirement on data conversion or mapping (directly object storage support)

 No changes required to classes to make objects persistent

 Single line of code to store objects of any complexity and persistence by

reachability

 Embeddable to large and complex systems

 Support Java generics

 ACID transaction support

 BTree index support

 Client/Server support

 Automatic management and versioning of database schema

 Object caching and integration with native garbage collection

 Seamless Java or .NET language binding

 Native Queries/SODA

 Portability and cross-platform deployment

Based on these core features, the architecture of DB4O can be illustrated as in Figure

4.3:

 90

Figure 4.3: System architecture of the DB4O.

In comparison with closed-source products such as Objectivity/DB and Versant,

the DB4O has five distinctive advantages:

1. DB4O is an open source database with small library files (500k). Database

developers in this project can study its structure and make necessary changes

to support the categorical object model.

2. DB4O focuses on the embedded and portable database market driven by

object-oriented programming environments. For example, a German company

− Mobilanten gained a competitive edge in its new product range by providing

a Personal Digital Assistant (PDA)-based solution for field workers of mid-

sized utilities using DB4O, whereas competitors using the relational DBMS

required bulky laptops to process assets, orders, and customer information

(Replicating some 300,000 objects was just not feasible using relational

 91

databases on a PDA, while synchronizing objects via DB4O proved to be

extremely efficient) (Db4objects, Inc., 2005 [85]). Through embedding the

DB4O core, this project can be moved to any compatible platforms without

requiring complex installation procedures.

3. DB4O is quicker at runtime than other bulky object-oriented DBMSs. Various

tests run by INDRA Sistemas’s new real-time control system on the Spain’s

high speed bullet train, the AVE, had shown that no other systems except the

DB4O can handle the huge load of processing over 200,000 heterogeneous

objects per second (Db4objects, Inc., 2005 [85]).

4. ACID transaction support.

5. Professional and stable user community. DB4O has more than 35000

registered users up to 2008 who are contributing to DB4O’s online community

for its further development (DB4O Developer Community, 2008 [86]).

In addition to adding codes for supporting the categorical object model on the DB4O,

the categorical DBMS also provides five extensions on the physical level of DB4O,

which enabled the DB4O customisation and superior performance for the VirtualGPS

system in this research. The five extensions will be illustrated in section 4.3.

4.3 DB4O Customisation

The five extensions of DB4O supported by the VirtualGPS development in this

research are: the extension of the Simple Object Database Access (SODA) in DB4O

to support functor mappings and compositions, the extension for supporting automatic

persistence, the extension for supporting the storage of physically clustered objects,

the extension for supporting referential integrity checking, and the extension for

supporting the categorical Object Definition Language (ODL). The detailed

demonstration of the extension of the SODA to produce the categorical manipulation

language in this DBMS can be found in sub-section 4.4.1.5. The other four are

discussed in Section 4.3.1, 4.3.2, 4.3.3 and 4.3.4 respectively.

4.3.1 Automatic Persistence

This means persistence capabilities can be automatically granted to instance categories

of class categories that extends the “PersistCategory” class category. The purpose for

adding this feature into the categorical DBMS is to support the automatic result

storage: all instance categories extending the “PersistCategory” class category

generated during a categorical query process will be automatically stored back to the

 92

database (e.g. the “Callout” class category as example).

4.3.2 Physically Clustered Objects Storage

This extension enables a group of related instance categories to be stored physically

together in the categorical DBMS by using the “ClusterContainer” class. The

“ClusterContainer” has a “cluster (Category category)” method to add an instance

category into a cluster. The main motive to do this is to let the categorical DBMS to

retrieve, delete or update a group of related instance categories quickly and efficiently.

4.3.3 Referential Integrity

Referential Integrity is added into DB4O to check whether an instance category is

referred by other instance categories or not. A special byte will be added to the storage

schema on every instance category to record its reference number.

4.3.4 ODL support

The ODL used in this categorical DBMS is based on the ODL defined in ODMG 3.0

with extensions to support automatic persistence capability, n-ary relationship

definitions, and arrow mappings etc., in the forms shown below:

class ExtractionToFiltration : extent PersistCategory {
 attribute double sampling_length;
 attribute double up_limit;
 relationship {
 ary =2;
 functor1 = <Extraction::sampling_length(1)> // 1:1 relationship
 functor2 = <Filtration::up_limit(1)> // 1:1 relationship
 }
 }

List 4.1: ODL definition for “ExtractionToFiltration” class category.

Once the ODL schema conforms to the diagrams of the object model being specified,

it needs to be validated against the categorical ODL specification to determine if the

syntaxes in the ODL schema are correct. The Java Compiler Compiler (JavaCC) tool

performs this syntax checking. JavaCC is a parser generator designed for using with

Java applications (Java Net, 2007 [87]). JavaCC reads a grammar specification and

generates a parser (Java program) that is used to recognize matches to the specified

grammar. This parser is specified in a file with a ‘.jj’ extension. For example, after the

“ExtractionToFiltration” has been correctly parsered by JavaCC, the categorical

DBMS will automatically generate an “ExtractionToFiltration” Java class (class

category). The Table 4.1 shows the mapping relations from ODMG collection data

types in ODL to Java classes defined in the categorical DBMS.

 93

ODMG Interface Java Bindings
Categorical

database
Implementations

Description

DArray java.util.List CTArray Ordered, fixed size

DList java.util.List CTTree

Ordered, variable size,
used to add/remove
instance categories(Java
objects)

DSet java.util.Set CTSet

Unordered, no
duplications, used to
check duplicated instance
categories

DCollection java.util.Collection CTCollection Ordered, fixed size

Table 4.1: The Java binding APIs in the categorical DBMS.

The next section focuses on discussing processes to implement the categorical

object model on the DB4O.

4.4 Implementation of the Categorical DBMS

The categorical DBMS devised in this research satisfies the classic three-level

architecture defined in ANSI/SPARC: a physical database level, a conceptual database

level and an external database level (Tsichritzis and Klug, 1978 [88]). Figure 4.4

shows the architecture of the categorical DBMS.

Categorical Database System

Database User Interfaces/Views

Database Management System

Connecting Interfaces

Kernel

Physical Storage Files

XML Output XML Output
Categorical database model

Figure 4.4: The architecture of the categorical DBMS.

As Figure 4.4 demonstrated, the physical database level of the categorical DBMS

contains a set of physical storage files and a kernel (file manager), which is in charge

of controlling the physical data storage, building physical storage schemas and

handling manipulations. The categorical object model is resided on conceptual

database level, which is responsible for describing the problem domain (database

schema) and to specify what needs to be stored in the database while ensuring the

database integrity at all times. The conceptual database level also contains a collection

 94

of connecting interfaces which are responsible for translating physical raw data into

conceptual objects, controlling concurrent accessing and passing objects and their

relationships or constraints to user interfaces. The categorical DBMS contains two

kinds of data: metadata and application data. Besides performing queries on

application data, the metadata (database schema) itself can also be queried for

information such as get the details of a class category defined in a database schema

including the class name, its field names, its field types, number of its instance

categories and so on. The external database level can display appropriate data on the

user interfaces for different users. This DBMS can also generate XML reports to

record and demonstrate querying results, which supports internet and multi-user

applications through a unified consistent view port for the data crossing through whole

manufacturing enterprise. The Section 4.4.1 discusses the implementation of the

categorical object model following the specification of the object model discussed in

section 3.4.

4.4.1 Realizing the Categorical Object Model

The categorical DBMS in this research is a compact and autonomous object-oriented

database management system implemented by pure Java language. As with all main

stream relational DBMS products, it also contains a data model, a database entity

definition language, a database entity query language, the physical storage and

retrieving mechanism, and a small visual management software package. The database

entity definition language and the query language were both developed using Java to

support semantic constructs of the categorical object model. The database entity

definition language contains a set of Java classes (e.g. “Category”, “Pullback” and

“Functors”) to create database entity specifications. These Java classes are basically

organized by Java object operations such as accessor and mutator. An accessor

examines the state of an object but does not change it. It typically returns a result in a

pre-defined form (Sun Developer Network (SDN), 2005 [89]). Accessors are often

call "getters", and their names often start with a “get”. A Java method that changes the

state of an object is called a mutator (Sun Developer Network (SDN), 2005 [89]).

Mutators typically do not return a result (are declared to return “void”), although some

mutators can both change state and return a result (e.g., nextToken in StringTokenizer).

Mutators are often called "setters", which just change state without looking at the

current values, and their names often start with a “set”. Accessors and mutators will

 95

increase the overhead on an application programme, but are usually trivial, especially

when compared with other factors, such as questionable database designs (Ambler,

2000 [90]). Accessors and mutators can improve the maintainability of the object

model in the following ways for this research (Ambler, 2000 [90]):

 To provide a single point for updating instance categories (Java objects).

Parent applications can only have controlled points for updating each attribute,

making it easier to modify and to test. Thus, internal objects in instance

categories (attribute values in Java objects) are safely encapsulated.

 To enable constraint encapsulation. For example, in a category, values of some

internal objects may be constrained by values of other internal objects. These

constraints can be defined in mutators using bulk setter method (update several

attributes at once to keeping constraints among them). Thus, the constraints

will be automatically enforced when programmers set values of the constraint

internal objects. Moreover, if a critical constraint should be enforced on a

internal object, such as “a value must less than 10.0 µm”, then a logical place

to put this clause will be a mutator (setter).

 To enable change encapsulation. If the business rules pertaining to several

attribute changes, accessors and mutators can both be potentially modified to

respond to the business rules.

 To reduce coupling cost between a subclass and its superclasses. Accessors

reduce the risk of the fragile base category problem where changes in super

categories ripple throughout its sub categories.

Therefore, accessors and mutators are widely used in this project to reduce

coupling of the database with its host application. The remainder of this section

focuses on discussing the implementation of the categorical object model for this

categorical DBMS — an object-oriented DBMS with a formal object model, as well

as the object definition and query languages. Some fragments of the actual Java codes

are also demonstrated for explaining the function tasks and forms.

4.4.1.1 Complex classes and objects

The definitions of database entities (class categories) are treated as subclasses of a

Java class named “Category” — the base class category. The “Category” class

contains an object instance ID and a class category ID. These two unique internal IDs

are assigned automatically by the categorical DBMS using the physical storage

 96

addresses of the class category metadata and its instances in the physical storage files.

All internal objects of a category can then become the “target” of arrow attributes

defined in a class category. As specified in Section 3.4.1, each subclass of the

“Category” (class category) should hold a collection of arrows where these arrows can

either represent behaviors (methods) or associations (dependencies). For dependency

arrows, the “Arrow” class is developed for holding a dependency between two internal

objects in a category, for example, arrows from the unique object instance ID to other

internal objects in a class category. There are two kinds of behaviour arrows – the

ones between internal objects in the same class category and the others between

different class categories. These two kinds of behaviour arrows will both become

methods of the corresponding Java classes. The main difference between these two is

when operating in the same class category, the behaviour arrows will become methods

in this class category but when crossing different class categories, a class category

extending the “Product” class category will be defined and the behaviour arrow will

become a method in this subclass. As discussed in Section 3.4.1, the creation of an

instance on a iCLS is actually assigning a functor from a class category iCLS to an

instance category ()
iCLSjOBJ . This functor is implemented by the “new” operation in

Java, which can automatically maintain a relation between the object instance and its

belonging class. Java can automatically check whether objects are conforming to the

definitions of their classes (e.g. values are in correct types, a method has correct

parameters).

package cpt.ctdb.dataModel;
import java.lang.reflect.*;

public class Category {
 private int classInternalId;
 long objectInternalId;
 String name;
 Arrow[] arrows;

 public void setClassInternalId(int classInternalId){
 this.classInternalId=classInternalId;
 }

 public void setObjectInternalId(long objectInternalId){
 this.objectInternalId = objectInternalId;
 }

 public void setName(String name){
 this.name = name;
 }

 public void setArrowSources(Object obj,int internalID){

 97

 Field[] fields=obj.getClass().getDeclaredFields();
 for(int i=0; i<fields.length;i++){
 if((fields[i].getType().getName()).endsWith("Arrow")){
 try{
 ((Arrow)fields[i].get(obj)).
 setSource(Integer.valueOf(internalID));
 }catch (Exception e){
 e.printStackTrace();
 }
 }
 }
 }

 public void addArrows(Arrow[] arrows){
 this.arrows = arrows;
 }

 public int getClassInternalId(){
 return this.classInternalId;
 }

 public long getObjectInternalId(){
 return this.objectInternalId;
 }

 public String getName(){

return this.name;
 }

 public Arrow[] getArrows(){
 return this.arrows;
 }
}

List 4.2: Java codes for “Category” class category.

As demonstrated in the List 4.2, the “Category” class contains a set of interface

methods to “set” and “get” unique internal IDs. The kernel part of the categorical

DBMS contains codes which can automatically generate unique internal IDs and

assign them to instance categories through the “setClassInternalId()” and

“setObjectInternalId()” interface methods of “Category” class. Moreover, a

“setArrowSources()” method is also devised here to set the source (unique object

instance IDs as discussed before) to the “source” property of every dependency arrow.

package cpt.ctdb.dataModel;
public class Arrow {
 String name;
 Object source;
 Object target;

 public void setName(String name){
 this.name=name;
 }

 public void setSource(Object source){
 this.source = source;

 98

 }

 public void setTarget(Object target){
 this.target = target;
 }

 public String getName(){
 return this.name;
 }

 public Object getSource(){
 return this.source;
 }

 public Object getTarget(){
 return this.target;
 }

}

List 4.3: Java codes for “Arrow” class category.

As shown in the List 4.3, the “Arrow” class contains the source and target internal

objects and a unique name for this arrow. The “Arrow” class is used to record

dependency arrows in the categorical object model.

4.4.1.2 Relationships

As discussed in Section 3.4.6, if relationships occurred at the categorical level, they

are represented as categorical products between categories with consistency checks

such as cardinality, as well as the membership of a product, in terms of epimorphisms

and monomorphisms. The following code snippet in List 4.4 shows an example of

defining a product relationship.

public class Product{
 String name;
 int ary;
 Object vertex;

 public void setName(String name){
 this.name=name;
 }

 public void setAry(int ary){
 this.ary=ary;
 }

 public void setVertex(Object vertex){
 this.vertex = vertex;
 }

 public String getName(){
 return this.name;
 }

 public Object getVertex(){
 return this.vertex;

 99

 }

 public CTDBObjectSet getAllInstances(Class a_class){
 //get all instance categories for a class or a relationship

//category.
 }
}

List 4.4: Java codes for “Product” class category.

The “Product” class implements the product construct in the categorical object model,

which contains the name and ary number of the product. The “vertex” is an instance

category that holds all information of the relationship. The process of creating a 4-ary

product relationship “ProductForCallout” in the DBMS is illustrated as following:

 Creating class categories that participate in this relationship. An example of

creating “Measurand” class category is shown in Appendix A, where

“Filtration”, “Extraction”, and “Partition” are created in same way as

“Measurand”. The “Measurand” class must be extended from the “Category”

class defined in Section 4.4.1.1 to enable the DBMS to treat it as a category.

 Creating a class category — “Callout” — to be the “vertex” in a “Product”

class. The “Callout” class must be extended from the “PersistCategory” class.

The “PersistCategory” enables the “Callout” with automatic storage capability.

Appendix B shows the detail of its implementation.

 Creating a class category “ProductForCallout” that is extended from the

“Product” class category defined in section4.4.1.2 to allow the DBMS dealing

with it as a product relationship category. Appendix C highlights the detail of

this process. The categorical DBMS offers methods for users to check the

types of functors involved in the product construct through verifying the

cardinality and membership of each class category participating in this

relationship linkage. These “checkXXX()” methods in the class category

“ProductForCallout” carry out the checks for the cardinality and membership

of “Measurand” class category. The detailed definition of the “Functor” class

category will be explained in Section 4.4.1.4.

 Creating instances for class categories defined above and using them to

populate the “ProducForCallout” class category. Once the instances for

“ProductForCallout” are created, they will be stored in the database. A code

snippet of this process is listed in Appendix D:

 100

4.4.1.3 Encapsulation

The categories in this project encapsulate all the relevant attributes and operations

together as a collection of internal objects and arrows among them. Every class

category has been implemented as a Java class, where the internal objects become

attributes of a class category in appropriate data types, and the method arrows become

methods with correct parameters. All the properties of a category can be referenced or

navigated through using Java’s native reference and name space mechanisms. The

internal unique identifier (initial internal object) can be used to distinguish a instance

category from others created on the same class category.

4.4.1.4 Functors and Natural Transformations for Comparison Processes

In this project, functors and natural transformations were mainly used to model

comparison operations for every stable measurement procedure in the verification

stage. To implement these comparison operations, the following steps had been taken:

 Devising a “Functor” class to hold arrow mappings from one category to

another and an “ArrowMapping” class to record the details of an arrow

mapping, as shown in List 4.5.

import cpt.ctdb.CTCollection;
public class Functor {

String name;
Category source;
Category target;
CTCollection arrow_mappings;

public void setName(String name){

 this.name = name;
}

public void setSource(Category source){

this.source = source;
}

public void setTarget(Category target){

 this.target = target;
}

public void setArrowMappings(CTCollection arrow_mappings){

 this.arrow_mappings = arrow_mappings;
}

public String getName(){

 return this.name;
}

public Category getSource(){

 return this.source;
}

 101

public Category getTarget(){
 return this.target;

}
}

public class ArrowMapping {

Arrow source_functor;
Arrow target_functor;

public void setFunctorSource(Arrow source_functor){

 this.source_functor = source_functor;
}

public void setFunctorTarget(Arrow target_functor){

 this.target_functor = target_functor;
}

public Arrow getFunctorSource(){

 return source_functor;
}

public Arrow getFunctorTarget(){

 return target_functor;
}

}

List 4.5: Java codes for “Functor” and “ArrowMapping”class categories.

 Devising a “MeasurandForComparison” class to hold all measurands and their

corresponding information for every measurement procedure, as displayed in

List 4.6.

import cpt.ctdb.CTTree;
import cpt.ctdb.dataModel.*;

public class MeasurandForComparison extends CTTree{

 public Arrow interObjId_id;
 public Arrow interObjId_measurandType;

 public void setArrows(Arrow interObjId_id, Arrow
 interObjId_measurandType){
 this.interObjId_id= interObjId_id;
 this.interObjId_measurandType= interObjId_measurandType;

 }

 public void setTargetForIdArrow(int id){
 this.interObjId_id.setTarget(Integer.valueOf(id));
 }

 public void setTargetForMeasurandTypeArrow(String

meaurandType){
 this.interObjId_id.setTarget(meaurandType);
 }
}

List 4.6: Java codes for “MeasurandForComparison” class category.

 Devising a “Value” class to hold the suggested tolerance values or measured

 102

values as shown in List 4.7

public class Value extends CTTree{
 public Arrow interObjId_id;
 public Arrow interObjId_Value;

 public void setArrows(Arrow interObjId_id, Arrow

interObjId_Value){
 this.interObjId_id= interObjId_id;
 this.interObjId_Value= interObjId_Value;
 }

 public void setTargetForIdArrow(int id){
 this.interObjId_id.setTarget(Integer.valueOf(id));
 }

 public void setTargetForValueArrow(double meauredValue){
 this.interObjId_id.setTarget(Double.valueOf(meauredValue));
 }

 }

List 4.7: Java codes for “Value” class category.

 Devising a “NaturalTransformation” class to implement mappings between

functors, as shown in List 4.8.

public class NaturalTransformationSquareMaps {
 Category source_functor_left;
 Category source_functor_right;
 Category target_functor_left;
 Category target_functor_right;

 public void setSourceFunctorLeft(Category source_functor_left){
 this.source_functor_left = source_functor_left;
 }

 public void setSourceFunctorRight(Category source_functor_right){
 this.source_functor_right = source_functor_right;
 }

 public void setTargetFunctorLeft(Category target_functor_left){
 this.target_functor_left = target_functor_left;
 }

 public void setTargetFunctorRight(Category target_functor_right){

 this.target_functor_right = target_functor_right;
 }
 ……………//getter methods

}

public class NaturalTransformation {
 String name;
 Functor source;
 Functor target;
 List NaturalTransformationSquareMaps;

 public void setName(String name){
 this.name = name;
 }

 103

 public void setSource(Functor source){
 this.source = source;
 }

 public void setTarget(Functor target){

this.target = target;
 }

 public void setNaturalTransformationSquareMaps(List
 NaturalTransformationSquareMaps){
 this.NaturalTransformationMaps =
 NaturalTransformationMaps;
 }

 public String getName(){
 return this.name;
 }

 public Functor getSource(){

 return this.source;
 }

 public Functor getTarget(){
 return this.target;
 }

 public List getNaturalTransformationMappings(){
 return this.NaturalTransformationMappings;
 }

}

List 4.8: Java codes for “NaturalTransformation” class category.

The “NaturalTransformationSquareMaps” class was used to ensure the

consistency and commutations of the natural transformation square as shown

in Figure 3.22 in Chapter 3. The “Comparison” class category uses

“NaturalTransformation” to implement comparisons in a stable measurement

procedure. The “Comparison” class category offers comparison methods in

form as shown in List 4.9.

 public int compare() {
 List temp = this.getNaturalTransformationSquareMaps();
 For(int i=0;

i<temp.size();i++){ If(!((Double)this.interObjId_
measuredValue.getTarget()).compareTo((Double)(((Com
parisonValue)(NaturalTransformationSquareMaps)
temp.get(i)).getTargetFunctorRight()).getValueArrow().ge
tTarget()){

 return false;
 }

}

List 4.9: Java codes for “Compare()” method.

4.4.1.5 Query Formations

The query strategy defined in the VirtualGPS system uses functors to map from

 104

inputting instance categories to outputting instance categories. The final results are

also in the form of instance categories to ensure correct query closure. For example,

the inner process of a query “Print the semi-complete callout symbols for ‘Ra 3.3’

(without manufacturing methods, direction and machine allowance)” can be

performed in the following order:

1. Query1: OBJMeasurand→ Result1

(The selected arrows in Result1 is Hom = {M# → tolerance_type, M# →

parameter_type, M# → parameter_name, value → parameter_extends}; The

internal object (attribute) set in Result1 is Att = {M#, tolerance_type,

parameter_type, parameter_extends | parameter_type = ‘Ra’, parameter extends

= getParameterExtends(3.3)})

2. Query2: OBJMeasurandToExtraction→ Result2

(The selected arrow set in Result2 is Hom = {ME# → sampling_length, ME #

→ parameter type, ME # → parameter_extends, (parameter type ×

parameter_extends) → sampling_length}; The internal object (attribute) set in

2TMP is Att = {ME#, sampling_length, parameter_type, parameter_extends |

parameter_type, paramete_extends Att of Result1})

3. Query3: OBJExtraction→ Result3

(The selected arrow set in Result3 is Hom = {E# → sampling_length, E# →

evaluation_length, E# → num_cutoff, (num_cutoff × sampling_length) →

evaluation_length}; The internal object (attribute) set in Result3 is Att = {E#,

sampling_length, evaluation_length, num_cutoff| sampling_length Att of

Result2})

4. Query4: OBJExtractionAndMeasurandToFiltration→ Result4

(The selected arrow set in Result4 is Hom set = { EF#→ up_limit, EF#→

sampling_length, (sampling_length × parameter_type) → up_limit }; The inner

object (attribute) set in 4TMP is Att = (E#, sampling_length, F#, up_limit,

low_limit | up_limit Att of Result3 and parameter_type Att of Result1})

5. Query5: OBJFiltration→ Result5

(The selected arrow set in Result5 is Hom set = {F#→ up_limit, F#→

low_limit; up_limit→low_limit}; The internal object (attribute) set in Result5 is

Att = {up_limit, low_limit, F# | up limit Att of Result4})

 105

6. (OBJMeasurand × OBJExtraction × OBJFiltration)→OBJCallout

(The arrow set in OBJCallout is Hom set = { C# → num_cutoff, C# → up_limit,

C# → low_limit, C# → tolerance_type, C# → parameter_type, C# →

sampling_length, C# → evaluation _length, C# → value }; The internal object

(attribute) set in 4P is Att = { C#, num_cutoff, up_limit, low_limit,

tolerance_type, parameter_type, sampling_length, evaluation_length, value |

num_cutoff Att of Result3, up_limit Att of Result5, low_limit Att of

Result5, tolerance_type Att of Result1, parameter_type Att of Result1,

sampling_length Att of Result3, evaluation_length Att of Result3, value

Att of Result1})

The M#, E#, F# represent the unique identifiers of all instance categories created

on the categories “Measurand”, “Extraction”, and “Filtration” respectively. The

“value” is the transient internal object. The Result1, Result2, Result3, Result4, and

Result5 represent sets of instance categories selected during the query process. For

example, the Result1 represents instance categories for “Measurand” that was output

from Query5. The arrows “value → parameter_extends”, “parameter_type ×

parameter_extends) → sampling_length”, “num_cutoff × sampling_length) →

evaluation_length”, “sampling_length → up_limit”, and “up_limit→low_limit” are

the corresponding method arrows. Thus, this query strategy enables the dynamic

method queries during query processes. The “OBJMeasurand × OBJExtraction ×

OBJFiltration” is categorical product, which generates instance categories (OBJCallout)

for “Callout” with the selected arrrows.

This query strategy was implemented in the research based on the Simple Object

Database Access (SODA) methods from DB4O with extensions of a set of Java

methods to handle the functor mappings and compositions. In this example, the query

is formed as the following Java clauses when the first time to create the “Callout”

instance categories (See List 4.10).

query1.constrain(Measurand.class);
query1.descend("interObjId_measurand_paraType").descend("target").constrain("Ra").and(
query1.descend("interObjId_parameterExtends").descend("target").constrain((new
Measurand()).getParameterExtends(3.3)));
objectSet result1 = query1.execute();
result1.AddSelectArrows("interObjId_measurand_paraType");
result1.AddSelectArrows("interObjId_parameterExtends");
result1.AddSelectArrows("interObjId_tolerance_type");
Callout callout1 = result1.StoreSelectArrowsTo(Callout.class);

 106

query2.constrain(MeasurandToExtraction.class);
query2.descend("interObjId_parameterExtends").descend("target").constrain(((Measurand)r
esult1.next()).getParaExtendArrow().getTarget()).and(query2.descend(("interObjId_measura
nd_paraType").descend("target").constrain((((Measurand)result1.next()).getParaTypeArrow
().getTarget())));
objectSet result2 = query2.execute();
result2.AddSelectArrows("interObjId_roughness_sampling_length");
result2.StoreSelectArrowsTo1(callout1);

query3.constrain(Extraction.class);
query3.descend("interObjId_parameterExtends").descend("target").constrain((new
Extraction()).getEvaluationLengthArrow(((MeasurandToExtraction)result2.next()).getSampli
ngLengthArrow().getTarget());
objectSet result3 = query3.execute();
result3.AddSelectArrows("interObjId_roughness_evaluation_length");
result3.AddSelectArrows("interObjId_num_cutOff");
result3.StoreSelectArrowsTo1(callout1);

query4.constrain(ExtractionAndMeasurandToFiltration.class);
query4.descend("interObjId_roughness_sampling_length").descend("target").constrain(((Me
asurandToExtraction)result2.next()).getSamplingLengthArrow().getTarget())and(query4.desc
end(("interObjId_measurand_paraType").descend("target").constrain((((Measurand)result1
.next()).getParaTypeArrow().getTarget())));;
objectSet result4 = query4.execute();
result4.AddSelectArrows("interObjId_up_limit");
result4.StoreSelectArrowsTo1(callout1);

query5.constrain(Filtration.class);
query5.descend("interObjId_low_limit").descend("target").constrain((new
Filtration()).getLowLimitArrow(((MeasurandToExtraction)result2.next()).getUpLimitArrow(
).getTarget());
objectSet result5 = query4.execute();
result5.AddSelectArrows("interObjId_Low_limit");
result5.StoreSelectArrowsTo1(callout1);

List 4.10: Java codes for a “Callout” query process.

The VirtualGPS system also offers SQL3 interface to form high-level SQL queries.

This system can translate SQL queries into internal Java methods for retrieving

information.

4.4.1.6 View Mechanism

The view mechanism in the system was achieved through adding a set of selected

arrows from a class category into its superclass category − “Category” − using the

“addArrows()” method. Through defining unique view instructions, the categorical

DBMS can offer customised views for different users.

4.4.1.7 Physical Storage Structures

Same as other relational and object-oriented DBMSs have both logic and internal

schemas for databases, the categorical DBMS also contains a Category Theory based

internal storage schema to store and retrieve objects physically. In this research, it was

developed by extending the DB4O’s physical storage mechanism. The DB4O’s

 107

physical storage mechanism is based on the generics and reflection mechanisms in

Java language. In order to keep the referential integrity, a special byte indication is

automatically added to every instance category to indicate whether it is referred by

other instance categories. If so, this instance category can not be deleted from the

current DBMS operation.

4.4.2 The Visual Management Interface for Categorical DBMS

The categorical DBMS design also provided an embedded visual management

interface for managing the stored GPS objects, their relationships, and constraints. It

produces visual diagrams at runtime to represent all relevant data stored in the

database according to the specified categorical object models. For example, as shown

in Figure 4.5, by pressing the UI components on the visual diagram, the system can

automatically generate optional query clauses for users and display the query results

on screen.

Figure 4.5: The main interface for the categorical DBMS.

This interface can also illustrate the metadata information (e.g. name and attribute

types of a class category) for all class categories stored in the categorical DBMS. It

can provide statistics on how many instance categories were created on a class

category and the detailed information for a product relationship such as its cardinality,

and participating class categories. Users can also update a class category (e.g. change

 108

types of attributes). After users presses the “Submit” button on the interface, a formed

query will be executed with the query results being displayed on the relevant viewing

windows. The Figure 4.6 shows the query results for a query clause “SELECT *

FROM ‘surfaceTexture Callout’” in the XML format.

Figure 4.6: An example for query results in XML format.

4.5 Summary

This chapter provided details on the design and implementations of a categorical

DBMS that is a core part for realizing the VirtualGPS system. The categorical DBMS

is a prototype to prove the applications of the Category Theory based object-oriented

modelling. Although the current categorical DBMS implementation is not a full-

fledged DBMS that can be compared with other commercial DBMSs, the research has

demonstrated that the categorical DBMS can handle the complex operations such as

storing and managing advanced data structures gained from current GPS standards

with good consistency in database schema.

 109

CHAPTER 5 DESIGN AND IMPLEMENTATION OF THE

VIRTUALGPS SYSTEM

The Chapter 3 of the thesis has discussed how the Category Theory can be used as a

mathematical foundation for the whole VirtualGPS system. This Chapter starts with a

detailed introduction to the design of the VirtualGPS system, after which the

implementation will be discussed. Finally, the Chapter concludes with a test case

analysis to assess the design functions of the system.

5.1 The Design of the VirtualGPS System

The system design process conforms to the categorical incremental/refinement design

process devised in Section 3.5 of Chapter 3. The following paragraphs give a

complete example of the VirtualGPS system design.

5.1.1 The Categorical Business Map Construction for VirtualGPS

The first stage of the categorical design process is to design the categorical business

map. In this design stage, the user requirements were captured. As described in the

literature review of Chapter 2, the GPS matrix system is a universal tool for

expressing geometrical requirements on product design drawings. It benefits product

designers through providing a detailed description of functional requirements for

geometrical products, and through reference to corresponding manufacturing and

verification processes. Modern GPS standards aim at integrating all the data

concerning essential steps of a production cycle right down to the macro or nano scale

(ISO/TR 14638, 1995 [4]; ISO TC/213, 2001 [5]; Wang et al., 2004 [6]). The Figure

5.1 is the business scope of GPS, which links Function, Specification of macro- to

nano-scale components, Manufacture, and Verification for different roles such as

designers, production engineers and metrologists. Thus, they can exchange

unambiguous information through the GPS specification.

 110

Figure 5.1: The business scope of GPS.

The Figure 5.1 shows how GPS standards can be related to a complete industrial

procedure of producing a geometrical workpiece: design of the workpiece by setting

up unambiguous specifications, manufacture of the workpiece under the guidance of

specifications, and metrology of workpiece through the verification of specification.

This also illustrates that the verification is of vital importance for modern

manufacturing industries, since verification results can be evaluated to refine the GPS

standards relating to new GPS parameters, suggest specific tolerance values and

update manufacturing procedures and so on. Therefore, a cyclic quality chain for

refining the quality of geometrical products can be formed. The Figure 5.2 gives an

example of this quality chain on a surface manufacture.

Figure 5.2: A cyclic surface quality chain.

The “Measurement” and “Evaluation” in Figure 5.2 are both relating to “metrologist”

in Figure 5.1.

 111

Furthermore, a high level categorical business map for the VirtualGPS system can

be formed as Figure 5.3 demonstrated.

Figure 5.3: Overall framework of the VirtualGPS system.

Figure 5.3 shows that the proposed VirtualGPS framework contains four main

knowledge bases (Surface Texture, Form, Position and Size), describing different

knowledge domains in a categorical view — each knowledge base becomes a module

(category) and faithful functors are used to inject these four modules (categories) into

the VirtualGPS system.

5.1.2 The Categorical Analysis Model Construction for VirtualGPS

The second stage of the categorical design process is to design the categorical analysis

model. This project has so far partially completed the Surface Texture and the Form

modules. Therefore, this thesis focuses on illustrating the design and implementation

details of the Surface Texture module, which can be further divided into four sub-

knowledge bases based on Figures 5.1 and 5.2: Function, Specification, Manufacture,

and Verification. These four sub-knowledge bases become components of the Surface

Texture module.

F1 F2 F3 F4

Function Specification Manufacture Verification

Surface Texture

Figure 5.4: Components in Surface Texture module.

In Figure 5.4, the four components of Surface Texture module are represented as

lower level categories.

 112

5.1.3 The Categorical Design Model Construction for VirtualGPS

The third stage of the categorical design process is to design the categorical design

model. The categorical design model is used to detail and refine the four components:

Function, Specification, Manufacture and Verification. The detailed designs of these

four components are discussed in Section 5.2, 5.3, and 5.4, which use same process as

discussed here to refine each component.

5.1.4 The Categorical Sequence Diagram Construction for VirtualGPS

The fourth stage of the categorical design process is to create the sequence diagrams

for modules in VirtualGPS. Figure 5.5 shows a sequence diagram for the Surface

Texture Module.

Figure 5.5: The sequence diagram for the Surface Texture module.

The diagram highlights the perceived process flow for utilising the Surface Texture

module in a typical manufacturing cycle, which can be described as follows:

(For designers) Product designers activate the VirtualGPS system; the “Function”

component will search and advise users by translating functional performances (e.g.

fluid friction or dry friction) into surface texture parameters defined in GPS-matrices;

and then generates a function analysis report using a so-called “pattern” language.

Therefore, the function component is responsible for translating the design intent into

requirements of GPS characteristics for designers.

 (For designers and manufacturing engineers) The generated “Specification”

component produces the details of the GPS specification on the technical drawing in

the form of complete ‘callouts’, based on the selected surface texture parameters.

 (For manufacturing engineers) In accordance with the deduced specification

 113

report and any extra criteria defined (such as material types and quantity), the

“Manufacture” component can suggest appropriate manufacturing processes for the

designers. In order to enable cross comparing among different processes, a

manufacturing process report for each recommended process plan will be formed,

which includes details such as process description, material suitability, process

variations, costing issues and sample applications.

(For metrologists) The final “Verification” component enables metrologists to

choose from recommended measurement instruments and filtering techniques to

formulate a measurement strategy.

5.1.5 The Categorical Deployment Model Construction for VirtualGPS

The fifth stage of the categorical design process is to divide the design classes of the

design model into subsystems based on outputs of Section 5.1.4.

Figure 5.6: Overall architecture of the VirtualGPS system.

The overall system architecture for the devised VirtualGPS is illustrated in Figure

5.6. The system design has adopted a classic three-tier architecture (the accessing

client, the knowledge manipulation server, and the database server). Object-oriented

concepts and techniques have been adopted to ensure encapsulation and system

robustness with several rigidly defined interfaces for inter-module operations. With

the modularized design and its inherent structural adaptability, this system can change

 114

existing features and functions or add new ones efficiently.

The client-side browser provides users with an interface to access GPS knowledge

organised by rules and standards devised in the knowledge base. Moreover, users can

also add new information using the pattern language format offered by the user

interfaces of the VirtualGPS system. This system can then automatically organize the

inputted information into knowledge for users. Each knowledge base (module) of the

knowledge-based system contains four components: Function, Manufacture,

Specification, and Verification as explained earlier sections. The former two can

generate and export reports for reference in a pattern language style format, while the

latter pair can output reports in the XML format for web-based operations. The system

supports web applications through secured socket communications for knowledge

distribution and sharing on Intranet and Internet.

Also shown in Figure 5.6, for forming accurate and comprehensible ‘knowledge’

from the maze of GPS-matrices, this project had also developed a back-end database

and its management system based on Category Theory to store the complex GPS-

matrices and their constraints. The database is referred as the “categorical DBMS” in

this thesis based on its nature of adopting Category Theory notions for forming the

database model.

Based on the explanations of the previous four sub-Sections (from Section 5.1.1 to

Section 5.1.4), the overall architecture of the VirtualGPS has been defined. This high

level architecture can clarify the following software aspects:

 Which modules should be contained in this system.

 Which components should be included in each module.

 What are the computing functions of these modules and components.

 How these modules and components interact or communicate with each other.

 How these modules or components are deployed on the computing resources.

After getting this high level architecture of the VirtualGPS system, several lower level

refinement and incremental processes need to be taken to get details for design classes

contained by each component. Therefore, components are also designed following the

five stages of the categorical design process, and the outputs of component designs

should clarify the following aspects:

 Which design classes are contained in each component.

 What are the computing functions of these design classes.

 115

 How the design classes interact or communicate in a component.

The Sections 5.2, 5.3, 5.4 and 5.5 give detailed explanations on designs of the

Function, Specification, Manufacture and Verification components in the Surface

Texture module. These four components in other modules such as Form, Size and

Position can be designed in the same manner after acquiring enough knowledge.

5.2 The Function Component Design

This section aims to provide a detailed discussion of the design of the Function

component, which focuses on discussing the knowledge acquisition and knowledge

organization. The Function component is used to suggest surface roughness

parameters based on functional performance analysis.

5.2.1 The Categorical Business Map Model Construction for Function

This step is used to analyze the user requirements and then define the business map to

illustrate the business scope for the Function component in a high abstraction level.

Surfaces can be divided into two types: functional and non-functional (Mummery,

1990 [91]). A non-functional surface means the surface does not affect the quality of

the product, which can be either mirror smooth or sand paper roughness. However, a

functional surface has a function that is closely related to the quality of the product.

For example, the outside of an engine block is a non-functional surface ,which has no

specific function; while the contact area between the cylinder liner and the piston

rings are functional surfaces performing the sealing function. For the functional

surface, the surface texture has a direct influence on the quality of the product.

Therefore, quality of a geometrical product can be optimized by analysing the

relationship between surface topography and function of the product (Mummery, 1990

[91]).

However, because of the lack of references, it is difficult for users to select

appropriate surface texture parameters and their corresponding tolerance values

specified on technical drawings. Thus, the Function component in the VirtualGPS

system aims to help users to select surface texture parameters according to surface

functions. The main software functions for the Function component can be

summarized as:

 Provide suitable surface texture parameters with tolerance values based on

exiting cases.

 Provide a set of parameters selection rules for user references. Users can select

 116

suitable parameters through systematic consideration of these selection rules.

 Provide an open platform for users to add their expert knowledge on specific

cases.

Based on these user requirement captures, a business map can be built, see Figure 5.7.

Input interface for
designers

Patterns for specifying
parameters/values

Input interface
for experts

F1

F2

F3

F4

Designers

Experts

F
F6

Figure 5.7: The business map for Function component.

Figure 5.7 demonstrates that two users of differing expertise can interact with the

Function component:

(1) Designers. Designers input surface requirements, functions or surface

tribology and then the system infers suitable roughness parameters with

tolerance values. The parameters and tolerance values should be organized in a

specific pattern language format.

(2) Experts. Experts can add new knowledge by using the same pattern language

format to form new cases.

The roles for designers and experts can be interchanged. For example, designers can

add new knowledge based on their design experiences. By doing like this, the quality

of products can be improved constantly.

5.2.2 The Categorical Analysis Model Construction for Function

Based on the discussions in Section 5.2.1, the core target for Function component is

finding the relationship between functions and surface texture parameters. However,

at present, there is no a systematic way to define all aspects of functions and to link

them to surface texture parameters. At the moment, only a little information can be

retrieved from GPS to link surface texture parameters with functions. Therefore, at

present, the Function component can not totally support reasoning about surface

 117

texture parameters and tolerance values based on the arbitrary functions or surface

descriptions inputted by users. However, the Function component provides a basis of a

guidance procedure for linking the functions with surface texture parameters, which

was achieved by using some basic inference rules retrieved from GPS. Users can use

them to find the suitable surface texture parameters for their specific tasks, and then

store these tasks as cases in the VirtualGPS system in a specific pattern format. As the

number of cases increases and relating GPS standards are enriched, the Function

component will be trained, and then the well-trained Function component can make

use of fuzzy logic to infer surface texture parameters with suitable tolerance values

that match the functions. The Category Theory based pattern language for organizing

the cases has been discussed in Section 3.7.1 of Chapter 3, so this section will only

discuss the guidance procedure for choosing surface texture parameters with several

inference rules. The procedure can be simplified as following:

(1) Determine surface requirements according to surfaces. This can be

achieved by investigating the counter parts, the properties and the relative

motion of the workpiece, and then specify the surface requirements to match

those attributes.

(2) Determine the classification of Functions. The classification of functions is

very difficult because they are so numerous and diverse that is impossible to

carry out a systematic approach to cover them. Actually, at present, tribology

is a good tool for function classification. Tribology is the science and

technology of friction, wear and lubrication (Kalpakjian and Schmid, 2005

[92]). The Figure 5.8 is classification of functions by using tribological

applications such as contact, wear, lubrication and failure mechanism, which is

a simplistic generic approach to provide basic guidance (Whitehouse, 2002

[93]).

 118

Figure 5.8: The function map.

The horizontal axis of Figure 5.8 represents the relative velocity of the two

surfaces, while the vertical axis represents the gap between the two surfaces.

The scales are omitted from the diagram. It is supposed that the vertical axis is

in micrometers and the horizontal axis has a maximum realistic value of

5m/sec.

(3) Match different functions with different surface requirements. This can be

achieved by finding a relationship between tribology and surface requirements.

Once the relationship between tribology and surface requirements are defined,

the transitive relationships between functions and surface requirements can be

defined. The Table 5.1 is another function classification by using types of

wears, relative motions and contact bodies (Filetin, 2002 [94]).

Elements
Relative motions Type of wear Mechanism of wear

Type Schemes Type AD AB WF TC

Solid body
Lubricant
Solid body

Sliding

Hydrodynamic ● ○

Solid body
Solid body

Sliding

Sliding wear ● ○ ○ ●

Rolling Rolling wear ○ ○ ● ○

Impact

Impact wear ○ ○ ● ○

 119

Vibration

Fretting ● ● ● ●

Solid body
Particles

Impact Abrasion ● ● ○

Sliding Abrasion ● ○

Solid body
Particles

Solid body

Sliding

Abrasion ○ ● ● ○

Rolling Abrasion ○ ● ● ○

Impact

Abrasion ○ ○ ● ○

Solid body
Particles

Fluid
Flow

Erosion ● ● ○

Solid body
Particles

Gas
Flow

Erosion ○ ● ● ○

Erosion ○ ● ● ○

Solid body
Fluid

Flow
Cavitation

Erosion
 ● ○

Impact

Erosion ● ○

Flow

Erosion by fluids ○ ●

Solid body
Gas

Gas
Erosion

Cavitation
Erosion

 ●

AD – Adhesion, AB – Abrasion, WF – Wear Fatigue, TC – Tribocorrosion,
●Most important ○ Less important

 Table 5.1: Examples of functions.

(4) Select surface parameters with corresponding tolerance values for surface

requirements. By doing this, the relationship between surface texture

parameters and functions can be transitively defined. Therefore, inferences

from functions to surface parameters can be achieved.

Besides this guidance procedure, several other tables gathered from GPS matrices

are also included in the VirtualGPS. For example, Table 5.2 shows relationships

between motif parameters and functions of surface, defined in ISO 12085 1996 (ISO

12085, 1996 [25]).

 120

Table 5.2: Parameters selection example.

All these tables for guiding the selection of surface texture parameters from functions

become class categories that in turn serve as inference rules for the Function

component.

5.2.3 The Categorical Design Model Construction for Function

In the previous section, a set of class categories for inferring surface texture

parameters have been determined. At the design model construction stage for the

Function component, these class categories are refined by defining their lower level

subclass categories, which themselves form tree structures, to represent these tables

specified in Section 5.2.2. This section takes Table 5.2 as an example. The Figure 5.9

illustrates a tree structure that is represented in the categorical way.

Figure 5.9: Categorical representation of parameters selection example table.

 121

Figure 5.9 shows that the complex tree structure of Table 5.2 can be gracefully

modelled, and which is difficult for relational data model to handle it. After defining

design classes (class categories) for Function component, the next stage is specifying

the interactions among these class categories belonging to the Function component.

5.2.4 The Categorical Sequence Diagram Construction for Function

The design classes discussed in Section 5.2.3 serve as inference rules in the Function

component, which can be grouped into three sub-components: inference rules for

linking surface requirements with surface texture parameters; inference rules for

linking functions with surface texture parameters; and inference rules used in cases.

U
se

r
In

te
rf

a
ce

 fo
r

de
si

gn
e

rs

U
se

r
In

te
rf

a
ce

 f
or

 e
xp

er
ts

Figure 5.10: The sequence diagram for Function component.

Figure 5.10 is organized according to business requirements defined in Figure 5.7.

However, as stated earlier, the current VirtualGPS can not support inferences of

surface texture parameters according to descriptions or key words for specifying

surface requirements or functions due to lack of knowledge in GPS. The prototype

VirtualGPS can only suggest surface parameters with corresponding tolerance values

based on existing case scenarios. Thus, we call this system as knowledge-based

system or partially rule-based expert system. However, when cases and other related

knowledge are enriched, the VirtualGPS will become a real rule-based expert system.

5.2.5 The Categorical Deployment Model Construction for Function

Based on analysis of the sequence diagram that shows the interactions between design

 122

classes in the Function component, a deployment topological graph for specifying the

allocation of these design classes on computing resources can be constructed as Figure

5.11 demonstrates.

Figure 5.11: The deployment topological graph for Function component.

The inference rule base in Figure 5.11 contains two parts: rules for surface

requirements and rules for functions. A product relationship is built between case

receptor and class categories for organizing the pattern language to form instances of

cases in categorical pattern language format. These case instances will be stored in

categorical DBMS for future case based inferences.

5.3 The Specification Component Design

This section aims to provide a detailed discussion of the Specification component’s

design, which focuses on discussing the knowledge acquisition and organization. The

Specification component is used to provide detailed geometrical specifications for the

selected surface parameters, including information obtained from partition, extraction,

filtration and comparison processes. The main software functions for the Specification

component can be summarized as:

 123

 Generate a complete callout from a simple callout on a drawing by providing

default values. For example, the complete callout “U 0.008-2.5 / Ra516% 3.3”

can be generated for the simple callout “Ra 3.3”.

 Explain each symbol in a complete callout in detail. Users can get detail

explanations and descriptions of each symbol in a complete callout. For

example, parameter names will be rendered for each parameter type.

 Referred to as basis for Manufacture and Verification components. This

includes two aspects:

(1) The complete callout is “shallow” knowledge for inferring “depth”

knowledge in Manufacture and Verification.

(2) The complete callout can guide operations in Manufacture and Verification.

For example, the comparison rule in a complete callout is used in a

comparison process of Verification. The methods for the “max-rule” or

“16%-rule” will be programmed in the Verification component according

to the indications of complete callouts.

5.3.1 The Categorical Business Map Construction for Specification

After capturing the user requirements, the inputs and the outputs of Specification

component have been determined: the inputs of the Specification component are

specific surface parameters while the outputs of the Specification component are

complete “callout” symbols gathered from three feature operations: partition,

extraction and filtration. The Figure 5.12 shows the structure for a complete callout

symbol (ISO 1302, 2002 [95]).

 124

Figure 5.12: Complete surface texture callout symbol.

The key explanations for Figure 5.12 are:

a. Indication of specification limit.

b. Filter type “X”.

c. The transmission band, including the lower limit and the upper limit.

d. Profile (R – roughness profile, W – waviness profile or P – primary profile).

e. Characteristic/parameter.

f. Evaluation length as the number of sampling lengths.

g. Comparison rule (“16 %-rule” or “max-rule”).

h. Limit value in micrometres.

i. Machining allowance.

j. Type of manufacturing process.

k. Surface texture lay.

l. Manufacturing methods.

The measurement of the surface texture is generally determined in terms of its

roughness, waviness and form. The roughness is the process marks or witness marks

produced by the action of the cutting tools or machining processes, but may include

other factors such as the structure of the material. The waviness is usually produced

by instabilities in the machining process, such as an imbalance in a grinding wheel, or

by deliberate actions in the machining process. Waviness has a longer wavelength

 125

than roughness which is superimposed on the waviness. The form is the general shape

of the surface, ignoring variations due to roughness and waviness. Deviations from the

desired form can be caused by many factors. There are three principal groups of

surface texture parameters relating to this project: profile parameters defined in ISO

4287 (e.g. amplitude parameter Ra, spacing parameter Rsm, and hybrid parameter Rda)

(ISO 4287, 1997 [96]), motif parameters defined in ISO 12085 (e.g. mean motif

height R, mean motif width AR and maximum motif height Rx) (ISO 12085, 1996 [25])

and parameters based on material ratio curve defined in ISO 13565-2 and ISO 13565-

3 (e.g. Rk, Rpk, Rvk, etc.) (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]). Detailed

introductions on these surface texture parameters can also be found in the book −

“Geometrical Product Specifications Course for Technical Universities”, which will

not be described in this thesis (Humienny et al., 2001 [3]). Figure 5.12 illustrates that

besides the surface texture parameters and their corresponding limit values (tolerance

values), there is also some other information relating to the partition, extraction,

filtration and comparison operations. For example, the complete callout for “Ra 3.3”

is “0.008-2.5/Ra516% 3.3”, where the missing information is supplied by the ISO

1302 (ISO 1302, 2002 [95]). By organizing the surface texture parameters, tolerance

values, and other information relating to partition, extraction, filtration and

comparison operations into complete callouts, the knowledge base for the

Specification component can be formed. Therefore, the Specification component can

relieve users from the burden of cross referencing a set of ISO file based papers to

obtain the complete GPS specifications.

Based on the user requirement analysis above, the knowledge base of the

Specification component has to contain five use cases: the measured surface partition,

finite data point extraction, profile filtration, measurand definition, and the chosen

comparison rule. Therefore, the business map for Specification component was built

as Figure 5.13.

Figure 5.13: The business map for Specification component.

 126

5.3.2 The Categorical Analysis Model Construction for Specification

After getting the business map for Specification component as Figure 5.13 illustrated,

the next step is to analyse the computing functions of all these use cases defined in

business map and then obtain a set of analysis classes. According to ISO files for GPS,

the following use case refinements can be clarified:

(1) Measurand definition. In the Specification component under the Surface

Texture module, the measurand is the surface texture parameters defined in the

GPS. The surface texture parameters in the GPS contain several types of

affiliating information: tolerance type, parameter type, parameter name,

tolerance value, machining allowance. The parameter type includes two parts:

profile indication and characteristic indication, where the profile has three

possible indications: R (roughness profile), W (waviness profile) and P

(primary profile). For example, in Rz, the “R” indicates the roughness profile

and “z” indicates the characteristic feature. There are three groups of surface

texture parameters in GPS to deal with these three kinds of profile. The Table

5.3 shows a set of surface texture parameters contained in material ratio curve

group (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]).

 Parameters

R-profile parameters
based on linear
material ratio curve

Rk Rpk Rvk Mr1 Mr2

Rke Rpke Rvke Mrle Mr2e

R-profile parameters
based on the material
probability cure

Rpq Rvq Rmq

p-profile parameters
based on the material
probability curve

Ppq Pvq Pmq

Table 5.3: Parameters based on material ratio curve.

Therefore, an analysis class (class category) “Measurand” can be defined with

internal objects: tolerance_type, parameter_type, parameter_name,

parameter_category, tolerance value and machine_allowance.

(2) Surface Partition. The feature operation − partition is used to identify the

bounded surface which is to be characterized. The bounded surface texture is

influenced by the detailed form of the profile curve, while the profile curve is

usually determined by the manufacturing processes (ISO 1302, 2002 [95]).

Therefore, the feature information for partition includes the direction of

surface texture lay, the manufacture type and manufacture methods of the

 127

surface, which catch the initial properties of the surface being evaluated. The

detailed introduction of the feature information relating to partition can be

referred in ISO 1302 (ISO 1302, 2002 [95]). Therefore, an analysis class (class

category) “Partition” can be defined with internal objects: direction_symbol,

direction_definition, manufacture_type_symbol, manufacture_type_meaning,

and manufacture_method.

(3) Finite data point extraction. The feature operation extraction is used to

determine a finite number of points on the surface that are extracted for

measurement and evaluation. The feature information for extraction includes

number of sampling lengths (num_cutOff) and evaluation length of the

evaluated surface. The num_cutOff indicates the number of sampling lengths

within an evaluation length. A cut_off is the wavelength which is used as a

means of separating or filtering the wavelengths of a surface. Sampling length

is the length in the direction of the X-axis used for identifying the irregularities

characterizing the profile under evaluation (ISO 4287, 1997 [96]). The Figure

5.14 shows an example of the relationships of traverse length, evaluation

length, and sampling length (cut_off).

Figure 5.14: Example of traverse length, evaluation length and Sampling
length.

Therefore, a class category “Extraction” can be defined with internal objects:

num_cutoff, sampling_length, and evaluation_length.

(4) Surface profile filtration. The feature operation − filtration is used to separate

the surface profile into roughness profile and waviness profile. The feature

information for filtration includes filter type, and transmission band. In this

project, various filters such as “Gaussian”, “2RC” were used. The transmission

band consists of all required wavelengths, which is defined at the short wave

length by a short wavelength filter (lower limit) and the long wavelength by a

 128

long wavelength filter (upper limit) (ISO 1302, 2002 [95]). The Figure 5.15

demonstrates a transmission band for roughness profiles formed with a short

wavelength filter λs and a long wavelength filter λc as well as a transmission

band for waviness profiles formed with a short wavelength filter λc and a long

wave length filter λf (ISO 4287, 1997 [96]).

Figure 5.15: Examples of transmission band.

The band of sinusoidal profile wavelengths are transmitted at more than 50%

when two phase correct filters of different cut-off wavelengths are applied to

the profile. The transmission band shall be indicated by the inclusion of the

cut-off values of the two filters (in millimetres), where the short-wave filter

indicated at first and the long-wave follows the short one, and they are

separated by a hyphen (“-“). For example, “0.0025-0.8” indicates a short-wave

cut-off value of 0.0025 millimetres and a long-wave cut-off value of 0.8

millimetres, which will allow wave lengths between 0.0025mm and 0.8mm to

be assessed with wavelengths below 0.0025mm and above 0.8mm being

reduced in amplitude. Therefore, a class category “Filtration” can be defined

with internal objects: filter_type, up_limit, and low_limit.

(5) Comparison rule. The comparison rule is used to compare the measured

values with the tolerance values suggested by the Specification component,

which determines whether the produced surface is within the tolerance. GPS

includes two kinds of comparison rules: “max-rule” and “16%-rule”. When the

upper specification limit is used, the “16%-rule” indicates that the surface is

considered acceptable if not more than 16% of all the measured values on an

evaluation length exceed the tolerance value suggested by Specification. When

the lower specification limit is used, the “16%-rule” indicates that the surface

is considered acceptable if not more than 16% of all the measured values on an

 129

evaluation length are less than the tolerance value suggested by Specification.

The “max-rule” indicates that the surface is considered acceptable if none of

the measured values for the suggested parameter over the entire surface exceed

the tolerance value specified by specification. Therefore, a class category

“Comparison” can be defined with internal objects: rule_type and

rule_indication.

5.3.3 The Categorical Design Model Construction for Specification

In the analysis model construction stage, five analysis class categories have been

defined. As stated before, in real applications, users often use default indications in the

complete callout symbols. These default indications are inferred from the simple

callout symbols by using GPS standards (e.g. “Ra 3.3”). Therefore, in the categorical

design model construction stage, inference rules are added for these five class

categories to form refined design classes. In the Specification component of

VirtualGPS, the inference rules are a set of basic rules/constraints defined in the GPS

standards, which uses some properties of a callout symbol to get other properties in

the callout symbol. Furthermore, the complete callouts are actually “shallow”

knowledge in the VirtualGPS system, which are used as illumination knowledge for

inferring other “depth” knowledge in the Manufacture or Verification Component.

The following paragraphs in this section focus on discussing these inference rules in

or between these five class categories that form a complete callout symbol.

In the “Measurand” class category, there are two inference rules:

 Inference rule for setting default tolerance types. There are two types of

tolerance limit for a surface, the upper tolerance limit and the lower tolerance

limit. The indication can be of an upper type with indication “U” or of a lower

type with indication “L” (ISO 1302, 2002 [95]). If not otherwise indicated, the

default tolerance type is upper limit “U”. Therefore, the inference rule for

setting default tolerance types is represented as List 5.1:

RULE_NO 1
IF no value indicated for tolerance_type
THEN tolerance_type = “U”

List 5.1: Inference rule No.1.

This inference rule is applied on the internal object level, so it is represented

as a method identity arrow mapping from the internal object “tolerance_type”

to the same internal object “tolerance_type” of the “Measurand” class

 130

category.

 Inference rule for setting default machining allowance. The machining

allowance is a planned deviation between an actual dimension and a nominal

dimension, which is usually indicated only in those cases where more process

stages are shown in the same drawing (ISO 1302, 2002 [95]). It allows an area

of excess metal to be left to complete subsequent machining. The machining

allowance is indicated in millimetres. Therefore, the inference rule for setting

default machining_allowance is represented as List 5.2:

RULE_NO 2
 IF no value indicated for machining_allowance
THEN machining_allowance = NULL

List 5.2: Inference rule No.2.

This inference rule is applied on the internal object level, so it is represented

as a method identity arrow mapping from the internal object

“machining_allowance” to “machining_allowance” of the “Measurand” class

category.

In the “Partition” class category, there are three inference rules for setting the

default values for the direction symbol, manufacture type and manufacture method

respectively. These three inference rules can be represented in the same way as the

inference rule for setting the default tolerance type in “Measurand” class category.

For example, the inference rule for setting default direction symbol is represented as

List 5.3:

RULE_NO 3
IF no value indicated for direction_symbol
THEN direction_symbol = “Not Indicated”

List 5.3: Inference rule No.3.

Therefore, unless explicitly specified by users, the default values for direction symbol,

manufacture type and manufacture method in the “Partition” are “Not Indicated”. If

manufacture method is not indicated in a complete callout generated by the

Specification component, the Manufacture component can be used to determine

suitable manufacturing processes matching the specification of the designed product

(see Section 5.4).

In the “Extraction” class category, there are three inference rules:

 Inference rule for setting default num_cutOff. Two tables can be used to

form the inference rule for setting default num_cutOff (see Table 5.4 and

 131

Table 5.5). The Table 5.4 lists the indication of the number of sampling

lengths for the three profile parameters (ISO 1302, 2002 [95]).

Profile Num_cutOff indication

R-profile
(roughness
parameters)

If not otherwise indicated, the default number of cutOff wavelengths is 5 derived
from ISO 4288 (ISO 4288, 1996 [99]).
If the number of sampling lengths within the evaluation length differs from the
default number of 5, it shall be indicated adjacent to the relevant parameter
designation. For example Rp3 or Rv3 or Rz3..., RSm3 ...all indicate that an
evaluation length of 3 sampling lengths is desired.

W-profile
(waviness
parameters)

The number of sampling lengths shall always be indicated adjacent to the
parameter designation of waviness. For example Wa3 or Wz3 ...all indicate that
an evaluation length of three sampling lengths is desired.

P-profile
(primary profile
parameters)

The indication of the number of sampling lengths in the parameter designation of
primary profile parameters is not relevant, as the evaluation length equals the
sampling length and also equals the length of the feature being measured.

Table 5.4: Num_cutOff for profile parameters.

Table 5.5 lists the number of sampling lengths for parameters based on

material ratio curve (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]).

Profile Num_cutoff indication

R-profile
(roughness
parameters)

1. If not otherwise indicated, the default number of cutoff wavelengths is 5
derived from ISO 13565-1 (ISO 13565-1, 1996 [100]).

2. If the number of sampling lengths within the evaluation length differs
from the default number of 5, it shall be indicated adjacent to the
relevant parameter designation. For example, Rk3 or Rpk3 ...all indicate
that an evaluation length of 3 sampling lengths is desired.

P-profile
(primary profile

parameters)

The indication of the number of sampling lengths in the parameter designation
of primary profile parameters is not relevant, as the evaluation length equals the
sampling length and also equals the length of the feature being measured.

Table 5.5: Num_cutOff for parameters based on material rate curve.

Based on Table 5.4 and 5.5, the inference rule for setting default num_cutOff

is represented as List 5.4:

RULE_NO 4
IF parameter_type ENDWITH a number
THEN num_cutOff = a number
ELSE IF no value indicated for num_cutOff
AND parameter_type STARTWITH “R”
THEN num_cutOff = 5
ELSE IF no value indicated for num_cutOff
AND parameter_type STARTWITH “P”
THEN num_cutoff=0

List 5.4: Inference rule No.4.

This inference rule is applied on the internal object level, so it is represented

as a method identity arrow mapping from the internal object “num_cutOff” to

the same internal object “num_cutOff” of “Extraction” class category.

 Inference rule for setting default sampling length. Table 5.6 lists values for

the sampling length for profile parameters (ISO 1302, 2002 [95]).

 132

Profile Sampling length

R-profile The sampling length may be indicated as the upper limit λc in the callout symbol c,
see Figure 5.12. If there is no indication in the callout, tables 5.7 ~ 5.9 can be used to
choose the roughness sampling length from the suggested parameter values, according
to ISO 4288 (ISO 4288, 1996 [99]).

For example take the surface parameter Ra with a limit value of 3.3 micrometers,
according to table 5.7, the parameter value belongs to the range of 2 < Ra ≤ 10, and
the related sampling length shall be 2.5 millimetres.

W-profile

There are no defaults for waviness sampling length given in ISO standards, so the
sampling length is indicated as the upper limit in the callout symbol c, see Figure 5.12.
For example, 0,8-25 / Wz3 10, the sampling length 25 millimetres is indicated as the
upper limit in the callout symbol.

P-profile

In the default case, P-parameters do not have any sampling lengths. It may be
indicated if required for the function of the workpiece where it is indicated as the
upper limit in the callout symbol c, see Figure 5.12.

For example -25 / Pz 225, the sampling length 25 millimetres is indicated.

Table 5.6: Default sampling lengths for profile parameters.

Based on Table 5.6, the inference rule for setting default sampling length with

profile parameters is represented as List 5.5:

RULE_NO 5
IF parameter_category EQUALS “profile parameter”
AND parameter_type STARTWITH “R”
AND no value indicated for sampling_length
THEN USE Inference Rule RULE_NO 6
ELSE IF parameter_category EQUALS “profile parameter”
AND parameter_type STARTWITH “R”
AND up_limit has value up_limit
THEN sampling_length = up_limit
ELSE sampling_length =NULL
ELSE IF parameter_category EQUALS “profile parameter”
AND parameter_type STARTWITH “W”
AND up_limit has value up_limit
THEN sampling_length = up_limit
ELSE sampling_length =NULL
ELSE IF parameter_category EQUALS “profile parameter”
AND parameter_type STARTWITH “P”
AND up_limit has value up_limit
THEN sampling_length = up_limit
ELSE sampling_length =NULL

List 5.5: Inference rule No.5.

A sub rule (rule No.6) is nested in the above rule, which is built upon the

Table 5.7, 5.8 and 5.9.

Ra (μm)
Roughness sampling length

Lr (mm)
Roughness evaluation length

Ln (mm)

(0,000) < Ra ≤ 0,02 0,08 0,4

0,02 < Ra ≤ 0,1 0,25 1,25

0,1 < Ra ≤ 2 0,8 4

2 < Ra ≤ 10 2,5 12,5

 133

10 < Ra ≤ 80 8 40

Table 5.7: Roughness sampling lengths for the measurement of Ra, Rq,
Rsk, Rku, RΔq and curves and related parameters for non-periodic

profiles.

Rz, Rz1max (μm)
Roughness sampling length

Lr (mm)
Roughness evaluation

length Ln (mm)

0,025 < Rz,Rz1max ≤ 0,1 0,08 0,4

0,1 < Rz,Rz1max ≤ 0,5 0,25 1,25

0,5 < Rz,Rz1max ≤ 10 0,8 4

10 < Rz,Rz1max ≤ 50 2,5 12,5

50 < Rz,Rz1max ≤ 200 8 40

1) Rz is used when measuring Rz, Rv, Rp, Rc and Rt

2) Rz1max is used when measuring Rz1max, Rv1max, Rp1max and Rc1max

Table 5.8: Roughness sampling lengths for the measurement of Rz, Rv, Rp,
Rc and Rt of non-periodic profiles.

RSm (μm)
Roughness sampling length Lr

(mm)
Roughness evaluation lengthLn

(mm)

0,013 < RSm ≤ 0,04 0,08 0,4

0,04 < RSm ≤ 0,13 0,25 1,25

0,13 < RSm ≤ 0,4 0,8 4

0,4 < RSm ≤ 1,3 2,5 12,5

1,3 < RSm ≤ 4 8 40

Table 5.9: Roughness sampling lengths for the measurement of R-
parameters of periodic profiles, and RSm of periodic and non-periodic

profiles.

The inference rule for Table 5.7 is given below and other two tables can be

defined in same way as List 5.6 shown.

RULE_NO 6
IF parameter_category EQUALS “profile parameter”
AND parameter_type Equals “Ra”
AND 0.000<parameter_value<=0.02
THEN sampling_length = 0.08
ELSE IF parameter_category EQUALS “profile parameter”
AND parameter_type Equals “Ra”
AND 0.02<parameter_value<=0.1
THEN sampling_length = 0.25
ELSE IF parameter_category EQUALS “profile parameter”
 AND parameter_type Equals “Ra”
AND 0.1<parameter_value<=2
THEN sampling_length = 0.8
ELSE IF parameter_type Equals “Ra”
AND parameter_category EQUALS “profile parameter”
AND 2<parameter_value<=10
THEN sampling_length = 2.5
ELSE IF parameter_category EQUALS “profile parameter”
AND parameter_type Equals “Ra”

 134

AND 10<parameter_value<=80
THEN sampling_length = 8

List 5.6: Inference rule No.6.

The motif parameters do not use the concept of sampling length. The operator

used to calculate motif parameters has its own limit values, so sampling

length concepts do not exit (ISO 12085, 1996 [25]). Table 5.10 lists the

default value for the sampling length for parameters based on material ratio

curve (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]).

Profile Sampling length

R-profile If not otherwise indicated, the default sampling length for parameters based on
material ratio curve is 0,8 millimetres derived from ISO 13565-1 (ISO 13565-1,
1996 [100]).

P-profile In the default case, P-parameters do not have any sampling lengths. The sampling
length equals the evaluation length and also equals the length of the feature being
measured.

Table 5.10: Sampling lengths for parameters based on material ratio
curve.

Based on Table 5.10, the inference rule for setting the default sampling length

for parameters based on material ratio curve is represented as List 5.7:

RULE_NO 7
IF parameter_category EQUALS “material ratio curve”
AND no value indicated for sampling_length
AND parameter_type STRATWITH “R”
THEN sampling_length = 0.8
ELSE IF parameter_category EQUALS “material ratio curve”
AND no value indicated for sampling_length
AND parameter_type STRATWITH “P”
THEN sampling_length = evaluation_length

List 5.7: Inference rule No.7.

The inference rules (number 5, 6) are applied on category level between

“Measurand” and “Extraction”, so a pullback construct

“determine_sampling_length” is built to contain these two inference rules (see

Figure 3.26 of Chapter 3). As the inference rule − number 7 may also be used

for parameters based on material ratio curve, so the pullback construct

“determine_sampling_length” is typed with “optional”.

 Inference rule for setting default evaluation length. The Table 5.11 lists

default values of the evaluation length for profile parameters (ISO 1302, 2002

[95]).

 135

Profile Evaluation length

R-profile

If not otherwise indicated, the default length of the feature for roughness analysis
consists of five sample lengths, so the evaluation length equals the num_cutoff x
sampling_length.
i.e. evaluation_length = num_cutoff x sampling length
For example, take the surface parameter Ra with a limit value of 3.3 micrometers, i.e. Ra
3,3, according to table 5.7, the sampling length is 2.5 millimetres, and num_cutoff uses
the default value 5, therefore, the evaluation length for this parameter is 5 x 2.5 = 12.5
millimetres.

W-profile

The default evaluation length of the waviness profile equals the num_cutoff x sampling
length of the waviness profile.
i.e. evaluation length = num_cutoff x sampling length
For example, 0,8-25 / Wz3 10, the num_cutoff is indicated as 3 adjacent to the
parameter designation Wz, and the sampling length 25 millimetres is indicated as the
upper limit in the callout symbol, therefore, the evaluation length is 3 x 25 = 75
millimetres.

P-profile

For primary profiles, the evaluation length equals the sampling length and also equals
the length of the feature being measured.
i.e. evaluation length = sampling length
For example, -25 / Pz 225, the evaluation length equals the sampling length of 25
millimetres as indicated in the callout.

Table 5.11: Evaluation lengths for profile parameters.

For motif parameters, the default evaluation length is 16 millimetres. Table

5.12 lists default values of the evaluation length for parameters based on

material ratio curve (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]).

Profile Evaluation length

R-profile

The evaluation length of the roughness profile equals the num_cutoff x sampling length
of the roughness profile. The default num_cutoff of the roughness profile equals five and
the default sampling length of the roughness profile is 0,8 millimetres.

i.e. evaluation length = num_cutoff x sampling length

P-profile
For primary profiles, the evaluation length equals the sampling length which is also
equal to the length of the feature being measured.
i.e. evaluation length = sampling length

Table 5.12: Evaluation lengths for parameters based on material ratio
curve.

Based on the Table 5.11, 5.12 and the default evaluation length for motif

parameters, the inference rule for setting evaluation length is represented as

List 5.8:

RULE_NO 8
IF parameter_category EQUALS “profile parameter”
AND no value indicated for evaluation_length
AND parameter_type STRATWITH “R”
THEN evaluation_length = 5× 0.8
ELSE IF parameter_category EQUALS “profile parameter”
AND no value indicated for evaluation_length
AND parameter_type STRATWITH “W”
THEN sampling_length = num_cutOff ×sampling_length
ELSE IF parameter_category EQUALS “profile parameter”
AND no value indicated for evaluation_length
AND parameter_type STRATWITH “P”

 136

THEN evaluation_length = sampling_length
ELSE IF parameter_category EQUALS “motif parameter”
AND no value indicated for evaluation_length
THEN evaluation_length = 16
ELSE IF parameter_category EQUALS “material ratio curve”
AND no value indicated for evaluation_length
AND parameter_type STRATWITH “R”
THEN evaluation_length = 5× 0.8
ELSE IF parameter_category EQUALS “material ratio curve”
AND no value indicated for evaluation_length
AND parameter_type STRATWITH “P”
THEN evaluation_length = sampling_length

List 5.8: Inference rule No.8.

This inference rule is applied on internal object level, so it is represented as

two method arrows mapping from internal object “sampling_length” and

“num_cutOff” to “evaluation_length” respectively in “Extraction” class

category. However, the default evaluation_length is not always determined by

“sampling_length” and “num_cutOff” (e.g. motif parameter), so these two

method arrows are optional.

In “Filtration” class category, there are four inference rules:

 Inference rule for setting default upper and lower limit of the

transmission band. For profile parameters, the cut-off value of the upper limit

equals to the sampling length. Therefore, the inference rule for setting the

default upper limit of a transmission band with profile parameters is

represented as List 5.9:

RULE_NO 9
IF parameter_category EQUALS “profile parameter”
AND no value indicated for up_limit
THEN up_limit = sampling_length

List 5.9: Inference rule No.9.

For motif parameters, two bounds A and B are used in the motif algorithms

according to ISO 12085 for defining the maximum widths of the roughness

and waviness motifs respectively. The width for the roughness motif ARj

should be greater than the value of λs and less than or equal to A, see Figure

5.16.

Figure 5.16: Roughness motifs.

 137

The width for the waviness motif AWj should be greater than the value of A

and less than or equal to the value of B, see Figure 5.17.

Figure 5.17: Waviness motifs.

The A and B can be obtained from Table 5.13 according to the evaluation

length.

Evaluation length
(mm) A (mm) B (mm) λs (μm)

0,64 0,02 0,1 2,5
3,2 0,1 0,5 2,5
16 0,5 2,5 8
80 2,5 12,5 25

Table 5.13: Transmission band for motif parameters.

Based on the Table 5.13, the inference rule for setting upper limit with motif

parameters is represented as List 5.10:

RULE_NO 10
IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “ARj”
AND evaluation_length=0.64
THEN up_limit = 0.02
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “ARj”
AND evaluation_length=3.2
THEN up_limit = 0.1
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “ARj”
AND evaluation_length=16
THEN up_limit = 0.5
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “ARj”
AND evaluation_length=80
THEN up_limit = 2.5
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “AWj”
AND evaluation_length=0.64
THEN up_limit = 0.1
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “AWj”
AND evaluation_length=3.2
THEN up_limit = 0.5
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “AWj”
AND evaluation_length=16
THEN up_limit = 2.5
ELSE IF parameter_category EQUALS “motif parameter”

 138

AND parameter_type EQUALS “AWj”
AND evaluation_length=80
THEN up_limit = 12.5
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type NOT EQUALS “ARj” OR “AWj”
THEN up_limit = NULL

List 5.10: Inference rule No.10.

For parameters based on material ratio curve, the upper limit λc is defined as

equal to the sampling length according to ISO 1302 and ISO 13565-1 (ISO

1302, 2002 [95]; ISO 13565-1, 1996 [100]). As the default sampling length

for parameters based on material ratio curve is 0.8 millimetres (refer to the

inference rule for setting default sampling length with parameters based on

material ratio curve), the inference rule for setting upper limit with parameters

based on material ratio curve is represented as List 5.11:

RULE_NO 11
IF parameter_category EQUALS “material ratio curve”
AND no value indicated for up_limit
THEN up_limit = 0.8

List 5.11: Inference rule No.11.

Therefore, the up limit for the transmission band can be defined in two

optional ways: 1. for motif parameters, the up limit is defined by evaluation

length and parameter type; 2. for profile parameters and parameters based on

material ratio curve, the up limit is defined by sampling length. In the first

case, a 3-ary pullback construct “determine_up/low_limit” among

“Measurand”, “Extraction” and “Filtration” is built to contain the

corresponding inference rule (see Figure 3.27 of Chapter 3). In the second

case, a pullback construct “equals” between “Extraction” and “Filtration” is

built to contain the corresponding inference rule (see Figure 3.25 of Chapter

3). These two pullback constructs are all typed in optional.

Table 5.14 lists the values of the lower limit for profile parameters (ISO 1302,

2002 [95]).

Profile Lower limit

R-profile

Lower limit λs may be indicated as the lower limit in the callout symbol c, see Figure
5.12.
If there is no indication in the callout, lower limit λs can be obtained from ISO 3274
according to the value of upper limit λc, seeTable 5.15 (ISO 3274, 1996 [101]).

W-profile
The lower limit of the W-profile transmission band is λc (short-wave filter), and will
be indicated as the lower limit in the callout symbol c, see Figure 5.12.

P-profile
The lower limit of the P-profile of the transmission band is λs (short-wave filter), and
will be indicated as the lower limit in the callout symbol c, see Figure 5.12.

Table 5.14: Lower limit for profile parameters.

 139

λc (mm) λs (μm) λc/λs rtip max (μm) Maximum sampling spacing

0,08 2,5 30 2 0,5

0,25 2,5 100 2 0,5

0,8 2,5 300 2 0,5

2,5 8 300 5 1,5

8 25 300 10 6

Table 5.15: Relationship between the roughness cut-off wavelength λc, tip
radius and roughness cut-off ratio λc/ λs.

Based on the Table 5.14 and 5.15, the inference rule for setting lower limit

with profile parameters is represented as List 5.12:

RULE_NO 12
IF parameter_category EQUALS “profile parameter”
AND parameter_type STRATWITH “R”
AND no value indicated for lower_limit
THEN USE inference Rule RULE_NO 13
ELSE IF parameter_category EQUALS “profile parameter”
AND parameter_type STRATWITH “W”
AND no value indicated for lower_limit
THEN lower_limit = NULL
ELSE IF parameter_category EQUALS “profile parameter”
AND parameter_type STRATWITH “P”
AND no value indicated for lower_limit
THEN lower_limit = NULL

List 5.12: Inference rule No.12.

The inference rule for Table 5.15 is given below as List 5.13:

RULE_NO 13
IF parameter_category EQUALS “profile parameter”
AND parameter_type STRATWITH “R”
AND up_limit = 0.08
THEN lower_limit = 0.0025
IF parameter_category EQUALS “profile parameter”
AND parameter_type STRATWITH “R”
AND up_limit = 0.25
THEN lower_limit = 0.0025
IF parameter_category EQUALS “profile parameter”
AND parameter_type STRATWITH “R”
AND up_limit = 0.8
THEN lower_limit = 0.0025
IF parameter_category EQUALS “profile parameter”
AND parameter_type STRATWITH “R”
AND up_limit = 2.5
THEN lower_limit = 0.008
IF parameter_category EQUALS “profile parameter”
AND parameter_type STRATWITH “R”
AND up_limit = 8
THEN lower_limit = 0.025

List 5.13: Inference rule No.13.

Table 5.16 lists the value of the lower limit for motif parameters.

 140

Profile Lower limit

R
profile

As mentioned in Figure 5.16, the width for the roughness motif ARj should be greater
than the value λs according to ISO 12085 (ISO 12085, 1996 [25]). The lower limit λs
can be obtained from Table 5.13 according to the evaluation length.

W
profile

As mentioned in Figure 5.17, the width for the waviness motif AWj should be greater
than the value A according to ISO 12085 (ISO 12085, 1996 [25]). The lower limit A can
be obtained from Table 5.13 according to the evaluation length.

Table 5.16: Lower limit for motif parameters.

Based on the Table 5.16, the inference rule for setting lower limit for motif

parameters is represented as List 5.14:

RULE_NO 14
IF parameter_category EQUALS “motif parameter”
AND parameter_type STRATWITH “R”
AND no value indicated for lower_limit
THEN USE Inference Rule RULE_NO 15
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type STRATWITH “W”
AND no value indicated for lower_limit
THEN USE Inference Rule RULE_NO 16

List 5.14: Inference rule No.14.

The inference rule of number 15 based on Table 5.13 is represented as List

5.15:

RULE_NO 15
IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “ARj”
AND no value indicated for lower_limit
AND evaluation_length=0.64
THEN lower_limit = 0.0025
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “ARj”
AND no value indicated for lower_limit
AND evaluation_length=3.2
THEN lower_limit = 0.0025
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “ARj”
AND no value indicated for lower_limit
AND evaluation_length=16
THEN lower_limit = 0.008
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “ARj”
AND no value indicated for lower_limit
AND evaluation_length=80
THEN lower_limit = 0.025
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “AWj”
AND no value indicated for lower_limit
AND evaluation_length=0.64
THEN lower_limit = 0.02
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “AWj”
AND no value indicated for lower_limit
AND evaluation_length=3.2
THEN lower_limit = 0.1
ELSE IF parameter_category EQUALS “motif parameter”

 141

AND parameter_type EQUALS “AWj”
AND no value indicated for lower_limit
AND evaluation_length=16
THEN lower_limit = 0.5
ELSE IF parameter_category EQUALS “motif parameter”
AND parameter_type EQUALS “AWj”
AND no value indicated for lower_limit
AND evaluation_length=80
THEN lower_limit = 2.5
ELSE IF parameter_category EQUALS “motif parameter”
AND no value indicated for lower_limit
AND parameter_type NOT EQUALS “ARj” OR “AWj”
THEN lower_limit = NULL

List 5.15: Inference rule No.15.

Table 5.17 lists the values of the lower limit for parameters based on material

ratio curve.

Profile Lower limit

R
profile

If not otherwise indicated, the default lower limit λs for roughness profiles is 0,0025
millimetres according to ISO 1302 and ISO 13565-1 (ISO 1302, 2002 [95]; ISO 13565-
1, 1996 [100])

P
profile

The lower limit for primary profiles of the transmission band is λs (short-wave filter),
which has no default value to be defined according to ISO 1302 (ISO 1302, 2002 [95]).

Table 5.17: Lower limit for parameters based on material ratio curve.

Based on the Table 5.17, the inference rule for setting lower limit with

parameters based on ratio curve is represented as List 5.16:

RULE_NO 16
IF parameter_category EQUALS “material ratio curve”
AND parameter_type STRATWITH “R”
AND no value indicated for lower_limit
THEN lower_limit=0.0025
IF parameter_category EQUALS “material ratio curve”
AND parameter_type STRATWITH “W” or “P”
AND no value indicated for lower_limit
THEN lower_limit=NULL
OR lower_limit= NOT INDICATED

List 5.16: Inference rule No.16.

Therefore, inference rules (No.12, 13, 14, and 15) for setting the default low

limit of transmission band are applied on the internal object level, so it is

represented as a method arrow mapping from internal object “up_limit” to

“low_limit” in “Filtration” class category. This method arrow is optional.

The inference rule No.16 is represented as a indentity arrow mapping from

internal object “lower_limit” to the same internal object “lower_limit” of

“Filtration” class category.

 To finally form a complete callout, an inference rule should be built as List

5.17:

 142

RULE_NO 17
IF QUERYING Callout
AND Getting all default values for Partition
AND Getting all default values for Extraction
AND Getting all default values for Filtraction
AND Getting all default values for Measurand
AND Getting all default values for Comparison
THEN Generating Callout

List 5.17: Inference rule No.17.

This inference rule is actually the procedure knowledge for generating complete

callouts. The complete callout can be regarded as shallow knowledge that is used for

reasoning other deeper knowledge. Besides adding these inference rules in these class

categories, a set for functional dependencies arrows should also be added in the design

model construction stage. For example, in “Measurand” class category, the internal

object “parameter_name” is functional dependent on “parameter_type” to provide the

complete parameter names. So a functional dependency arrow is mapping from

“parameter_type” to “parameter_name”. After adding all these inference rules and

functional dependencies in or between class categories, the categorical diagrams for

graphically representing the structured knowledge in Specification component can be

devised as Figure 3.25, 3.26, 3.27 and 3.28 of Chapter 3.

5.3.4 The Categorical Sequence Diagram Construction for Specification

The sequence diagram for Specification component is used to clarify the process to

generate a complete callout from a simple callout on drawing, see Figure 5.18.

Figure 5.18: The sequence diagram for Specification component.

 143

5.3.5 The Categorical deployment model Construction for Specification

Based on the Figure 5.18, a deployment topological graph for Specification can be

devised as Figure 5.19.

Deployment model for
specification

Specification
client

Internet

Knowledge base for Specification

Simple
callout

Measurand

message
Inference
Engine in
Specification

Categorical
DBMS

Knowledge base system sever

Extraction

Filtration

Comparison

Partition

Completed
callout

IntranetIn
tra

ne
t

Specification
report in XML

format

Figure 5.19: The deployment topological graph for Specification component.

Figure 5.19 shows how to allocate difference design classes in Specification

component on computing resource nodes, and how these design classes interacted

with other modules or components such as user interfaces and the categorical DBMS.

An inference engine should be built to control the inference rules defined for the

knowledge base in Specification, which also needs to communicate with the database

to retrieve existing complete callouts for users. The complete callout can be outputted

in XML format as a specification report for different user communications.

5.4 The Manufacture Component Design

This section aims to provide a detailed discussion of the design of the Manufacture

component, which focuses on discussing the knowledge acquisition and knowledge

organization. The Manufacture component is used to help users to select suitable

manufacturing processes matching the callout specification provided by Specification

component.

5.4.1 The Categorical Business Map Construction for Manufacture

Manufacture is a transformation process from raw material into finished products,

 144

which includes the design of the product, the selection of raw materials and the

sequence of processes (manufacturing processes) through which the product will be

made (Kalpakjian and Schmid, 2005 [92]). The manufacturing process is one of the

core parts for manufacturing industry. Generally, a manufacturing process can be

classified into six groups in general: casting processes, moulding processes, forming

processes, machining processes, joining process and rapid manufacturing (Schey,

2000 [102]). Since there are various kinds of processes, the selection of a suitable

process becomes a difficult job for new manufacturers. Therefore, the main software

functions for the Manufacture component can be summarized as:

 Generate suitable comprehensive manufacturing processes by organizing a set

of sub-processes for users.

 Provide a broad overview for each suggested process through giving detailed

information including material suitability, design considerations, quality issues,

general economics, process fundamental and variations. This overview should

be organized in a standard format.

Based on these two software functions, a business map for Manufacture

component can be developed as Figure 5.20 illustrated.

Figure 5.20: The business map for Manufacture component.

The Figure 5.20 shows that the Manufacture component needs to contain three use

cases: a set of inputted inference properties, a set of inference rules based on several

matrices and a class category for holding all stored manufacturing processes.

5.4.2 The Categorical Analysis Model Construction for Manufacture

In this section, the analysis model is used to separate these three use cases defined in

Figure 5.20 into main class categories (analysis classes) as the following three points

demonstrate:

(1) Inference properties. The inference properties can be separated into two

groups: specification related properties and PRIMA (Manufacturing Process

 145

Information Map) related properties. The specification related properties

include the texture lay, surface parameter type, tolerance value and cut-off

wavelength, which can be obtained from the specification report (complete

callout) provided by Specification part. Two PRIMA selection matrices are

used in Manufacture based on two properties: material type and production

quantity. Therefore, two class categories should be devised to represent these

two groups − “SpecificationProperties” and “PRIMAProperties”.

(2) Inference rules. According to the discussion in point one, two groups of

inference properties indicate two groups of inference rules. The PRIMA

selection matrices are used for PRIMA related properties. This is a simple

inference method based on material and production quantity, which is

designed to enable users to focus their attentions on the most relevant PRIMAs.

For instance, a complete PRIMA matrix used in the Manufacture component

can be referred in Appendix E (Swift and Booker, 2003 [103]). On the other

hand, the surface texture is also an important issue that needs to be considered

when selecting the manufacturing processes.

 Texture lay. Texture lay is the directionality of the surface, which is an

important factor affecting the interaction between the surface and the

environment. Table 5.18 lists some examples of typical manufacturing

processes suitable to different texture lays (Griffiths, B., 2001 [104]).

Lay
symbol

Interpretation
Typical

Manufacturing
processes

═

┴

Parallel to plane of projection of view in which symbol is
used
Perpendicular to plane of projection of view in which
symbol is used

milling, drilling,
turning, shaping

X
Crossed in two oblique directions relative to plane of
projection of view in which symbol is used

cross-honing

M Multi-directional lapping, abrading

C
Approx. circular relative to centre of surface to which
symbol applies

facing, parting-off

R
Approx. radial relative to centre of surface to which symbol
applies

face-grinding

P Lay is particulate, non-directional, or protuberant EDM, ECM, peening

Table 5.18: Texture lay with typical manufacturing processes.

 Surface roughness values. A typical manufacturing process has the ability

to produce a limited range of surface roughness values Ra, between 1.6

 146

µm – 6.3 µm, see Table 5.19 (BS 1134-2, 1990 [105]).

 Key: average application less frequent application

Process Roughness values (µm Ra)
 50 25 12.5 6.3 3.2 1.6 0.8 0.4 0.2 0.1 0.05
0.025 0.0125

Flame cutting

Snagging

Sawing

Planing, shaping

Drilling

Chemical
milling

Electro-
discharge

Broaching

Reaming

Boring, turning

Barrel finishing

Electrolytic
grinding

Roller
burnishing

Grinding

Polishing

Lapping

Superfinishing

Sandcasting

Hot rolling

Forging

Permanent

Investment
casting

Extruding

 147

Cold rolling,
drawing

Note: The ranges shown above are typical of the processes listed. Higher or lower values may be
obtained under special conditions.

Table 5.19: Surface roughness values produced by common
production processes and materials.

 Cut-off wavelength. The cut-off wavelength is used to distinguish

roughness values and waviness values. Table 5.20 shows the suitable cut-

off wavelength for different manufacturing processes (Leach, 2001 [106]).

 Cut-off wavelength (mm)
Process 0.25 0.8 2.5 8.0 25.0

Milling √ √ √
Turing √ √

Grinding √ √ √

Shaping √ √ √
Boring √ √ √

Planning √ √ √
Reaming √ √

Broaching √ √
Diamond boring √ √

Diamond turning √ √
Honing √ √

Lapping √ √
Super finishing √ √

Buffing √ √
Polishing √ √

Electro discharge √ √
Burnishing √ √

Drawing √ √

Extruding √ √
Moulding √ √

Electro polishing √ √

Table 5.20: Choice of cut-off wavelength for a number of common
machining operations.

The Tables 5.18, 5.19 and 5.20 become class categories “CriteriaOne”,

“CriteriaTwo” and “CriteriaThree”. These three class categories can

manage all inference information defined in Table 5.18, 5.19 and 5.20 and

hold the inference methods.

(3) Manufacturing process. In order to assist users in making final decisions

after getting a set of suggested manufacturing processes through matrices and

tables defined in the previous point, a standard format is required to represent

each manufacturing process. The PRIMA format defined by Swift and Booker

 148

has been chosen to achieve this requirement. The PRIMA format is a

deliberate standard format, which gives detailed information on the

characteristics and capabilities of each process with specific headings

including: material suitability, design considerations, quality issues, general

economics and process fundamentals and variations. Therefore, in order to

support the manufacturing process report rendered in the PRIMA format, a

class category “ManufacturingProcess” was devised to record all information

relating to a manufacturing process for PRIMA with following internal objects

(Swift and Booker, 2003 [103]):

 Process Description: an explanation of the fundamentals of the process

together with a diagrammatic representation of its operation. (e.g. the

drilling is a process that removal of material by chip processes using

rotating tools of various types with two or more cutting edges to produce

cylindrical holes in a workpiece)

 Materials: describes the materials currently suitable for the given process

(e.g. the materials suitable for the drilling process are all metals and some

plastics and ceramics).

 Process Variations: a description of any variations of the basic process

and any special points related to those variations (e.g. wide ranges of

cutting tool materials are available for the drilling process).

 Economic Considerations: a list of several important points − production

rate, minimum production quantity, tooling costs, labour costs, lead times

and any other points which may be of specific relevance to the process (e.g.

the tooling costs and finishing costs for the drilling process are low).

 Typical Applications: a list of components and parts that have been

successfully manufactured using the process (e.g. one of the typical

applications for the drilling process is any component requiring cylindrical

holes).

 Design Aspects: any points, opportunities or limitations that are relevant to

the design of the part as well as standard information on minimum section,

size range and general configuration (e.g. flat-bottomed holes should be

avoided for the drilling process).

 Quality Issues: standard information includes a process capability chart,

 149

surface roughness, as well as any information on possible faults, etc (e.g.

surface roughness values ranging 0.4 – 12.5 µm Ra are obtainable for the

drilling process).

5.4.3 The Categorical Design Model Construction for Manufacture

This section refines the six analysis classes determined in Section 5.4.2 by adding

relationships and constraints between them. Based on the Figure 3.23 that shows the

coequalizer construct for reasoning the suitable manufacture procedures, the diagram

Figure 5.21 can be defined to model design classes involved in the Manufacture

component in detail.

Figure 5.21: The categorical object model for Manufacture component.

Figure 5.21 shows a categorical object modelling diagram used to represent class

categories and their relationships relating to the Manufacture component. This

categorical object model contains a 5-ary relationship that specifies the criteria1,

criteria2, criteria3 and PRIMA matrix are working together with “inference_engine”

method to infer the suitable manufacturing processes. Besides managing inference

rules defined in three criteria and the PRIMA matrix, the “inference_engine” also

 150

contains an algorithm to calculate the weight of each suggested manufacturing process,

see equation 5.1.

W1 = μCriteria1(c) + μCriteria2(c) + μCriteria3(c)

{c manufacturing processes set in VirtualGPS} (5.1)

List 5.18: Equation 5.1.

In equation 5.1, if a manufacturing process c can be got through criteria1, the

μCriteria1(c) = 0.3, otherwise μCriteria1(c) = 0.0. The same result is applied to μCriteria2(c)

and μCriteria3(c). The W1 indicates the weight value for a manufacturing process after

inferred by criteria1, criteria2 and criteria3, which is an intersection value for

μCriteria1(c), μCriteria2(c) and μCriteria3(c). For PRIMA matrix, the weight calculation is

achieved by equation 5.2.

W2 =σPRIMAMatrix(c)

{c manufacturing processes set in VirtualGPS} (5.2)

List 5.19: Equation 5.2.

In equation 5.2, if a manufacturing process c can be got through PRIMA matrix, the

σPRIMAMatrix(c) = 0.5, otherwise σPRIMAMatrix(c) = 0.0. The Manufacture component

considers five top weights for W1 and five top weights for W2 together to get final five

top weight manufacturing processes that will be rendered to users initially.

5.4.4 The Categorical Sequence Diagram Construction for Manufacture

The sequence diagram in Manufacture is used to clarify the process to generate

PRIMA reports for top five weight manufacturing processes is shown in Figure 5.22.

 151

Figure 5.22: The sequence diagram for Manufacture component.

Figure 5.22 further detail the reasoning process of Figure 3.23 through a set of

sequential arrows.

5.4.5 The Categorical Deployment Model Construction for Manufacture

Based on the Figure 5.22, a deployment topological graph for Manufacture can be

devised as shown in Figure 5.23.

Figure 5.23: The deployment topological graph for Manufacture component.

Figure 5.23 shows how to allocate difference design classes in the Manufacture

component on computing resource nodes and how these design classes interacted with

 152

other modules or components (e.g. Specification component) and the categorical

DBMS. The inference engine in “ManufacturingProcessResultInterface” class

category is responsible for inferring suitable manufacturing processes, calculating

weight values and formatting them into PRIMA format for users.

5.5 The Verification Component Design

This section aims to provide a detailed discussion for the design of the Verification

component, which focuses on discussing the knowledge acquisition and knowledge

organization. The Verification component is used to determine the verification

procedures: to select an appropriate measuring instrument for determining how to

obtain the features from real surfaces; to suggest how to calculate the measured

parameter value; and to compare the measured value with the tolerance value.

5.5.1 The Categorical Business Map Construction for Verification

A complete measurement procedure should contain: instrument chosen, partition,

extraction, filtration, parameters to be calculated and comparison rule. For verification

of a manufactured product, the following steps should be taken:

(1) Getting a set of surface texture specifications for the manufactured product,

which includes surface texture parameters and their tolerance values.

(2) Choosing a suitable instrument to match the measuring requirements defined

in specifications.

(3) Calculating values for measured parameters generated by suggested filters.

(4) Comparing measured values of suggested surface texture parameters with the

tolerance values corresponding to these suggested surface texture parameters.

Therefore, verification contains two parts: measurement procedure and comparison

process. The Verification component in VirtualGPS system aims to cover these two

parts:

 Measurement procedure in the Verification component contains: defining

traverse length, defining filtering technique, selecting measurement

instruments.

 Comparison process in the Verification component contains: defining

comparison rules.

The detailed software functions of Verification component can be summarised as

follows:

(1) Refer the measurement procedure definitions and contents. Users can obtain

 153

the detailed explanation of each operation within the measurement procedure,

such as the definition of traverse length, the sampling spacing and etc.

(2) Generate a suitable measurement procedure, including traverse length, traverse

direction, sampling length, cut-off wavelength of filters, filter type, instrument

and comparison rule.

(3) Infer suitable candidate measurement instruments for users.

(4) Check detailed characteristics of candidate instruments. Users can carry out

further comparison of suggested instruments and make a final decision.

(5) Provide the comparison result after inputting both the measurand and the

measured value. The system can calculate the result by using certain

comparison rules and determine whether the surface is within the tolerance.

(6) Further refer to the Function, the Specification and the Manufacture sub-

knowledge bases. The Verification component is connected with the others

and users can easily traverse through them.

Based on analysis above, the categorical business map for the Verification component

can be built as Figure 5.24 shown.

Figure 5.24: The business map for Verification component.

The Figure 5.24 shows that the Verification component contains five use cases:

“Instrument”, “Partition”, “Extraction”, “Filtration”, and “Measurand/measured

values pairs”.

5.5.2 The Categorical Analysis Model Construction for Verification

The five use cases defined in Figure 5.24 are refined into class categories (analysis

classes) in this section through following five points:

(1) Partition. Since surface texture is influenced by the detailed form of the

profile curve, the feature information needed for carrying out the partition

must include the traverse length of the surface profile being evaluated and the

traverse direction of the measurement instrument. The traverse length is the

length of surface traversed by the measurement instrument and the traverse

 154

direction is the direction traced by the measurement instrument during a

measurement (Leach, 2001 [106]). The traverse direction should be

perpendicular to the direction of the surface texture lay unless otherwise

indicated. Therefore, the “Partition” class category defined in the

Specification component (see Section 5.3.3) is also used in Verification, but

adds the items of two other internal objects: traverse_length and

traverse_direction.

(2) Extraction. In the Verification component, lower limit, sampling spacing and

sampling length are used to identify a finite number of measuring points from

the surface. To obtain the lower limit, if no default value is indicated in

Specification component, the Verification component will ask users to input

values for lower limit. The sampling spacing is the width length between two

adjacent measuring points on the surface, which can be obtained from ISO

3274 according to the value of upper limit λc or lower limit λs (see Table 5.21)

(ISO 3274,1996 [101]).

λc
mm

λs
μm

Maximum sampling spacing
μm

0,08
0,25
0,8
2,5
8

2,5
2,5
2,5
8

25

0,5
0,5
0,5
1,5
5

Table 5.21: Relationship between the roughness cut-off wavelength λc
and maximum sampling spacing.

Based on Table 5.21, the inference rule for setting default sampling spacing is

represented as List 5. 20:

RULE_NO 18
IF λc = 0.08
THEN sampling_spacing = 0.0005
ELSE IF λc = 0.25
THEN sampling_spacing = 0.0005
ELSE IF λc = 0.8
THEN sampling_spacing = 0.0005
ELSE IF λc = 2.5
THEN sampling_spacing = 0.0015
ELSE IF λc = 8
THEN sampling_spacing = 0.005

List 5.20: Inference rule No.18.

To obtain a sampling length: if no default value is indicated in the

Specification component, the Verification component will ask users to

provide values for sampling length (e.g. motif parameters do not use the

 155

concept of sampling length). After capturing the knowledge above, the

“Extraction” class category defined in Section 5.3.3 is also used in the

Verification component. However, the “Extraction” class category is refined

in Verification through adding an internal object “sampling_spacing” with an

inference rule No.18. The inference rule No.18 is depicted in Figure 5.27 by

adding a method arrow mapping from “low_limit” to “sampling_spacing” and

this method arrow is optional. Other structures and inner- or inter-

relationships/inference rules of “Extraction” class category defined in the

Specification component are preserved in the Verification component.

(3) Filtration. In the verification stage, the filter type and cut-off wavelength are

used for guiding users to separate the surface profile into a roughness profile

and a waviness profile. The cut-off wavelength is used as a means of

separating or filtering the wavelengths of a surface. The value of cut-off

wavelength is equal to the upper limit defined in “Filtration”. Therefore, the

“Filtration” class category defined in the Specification is also be used in the

Verification with all inference rules and relationships preserved. For example,

getting the default value for the cut-off wavelength is same as getting the

default for the upper limit defined in Specification through using inference

rules defined for upper limit (see Section 5.3.3).

(4) Measurand/measured value pairs. The Measurand and value pairs are

modelled using categorical object model as shown in Figure 3.22. Figure 3.22

also shows how knowledge is structured and interacted in a comparison

process. The detailed modelling of a measurement procedure can be referred

in Section 3.6 of Chapter 3.

(5) Instrument. Measurement of surface topography plays an important role in

manufacturing, which is used for both control of manufacturing processes and

for determining whether the final product is acceptable or not. More

importantly, in the modern manufacturing industry, the measurement of

surface topography can also help manufacturers improve their product designs.

Different measurement procedures can be performed using different

instruments which have different capabilities and limitations (ISO 13565-1,

1996 [100]). There are three groups of instruments:

 The stylus instruments. Stylus instruments are contact instruments, which

use styluses as the central components of the probes.

 156

 The optical instruments. Optical instruments use the optical probes, and

involve projecting light on to a surface. They are non-contact instruments.

 Other instruments that include the new generation of scanning microscopes

such as the Scanning Electron Microscope (SEM), the Scanning

Tunnelling Microscope (STM) and the Atomic Force Microscope (AFM)

(Whitehouse,1997 [107]). They use scanning probes that utilize electrons

rather than light.

The instruments selection is required to match instrument attributes with

measuring requirements. In real applications, the measurement range and

resolution of different instruments are the most important factors that need to

be considered. The A-W diagram is used to help the selection of instruments

by defining an amplitude-wavelength plot, see Figure 5.25.

Figure 5.25: Selection of a measurement instrument.

In Figure 5.25, the vertical axis represents the resolution while the lateral axis

represents the range of the instruments. For example, the symbol in Figure

5.25 illustrates the Ra 3.3, the horizontal coordinate of which can be located

by the sampling spacing, and the vertical coordinate can be located by the

parameter value. In this case, after inferred by VirtualGPS system, the

sampling space for Ra 3.3 is 1.5μm and the parameter value is 3.3 μm, so an

A-W plot can be defined as (1.5 μm, 3.3 μm) in Figure 5.25. According to the

A-W diagram, three instruments have the capability of carrying out the

measurement for Ra 3.3: Stylus, Focus and SEM. After getting candidate

 157

instruments from A-W diagram, the Verification component can provide a

reference table (Table 5.22) for users to check the detailed characteristics of

these candidate instruments. After which users can choose the most suitable

instrument for the measurement (Whitehouse, 1997 [107]).

Method
Measurement

tool
Spatial

resolution
Spatial
range

Z
resolution

Range z
Frequenc

y
Comment

s

Stylus Stylus tip 0.1μm 100mm 0.3nm 1000μm 20Hz
Contacts
workpiece

Focus Optical probe 0.5μm 50mm 0.5nm 100μm
Non-
contacting

Interfero
meter

Optical probe 1μm 10mm 0.01nm 10μm minutes
Non-
contacting

SEM Detection 0.01μm 1mm 2nm 10μm minutes
Vacuum
needed

STM
Conductive

probe
0.0001μm 0.1mm 0.001nm 0.1μm minutes

Only for
the
conducting
surfaces

AFM Atom force tip 0.005μm 0.08mm 1nm 0.1μm minutes

Both for
conducting
and non
conducting
surfaces

Table 5.22: The characteristics for typical instruments.

The system can also allow users to insert new instruments into the knowledge

base of Verification. Users are required to add the new instruments with

essential attributes: z resolution, z range, spatial resolution and spatial range.

The system can automatically generate a new polygon on the A-W diagram

for a new instrument according to its attributes, and insert a new row in the

characteristics table for it as well. Therefore, based on the analysis above, a

class category “Instrument” should be defined as Figure 5.26.

Instrument

z_resolution

z_range

Spatial resolution

Spatial range

Figure 5.26: Categorical representation for “Instrument” class category.

 158

5.5.3 The Categorical Design Model Construction for Verification

This section refines five analysis classes determined in Section 5.5.2 through adding

relationships and constraints between them (see Figure 5.27). Figure 5.27 shows a

categorical object model for the Verification component which contains five class

categories: “Partition”, “Extraction”, “Filtration”, “Instrument” and

“ComparingSquare”.

Figure 5.27: The categorical object model for Verification component.

In Figure 5.27, the “λXC” is a 5-ary pullback relationship which is used to represent

the organizing and rendering of knowledge such as instrument suggestions, comparing

results, interfaces for inputting new instruments, and measured values based on five

class categories. The arrow in dashed line with number (2) indicates an inference rule

for determining A-W plot using sampling spacing and the value of a suggested surface

texture parameter. This inference rule is represented as a pullback relationship in

Figure 5.27. The arrow in dashed line with number (1) is a constraint to specify that

the “traverse_length” in “Partition” should be greater than the “evaluation_length” in

“Extraction”. The three pullback relationships in Figure 5.27 can be constructed in

same way as pullback relationships defined for the Specification in Section 3.7.2.

 159

Furthermore, according to the Figure 3.21 of Chapter 3, mirror relationships exist

between Specification and Verification. Therefore, pullback relationships defined

among “Partition”, “Extraction”, “Filtration”, “Comparison” and “Measurand” in

Specification should also be preserved in Verification.

5.5.4 The Categorical Sequence Diagram Construction for Verification

The detailed explanation for constructing a sequence diagram for Verification is

specified in Section 3.5.1 of Chapter 3. The “Comparison” class category contains

comparison rules and their instructions that can be used to guide specific comparison

processes.

5.5.5 The Categorical Deployment Model Construction for Verification

The detailed explanation for constructing a deployment topological graph for

Verification is specified in Section 3.5.2 of Chapter 3. The

“MeasurementProcedureManager” in Figure 3.19 is responsible for generating

suitable measurement procedure reports for users. The measurement procedure reports

are generated based on the mirror relationships of class categories in specification

reports.

5.6 Implementation of the VirtualGPS System

This section starts with a brief explanation on tools and platform for implementation

of the VirtualGPS system. It then moves on to demonstrate how to use XML DOM +

XSLT to dynamically generate reports such as function report or manufacture report

for users. This section concludes with a test case analysis to assess the design

functions of the system.

5.6.1 Tools and Platform for Developing the VirtualGPS

As the VirtualGPS is a distributed Java project, the following tools are used in this

project:

 Java 2 SDK (Java for Software Developer Kit) in version 1.4.2.10. The Java 2

SDK contains: Java Compiler, Java Virtual Machine, Java Class Libraries,

Java AppletViewer, Java Debugger, and other tools, which supports compiling

and running Java program on Microsoft Windows (Sun, 2007 [108]).

 The Eclipse Platform in version 3.2. The Eclipse Platform is designed for

building integrated development environments (IDEs). It can be used to create

diverse end-to-end computing solutions for multiple execution environments

 160

(Erickson and McIntyre, 2001 [109]). In this project, the Eclipse platform is

used to help programmer in developing the VirtualGPS faster and easier. It can

also benefit to organize different modules and software components of

VirtualGPS in a unified framework.

 Standard Widget Toolkit (SWT) plug-in for Eclipse − swt_win32.jar (Eclipse,

2007 [110]). This plug-in is used to visually develop the graphic user

interfaces.

 JfreeChar.jar plug-in for Eclipse (JFreeChart, 2007 [111]). This plug-in is used

to dynamically draw various charts and diagrams for the VirtualGPS system.

The detailed introduction on how to set up a Java project using Eclipse can be found

in tutorials published on the Eclipse official web site (Eclipse, 2005 [112]).

5.6.2 XML/XSLT Reports

In this project, XML is widely used in organizing various reports for users. XML was

firstly defined in 1998 (XML 1.0) recommended by the World Wide Web Consortium

(W3C) (Harold, 2002 [80]). At present, XML is the most widely used data interchange

technique for holding structured data and controlling data communication. As XML is

not designed to specify the rendering of data information as HTML did, XSLT is used

to transform an XML file into another text-based form such as HTML pages that can

be browsed on client screens. In order to generate a report, such as a function report in

the VirtualGPS system, the following steps should be adopted:

(1) Querying or inferring knowledge from VirtualGPS.

(2) Formatting knowledge into XML files. The List 5.21 illustrates a XML file

that is automatically generated by the system after querying function patterns

from the categorical DBMS.

<?xml-stylesheet type="text/xsl" href="functionPattern.xsl"?>
 <root>
 <surfaceTexture.FunctionPattern InternalId="16889">
 <id>3</id>
 <patternid>pattern3</patternid>
 <componentName>Cylinder Liner</componentName>
 <context>The designers need to select the suitable specification for a surface in order

to ensure the surface functions correctly.
 </context>
 <problem>Determination of the surface parameters to satisfy Pattern 2 - Functional

performance of the surface.
 </problem>
 <solution>There are two basic approaches: 1. Establish Pattern

4 - Functional correlation with texture parameters; 2. First
establish a stable surface generation process that produces acceptable
surfaces and then Pattern 5 - Monitor for surface changes.

 </solution>

 161

 <forces>The functional correlation approach is superior in quality of results but is
more expensive in time and cost to establish correlation and more
sophisticated measuring equipment is required than establishing a stable
surface generation process and monitoring for surface changes.

 </forces>
<example>The surface requirements for a cylinder liner on an engine block are that it

needs to have a good bearing surface but also retain a reservoir of oil for
lubrication. 1. The texture parameters Rk and friends have been shown to
have a functional correlation with the desired surface tasks. 2. One
approach for manufacture is with a plateau-honed surface. Rq & Rsk
can be used to monitor for surface changes.

 </example>
 <nextPattern>After the surface parameters selection, try Pattern 4 - Functional

correlation and Pattern 5 - Monitor for surface changes.
 </nextPattern>

</surfaceTexture.FunctionPattern>
</root>

List 5.21: A function report in XML format.

(3) Using XLST to transform XML into HTML. The List 5.22 illustrates a XLST

file that is used to render function report based on patterns specified in Section

3.7.1.

<?xml version = "1.0"?>
<!-- functionPattern1.xsl -->
<!-- XSLT stylesheet for transforming content generated by -->
<!-- GetProductServlet into XHTML-->
<xsl:stylesheet version = "1.0" xmlns:xsl =

"http://www.w3.org/1999/XSL/Transform">
 <xsl:output method = "xml" omit-xml-declaration = "no"
 indent = "yes" doctype-system = "DTD/xhtml1-strict.dtd"
 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>

 <xsl:template match = "root">
 <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang = "en" lang = "en">
 <head>
 <link rel = "StyleSheet" href = "CSS.css"/>
 <title>Pattern 1(Surface Requirements)<xsl:value-of select

="surfaceTexture.FunctionPattern/componentName"/>
</title>
 </head>

 <body>
 <div class="div3">
 <table border="2" cellpadding="0" cellspacing="0" class="table2"
 bordercolorlight="#ffffff" bordercolordark="#ffffff">
 <tr>
 <td class="table3" bordercolorlight="#000000"

bordercolordark="#ffffff" colspan="2">
 <p class="p1">=== Surface Requirements ===</p>
 </td>
 </tr>
 <tr>
 <td class="td12">
Name: <xsl:value-of select =

"surfaceTexture.FunctionPattern/componentNa
me"/>

</td> </tr>

…………………
 <td class="td7">
<xsl:value-of select =

 162

"surfaceTexture.FunctionPattern/nextPattern"/>

</td></tr>
 </table>
 </div>

 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

 List 5.22: An example of XLST codes for the function report.

The Figure 5.30 illustrates the final function report rendering for users. (See Section

5.6.3)

5.6.3 A Test Case Analysis for Cylinder Liner Design

As mentioned in previous sections, the VirtualGPS system can be used by designers to

design products, and by metrologists to verify the design specifications. This case

study analyses and demonstrates the design process for a cylinder liner. A cylinder

liner is one of the central working parts of a reciprocating engine, and it is the space in

which a piston travels. The movement of a piston inside the cylinder can drive a

vehicle moving. Normally, a piston moves inside each cylinder with several metal

piston rings fitted around its outside surface in machined grooves —typically two for

compressional sealing and one for oil sealing. They are commonly made of spring

steel and have close contact with the hard walls of the cylinder bore, which rides on a

thin layer of lubricating oil to prevent the engine from seizing up. The contact

between the cylinder liner and its counterpart piston rings requires the cylinder to have

a good bearing surface but also retain a reservoir of oil for lubrication. Furthermore,

the space surrounded by the cylinder bore and piston rings need a tight seal to contain

the compression of fuel and air mixtures.

Among all the design features, the most important functional demands on the

cylinder and piston rings are oil consumption, blow-by, and wear; especially at the

top-dead centre (TDC). The surface texture parameters defined in the latest GPS

standards have direct influences on the functional performance of the cylinder and

piston. After performing a factorial designed experiment (FDE) where surface

roughness was correlated to important functional performance indicators − oil

consumption, wear, and blow-by, in a 10−litre truck engine, it was proved that ‘oil

consumption’ is strongly correlated to the Rz parameter measured on the cylinder liner.

The biggest influence on ‘blow-by’ is the Ra parameter measured on the piston rings

with a negative variation. The ‘wear’ is also strongly correlated to the Ra value

measured on the piston rings, followed by the Rz measured on the cylinder; both have

 163

the same variation with the ‘wear’.

To demonstrate the functionality and usage of the VirtualGPS system, the design

of a cylinder liner is performed on the platform in the following steps:

Step 1: launching the system. Figure 5.28 shows a snapshot of the main user entry

of the VirtualGPS.

Figure 5.28: The main user entry interface.

Step 2: choose the “Surface Texture” button to enter the specific function page, in

this case, the Surface Texture module interface. By activating the “Classic

Components” menu on the menu bar, users can select the “Cylinder Liner”

from the list and then move on to the “Design” sub-menu item. From here,

users can enter the cylinder liner design process, which is consisted of four

stages. Figure 5.29 shows the main user interface for the Surface Texture

module.

 164

Figure 5.29: The Surface Texture working page.

Step 3: By double clicking the “Function” tree node on the Surface Texture page,

a function analysis report is generated based on the calculation performed

by the inference engine. It provides options for engineering designers with

suitable surface parameters that match the required functional

performances in the predefined patterns as shown below:

Pattern 1 — Surface requirements

For a cylinder liner on an engine block, the counterpart is the piston ring;

the surface requirement is to maintain a good bearing surface while

retaining a reservoir of oil for lubrication.

Pattern 2 — Functional performance

The most important functional demands in this case are correct oil

consumption, blow-by, and wear especially at the top-dead centre (TDC).

Pattern 3 — Surface parameters selection

The texture parameters Rk and Rz have been shown to have a functional

correlation with the desired surface tasks given in patterns 1&2. One

option for the manufacturing process is to adopt a plateau-honed surface.

 165

Rq & Rsk can be used to monitor for surface changes.

Pattern 4 — Functional correlation

The surface texture parameters Rk and Rz have been shown to have a

functional correlation with the desired surface tasks.

Pattern 6 — Suggestion of limit values

According to the factorial designed experiment (FDE), when Rz of the

cylinder increased, oil consumption, blow-up and wear all increased since

they have the same variation. Therefore, the limit value of Rz is suggested

at 4 µm in this case.

Figure 5.30: An example of a function performance report.

Figure 5.30 gives an example of a function analysis report generated in this

case. It also provides a set of GPS matrices and function maps for users to

adopt and refer to when making decisions on choosing surface texture

parameters and their corresponding limited values (see Appendix F-J).

Moreover, the Function component also provides an interface for users to

add new cases based on the pattern language defined in this thesis, see

Figure 5.31.

 166

Figure 5.31: The new case inputting interface for users.

Step 4: After retrieving the function analysis report, the next design stage will

move on to the Specification component. It provides users the complete

‘callout’ on drawing for the specific surface texture, defined by sampling

length, evaluation length, bandwidth for the filter, and so on. Figure 5.32

shows the output of this module for the cylinder liner with Rz defined at 4

µm.

 167

Figure 5.32: Output of a specification report.

Step 5: After acquiring the detailed specification report, designers will enter the

Manufacture component of the VirtualGPS system. The Manufacture

component searches for appropriate manufacturing processes for users.

Based on material types and quantity entered by designers, as well as

texture lay and limit values calculated by the specification report, this

component infers suitable manufacturing processes among several GPS

matrices (e.g. manufacturing process PRIMA selection matrix) using a set

of in-built inference rules. Figure 5.33 is an interface to allow users to

input inference properties for the Manufacture component.

 168

Figure 5.33: Inputs of the Manufacture component.

In this case, after inputting material with the value of “steel” and limit

value (tolerance value) of 0.004mm, the Manufacture component can

generate a manufacturing process report for guiding users to choose

suitable manufacturing processes, see Figure 5.34.

 169

Figure 5.34: Output of a manufacture report.

Step 6: The final design step uses the Verification component to find out suitable

measurement information for the cylinder liner, which can include traverse

length, sampling space, measuring instruments. Figure 5.35 shows the

interface of the generated verification report.

 170

Figure 5.35: Output of a verification report.

In the verification phase, valid suggestions of accurate measurement

instruments are very important. In this project, the so-called ‘A-W’

diagram is used to make this decision. As shown in Figure 5.36, the small

triangle (“∆”) symbol in the figure represents an ‘A-W’ plot for parameter

Rz 4 µm with sampling spacing 0.16mm. The user interface can also allow

users to zoom in and out of the diagram to check details of the coordinate

plot information.

 171

Figure 5.36: Visual representation of an A-W diagram.

The Figure 5.37 shows an output of a comparison process.

 172

Figure 5.37: Output of a comparison result.

5.7 Summary

The entire VirtualGPS system is designed and implemented conforming to the

Category Theory and the object-oriented programming rules. After the initial tests and

analysis performance, it is evident that the system can facilitate the entire geometric

product manufacturing lifecycle and benefit the manufacturers and engineers alike

from function designs to manufacture and verification. Future work of this project

aims at adding more task specific features to help GPS users to improve the design

and manufacture geometrical products. A fuzzy logic-based inference engine has also

been planned to improve the “intelligence” of the VirtualGPS.

 173

CHAPTER 6 TESTS AND EVALUATIONS

This chapter records in detail the tests and evaluations of the VirtualGPS system,

which contains two main parts — categorical DBMS evaluation and the host system

evaluation. The evaluations of such a categorical DBMS in this project were carried

through comparing with other classic relational, object-relational and object-oriented

DBMSs. Qualitative analysis was performed based on several selected evaluation

cases.

6.1 Tests and Evaluations on the Categorical DBMS

In this section, selected test cases will be used to demonstrate and assess the

categorical DBMS through comparison with other types of DBMSs. Based on the test

results, critical evaluations will be performed to analyse the pros – and – cons of the

categorical DBMS for the VirtualGPS system.

6.1.1 Data Model Comparisons

As the categorical DBMS developed in this research was based on the categorical

object model, the first test at the evaluation stage had been focused on the comparison

in between the categorical object model and the other two main stream data models

widely used at present: the relational data model and the ODMG object model.

Currently, there are around 40 commercial relational DBMS products developed by

various vendors (e.g. Oracle, SQLServer and MySQL), which have been the

dominating force in the database market for the last three decades. One of key factors

contributing to the success of relational DBMSs is that they all share a formal and

stable basis – the relational data model based on the Set Theory in mathematics. On

the other hand, the current ODMG standard 3.0 adopted by most mainstream object-

oriented DBMSs such as Objectivity, Versant and ObjectStore, had suffered from the

lack of a rigid mathematical definition and practical abilities in dealing with new and

innovative data forms (Cattell et al., 2000 [20]). Table 6.1 demonstrates a comparison

of these three data models in respect of their modelling capabilities and mathematical

supports.

 174

Relational data

Model
ODMG Object

Model
Categorical

Object Model

Modelling Capability

Formal relationship structure
(including n-ary)

YES
(Based on the
Descartes in Set
Theory)

NO

YES
(Based on the
product
construct in
Category
Theory)

Trees/Collections/Arrays NO YES YES
Inheritance NO YES YES
Aggregation NO YES YES
Multi-level mappings NO NO YES
Object nests NO YES YES

Mathematical Support

Manipulations

YES
 (Based on set
operations,
algebra and
calculus)

NO

YES
(based on arrow
mapping, arrow
composition
and functor
composition)

Methods/Dynamic
Constraints

NO

YES
(Based on Object
Definition
Language without
mathematical
support)

YES
(Based on
method arrows)

Normalization

YES
(Based on
functional
dependency
checking on sets)

NO

YES
(Based on arrow
composition
checking on
categories)

Referential Integrity
YES
(Based on foreign
key definitions)

YES (Based on
object identifiers)

YES
 (Based on
initial internal
objects of
categories)

Membership/cardinality
YES
(by labels)

NO
YES
(by typing
functors)

Table 6.1: Comparison of three data models.

As highlighted in Table 6.1, the key features for the relational data model can be

summarised as: a structure with a sound mathematical foundation that supports a clear

and formal construct (“table”) for data modelling and it also provides a rigorous data

manipulation mechanism based on the relational algebra and calculus on sets.

However, it is relatively weak in modelling of complex object structures, especially

when modelling multi-level constraints/mappings and object nests architecture. On the

other hand, the key features for ODMG object model can be summarized as: the

 175

ODMG object model has strong capability for modelling complex object structures,

but lack of a formal mathematical foundation. So it is difficult to ensure the integrity

and consistency of a database schema in an object model driven database when

manipulations such as deletion, updating and adding occurred, which had been

observed by database developers when designing “pure” object-oriented DBMSs.

However, Table 6.1 shows the categorical object model can satisfy both objectives

well − having sufficient capability for modelling complex object structures, especially

in handling the multi-level constraints and mappings, while offering a rigorous

mathematical foundation based on the Category Theory, similar to the Set Theory in a

relational data model. The categorical object model provides a uniform way to model

both static (attributes) and dynamic (methods) aspects of an object by using different

types of arrows. In addition, it defines a manipulation language based on the functor

mappings and compositions to ensure integrity and consistency of a database schema

through diagram chase and algebraic deduction. This is the rationale for devising an

object-oriented DBMS based on the categorical object model to provide a stable and

powerful foundation for the virtualGPS system.

6.1.2 Test Case 1: Comparing with a Relational DBMS

As stated in Section 2.2.2.4 of Chapter 2, relational DBMSs in general are relatively

weak in dealing with many-to-many relationships and other complex nested and

embedded structures. As a common practice, dynamic data structures such as lists,

collections or other linked data structures are avoided in relational DBMSs. In this

section, two examples derived from this project will be used to highlight why

relational DBMSs were not adopted in this project. A classic relational DBMS −

MySQL was chosen for this analysis.

6.1.2.1 Operations on Object Nests

This test was based on a simple object nest example to show the basic differences

between the categorical DBMS and relational DBMSs. Table 5.1 in Chapter 5 has

provided guidance to link the surface requirements with functional performances. For

example, if the surface requirements are two solid bodies in contact with a rolling

motion between them, then the most important functional demands for the surface is

the wear fatigue. As almost all relational DBMSs do not support object nests (table

embedded), the data in Table 5.1 must be separated into several small tables (BCNF

obeyed) and to be “glued” using foreign keys, which can be interpreted into MySQL

 176

in following form:

CREATE TABLE MECHANISMOFWEAR (Wear_ID char(5) NOT NULL, Name char(20),
Important_Level char(20), Primary Key (Wear_ID));
CREATE TABLE RELATIVEMOTIONS (Motion_ID integer NOT NULL, Type char(10),
Scheme blob NOT NULL, Primary Key(Motion_ID));
CREATE TABLE SURTOFUN (Element char (20) NOT NULL, Motion_ID integer,
Type_Of_Wear char(20), Mechanism_of_wear char(5), Primary Key(Element), Foreign Key
(Mechanism_of_wear) references MECHANISMOFWEAR (Wear_ID) AND (Motion_ID)
references RELATIVEMOTIONS (Motion_ID));

List 6.1: SQL code list for creating linked tables.

Based on List 6.1 above, a query can be formed as “Print the most important

surface functional demands for two solid bodies contacting with a sliding motion

between them”:

SELECT Element, RELATIVEMOTIONS.Type Relative_motions_type,
 RELATIVEMOTIONS.Scheme Relative_motions_scheme,
Type_of_wear, MECHANISMOFWEAR.Name mechanism_of_wear_name,
MECHANISMOFWEAR.Important_level mechanism_of_wear_importantLevel
FROM SURTOFUN, RELATIVEMOTIONS, MECHANISMOFWEAR
WHERE ELement = “Solid body/Solid body” AND Motion_ID = {
 SELECT Motion_ID FROM RELATIVEMOTIONS
 WHERE Type = “Sliding”
 }
AND Mechanism_of_wear = {
 SELECT Wear_ID FROM MECHANISMOFWEAR
 WHERE Important_Level = “Most important”
};

List 6.2: SQL code list for querying linked tables.

The results for this query operation can be displayed on screen by MySQL as Table

6.2 shown:

Element Relative
motions
type

Relative_
motions_scheme

Type_of_we
ar

mechanism_of
_wear_name

mechanism_of
_wear_import
antLevel

Solid
body
Solid
body

Sliding

Sliding wear Adhesion Most important

Solid
body
Solid
body

Sliding

Sliding wear Tribocorrosion Most important

Table 6.2: MySQL query results.

In contrast, due to the object nest supporting, the Figure 6.1 demonstrates a

categorical modelling of Table 5.1, which can be directly stored in the categorical

DBMS.

 177

Figure 6.1: A categorical object model for the linkage between surface
requirements and functional performances.

F1 and F2 are “faithful” functors which injects subclass categories —

“RelativeMotion” and “MechanismOfWear” into a superclass category

“SurfaceToFunction” while preserving their structures. The Figure 6.1 actually

represents a tree structure that indicates a high-level aggregate category containing

two lower-level sub-categories. Therefore, the class category “SurfaceToFunction”

can be formed as in List 6.3:

public class SurfaceToFunction {
public Arrow interObjId_id;
public Arrow interObjId_Element;
public Arrow interObjId_RelativeMotion;
public Arrow interObjId_TypeOfWear;
public Arrow interObjId_MechanismOfWear;

public void setArrows(Arrow interObjId_id, Arrow

interObjId_RelativeMotion, Arrow
interObjId_TypeOfWear, Arrow
interObjId_MechanismOfWear){

 this.interObjId_id = interObjId_id;
 this.interObjId_Element = interObjId_Element;
 this.interObjId_RelativeMotion = interObjId_RelativeMotion;
 this.interObjId_TypeOfWear = interObjId_TypeOfWear;
 this.interObjId_MechanismOfWear =

interObjId_MechanismOfWear;
}

public void setTargetForIdArrow(int id){

 this.interObjId_id.setTarget(Integer.valueOf(id));
}

public void setTargetForRelativeMotionArrow(RelativeMotion

 relativeMotion){
 this. interObjId_RelativeMotion.setTarget(relativeMotion);

}

public void setTargetForMechanismOfWearArrow(MechanismOfWear
 mechanismOfWear){

 178

 this. interObjId_MechanismOfWear.setTarget(mechanismOfWear);
}
…………
//set and get methods for arrows

}

List 6.3: Code list for “SurfaceToFunction” class category.

The class categories “RelativeMotion” and “MechanismOfWear” can be defined in

same way as the “SurfaceToFunction”. Therefore, a query can be formed as in List 6.4.

query.constrain(RelativeMotion.class);
query.descend("interObjId_Element").descend("target").constrain("Solid body/Solid body
").and(query.descend("interObjId_RelativeMotion
").descend("target").descend("interObjId_Type").descend("target").constrain("Slibing").and
(query.descend("interObjId_MechanismOfWear
").descend("target").descend("interObjId_ImportantLevel").descend("target").constrain("mo
st important");

List 6.4: Categorical query codes for the linkage between surface requirements
and functional performances.

The results are then displayed by the categorical DBMS as a hierarchical tree structure

as Figure 6.2 demonstrated.

Figure 6.2: The query result in tree structure.

This innovative form for generating and displaying query results has enabled potential

applications such as enable faster and safer database queries, prevent data corruption,

 179

reduce table joins and provide simple integrity checking. Some important differences

between the relational DBMSs and the categorical DBMS can be summarized as

shown in Appendix K.

6.1.2.2 Test on the Comparison Processes in Verification

In the verification step, the VirtualGPS system users can verify the measured values of

a product in accordance with tolerance values of GPS parameters suggested by the

Specification component of the system. In order to support this function, the DBMS

should have the ability to store the measurands, measured values, comparison related

information and comparison results for further queries. A test case for testing this

ability is defined at here: the surface texture knowledge base of the VirtualGPS

system suggests that the measurand for a cylinder liner is the surface parameter Rz

with a tolerance value of 4 µm. Table 6.3 lists the measured values of Rz calculated on

a manufactured cylinder liner.

Cylinder liner Rz (µm)

No.1 3.245

No.2 3.132

No.3 3.675

No.4 3.565

No.5 3.175

No.6 3.432

Table 6.3: Surface parameter Rz calculated on a manufactured cylinder liner.

The comparison information contains the comparison rule − “max-rule” (where the

requirements specify a maximum value of the parameter, none of the measured values

of the parameter over the entire surface can exceed the suggested tolerance value.), the

measurement instrument (revolution, space), and the comparison result etc. By using

the inference identifying square illustrated in Figure 3.22 and as well as the

corresponding categorical sequence diagram in Figure 3.18, the knowledge generated

from the comparison processes can be directly stored in the categocial DBMS. In

Figure 3.22, F1 and F2 are functors mapping from the category

“MeasurandForComparison” to the category “Value”. The σ is a natural

transformation mapping from F1 to F2. The F1, F2 and σ form a natural transformation

square in the form explained in Figure 3.4 of Chapter 3. The natural transformation σ

should keep the diagram commuting as defined in the Category Theory, which means

that two paths drawn from the values for domains of arrows in the source category

 180

F1(dom(fi)) to the values for the codomains of arrows in the target category F2(cod(fi))

should be equal. In this case, a natural transformation square is used to link the

suggested measurement pairs (from the GPS surface texture parameters to the

tolerance values suggested by the specification part) to the measured pairs (from the

measurands to the measured values) inputted by users. As mentioned earlier, Figure

3.22 also contains a 2-ary product relationship structure between the natural

transformation square and a class category “Comparison”. The “ComparisonResult” is

a class category for storing all information generated from this relationship link (e.g.

comparison result, resolution of measurement instrument, traverse range of

measurement instrument, meansurands, and measured value). Keeping these multi-

level mappings intact in the database is very important, because it is useless to store

only comparison results for verification without knowing the corresponding suggested

measurement pairs and measured pairs. Using the instance categories of the

“MeasurandForComparison”, “Value”, “Functor”, “NaturalTransformation” and

“Comparison” as input of the verification inference rules (e.g. max-rule) in the

VirtualGPS, the final comparison result together with related comparison information

will be stored in the instance categories of the “ComparisonResult”. All arrow

mappings, functor mappings, will be preserved and all constraints (e.g. the parameter

type in source side of natural transformation σ must equal to target side) will be

checked.

To implement this case in a relational DBMS, the first problem is that it is

impossible to store dynamic data structures in relational DBMSs. The data structures

that are dynamic indicate their data size can grow and shrink while computing

programs are running. Table 6.4 shows the performance differences between static

and dynamic data structures.

 Static Data Structures Dynamic Data Structures
Data Size Size is fixed when declared Size is not fixed

Storage efficiency

Inefficient storage due to
oversizing (e.g. a partially full
array, but space has been
allocated for the full size)

Efficient storage(e.g. space can
be allocated as a partially full
linked list required)

Flexibility of update

Inflexible(e.g. if one more value
needs to be added overrunning
the maximum size, the array
needs to be redeclared and
populated)

Flexible(If one more value
needs to be added overrunning
the maximum size, the linked
list increases automatically)

Execution speed Fast at execution Slow at execution

Table 6.4: Static vs. dynamic data structures.

 181

It became obvious at the system design phase that dynamic data structures are much

more suitable for holding data at runtime due to the unknown size of the measured

values in advance. Hence, the ability for storing and retrieving dynamic data structures

is an important feature for the system implementation. In the devised categorical

DBMS, the class category “Value” that extends a dynamic data structure “CTTree”

can be used to store an arbitrary size of measured values.

The second problem is that the relational DBMSs are incapable of recording the

natural transformation mappings in a traceable manner since they do not conform to

the normalization rules, which will cause loss of constraints during a persistence test.

6.1.2.3 Result Analysis

Based on the experiments explained above, several advantages of the devised

categorical DBMS over conventional relational DBMSs can be summarized as:

 Uniform mapping from design to implementation. In the relational design

stage, database developers model business applications in the form of E-R

diagrams. Then when implemented, developers need to translate the E-R

diagrams into “Table” based database schema based on Normal Form, primary

key definitions and foreign key linkages, which is a time consuming and error

prone process. In the categorical process, database developers only need to

model business applications in the categorical object model forms and then

directly store them in the categorical DBMS.

 Novel support for the object nest (category nest) and multi-level mapping

structures. Categorical DBMSs can directly store and retrieve nested objects

without any extra hierarchical definitions on links. It also provides a visual

tree structure to facilitate the display of nested objects (as shown in Figure 6.2),

which is much clearer than table based results displayed in Table 6.2.

 Supporting storage and retrieval of dynamic data structures. Also, categorical

DBMS can store and retrieve dynamic objects computed through a method.

 Simple query strategy with robust query closure. Queries from relational

DBMSs are often cumbersome since the PSJ operations (Project, Select, Join)

have to be called frequently to reconstruct objects. The categorical DBMS has

avoided this drawback through implementing a more natural and robust

querying mechanism.

It has been observed during the aforementioned experiments, due to the clear and

 182

logical mappings between applications and databases; natural representations of data

structures and database results in fewer codes; and Java based garbage collector, the

devised categorical DBMS is in average 10 times faster than an analogical mySQL

product when processing a query operation. The system is also capable of updating or

deleting an object nested more than 10 levels in any object hierarchical tree, as well as

average 1/3 memory cost of traditional relational DBMSs when contain more than

500k data in memory.

6.1.3 Test Case 2: Comparing with a Object-relational DBMS

This section examines the performance differences between the categorical DBMS

and an object-relational system ─ P/FDM, a research development by the Object

Database Group at the University of Aberdeen (Embury, 1995 [30]). The P/FDM is

based on a functional data model using a hybrid DAPLEX and SICStus prolog query

interface (Intelligent Systems Laboratory, 2006 [31]). The functional data model was

formed by entities and functions mapping from entities to other entities. Both entities

and functions are become tables in the P/FDM’s physical level. The P/FDM contains

three object-oriented extensions:

 Entity nest

 Entity Inheritance

 Function can either be persistent relations or derived methods

For storing functions in the database, the so-called “function table” in P/FDM was

used, which can support none atomic columns (Table nests). To compare with the

devised categorical DBMS, an example of using the P/FDM to implement the callout

schema defined in the Specification module of the VirtualGPS had been carried out.

The database schema definitions for the complete callout in the P/FDM are expressed

in Appendix L.

Figure 6.3 graphically shows this database schema in the functional data model

form, which is an extension of E-R diagram for modelling object-relational DBMSs.

 183

Figure 6.3: The functional data model for callouts generated by the P/FDM.

After defining the entities and functions, the database can be populated with real

data. Some snippet codes for populating callouts in P/FDM can be found in Appendix

M. Appendix M contains a set of nested tables for realizing functions (e.g. function

“default_determines”) and relationships (e.g. “bandwidth”). The query clause “Print

the default semi-completed callout symbols for ‘Ra 3.3’ was then generated (without

manufacture methods, direction and machine allowance)” in the internal P/FDM form

as List 6.5:

for each n0 in name such that name(n0)="Ra"
for each p1 in p_type such that p1=determine(n0,"p")
for each v2 in value such that value(v2)=3.3
for each t3 in type_value such that types(t3)=p_type(p1) and range(t3)=range(v2)
for each b4 in bandwidth such that b4=default_determines(t3)
for each u5 in uplimit such that u5=has_uplimit(b4)
for each b6 in bandwidth such that b6=b4
for each l7 in lowlimit such that l7=has_lowlimit(b6)
for each d8 in direction such that d_name(d8)=""
for each f9 in f_type such that f_name(f9)=""
for each t10 in t_type such that t_name(t10)=""
for each n11 in num_cutoff such that n_name(n11)=""
for each c12 in c_type such that c_name(c12)=""
print(name(n0),p_type(p1),value(v2)," "," ",uplimit(u5),"
",lowlimit(l7),direction(d8),f_type(f9),t_type(t10),num(n11),c_type(c12));

List 6.5: P/FDM query clause for the callouts.

 The query results are shown in Figure 6.4:

Figure 6.4: Output for the semi-completed callout symbols from the P/FDM.

The P/FDM DBMS also defines constraints for enabling integrity checks. For example:

constrain each v in Value to have value(v) <10.0

List 6.6: Example for a constraint definition in the P/FDM.

 184

Thus, values input by users for the “Value” entity can only be floating values less then

10.0. Further features of the P/FDM DBMS can be summarized:

 All database entities are stored in tables with some of the tabular entries may

have richer data structure ─ Abstract Data Types (ADTs).

 Supports constraint definition.

 Supports user defined data types and complex object query.

 Query results of P/FDM are also table or tuple (row) formats, so query results

can be stored back to the database to form further queries.

The database schema definitions and populations for callouts in the categorical DBMS

have been explained in Section 4.4.1. After instances of “Callout” class category have

been populated by the initial query in the Section 4.4.1.5, the direct query clause for

“Print the completed callout symbols for ‘Ra 3.3’ (without manufacture methods,

direction and machine allowance)” in categorical DBMS can be generated as List 6.7:

query.constrain(Callout.class);
query.descend("interObjId_measurand_paraType").descend("target").constrain("Ra").and(q
uery.descend("interObjId_limitedValue").descend("target").constrain(3.3));

List 6.7: A direct query for callouts in the categorical DBMS.

In summary of above discussions, the devised categorical DBMS has four main

advantages over conventional object-relational DBMSs:

 Although object-relational DBMSs and the categorical DBMS can both

directly map data models into implementations, the data models for object-

relational DBMSs are still weak in terms of semantic supports. For example,

the functional data model in the P/FDM does not have a structure like the

“product” as in the categorical object model. Therefore, Figure 6.3 can only

tell database programmers that the database entity “Callout” is a relationship

entity generated by linking the “Feature”, “Tolerance” and “Comparule”

without indicating what the real information should be held in the database

entity “Callout”. This also leads to the situation where the P/FDM can not

support direct query on the “Callout” entity as the categorical DBMS did in

this section. In the categorical DBMS, with the product construct, the

relationship category “Callout” can be defined clearly in advance with all the

essential information in respect of constraints, so an initial query (see Section

4.4.1.5) can be devised to populate instances for “Callout”, and then the query

results can be stored back for a direct query on the “Callout” as illustrated in

 185

this section.

 By Comparing Figure 3.30 and Figure 6.3, it is clear that the callout schema

modelled in the categorical object model is much clearer and simpler than that

is in a functional data model. The functional data model extends the relational

data model with some object-oriented features such as inheritance and entity

nests, but is largely behavioring in a relational manner, for instance:

1) Objects need to be identified by primary keys. Foreign keys are used to

link with other entities. Moreover, the entity nests are achieved in form of

key nests.

2) Relationship functions are used to define relations, which supports many

to many relationships and entity nests. However, they are also based on

key or key nests.

 Although object-relational DBMSs such as the P/FDM support

method/behaviours, they are incapable of supporting dynamic methods. The

so-called “method” in the P/FDM still carries heavy overhead. For example,

database application developers need to populate every function with all its

possible inputs and all possible outputs in advance (e.g. function

“default_determines”), which is a heavy overhead and error prone process. In

addition, in order to obtain the default roughness sampling length based on the

recommended surface parameters, the inference rules explained in table 5.6,

5.7, 5.8, 5.9 and 5.10 of Chapter 5 will need to be applied. For keeping sound

encapsulation of application objects and simplifying business logics in an

application, the best solution is to define those rules as dynamic methods in

corresponding application objects, which is beyond reach of the P/FDM and

other object-relational DBMSs.

 As suffered by other object-relational DBMSs, the P/FDM is also weak in

dealing with relationship or constraints crossing multiple levels, which only in

favour of the flat functions in a single level as defined in the Set Theory.

6.1.4 Comparing with an Object-oriented DBMS

The main problem for other “pure” object-oriented DBMSs, such as DB4O, in

implementation of the test case discussed in Section 6.1.2.2 is that they can not

support the categorical object model directly. Different database application

developers could end with totally different approaches to define classes, which cause

 186

great difficulties for code reusability and modularized design. Misunderstandings can

easily occur in between GPS knowledge base designers and the database application

developers, as objects in a database are very different from objects in an actual

application. Due to the absence of the multi-level mapping constructs in most of the

conventional object-oriented DBMSs, the multi-level relationships and constraints

will be largely missed out during persistence tests. A classic usage of object-oriented

DBMSs is to directly merge one class into another class to form a relationship

between these two classes, which causes the following problems:

 Lack of a rigorous class definition for holding the information generated from

the relationship linkage. Hence, queries for the relationship information are

difficult to form. The query closure also becomes difficult due to the lack of a

formal relationship structure.

 It is difficult to check the cardinality and membership for a relationship. This

also leads to the unnecessary complexity for updating or deleting objects

involved in a relationship from the database.

 The BCNF normalization rule violation.

Table 6.5 gives a summary of performance differences between the devised

categorical DBMS and the object-oriented DBMSs

 Categrical DBMS
Object-Oriented

DBMS

Structures
Formal relationship structure (including n-
ary)

YES NO

Trees/Collections/Arrays YES YES
Inheritance YES YES
Aggregation YES YES
Multi-level represenation YES NO
Rules

Normalization Support
YES(without atomicity rule

of 1NF)
NO

Referential Integrity YES NO
Membership YES(by typing functors) YES(by labels)
Manipulation

Algebra/Calculus

YES(based on arrow
mapping, arrow composition

and functor composition
NO

Declarative Query YES YES
Closure YES NO
View YES NO
Methods YES YES

Table 6.5: A Comparison between the categorical DBMS and the object-oriented
DBMSs.

 187

Based on Table 6.5, the realized extensions of the devised categorical DBMS and its

advantages can be summarized as:

 An innovative categorical object model.

 A distinct mechanism for dealing with multi-level architecture.

 A manipulation language with the intrinsic query closure capability.

 An integrity checking mechanism in both intra and inter category levels.

The detailed discussions on the four points above can be found in Section 7.1.2 of

Chapter 7. During the system test and performance evaluation, it was observed that

the main shortcoming of the current categorical DBMS is its heavy dependency on the

Java language. Although greatly simplified the development cycle, database

application developers adopting the categorical DBMS must possess sound knowledge

in Java programming. Researcheres in this project try to devise an Object Definition

Language (ODL) that is independent of any real programming languages based on the

ODMG standard 3.0 to alleviate this shortcoming. This work is ongoing. The

categorical DBMS is not intended to support more database concepts than other

DBMSs. Rather it aimed at and successfully achieved to provide a formal

mathematical basis for modern object-oriented DBMSs. It formed the backbone for

fully supporting the design and implementation requirements of the VirtualGPS in

Java.

6.2 Evaluation of the VirtualGPS System

During past three decades, various computer aided manufacturing software system

have been developed to benefit the broader product ranges, shorter model lifetimes,

and the ability to process orders in arbitrary lot sizes in global distributed areas, that

are common in modern industry. In general, the major software systems at present

have three shortcomings:

 The functionality features such as product function specifications, the

suggestions of surface properties, the related verification principles, measuring

equipment selections, and the measurement traceability mechanism are often

largely ignored in current software systems.

 The current systems rely on ambiguous dimensioning and tolerancing practices

based on the nominal model methodology and geometry theory. The powers of

GPS standards are not fully applied in these systems.

 The current systems have limited ability to provide documentation and storage

 188

mechanisms. Therefore, it is difficult for users to perform systematic

measurement analysis or to store relevant knowledge for further

communications.

Hence, the VirtualGPS system can be used to remedy the above functionality

shortcomings by using the universal GPS standards and Category Theory.

6.3 Summary

This chapter provided detailed discussions on the tests and evaluations carried out on

the categorical DBMS and VirtualGPS system. The categorical DBMS forms the

foundation and served as a core module for the VirtualGPS system. The devised

prototype in this project has proven the feasibility and advantages of the Category

Theory based modelling. Although the devised categorical DBMS is still falling short

of a fully-fledged DBMS compared with other commercial DBMSs, it has been

clearily demonstrated that the categorical DBMS is capable of storing and managing

complex data structures inherited from contemporary GPS standards and is also ideal

for providing data consistency when generating database schema. The final part of the

evaluation exercises in this project shows that the VirtualGPS system can provide

distinctive functional sets in supporting product function specification, surface

property description, and verification principle recommendation etc., backed up by

formal documentation mechansims.

 189

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the outcomes from the project and highlights the

contribution to knowledge in the relevant research domains, which were detailed in

previous chapters. Further works on the VirtualGPS are also discussed at the end.

7.1 The Summary of Contributions

7.1.1 A Categorical Modelling Mechanism for Knowledge-based Systems

The first main contribution of this project is the production of an innovative and

efficient graph-based categorical modelling mechanism. This categorical modelling

mechanism contains three components: a categorical object model, a categorical

software design process and an inference identifying square. Based on those, the

categorical modelling mechanism has provided a highly unified and abstract

modelling approach for handling all aspects relating to a knowledge-based system

design. The following sub-sections conclude the each individual component.

7.1.1.1 The Categorical Object Model

The categorical object model was developed to model both the application domain

knowledge and the database schemas with six distinctive advantages over other

conventional data models:

 The multi-level mappings defined in the Category Theory enabled the

categorical object model to handle the multi-level features of knowledge

structures and database schemas with ease. For example, the natural

transformation square discussed in Section 3.6 is difficult to be represented in

the Set Theory.

 The diagrammatical notations of the Category Theory provide designers with a

high-level abstraction view on system architectures, knowledge structures and

database schemas.

 Different types of arrows (e.g. method arrows, functional dependency arrows

and functors) provide a powerful and unified style for natural modelling of

both dynamic (methods, operations, inferences) and static (attributes,

properties, classes) aspects of the knowledge and database schemas.

 The typing mechanism of the categorical object model allows the assignment

of types to all instance categories and arrows, which ensures the consistency

and robustness for implementions.

 190

 It has provided a formal refinement mechanism.

 The diagram chase and algebra deducing abilities of the categorical object

model ensures the integrity of a knowledge base or a database schema as well

as assisting version management.

These six advantages listed above demonstrated that the categorical object model

is suitable for acquiring and modelling complex structured knowledge with a unique

and powerful set of inference rules to support its operations.

7.1.1.2 The Categorical Software Design Process

A categorical software design process was devised in this project based on the

Category Theory. It can facilitate software engineers to design and implement the

entire system architecture in a well defined framework. This design process is an

incremental and refineable one formed by five stages: the categorical business map

design, the categorical analysis model design, the categorical design model design, the

categorical sequence diagram design, and the categorical deployment model design.

This design process provides a set of standard procedures for engineers to carry out

the design and implement tasks for a knowledge-based system: analysing and

gathering user requirements; acquiring knowledge from user requirements and other

references (e.g. GPS standards for this project); organizing knowledge in the forms of

class categories or relationship categories for forming the knowledge base; refining

these class and relationship categories to identify inference rules for generating new

knowledge; building the sequence diagrams to define category interactions and

communications; and deploying these categories on the targeted computing resources

to carry out implementations.

7.1.1.3 The Inference identifying Square

The inference identifying square is defined by using the natural transformation and

coequalizer constructs of Category Theory. It is used to identify inference rules based

on existing knowledge, and to specify how inference properties are interacted with

inference rules in detail.

7.1.2 The Categorical DBMS

The second main contribution of this project is the development of a categorical

DBMS. This categorical DBMS is developed based on the aforementioned categorical

object model. Compared with traditional relational DBMSs, the categorical DBMS

has strong capabilities in dealing with complex object structures especially for

 191

modelling multi-level mapping constraints. Therefore, dynamic data structures and

complex structured knowledge modelled in the knowledge base of VirtualGPS can be

directly stored and queried without the need to grogram any mapping codes between

the data in the database and the data in the application. Furthermore, all arrow and

functor mappings, will be preserved and all constraints (e.g. the parameter type in

source side of natural transformation σ must equal to target side in Figure 3.22) will

be checked when storing or updating data. On comparison with other conventional

object-oriented DBMSs, the advantages of the categorical DBMS are highlighted as

follows:

 An innovative categorical object model that can map complex object structures

into mathematical formulae in Category Theory. It enables algebra and

calculus defined in the Category Theory to be used as a formal and rigorous

mathematical foundation for ensuring integrity of database schema.

 The categorical object model is powerful and flexible in representing the

multi-level architectures, which allows advanced constraint specifications and

good extensibility of database schemas to be realized in an application.

 The algebra and calculus such as arrow composition, arrow mapping, functor

composition and functor mapping can be used as the basis for implementing a

manipulation language with the intrinsic query closure capability. This

solution tackled the problem of the lack of a formal manipulation language

faced by current object-oriented DBMSs.

 The categorical DBMS has a robust integrity checking mechanism at both the

intra- and inter- category levels. Thus, BCNF normal form and referential

integrity can be maintained throughout database schemas.

7.1.3 The VirtualGPS Knowledge-based System

The third main contribution of this project is the development of a prototype for the

VirtualGPS system to enable theoritical and practical tests and evaluations. Taking

surface texture as an example, the Surface Texture module contains four components

(sub-knowledge base): Function, Specification, Manufacture and Verification:

 The Function component can help users to select surface texture parameters

with tolerance values according to functional requirements. Currently, this

selection is inferred based on cases (e.g. cylinder liner and total hip

replacement). It also provides an open and modularized platform for engineers

 192

or designers to add their own specific cases complying with a specific pattern

language format. This pattern language is also tested against and conforming

to the Category Theory (see Section 3.7.1 in Chapter 3).

 The Specification component can provide a complete geometrical specification

for any suggested parameters in the Function component. The detailed

introduction of each symbol in a complete geometrical specification can also

be reviewed using the Specification component.

 The Manufacture component contains a rating and ranking inference engine

for locating and retrieving any GPS-recommended manufacturing processes

and equipments. The relationships between the manufacturing processes and

the surface texture parameters can be analyzed. An inputting interface also

provides users an input channel for adding new manufacturing processes in the

PRIMA forms.

 The Verification component contains an inference engine for determining the

verification procedures: selecting an appropriate measuring instrument for

determining how to obtain the features from a real surface; suggesting

algorithms to calculate the measured parameter values; and comparing the

measured values with the recommended tolerance values.

Every component disscussed above can generate a XML report for

communications and archiving. This system can also be customized into a piece of

training software for helping users to understand and apply the GPS standards in their

daily working activities.

7.2 Future Works

Based on project reviews and system evaluations detailed in Chapter 6, some future

works to the VirtualGPS system are listed below:

(1) Applying more comprehensively advanced notations and constructs defined in

the Category Theory to elaborate the categorical modelling mechanism

devised in this project. For example, the advanced diagram injection can be

used in the category refinement operations and the ‘monads’ can be use as

states for I/O systems (Gordon and Hammond, 1995 [113]).

(2) Adding more domain knowledge into the VirtualGPS system. This mainly

includes works concerning three aspects:

 To incorporate more cases into the Function component.

 193

 To incorporate more matrices into the Manufacture component for

inferring manufacturing processes based on specifications and other

inference properties such as quantity and material.

 To incorporate knowledge for the calibration and uncertainties into the

Verification component to allow the generation of a complete

measurement process with more measurement instruments.

These goals can be achieved by: continuously enriching GPS standards;

continuously acquiring knowledge from experts’ publications; continuously

gathering new knowledge from virtualGPS system users. As stated in previous

Chapters, the current VirtulGPS has limited capability for inferring new

knowledge based only on existing cases and defined rules. However, once

equipped with enough GPS knowledge, it will be able to reason broadly over

the entire field of GPS through applying more advanced inference engines

based on fuzzy logic.

(3) Another major development anticipated for the system is to build a portal

interface to directly hook this system to other Computer Aided Design (CAD)

systems. Thus, the knowledge stored in the VirtualGPS system can be

transferred and applied in forming technical drawing pictures automatically.

For example, the complete callout can be automatically drawn in an AutoCAD

as illustrated in Figure 7.1 demonstrated.

Figure 7.1: The callout on technical drawing in the autoCAD.

7.3 Finally

In short, it is envisaged that the research and development outcomes from this project

will contribute the wider and better adoption of current GPS standards. It is also hoped

that the VirtualGPS system will be developed further to handle more complex GPS

knowledge inferences to link closer with real world manufactures alike.

 194

RELATED PUBLICATIONS

Xu, Yuanping, Xu, Zhijie and Jiang, Xiangqian (2008) ‘Category theory-based object-
oriented data management for web-based virtual manufacturing’, International Journal
of Internet Manufacturing and Services, 1 (2), pp. 136-159, ISSN 1751-6048.

Xu, Yuanping, Xu, Zhijie and Jiang, Xiangqian (2008) ‘Evaluation on the Categorical
DBMS for the VirtualGPS knowledge system’, The Proceedings of computing and
engineering annual researchers’ conference 2008, pp.81-86, ISBN 978-1-86218-067-
3.

Xu, Yuanping, Xu, Zhijie and Jiang, Xiangqian (2008) ‘Implementation of a Category
Theory-Based GPS Knowledge System for Product Design’, The 14th International
conference on Automation & Computing, pp.245-249, ISBN978-0-9555293-2-0.

Xu, Yuanping, Xu, Zhijie and Jiang, Xiangqian (2007) ‘Machining surface texture
knowledge management using a category theory-based object-oriented database’,
Communications of SIWN (formerly: System and Information Sciences Notes), 1 (1).
pp. 83-88. ISSN 1757-4439.

Xu, Yuanping, Xu, Zhijie and Jiang, Xiangqian (2007) ‘Exploration of a Category
Theory-Based Object-Oriented Database for Surface Texture Information
Management’, Proceedings of the First International Symposium on Data, Privacy,
and E-Commerce, IEEE Computer Society, pp. 107-109. ISBN 978-0-7695-3016-1.

 195

REFERENCES

[1] Durakbasa, N. M. and Osanna, P. H. (2001) ‘A general approach to workpiece
characterization in the frame of GPS (Geometrical Product Specification and
Verification)’ International Journal of Machine Tools and Manufacture, 41,
(13-14) pp. 2147-2151

[2] Bennich, P. & Nielsen, H. (2005) An Overview of GPS – A Cost Saving Tool.

Denmark: Institute for Geometrical Product Specifications

[3] Humienny, Z., et al. (2001) Geometrical Product Specifications course for
Technical Universities. Warsaw: University of Warsw

[4] International Organisation for Standardisation (1995) ISO/TR 14638:1995

Geometrical Product Specifications (GPS) –Masterplan. Geneva: ISO.

[5] International Organisation for Standardisation (2001) ISO TC/213:2001 Vision
Statement. Geneva: ISO.

[6] Wang, Y., Scott, P. J., and Jiang, X. Q. (2004) The structure of surface texture

knowledge, Journal of Physics: conference series. 13, pp.1-4 [online] Available
from: IOP <http://www.iop.org/EJ/abstract/1742-6596/13/1/001> [Accessed 31
March 2005]

[7] Partridge, D. & Hussain K.M. (1995) Knowledge Based Information Systems.

London: McGraw-Hill Book Company

[8] Jiang, X. (2004) A Knowledge-Based Intelligent System for Engineering and
Bio-medical Engineering Surface Texture (VirtualSurf). Huddersfield: Research
project report for University of Huddersfield.

[9] International Organisation for Standardisation (2002) ISO TC/213:2002

Bussiness plan. Geneva: ISO.

[10] UGS (2003) VisVSA guidance [online] Available at:

<http://ugs.com/prdoucts/efactory/docs/fs_visva.pdf> [Accessed 14th May 2006]

[11] Sigmetrix (2003) What Is CETOL 6 Sigma [online] Available at: <
http://www.sigmetrix.com/about_cetol.asp> [Accessed 15th May 2006]

[12] Carl Zeiss Industrial (2004) Calypso is CMM software of choice for major

automotive manufacturers software [online] Available at: <
http://www.metrologyworld.com/content/news/article.asp?DocID=%7B3BDC7
36D-B43E-4500-88B2-
F4F9099C75FB%7D&Bucket=Supplier+News&VNETCOOKIE=NO>
[Accessed 16th May 2006]

[13] Carl Zeiss Industrial (2006) CMM software [online] Available at: <
http://www.americanmachinist.com/304/Issue/Article/False/8683/Issue>
[Accessed 16th May 2006]

 196

[14] Brown & Sharpe, Inc. (2006) CMM software [online] Available at: <
http://www.brownandsharpe.com/software_overview.asp> [Accessed 16th May
2006]

[15] Martin, J (1977) Computer Database Organization. New York: Prentice Hall

[16] Connolly, T.M. and Begg, C.E. (2001) Database systems: a practical approach

to design, implementation, and management. 3rd ed. London: Addison Wesley

[17] Lin, C. (2003) Object-Oriented Database Systems: A Survey [online] Available
at: < http://www.cs.man.ac.uk/~david/categories/index.html> [Accessed 9th
September 2006]

[18] Molina, G., et al. (2008) Database Systems: The Complete Book. 2nd ed. New

York: Prentice Hall

[19] Tupil, K. (2008) Object oriented data model [online] Available at:
<http://www.cs.rpi.edu/tupilk/ooDb/node3.html> [Accessed 10th May 2006]

[20] Cattell, R.G.G., et al. (2000) The Object Data Standard: ODMG3.0. San

Francisco: Morgan Kaufman

[21] Gray, P.M.D. et al. (1992) Object-Oriented Databases: A semantic data model

Approach. New Jersey: Prentice Hall International Series in Computer Science

[22] Devarakonda, R.S. (2001) ‘Object-Relational Database Systems - The Road

Ahead’ Crossroads, 7, (3) pp.15-18

[23] Stanezyk, S. et al. (1993) Theory and Practice of Relational Databases. London:

UCL Press Ltd.

[24] Wikipedia (2006) Comparison of relational database management systems
[online] Available at: <
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_
systems> [Accessed 22nd September 2006]

[25] International Organisation for Standardisation (1996) ISO 12085:1996

Geometrical Product Specifications (GPS) — Surface texture: Profile method —
Motif parameters. Geneva: ISO.

[26] Fu, T.S. (2002) Hierarchical modelling of large-scale systems using relational

databases. PhD. thesis, University of Arizona.

[27] Hirao, T. (1990) ‘Extension of the relational database semantic processing

model’ IBM System Journal, 29, (4) pp.539-550

[28] Buneman, P. (1997) Functional Database Languages and the Functional Data
Model. In: A position paper for the FDM workshop, University of Pennsylvania,
pp.1-5.

[29] Gray, P.M.G. (1997) Why we need a Functional Data Model! [online] Available
at: < http://www.csd.abdn.ac.uk/~pgray/fdmwkshop/modeljust.html> [Accessed
14th October 2006]

 197

[30] Embury, S. (1995) User's Manual for P/FDM V9 Object Database Group.
University of Aberdeen: Dept. of Computing Science.

[31] Intelligent Systems Laboratory (2006) SICStus Prolog User’s Manual, Sweden:

Institute of Computer Science

[32] Nelson, D.A. (1998) To Formalise and Implement a Categorical Object-
Relational Database System. PhD. Thesis, University of Newcastle upon Tyne.

[33] Levene, M. and Poulovassilis, A. (1991) ‘An object-oriented data model

formalised through hypergraphs’ Data and Knowledge Engineering, 6, pp.205-
224

[34] Poulovassilis, A. and Levene, M. (1994) ‘A nested graph model for the

representation and manifpulation of complex objects’ ACM Transactions on
Information System, 12, pp.35-68

[35] Atkinson, M., et al. (1990) The object-oriented database system manifesto. In:

proceedings of the first international conference on deductive and Object-
Oriented Databases, Kyoto, Japan, pp. 223-240.

[36] Committee for Advanced DBMS Function (1990) ‘Third generation database

system manifesto’ SIGMOD Record, 19, (3) pp. 31-44

[37] OMG [Object Management Group] (1997) Object Management Group (OMG)
[online] Available at: < http://www.objs.com/survey/omg.htm> [Accessed 10th
January 2007]

[38] Cattell, R.G.G., et al. (1993) The Object Data Standard:ODMG93, ODMG. San

Francisco: Morgan Kaufman

[39] Cattell, R.G.G., et al. (1997) The Object Data Standard:ODMG2.0, ODMG. San
Francisco: Morgan Kaufman

[40] OMG [Object Management Group] (1992) OMG Core Object Model [online]

Available at: < http://www.objs.com/x3h7/omgcore.htm> [Accessed 10th
January 2007]

[41] Sun (2008) Java Data Objects (JDO) [online] Available at: <
http://java.sun.com/jdo/> [Accessed 5th March 2008]

[42] Bancilhon, F., et al. (1992) Building an Object-Oriented Database System: The
Story of O2. London: Morgan Kaufmann

[43] Obasanjo, D. (2001) An exploration of object oriented database management
systems [online] Available at: <
http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html>
[Accessed 22nd September 2006]

[44] Bagui, S. (2003) ‘Achievements and Weaknesses of Object-Oriented Databases’

Journal of Object Technology, 2, (4) pp.29-41

 198

[45] McClure, S. (1997) Object Database vs. Object-Relational Databases [online]
Available at: <
http://www.geog.ubc.ca/courses/geog470/notes/Object%20Database%20vs_%2
0Object-Relational%20Databases.htm> [Accessed 25nd September 2006]

[46] Dym, C.L. and Levitt, R.E. (1991) Knowledge-based systems in engineering.

NewYork: McGraw-Hill

[47] Harmon, P. and King, D. (1985) Expert Systems – Artificial Intelligence in
Business. New York:Wiley-Interscience

[48] Ackoff, R.L. (1989) ‘From Data to Wisdom’ Journal of Applies System Analysis,

16, pp.3-9

[49] Hopgood, A.A. (2001) Intelligent System for Engineers and Scientists. Florida:
CRC Press LLC

[50] Tansley, D.S. and Hayball, C.C (1993) Knowledge-based Systems Analysis and

Design − A KADS Developer’s Handbook. London: Prentice Hall

[51] Deitel, H.M., et al. (2003) Advanced Java 2 Platform How to Program. 4th ed.
London: Pearson Education

[52] Reynolds, M. (2000) Beginning E-commerce with Visual Basic, ASP, SQL

server 7.0 and MTS. Birmingham: Wrox Press Ltd.

[53] Goguen, J.A. (1989) ‘A Categorical Manifesto’ Mathematical Structures in
Computer Science, 1, (1) pp.49-67

[54] Adamek, J., et al. (1990) Abstract and Concrete Categories: The Joy of Cats.
New York: Wiley-Interscience Pure and Applied Mathematics

[55] Meseguer, J. and Montanari, U. (1988) Petri nets are monoids: A new algebraic

foundation for net theory. In: proceedings of Symposium on Logic in Computer
Science, IEEE Computer Society, pp.155 – 164

[56] Barr, M. and Wells, C. (1996) Category Theory for Computing Science. London:

Prentice-Hall International Series in Computer Science

[57] Pierce, B. C. (1991) Basic Category Theory for Computer Scientists. London:
MIT Press

[58] Saunders, M.L. (1998) Categories for the Working Mathematician. New York:

Springer-Verlg

[59] Rydeheard, D. E. and Burstall, R. M. (2003) Computational Category Theory
[online] Available at: < http://www.cs.man.ac.uk/~david/categories/index.html>
[Accessed 17nd August 2006]

[60] Guo J. (2002) Using Category Theory to Model Software Component
Dependencies. In: proceedings of the Ninth annual IEEE international
conference and workshop on the engineering of computer-based systems,
pp.185-192.

 199

[61] Eilenberg, S. and S MacLane, S. (1945) ‘General Theory of Natural

Equivalences’ Transactions of the American Mathematical Society, 58, (2)
pp.231-294

[62] Cartmell, J. (1985) ‘Formalising the Network and Hierarchical Data Models: An

Application of Categorical Logic’ Lecture Notes in Computer Science, 240,
pp.466-492

[63] Ehrich, H.D., et al. (1987) ‘Object, Object Types and Object Identification in
categorical methods in Computer Science’ Lecture Notes in Computer Science,
393, pp.142-156

[64] Kadish, B. and Diskin, Z. (1997) ‘Algebraic graph-oriented = Category Theory
based. Manifesto of categorizing database theory’ Frame Inform Systems,
Technical Report Series, No.9406, pp.1-10.

[65] Nelson, D.A. and Rossiter, B.N. (1994) The Categorical Product Data Model as
a Formalism for Object-Relational Database. Newcastle: University of
Newcastle upon Tyne (Technical Report Series No. 505).

[66] Nelson, D.A., et al. (1994) The Functorial Data Model – An Extension to

Functional Database. Newcastle: University of Newcastle upon Tyne
(Technical Report Series No. 488).

[67] Hofstede, A.H.M., et al. (1996) ‘Conceptual Data Modelling from a Categorical

Perspective’ The Computer Journal, 39, (3) pp. 215-231

[68] Colomb, R.M., et al. (2001) ‘Category-Theoretic Fibration as an Abstraction
Mechanism in Information Systems’ Spinger-Verlag, 38, (1) pp.1-44

[69] Lu, R.Q. (2005) ‘Towards a Mathematical Theory of Knowledge’ Journal of

Computer Science & Technology, 20, (6) pp.751-757

[70] Kappel, G. and Vieweg, S. (1994) ‘Database Requirements for CIM
Applications’ Information Management in Computer Integrated Manufacturing,
973, (1995) pp.136-164.

[71] Jacobson, I. (2004) The unified software development process. London: Pearson

Education

[72] Scott, P.J. (2004), ‘Pattern analysis and metrology: the extraction of stable
features from observable measurements’ Proc.R.Soc.Lond.A, 460, pp.2845-2864

[73] Scott, P.J. (2006) ‘The case of surface texture parameter RSm’ Measurement
Science and Technology, 17, pp.559-564

[74] Sowa, J.F. (2000) Knowledge Representation: Logical, Philosophical, and

Computational Foundations. London: Thomson Learning

[75] Neggess, J. and Kim, H.S. (1998), Basic Posets. London: World Scientific

 200

[76] Rising, L. (1998) The patterns handbook: techniques, strategies, and
applications. London: Cambridge University Press

[77] Nelson, D. A. and Rossiter, B. N. (1995) Prototyping a Categorical Database in

P/FDM. In: proceedings of the second international workshop on ADBIS,
Springer, pp.247-258.

[78] Objectivity, Inc. (2006) A comprehensive technical overview of Objectivity/DB

and related options [online] Available at:
<http://www.objectivity.com/pages/downloads/whitepaper/pdf/oodb_techOvervi
ew.pdf> [Accessed 7th March 2007]

[79] Harold, E.R. (2004) Effective XML. London: Addison-Wesley

[80] Harold, E.R. (2002) Processing XML with Java(TM): A Guide to SAX, DOM,

JDOM, JAXP, and TrAX. London: Addison-Wesley Professional

[81] Db4objects, Inc. (2007) ‘db4o Open Source Object Database-product
information’ Db4objects, Inc., pp.1-8

[82] ETH (2007), Object-Oriented Databases db4o: Part 1 [online] Available at:

<http://www.odbms.org/download/035.03%20Grossniklaus%20ODBMS%20Le
cture%20-%20db4o%20Part1%20November%202007.PDF>[Accessed 8th May
2008]

[83] Db4objects, Inc. (2008) Db4o description [online] Available at: <

http://handheld.softpedia.com/get/Developer-Tools/db4o-40582.shtml>
[Accessed 24th February 2008]

[84] Paterson, J., et al., (2006) The Definitive Guide to db4o, California:

Apress Berkely

[85] Db4objects, Inc. (2005) The Business Case for the Open Source Object
Database [online] Available at: <
http://www.db4o.com/about/company/backgrounder/db4objects%20Business%2
0Backgrounder%20June%202005.pdf> [Accessed 25th December 2007]

[86] DB4O Developer Community (2008) db4o news and press releases, [online]

Available at: <
http://developer.db4o.com/blogs/db4o_news_and_press_releases/default.aspx>
[Accessed 25th July 2008]

[87] Java Net (2007) JavaCC [online] Available at: <https://javacc.dev.java.net/>

[Accessed 17th October 2007]

[88] Tsichritzis, D. and Klug, A. (1978) ‘The ANSI/X3/SPARC DBMS Framework’

Information System, 3, (3) pp.173-191

[89] SDN [Sun Developer Network] (2005) Java Programming-accessors, mutators,
SDN [online] Available at: <
http://forums.sun.com/thread.jspa?threadID=683522&messageID=3981321>
[Accessed 17th October 2007]

 201

[90] Ambler, S.W. (2000) The whys and why nots Of Java accessors [online]

Available at: < http://www.ibm.com/developerworks/java/library/ws-tip-
why.html> [Accessed 18th October 2007]

[91] Mummery, L. (1990) Surface Texture Analysis - The Handbook. Germany:

Hommelwerke.

[92] Kalpakjian, S. and Schmid, S. (2005) Manufacturing Engineering and
Technology. London: Prentice Hall

[93] Whitehouse, D. J. (2002), Surfaces and their measurement. London: Hermes

Penton Ltd.

[94] Filetin, T. (2002) The knowledge bases for selecting the surface modification
treatment. MT2002

[95] International Organisation for Standardisation (2002) ISO 1302:2002

Geometrical Product Specifications (GPS) — Indication of surface texture in
technical product documentation. Geneva: ISO.

[96] International Organisation for Standardisation (1997) ISO 4287:1997

Geometrical Product Specifications (GPS) — Surface texture: Profile method —
Terms, definitions and surface texture parameters. Geneva: ISO.

[97] International Organisation for Standardisation (1996) ISO 13565-2:1996

Geometrical Product Specifications (GPS) — Surface texture: Profile method;
Surfaces having stratified functional properties — Part 2: Height
characterization using the linear material ratio curve. Geneva: ISO.

[98] International Organisation for Standardisation (2000) ISO 13565-3:2000

Geometrical Product Specifications (GPS) — Surface texture: Profile method;
Surfaces having stratified functional properties — Part 3: Height
characterization using the material probability curve. Geneva: ISO.

[99] International Organization for Standardization (1996) ISO 4288:1996
Geometrical Product Specifications (GPS) -Surface texture: Profile method -
Rules and procedures for the assessment of surface texture. ISO: Geneva.

[100] International Organisation for Standardisation (1996) ISO 13565-1:1996
Geometrical Product Specifications (GPS) — Surface texture: Profile method;
Surfaces having stratified functional properties — Part 1: Filtering and general
measurement conditions. Geneva:ISO.

[101] International Organisation for Standardisation (1996) ISO 3274:1996

Geometrical Product Specifications (GPS) - Surface texture: Profile method -
Nominal characteristics of contact (stylus) instruments. Geneva:ISO.

[102] Schey, J (2000) Introduction to manufacturing processes. London: McGraw Hill

[103] Swift, K.G. & Booker, J.D. (2003) Process selection: from design to

manufacture. London Elsevier Butterworth-Heinemann

 202

[104] Griffiths, B. (2001) Manufacturing Surface Technology – Surface Integrity &
Functional Performance. London: Penton Press

[105] British Standards Institution (1990) BS 1134-2:1990 Assessment of surface

texture — Part 2: Guidance and general information. London:BSI.

[106] Leach, R. (2001) Measurement Good Practise Guide No.37 – The Measurement

of Surface Texture using Stylus Instruments. London: National Physical
Laboratory.

[107] Whitehouse, D. J. (1997) ‘Surface metrology’ Measurement Science and

Technology, 8, pp.955-972

[108] Sun (2007) Java 2 SDK 1.4.2 Installation Notes for Microsoft Windows [online]

Available at: <http://java.sun.com/j2se/1.4.2/install-windows.html> [Accessed
18th October 2007]

[109] Erickson M. and McIntyre, A. (2001) What is Eclipse, and how do I use it?

[online] Available at: <
http://www.ibm.com/developerworks/opensource/library/os-eclipse.html>
[Accessed 20th October 2007]

[110] Eclipse (2007) Eclipse Plugin Central (EPIC) [online] Available at: <

http://www.eclipseplugincentral.com/> [Accessed 20th October 2007]

[111] JFreeChart (2007) Welcome To JFreeChart! [online] Available at: <
http://www.jfree.org/jfreechart/> [Accessed 10th November 2007]

[112] Eclipse (2005) Eclipse for Java and Web Developers [online] Available at: <

http://www.eclipse.org/callisto/java.php/> [Accessed 20th October 2007]

[113] Gordon, A.D. and Hammond, K. (1995) Monadic I/O in Haskell 1.3. In:
proceedings of the haskell workshop, California, pp.50-68

 203

APPENDIX A – CODE LIST FOR “MEASURAND” CLASS
CATEGORY

import cpt.ctdb.dataModel.*;
public class Measurand extends Category{

public Arrow interObjId_id;
 public Arrow interObjId_tolerance_type;

 public Arrow interObjId_parameter_type;
 public Arrow interObjId_parameter_name;
 public Arrow interObjId_machine_allowance;
 public Arrow interObjId_parameterExtends;

public void setArrows(Arrow interObjId_id, Arrow
interObjId_tolerance_type, Arrow interObjId_parameter_type, Arrow
interObjId_parameter_name, Arrow interObjId_machine_allowance,
Arrow interObjId_parameterExtends){

 this.interObjId_id= interObjId_id;
 this.interObjId_tolerance_type = interObjId_tolerance_type;
 this.interObjId_parameter_type = interObjId_parameter_type;
 this.interObjId_parameter_name = interObjId_parameter_name;
 this.interObjId_machine_allowance =

interObjId_machine_allowance;
 this.interObjId_parameterExtends = interObjId_parameterExtends;
 }

 public void setTargetForIdArrow(int id){
 this.interObjId_id.setTarget(Integer.valueOf(id));
 }

 public void setTargetForTolerTypeArrow(String tolerance_type){
 //inference rules for setting the default tolerance type.

 }

public void setTargetForParaTypAndparaNameArrow(String
parameter_type){

//inference rules for setting the default parameter type and parameter
//name.

}

 public String setTargetForparameterExtendsArrow(double value){
 //inference rules for setting the parameter extends according to
 //user inputted parameter value.

}

 public Arrow getIdArrow(){
 return this.interObjId_id;
 }

 public Arrow getTolerTypeArrow(){
 return this.interObjId_tolerance_type;
 }

 public Arrow getParaTypeArrow(){
 return this.interObjId_parameter_type;
 }

 public Arrow getParaNameArrow(){
 return this.interObjId_parameter_name;

 204

 }

 public Arrow getParaExtendArrow(){
 return this.interObjId_parameterExtends;

 }

 public Arrow getMachineAllowArrow(){
 return this.interObjId_machine_allowance;
 }

public String toString(){
return ("Measurand
["+((Integer)getIdArrow().getTarget()).intValue()+"]:
tolerance_type="+((String)getTolerTypeArrow().getTarget())+"
parameter_type="+((String)getParaTypeArrow().getTarget())+"
parameter_name="+((String)getParaNameArrow().getTarget())+"
parameter_value_extend="+((String)getParaExtendArrow().getTarget
())+"
machine_allowance="+((Double)getMachineAllowArrow().getTarget(
))).toString();

}
}

 205

APPENDIX B – CODE LIST FOR “CALLOUT” CLASS
CATEGORY

import cpt.ctdb.dataModel.Arrow;
import cpt.ctdb.dataModel.RelationConstraint;
public class Callout extends PersistCategory {

 public Arrow interObjId_id;
 public Arrow interObjId_partition_dirSym;
 public Arrow interObjId_partition_manuTypSym;
 public Arrow interObjId_partition_manuMethod;
 public Arrow interObjId_extraction_numCutOff;

public Arrow interObjId_extraction_sampLength;
 public Arrow interObjId_extraction_evaLength;
 public Arrow interObjId_filtration_filterType;

 public Arrow interObjId_filtration_upLimit;
 public Arrow interObjId_filtration_lowLimit;

 public Arrow interObjId_measurand_tolerType;
 public Arrow interObjId_measurand_paraType;
 public Arrow interObjId_measurand_machineAllow;
 public Arrow interObjId_measurand_paraExtends;
 public Arrow interObjId_limitedValue;

 public void setArrows(Arrow interObjId_id, Arrow

interObjId_partition_dirSym, Arrow interObjId_partition_manuTypSym,
Arrow interObjId_partition_manuMethod, Arrow
interObjId_extraction_numCutOff, Arrow
interObjId_extraction_sampLength, Arrow
interObjId_extraction_evaLength, Arrow
interObjId_filtration_FilterType, Arrow interObjId_filtration_upLimit,
Arrow interObjId_filtration_lowLimit, Arrow
interObjId_measurand_tolerType, Arrow
interObjId_measurand_paraType, Arrow
interObjId_measurand_machineAllow, Arrow interObjId_limitedValue,
Arrow interObjId_measurand_paraExtends){

 this.interObjId_id= interObjId_id;
 this.interObjId_partition_dirSym = interObjId_partition_dirSym;
 this.interObjId_partition_manuTypSym =

 interObjId_partition_manuTypSym;
 this.interObjId_partition_manuMethod =

 interObjId_partition_manuMethod;
 this.interObjId_extraction_numCutOff =

interObjId_extraction_numCutOff;
 this.interObjId_extraction_sampLength =

 interObjId_extraction_sampLength;
 this.interObjId_extraction_evaLength = interObjId_extraction_evaLength;
 this.interObjId_filtration_filterType = interObjId_filtration_FilterType;

this.interObjId_filtration_upLimit = interObjId_filtration_upLimit;
 this.interObjId_filtration_lowLimit = interObjId_filtration_lowLimit;
 this.interObjId_measurand_tolerType = interObjId_measurand_tolerType;
 this.interObjId_measurand_paraType = interObjId_measurand_paraType;

this.interObjId_measurand_machineAllow =
 interObjId_measurand_machineAllow;

 this.interObjId_limitedValue = interObjId_limitedValue;
this.interObjId_measurand_paraExtends =

 interObjId_measurand_paraExtends;
 }

 206

 public void setTargetForIdArrow(int id){
 this.interObjId_id.setTarget(Integer.valueOf(id));
 }

 public void setTargetForPartitionDirSymArrow(String direction_symbol){
 this.interObjId_partition_dirSym.setTarget(direction_symbol);
 }

 public void setTargetForPartitionmanuTypSymArrow(String

 manufacture_type_symbol){
 this.interObjId_partition_manuTypSym.setTarget(manufacture_type_sy

mbol);
 }

 public void setTargetForPartitionmanuMethodArrow(String
 manufacture_method){

this.interObjId_partition_manuMethod.setTarget(manufacture_method);
 }

 public void setTargetForExtractionNumCutOffArrow(Integer num_cutOff){

 this.interObjId_extraction_numCutOff.setTarget(num_cutOff);
 }

 public void setTargetForExtractionSampLengthArrow(Double
 sampling_length){
 this.interObjId_extraction_sampLength.setTarget(sampling_length);
 }

 public void setTargetForExtractionEvaLengthArrow(Double

 evaluation_Length){
 this.interObjId_extraction_evaLength.setTarget(evaluation_Length);
 }

 public void setTargetForFiltrationFilterTypeArrow(String filter_type){
 this.interObjId_filtration_upLimit.setTarget(filter_type);
 }

 public void setTargetForFiltrationUpLimitArrow(Double up_limit){
 this.interObjId_filtration_upLimit.setTarget(up_limit);

}

 public void setTargetForFiltrationLowLimitArrow(Double low_limit){
 this.interObjId_filtration_lowLimit.setTarget(low_limit);
 }

 public void setTargetForMeasurandTolerTypeArrow(String

tolerance_type){
 this.interObjId_measurand_tolerType .setTarget(tolerance_type);
}

 public void setTargetForMeasurandParaTypeArrow(String

parameter_type){
this.interObjId_measurand_paraType.setTarget(parameter_type);

 }

 public void setTargetForMeasurandMachineAllowArrow(Double

 machine_allowance){
 this.interObjId_measurand_machineAllow.setTarget(machine_allowan

ce);

 207

}

 public void setTargetForlimitedValueArrow(double limitedValue){

this.interObjId_limitedValue.setTarget(Double.valueOf(limitedValue));
}

 public Arrow getIDArrow(){

 return this.interObjId_id;
}

public Arrow getPartitionDirSymArrow(){

 return this.interObjId_partition_dirSym;
}

 public Arrow getPartitionManuMethodArrow(){
 return this.interObjId_partition_manuTypSym;
 }

 public Arrow getPartitionManuTypSymArrow(){
 return this.interObjId_partition_manuMethod;
}

public Arrow getExtractionNumCutOffArrow(){

 return this.interObjId_extraction_numCutOff;
 }

public Arrow getExtractionSampLengthArrow(){

 return this.interObjId_extraction_sampLength;
}

 public Arrow getExtractionEvaLengthArrow(){
 return this.interObjId_extraction_evaLength;
 }

public Arrow getFiltrationFilterTypeArrow(){

 return this.interObjId_filtration_filterType;
}

…………

 public Arrow getMeasurandTolerTypeArrow(){
 return this.interObjId_measurand_tolerType;
}

public Arrow getMeasurandParaTypeArrow(){

 return this.interObjId_measurand_paraType;
}

 public Arrow getMeasurandMachineAllowArrow(){
 return this.interObjId_measurand_machineAllow;
 }

 public Arrow getMeasurandLimitValueArrow(){
 return this.interObjId_limitedValue;
 }

public String toString(){

 ………………
 }

}

 208

APPENDIX C – CODE LIST FOR
“PRODUCTFORCALLOUT” CLASS CATEGORY

package surfaceTexture;

 import cpt.ctdb.dataModel.*;
 public class ProductForCallout extends Product{
 public Arrow interObjId_id;
 Functor calloutToMeasurand;
 Functor calloutToExtraction;
 Functor calloutToFiltration;
 Functor calloutToPartition;

 public void setFunctors(Functor calloutToMeasurand, Functor

calloutToExtraction, Functor calloutToFiltration, Functor
calloutToPartition){

 this.calloutToMeasurand= calloutToMeasurand;
 this.calloutToExtraction = calloutToExtraction;
 this.calloutToFiltration = calloutToFiltration;
 this.calloutToPartition = calloutToPartition;
 }

 public void setTargetForIdArrow(int id){
 this.interObjId_id.setTarget(Integer.valueOf(id));
 }

 public Arrow getIdArrow(){
 return this.interObjId_id;
 }

 public Functor getCalloutToMeasurand(){
 return this.calloutToMeasurand;
 }

 public Functor getCalloutToExtraction(){
 return this.calloutToExtraction;
 }

 public Functor getCalloutToFiltration(){
 return this.calloutToFiltration;
 }

 public Functor getCalloutToPartition(){
 return this.calloutToPartition;
 }

 public boolean checkMonomorphismForMeasurand(){
 CTDBObjectSet result = getAllInstances(Measurand.class);
 CTDBObjectSet result1 =

getAllInstances(ProductForCallout.class
);

 for (int a=0; a<= result1.size(); a++){
 int j=0;
 for (int b=0; b<= result1.size(); b++){

if(((Functor)((ProductForCallout)result1.next()).getCalloutT
oMeasurand()).getTarget().getObjectInternalId()==
((Measurand)result.next()).getObjectInternalId()){

 j++;
 }

 209

 }
 if (j>1){
 return false;
 }
 }
 return true;
 }

 public boolean checkEpimorphismForMeasurand(){
 CTDBObjectSet result = getAllInstances(Measurand.class);
 CTDBObjectSet result1 =

getAllInstances(ProductForCallout.class);
 for (int a=0; a<= result1.size(); a++){
 int j=0;
 for (int b=0; b<= result1.size(); b++){

if(((Functor)((ProductForCallout)result1.next()).getCallout
ToMeasurand()).getTarget().getObjectInternalId()==
((Measurand)result.next()).getObjectInternalId()){

 j++;
 }
 }
 if (j==0){
 return false;
 }
 }
 return true;
 }

 public boolean checkIsomorphismForMeasurand(){

if(checkMonomorphismForMeasurand()&&checkEpimorphismForMeasurand()){
 return true;
 }
 return false;
 }

 }

 210

APPENDIX D – CODE LIST FOR CREATING A
DATABASE SCHEMA FOR CALLOUT

Measurand m = new Measurand();
 ……………
//creating and populating instances for “Measurand”.
Extraction e=new Extraction();
……………
//creating and populating instance for “Extraction”.
Filtration f=new Filtration();
……………
//creating and populating instance for “Filtration”.
Partition p= new Partition();
……………
//creating and populating instance for “Partition”.
Callout callout= new Callout();
……………
//creating and populating instance for “Callout”.
ProductForCallout productForcallout = new ProductForCallout();
productForcallout. setTargetForIdArrow(1);
productForcallout.setName("pullback_callout");
productForcallout.setAry(4);
productForcallout.setVertex(callout);
Functor calloutToMeasurand = new Functor();
……………
// populating instance for functor mapping from instance of “Callout” to
//“Measurand”.
Functor calloutToExtraction = new Functor();
……………
// populating instance for functor mapping from instance of “Callout” to
//“Extraction”.
Functor calloutToFiltration = new Functor();
……………
// populating instance for functor mapping from instance of “Callout” to
//“Filtration”.

 Functor calloutToPartition = new Functor();
……………
// populating instance for functor mapping from instance of “Callout” to
//“Partition”.
productForcallout.setFunctors(calloutToMeasurand, calloutToExtraction,

calloutToFiltration, calloutToPartition)
db.set(productForcallout);

 211

APPENDIX E − MANUFACTURING PROCESS PRIMA
SELECTION MATRIX

 Quantity

Material

Very low
1 to 100

Low
100 to
1,000

Low to
medium
1,000 to
10,000

Medium to
high

10,000 to
100,000

High
100,000+

All
quantities

Irons
[1.5] [1.6]
[1.7] [4.M]

[1.2] [1.5]
[1.6] [1.7]
[4.M] [5.3]

[5.4]

[1.2] [1.3]
[1.5] [1.6]
[1.7] [3.11]
[4.A] [5.2]

[1.2] [1.3]
[3.11] [4.A]

[1.2] [1.3]
[3.11] [4.A]

[1.1]

Steel
(carbon)

[1.5] [1.7]
[3.10] [4.M]
[5.1] [5.5]

[5.6]

[1.2] [1.5]
[1.7] [3.10]
[4.M] [5.1]
[5.3] [5.4]

[5.5]

[1.2] [1.3]
[1.5] [1.7]
[3.1] [3.3]

[3.10] [3.11]
[4.A] [5.2]
[5.3] [5.4]

[5.5]

[1.9] [3.1]
[3.3] [3.4]
[3.5] [3.11]
[3.12] [4.A]
[5.2] [5.5]

[1.9] [3.1]
[3.2] [3.3]
[3.4] [3.5]

[3.12] [4.A]

[1.1] [1.6]
[3.6] [3.8]

[3.9]

Steel
(tool, alloy)

[1.1] [1.5]
[1.7] [3.10]
[4.M] [5.1]
[5.5] [5.6]

[5.7]

[1.1] [1.2]
[1.7] [4.M]
[5.1] [5.3]
[5.4] [5.5]
[5.6] [5.7]

[1.2] [1.5]
[1.7] [3.1]

[3.4] [3.11]
[4.A] [5.2]
[5.3] [5.4]

[5.5]

[3.1] [3.4]
[3.5] [3.11]
[3.12] [4.A]

[5.2]

[4.A] [1.6] [3.6]

Stainless steel

[1.5] [1.7]
[3.7] [3.10]
[4.M] [5.1]
[5.5] [5.6]

[1.2] [1.7]
[3.7] [3.10]
[4.M] [5.1]
[5.3] [5.4]

[5.5]

[1.2] [1.5]
[1.7] [3.1]
[3.3] [3.7]

[3.10] [3.11]
[4.A] [5.2]
[5.3] [5.4]

[5.5]

[1.9] [3.1]
[3.3] [3.4]
[3.5] [3.11]
[3.12] [4.A]

[1.9] [3.2]
[3.3] [4.A]

[1.1] [1.6]
[3.6] [3.8]

[3.9]

Copper &
alloys

[1.5] [1.7]
[3.10] [4.M]

[5.1]

[1.2] [1.5]
[1.7] [1.8]
[3.5] [3.10]
[4.M] [5.1]
[5.3] [5.4]

[1.2] [1.3]
[1.5] [1.8]
[3.1] [3.3]

[3.10] [3.11]
[4.A] [5.2]
[5.3] [5.4]

[1.2] [1.4]
[1.9] [3.1]
[3.3] [3.4]
[3.5] [3.11]
[3.12] [4.A]

[1.2] [1.9]
[3.1] [3.2]
[3.3] [3.4]
[3.5] [3.7]

[3.8] [3.11]
[3.12] [4.A]

[1.1] [1.6]
[3.6] [3.8]
[3.9] [5.5]

Aluminium &
alloys

[1.5] [1.7]
[3.7] [3.10]
[4.M] [5.5]

[1.2] [1.5]
[1.7] [1.8]
[3.7] [3.10]
[4.M] [5.3]
[5.4] [5.5]

[1.2] [1.3]
[1.5] [1.8]
[3.1] [3.3]

[3.7] [3.10]
[3.11] [4.A]
[5.3] [5.4]

[5.5]

[1.2] [1.3]
[1.4] [1.9]
[3.1] [3.3]
[3.4] [3.5]

[3.11] [3.12]
[4.A] [5.5]

[1.2] [1.3]
[1.4] [1.9]
[3.1] [3.2]
[3.3] [3.4]
[3.5] [3.8]

[3.12] [4.A]

[1.1] [1.6]
[3.6] [3.8]

[3.9]

Magnesium &
alloys

[1.6] [1.7]
[3.10] [4.M]
[5.1] [5.5]

[1.6] [1.7]
[1.8] [3.10]
[4.M] [5.5]

[1.3] [1.6]
[1.8] [3.1]
[3.3] [3.4]

[3.10] [4.A]
[5.5]

[1.3] [1.4]
[3.1] [3.3]
[3.4] [3.5]

[3.12] [4.A]

[1.3] [1.4]
[3.1] [3.3]
[3.4] [3.8]

[3.12] [4.A]

[1.1] [3.6]
[3.8] [3.9]

Zinc & alloys
[1.1] [1.7]

[3.10] [4.M]
[5.5]

[1.1] [1.7]
[1.8] [3.10]
[4.M] [5.5]

[1.3] [1.8]
[3.3] [3.10]
[4.A] [5.5]

[1.3] [1.4]
[3.3] [3.4]
[3.5] [3.12]

[4.A]

[1.4] [3.2]
[3.3] [3.4]
[3.5] [4.A]

[3.6] [3.8]
[3.9]

Tin & alloys
[1.1] [1.7]

[3.10] [4.M]
[5.5]

[1.1] [1.7]
[1.8] [3.10]
[4.M] [5.5]

[1.3] [1.8]
[3.3] [3.10]

[1.3] [1.4]
[3.3] [3.4]

[3.12]

[1.4] [3.3]
[3.4] [4.A]

Lead & alloys
[1.1] [3.10]
[4.M] [5.5]

[1.1] [1.8]
[3.10] [4.M]

[5.5]

[1.1] [1.8]
[3.3] [3.10]

[1.3] [1.4]
[3.3] [3.4]
[3.5] [3.12]

[4.A]

[1.4] [3.2]
[3.3] [3.4]

[4.A]
[3.6]

Nickel &
alloys

[1.5] [1.7]
[3.10] [4.M]
[5.1] [5.5]

[5.6]

[1.2] [1.5]
[1.7] [3.10]
[4.M] [5.1]
[5.3] [5.4]

[5.5]

[1.2] [1.3]
[1.5] [1.7]
[3.1] [3.3]

[3.11] [4.A]
[5.2] [5.3]
[5.4] [5.5]

[3.1] [3.3]
[3.4] [3.5]

[3.11] [3.12]
[4.A] [5.2]

[5.5]

[3.2] [3.3]
[4.A]

[1.1] [1.6]
[3.6] [3.8]

[3.9]

 212

[3.10]

Titanium &
alloys

[1.1] [1.6]
[3.7] [3.10]
[4.M] [5.1]
[5.5] [5.6]

[5.7]

[1.1] [1.6]
[3.7] [3.10]
[4.M] [5.1]
[5.3] [5.4]
[5.5] [5.6]

[5.7]

[3.1] [3.7]
[3.10] [3.11]
[4.A] [5.2]
[5.3] [5.4]

[5.5]

[3.1] [3.4]
[3.11] [3.12]
[4.A] [5.2]

[5.5]

[4.A] [3.8] [3.9]

Thermo
plastics

[2.5] [2.7]
[2.3] [2.5]

[2.7]
[2.3] [2.5]
[2.6] [2.7]

[2.1] [2.3]
[2.5] [2.6]

[2.9]

[2.1] [2.6]
[2.9]

Thermo sets [2.5] [2.7] [2.2] [2.3]
[2.2] [2.3]

[2.4]
[2.1] [2.3]

[2.9]
[2.1] [2.3]
[2.4] [2.9]

Fr composites
[2.2] [2.8]

[5.7]
[2.2] [2.3]
[2.8] [5.7]

[2.1] [2.2]
[2.3]

[2.1] [2.3]

Ceramics
[1.5] [5.1]
[5.5] [5.6]

[5.7]

[5.1] [5.3]
[5.5] [5.6]

[5.7]

[5.2] [5.3]
[5.4] [5.5]

[3.11] [3.7] [3.11] [5.5]

Refractory
metals

[1.1] [5.7] [5.7] [3.12] [1.6]

Precious
metals

[5.5] [5.5] [5.5] [3.5] [3.5] [1.6]

Key to manufacturing process PRIMA selection matrix:
[1.1] Sand casting
[1.2] Shell moulding
[1.3] Gravity die casting
[1.4] Pressure die casting
[1.5] Centrifugal casting
[1.6] Investment casting
[1.7] Ceramic mould casting
[1.8] Plaster mould casting
[1.9] Squeeze casting

[2.1] Injection moulding
[2.2] Reaction injection moulding
[2.3] Compression moulding
[2.4] Transfer moulding
[2.5] Vacuum forming
[2.6] Blow moulding
[2.7] Rotational moulding
[2.8] Contact moulding
[2.9] Continuous extrusion (plastics)

[3.1] Closed die forging
[3.2] Rolling
[3.3] Drawing
[3.4] Cold forming
[3.5] Cold heading
[3.6] Swaging
[3.7] Superplastic forming
[3.8] Sheet-metal shearing
[3.9] Sheet-metal forming
[3.10] Spinning
[3.11] Powder metallurgy
[3.12] Continuous extrusion (metals)

[4.A] Automatic machining
[4.M] Manual machining

[5.1] Electrical discharge machining (EDM)
[5.2] Electrochemical machining (ECM)

 213

[5.3] Electron beam machining (EBM)
[5.4] Laser beam machining (LBM)
[5.5] Chemical Machining (CM)
[5.6] Ultrasonic machining (USM)
[5.7] Abrasive jet machining (AJM)

 214

APPENDIX F − PARAMETERS SELECTION EXAMPLE

 215

APPENDIX G − EXAMPLE OF FUNCTION CORELATION

 216

APPENDIX H − FUNCTION MAP

 217

APPENDIX I − SELECTION OF Ra ACCORDING TO

FUNCTION

 218

APPENDIX J − RELATIONSHIP BETWEEN SURFACE

FUNCTION AND QUALITY

 219

APPENDIX K – A COMPARISON BETWEEN

RELATIONAL DBMS AND THE CATEGORICAL DBMS

Relational Notions Categorical Notions Explanations

Field Internal Object

A file in relational DBMS must be
atomic (e.g. string or number) and
always stored physically. An
internal object of a category in
categorical DBMS can be
structured, e.g. they can be
represented by other categories.
Internal object can also be
computed through a method.

Row/Record Instance Category

Records must be formed by
atomic data elements such as
number, character or date. They
can not contain other records as
inner fields. However, instance
category can contain other
instance categories as internal
objects of a category. Instance
object categories are not always
stored directly, but are computed
dynamically by methods. Instance
object categories generated by
methods can also be stored in
categorical database.

Definition of
Row/Record

Class Category

As magnified by the “impedance
mismatch” problem of relational
DBMSs, a record definition does
not directly map onto a type of a
programming language. It must
always be converted back or forth
for this purpose. Class categories
can directly describe the real
world entities, so they are much
easier to be understood by users.
Moreover, class category can also
encapsulate business logics
(behaviors) together with the
targeting data, keeping it all
conveniently in one place. Class
category can be implemented by
the Java class directly. A Java
class is a data definition of Java
programming language.

Table CTCollection

Tables and CTCollections are
similar in both database notions as
they both contain many records or
instance categories. They both
have indexing structures for faster
access. However, tables have a
very rigid structure (e.g. all rows
in a table must have same
definition, same fields).
CTCollection can contain instance
categories of different class
categories.

 220

Query Functor+Filter

A relational query can only
specify a table as the result, which
means that all records have to be
in the same type. The result is
restricted to one dimension. The
“filter” in a categorical DBMS is
similar to the “WHERE” clause in
relational query. The query
strategy in the categorical DBMS
is through functor mapping from
category to another category with
filters taken out unsatisfied
instance categories.

Primary Key Identifier

Primary keys are used to identify
one record from others. Relational
DBMS users are responsible for
defining keys conforming to
Normal Forms. In the categorical
DBMS, a unique identifier is
assigned to every instance
category automatically based on
the physical storage addresses.
Therefore, users of the categorical
DBMS can avoid the error prone
process of defining keys.

Foreign Key Product

In a relational DBMS, records
from different tables are combined
together using foreign keys.
While this is a simple mechanism,
it is quite slow, and hard to
maintain. On the other hand, a
categorical DBMS uses product
construct to link different
categories, which can link
categories directly using Java
object references mechanism. This
is a faster process than the key
lookups and can be maintained by
the categorical DBMS
automatically.

Join Coproduct

Related records in a relational
DBMSs are brought together
using the “JOIN” operation. Joins
are slow when more than a few
tables are involved. For two tables
(m × n) combinations, every extra
table involved this figure has to be
multiplied by the size of the table.
Coproduct on the other hand is a
very fast single step.

 221

APPENDIX L – THE DATABASE SCHEMA DEFINITIONS

FOR CALLOUTS IN THE P/FDM

create temporary module callout

declare feature ->> entity
declare feature(feature) -> string
key_of feature is feature

declare areal ->> feature

declare length ->> entity
declare length(length) -> float
key_of length is length

declare num_up ->> entity
declare num(num_up) -> integer
declare up(num_up) -> float
declare determines(num_up,float) -> length
key_of num_up is num,up

declare num_cutoff ->> entity
declare n_name(num_cutoff) -> string
declare num(num_cutoff) -> integer
declare up_(num_cutoff,integer) -> num_up
key_of num_cutoff is n_name

declare uplimit ->> entity
declare uplimit(uplimit) -> float
declare num_(uplimit,float) -> num_up
key_of uplimit is uplimit

declare lowlimit ->> entity
declare lowlimit(lowlimit) -> float
key_of lowlimit is lowlimit

declare bandwidth ->> entity
declare has_uplimit(bandwidth) -> uplimit
declare has_lowlimit(bandwidth) -> lowlimit
key_of bandwidth is key_of(has_uplimit)

declare f_type ->> entity
declare f_name(f_type) -> string
declare f_type(f_type) -> string
key_of f_type is f_name

declare filter ->> entity
declare has_bandwidth(filter) -> bandwidth
declare has_f_type(filter) -> f_type
key_of filter is key_of(has_bandwidth), key_of(has_f_type)

declare type_value ->> entity
declare types(type_value) -> string
declare range(type_value) -> integer
declare values(type_value) -> float
declare default_determines(type_value) -> bandwidth
declare default_determine(type_value,string) -> filter
key_of type_value is types, range

 222

declare p_type ->> entity
declare p_type(p_type) -> string
declare value_(p_type,string) -> type_value
key_of p_type is p_type

declare name ->> entity
declare name(name) -> string
key_of name is name

declare parameter ->> entity
declare has_name(parameter) -> name
declare has_p_type(parameter) -> p_type
key_of parameter is key_of(has_name)

declare determine(name,string) -> p_type

declare value ->> entity
declare value(value) -> float
declare range(value) -> integer
declare type_(value,string) -> type_value
key_of value is range, value

declare t_type ->> entity
declare t_name(t_type) -> string
declare t_type(t_type) -> string
key_of t_type is t_name

declare tolerance ->> entity
declare has_parameter(tolerance) -> parameter
declare has_t_type(tolerance) -> t_type
declare has_value(tolerance) -> value
key_of tolerance is key_of(has_parameter), key_of(has_t_type),
key_of(has_value)

declare c_type ->> entity
declare c_name(c_type) -> string
declare c_type(c_type) -> string
key_of c_type is c_name

declare comparule ->> entity
declare has_c_type(comparule) -> c_type
declare has_num(comparule) -> num_cutoff
key_of comparule is key_of(has_c_type), key_of(has_num)

declare direction ->> entity
declare d_name(direction) -> string
declare direction(direction) -> string
key_of direction is d_name

declare profile ->> feature
declare has_filter(profile) ->> filter
declare has_length(profile) -> length
declare has_direction(profile) -> direction

declare sim_callout ->> entity
declare callout(sim_callout) -> string
declare has_feature(sim_callout,string) -> feature
declare has_tolerance(sim_callout,string) -> tolerance
declare has_comparule(sim_callout,string) -> comparule

 223

key_of sim_callout is callout

declare callout ->> entity
declare callouts(callout) -> string
declare has_callouts(callout) ->> sim_callout
key_of callout is callouts;

 224

APPENDIX M – THE POPULATING CODES FOR

CALLOUTS IN THE P/FDM

entity direction;
d_name;direction;
*;
"";"";
"_|_";projection;
c;circular;
*;

entity f_type;
f_name;f_type;
*;
"";"";
Gaussian;Gaussian;
"2RC";"2RC";
*;

entity t_type;
t_name;t_type;
*;
"";u;
l;l;
*;

entity name;
name;;
*;
Ra;;
Rq;;
Rsq;;
Rku;;
R_q;;
Rz;;
Rv;;
Rp;;
Rc;;
Rt;;
Rsm;;
Wa;;
Pa;;
*;

entity p_type;
p_type;;
*;
aveamp;;
maxamp;;
spacing;;
*;

function determine;
name, string; p_type;
*;
[Ra], p; [aveamp];
[Rq], p; [aveamp];
[Rsq], p; [aveamp];

 225

[Rku], p; [aveamp];
[R_q], p; [aveamp];
[Rz], p; [maxamp];
[Rv], p; [maxamp];
[Rp], p; [maxamp];
[Rc], p; [maxamp];
[Rt], p; [maxamp];
[Rsm], p; [spacing];
*;

entity value;
range,value;;
*;
4,3.3;;
*;

entity type_value;
types,range;;
*;
aveamp,1;;
aveamp,2;;
aveamp,3;;
aveamp,4;;
aveamp,4;;
aveamp,5;;
maxamp,1;;
maxamp,2;;
maxamp,3;;
maxamp,4;;
maxamp,5;;
spacing,1;;
spacing,2;;
spacing,3;;
spacing,4;;
spacing,5;;
*;

entity uplimit;
uplimit;;
*;
2.5;;
8.0;;
0.8;;
0.08;;
0.25;;
*;

entity lowlimit;
lowlimit;;
*;
0.0025;;
0.008;;
0.025;;
*;

entity bandwidth;
key_of(has_uplimit); key_of(has_lowlimit);
*;
[0.08];[0.0025];
[0.25];[0.0025];

 226

[0.8];[0.0025];
[2.5];[0.008];
[8.0];[0.025];
*;

function default_determines;
type_value; bandwidth;
*;
[aveamp,1];[[0.08]];
[aveamp,2];[[0.25]];
[aveamp,3];[[0.8]];
[aveamp,4];[[2.5]];
[aveamp,5];[[8.0]];
[maxamp,1];[[0.08]];
[maxamp,2];[[0.25]];
[maxamp,3];[[0.8]];
[maxamp,4];[[2.5]];
[maxamp,5];[[8.0]];
[spacing,1];[[0.08]];
[spacing,2];[[0.25]];
[spacing,3];[[0.8]];
[spacing,4];[[2.5]];
[spacing,5];[[8.0]];
*;

entity num_cutoff;
n_name;num;
*;
"";5;
1;1;
2;2;
3;3;
4;4;
5;5;
6;6;
7;7;
8;8;
9;9;
*;

entity num_up;
num,up;;
*;
5,2.5;;
8,8.0;;
*;

entity length;
length;;
*;
12.5;;
64.0;;
*;

entity c_type;
c_name;c_type;
*;
"";"16%";
max;max;
*;

