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ABSTRACT 

In order to ensure quality of products and to facilitate global outsourcing, almost all 

the so-called “world-class” manufacturing companies nowadays are applying various 

tools and methods to maintain the consistency of a product’s characteristics 

throughout its manufacturing life cycle. Among these, for ensuring the consistency of 

the geometric characteristics, a tolerancing language − the Geometrical Product 

Specification (GPS) has been widely adopted to precisely transform the functional 

requirements from customers into manufactured workpieces expressed as tolerance 

notes in technical drawings. Although commonly acknowledged by industrial users as 

one of the most successful efforts in integrating existing manufacturing life-cycle 

standards, current GPS implementations and software packages suffer from several 

drawbacks in their practical use, possibly the most significant, the difficulties in 

inferring the data for the “best” solutions. The problem stemmed from the foundation 

of data structures and knowledge-based system design. This indicates that there need 

to be a “new” software system to facilitate GPS applications.  

The presented thesis introduced an innovative knowledge-based system − the 

VirtualGPS − that provides an integrated GPS knowledge platform based on a stable 

and efficient database structure with knowledge generation and accessing facilities. 

The system focuses on solving the intrinsic product design and production problems 

by acting as a virtual domain expert through translating GPS standards and rules into 

the forms of computerized expert advices and warnings. Furthermore, this system can 

be used as a training tool for young and new engineers to understand the huge amount 

of GPS standards in a relative “quicker” manner. 

The thesis started with a detailed discussion of the proposed categorical modelling 

mechanism, which has been devised based on the Category Theory. It provided a 

unified mechanism for knowledge acquisition and representation, knowledge-based 

system design, and database schema modelling. As a core part for assessing this 

knowledge-based system, the implementation of the categorical Database 

Management System (DBMS) is also presented in this thesis. The focus then moved 

on to demonstrate the design and implementation of the proposed VirtualGPS system. 

The tests and evaluations of this system were illustrated in Chapter 6. Finally, the 

thesis summarized the contributions to knowledge in Chapter 7. 

After thoroughly reviewing the project, the conclusions reached construe that the 
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entire VirtualGPS system was designed and implemented to conform to Category 

Theory and object-oriented programming rules. The initial tests and performance 

analyses show that the system facilitates the geometric product manufacturing 

operations and benefits the manufacturers and engineers alike from function designs, 

to a manufacturing and verification.  
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CHAPTER 1 INTRODUCTION 

1.1 Project Introduction 

In modern industries, manufacturers are applying various tools and methods to ensure 

the consistency of geometric characteristics for the machining products through the 

manufacturing life-cycle. To ensure the consistency of geometric characteristics and 

to facilitate global outsourcing, a universally accepted tolerancing language should be 

adopted to precisely transform functional requirements into manufactured workpieces 

and parts based on: mathematical rules and methods, consideration of macro and 

micro geometry, possibilities for measuring of quantities (especially tolerance 

quantities) and evolution of uncertainty, etc (Durakbasa and Osanna, 2001 [1]). The 

Geometrical Product Specification (GPS) is the modern and updated symbolic 

language that is used for specifying the functional requirements in technical drawing 

(Bennich and Nielsen, 2005 [2]). It is a standardized tolerancing language, which 

contains a set of standards organized in matrices. Therefore, some researchers refer to 

GPS as the GPS matrix system. It has been reported that GPS can save up to 15% in 

manufacturing cost through reducing misunderstandings and the ambiguity in defining 

the tolerance requirements (Humienny et al., 2001 [3]).  

The initial GPS standards were set up by the International Organization for 

Standardization (ISO) to determine geometrical features of workpieces, such as size, 

distance and radius (Durakbasa and Osanna, 2001 [1]). It can also be used to verify 

workpieces according to their specifications as well as to suggest the measuring 

instruments and their calibration methods (Humienny et al., 2001 [3]). A number of 

important factors considered in this process include macro and micro geometry, 

quantity measures, uncertainty, measurement traceability and so on. In order to further 

optimize manufacturing resources through the scientific and economic management of 

various production processes and satisfy all the customized requirements of a product, 

the next generation GPS standards aim to integrate all the essential steps and data of a 

production practice in terms of their properties, such as the top-down or bottom-up 

manufacturing processes in the macro or nano scale production have been developed 

(ISO/TR 14638, 1995 [4]; ISO TC/213, 2001 [5]; Wang et al., 2004 [6]). However, 

the current GPS standards are over complex, abstract, and theoretical for many Small 

Medium–sized Enterprises (SME) in the manufacturing industry for following reasons: 
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 SMEs often lack GPS expertise. The inner relationships between different GPS 

matrices are vaguely defined. Hence, only the GPS experts are capable of 

cross-referencing and interpreting them to satisfy specific user requirements. 

For many SMEs subcontracting for large companies, these difficulties pose a 

great financial burden. 

 It is difficult for users to apply tolerances on drawings to unambiguously 

express the functional requirements, or to interpret the symbolic language of 

GPS into various mechanical requirements. The failure to teach these skills 

leads to the vast majority of drawings used in industry today are ambiguous 

and can not communicate the true functional requirements of parts (Bennich 

and Nielsen, 2005 [2]). Therefore, the incorrect and ambiguous definitions of 

GPS requirements bring high economical risks to industry. 

 GPS standards are often stored in text-based electronic file formats (e.g. PDF) 

organized by matrices, which are difficult for users to search and access 

without knowing specific search criteria. It is even more difficult for the 

application of computer-based knowledge inference processes. 

 There are no existing de facto knowledge-based systems to manage this large 

maze of GPS standards and to maintain its data integrity and version 

consistency for GPS applications. Current efforts and pilot systems used to 

resolve these problems do not seem to provide mechanisms for GPS users to 

share data remotely; never mention to customise or even add their own new 

knowledge relating to certain processes. 

As stated above, it is difficult right now to take the full advantages of these powerful 

and promising GPS standards to ensure the integrity of a specified product regarding 

its functionality, safety, dependability and interchangeability without fundamental 

renovations of their obsolete storage and access mechanism using the latest 

Information and Computer Technology (ICT). 

It is envisaged that a knowledge-based information system for automatically 

implementing the GPS standards will facilitate the wider adoption of this tool in 

industry (Partridge and Hussain, 1995 [7]). During the last five years, various software 

systems have been developed to transform function-dependent demands into 

specifications of workpieces based on mathematical rules and methods. Unfortunately, 

almost all of them were based on the older technical standards with limited functional 
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contents and a few simple technical specifications, which kept the system from 

automatically finding the appropriate GPS standards (Jiang, 2004 [8]). This drawback 

had hampered efforts to keep product specifications consistent with the GPS standards 

when the product function changes. Furthermore, the relational databases applied by 

all the current engineering aided design and manufacturing software tools can not 

support complex data structures to reflect the complicated relationships among parts 

and GPS standards, which are essential for comprehensive analysis and data 

manipulation to solve practical production problems. 

To overcome the aforementioned usability problems, this project aims to develop a 

knowledge-based system framework called VirtualGPS system which focuses on 

developing an integrated GPS knowledge platform with knowledge generation and 

accessing facility based on the GPS matrices defined in GPS standards. Here, the term 

“virtual” refers to the effort in integrating the GPS information (especially these 

specified in the CEN and ISO standard documentation (ISO TC/213, 2001 [5])) and 

the corresponding GPS realization methodologies into a single framework regardless 

of their physical storage locations. At this stage, the system takes the surface texture 

as an example to demonstrate its functional features. It covered knowledge domains of 

GPS in dimensional and geometrical tolerances for surface and related manufacturing 

processes/equipments, verification principles, as well as uncertainty and measurement 

traceability. In future, it will enrich GPS knowledge domains for form, size and 

position. This has led to the emergence of the classical problem of storing and 

managing large amounts of data in various complex structures that are difficult or 

impossible to be divided into strict formats of flat table relations applied in relational 

Database Management Systems (DBMS). To solve the problem, the proposed 

VirtualGPS system applied an object-oriented approach based on Category Theory. 

1.2 Aims and Objectives 

The project aims to investigate a software solution (VirtualGPS) to handle the large 

amount of data in various complex structures relating to matrices defined in the GPS. 

The VirtualGPS system will focus on solving the design and production stage 

problems by acting as a “virtual” domain expert through translating GPS standards 

and rules into the forms of computerized expert advices and warnings. This system 

can also be used as a training platform for teaching engineers how to utilise 

unambiguous tolerance specifications for expressing functional requirements, and how 
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to apply GPS to guide the integrated manufacturing and measurement processes.  As a 

core part of the VirtualGPS, the project researched and devised a Category Theory-

based object-oriented DBMS named categorical DBMS to utilize its capability for 

handling complex multi-level objects and object relationships, which is of vital 

importance in managing large scale geometrical product designs, manufacturing and 

measurement data.   

It is envisaged that the research will contribute to the domain knowledge by 

providing a case study for incorporating state-of-the-art research advancements and 

technologies in the information/knowledge-based systems and database fields. Also it 

will provide a computerized system which can generate expert knowledge to integrate 

product functions, specifications of micro- and nano-geometry, manufacturing 

processes and verification procedures. The research objectives of this project can be 

classified as follows: 

(1) To provide a unified knowledge acquisition and knowledge representation 

mechanism to retrieve and organize knowledge from various GPS documents.  

(2) To identify suitable data structures for storing GPS knowledge within the final 

software system. It covers data from the functional, specification, manufacture 

and verification aspects in GPS field. The complex relationships between both 

areal and profile specification and metrology, such as profile and areal 

standards, filtration, parameter algorithms, instrumentation, measurement 

procedures, instrument calibration, and uncertainty will be investigated.  

(3) To build a consistent and integrated framework to encompass the data gained 

in the process explained in the above point. It is anticipated that an object-

oriented DBMS needs to be built to utilize the Category Theory-enabled 

abilities of querying and preserving complex objects and their relationships 

(often in the forms of arrows in the schema diagram). Moreover, this approach 

should facilitate in solving the complex database problems in object-oriented 

DBMSs, such as typing, message passing, view, and query closure. The 

categorical DBMS of this project should have both the flexibility for storing 

and implementing the complex objects and also has solid mathematical 

foundations with formal semantics.  

(4) To provide a unified knowledge base for supporting engineering decisions in 

choosing appropriate GPS parameters according to the required functional 

performances. 
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(5)  To enable an automated querying mechanism for guiding designers with 

relevant GPS specifications. For example, it can be used to provide correct and 

unambiguous geometrical specification (the technical specification) relevant to 

the functional design intent. 

(6) To equip a rating and ranking inference engine for locating and retrieving 

GPS-recommended manufacturing processes and equipments. 

(7) To link similar functions to aid decisions on measurement procedures and 

equipment. 

(8) To achieve the system functions, the software specification has also included 

the following features: 

 Client/Server structure for the synergy between geographically dispersed 

designers, production engineers and metrologists to work closely. 

 User-friendly system interfaces for accessing system functions such as 

cross-referencing, reporting and updating. 

At present, all of the above eight objectives are using the surface texture part of 

GPS as demonstrating and testing examples. After achieving the above eight 

objectives, the VirtualGPS system will enable non-experts to use GPS standards in an 

efficient manner. It will also ensure that when a product design changes, the relevant 

GPS specifications will be updated automatically to remain consistent with relevant 

GPS standards. Moreover, with the trend of globalisation in manufacture industries, 

the remote data access features and web-based user interfaces of the system will 

become the norm. 

1.3 Project Approach 

The project started with an extensive literature review of the state-of-the-art in GPS 

advancements, knowledge-based system evaluations, relational, object-relational and 

object-oriented database applications and data-mining practices. The project 

development approach has been demonstrated as follows:  

(1) Initial Design.  Based on the literature review of the problem domains and the 

analysis of user requirements on the VirtualGPS system, the overall system 

framework has been designed using the Category Theory. To address problems 

highlighted in Section 1.1, this project also decided to use the Category Theory 

to model knowledge structures and knowledge operations. 

(2) Proof-of-Concept/Prototype Development. A proof-of-concept prototype 
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was developed in the Java language. This has facilitated the refinement and 

completion of the system architecture with improved understanding on some 

implementation issues. This system also served as a demonstration of the 

design concepts and capabilities of the final system with feedbacks from 

various tests. 

(3) Design Modification.  After collecting and analysing feedback from system 

tests, the system design on both the conceptual model and the prototype 

system was refined.  

(4) Development and Implementation. The final system will be produced using 

Java and XML as development tools. Java was selected for its comprehensive 

functionality, sound stability and open-source nature, whilst XML technology 

is used to structure reports and communicate between manufacturing engineers. 

In this project, a native manipulation language was developed based on the 

Category Theory to match the so-called categorical object model adopted in 

this project. 

(5) Testing and Validation. The proposed software system VirtualGPS is strictly 

tested and verified to evaluate its performance over existing solutions. In this 

project, tests were continuously being undertaken during every major phase to 

ensure that it has good functionality and stability. The diagram chasing and 

algebraic deductions based on Category Theory are used to ensure the integrity 

of knowledge base and database schemas of this system. Researchers and GPS 

experts in Centre of Precision Technology (CPT) in the University of 

Huddersfield were invited to test the software to assess whether the system can 

satisfy the demands from industry, as well as whether it meets the aims and 

objectives of the project. Further revisions for the proposed system might take 

place based on the feedback from these tests. 

1.4 Thesis Structure 

The following paragraphs provide a brief summary for the remaining chapters of this 

thesis. 

Chapter 2 highlights the context of various problem domains relating to this 

project, which includes both engineering and computer science fields. For the 

engineering field, introductions of GPS and surface texture are given. For the 

computer science domain, detailed surveys over different database solutions, 
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knowledge-based systems and XML technology, and their relationships to this project 

are discussed. 

Chapter 3 focuses on developing a unified categorical modelling mechanism 

based on Category Theory for knowledge acquisition/representation, database schema 

construction and descriptions of the system frameworks. This chapter starts with a 

discussion on the necessary notions of Category Theory and rationales for using the 

Category Theory, and then provides a categorical object model for representations of 

knowledge and database schemas. A categorical software design process and an 

inference identifying square are also defined in this chapter for explaining the design 

of the whole software architecture and the modelling of knowledge inferences 

respectively. Moreover, examples for applying the categorical object model, the 

categorical software design process and the inference identifying square are illustrated 

in corresponding sections of this chapter. 

Chapter 4 focuses on discussing the implementation of the categorical DBMS. 

This chapter starts with a discussion on why DB4O (database for objects) is chose as 

the implementing basis for the categorical DBMS. Then, it moves to explain the 

categorical architecture for the categorical DBMS, the necessary functional extensions 

for DB4O, and how to implement the categorical object model on the categorical 

DBMS.  This chapter concludes with a demonstration of the visual management 

interface for the categorical DBMS. 

Chapter 5 focuses on describing the design and implementation of the VirtualGPS 

system, which takes the surface texture as an example. The VirtualGPS contains four 

modules and each module in turn contains four components (sub-knowledge bases). 

The design of each module or component in the VirtualGPS system goes through a 

categorical software design process. After specifying the design of the VirtualGPS 

system, tools and platforms for implementing the system are discussed in this Chapter. 

This chapter concludes with a working case study to assess the design features and 

functionality of the system. 

Chapter 6 focuses on discussing the tests and evaluations carried out on the 

categorical DBMS and the VirtualGPS system. 

Chapter 7 deals with the final assessment of the project that focuses on the 

summary of its outcomes and contribution to knowledge. A discussion for the future 

work is also included at the end of this chapter. 
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CHAPTER 2 RESEARCH DOMAIN SURVEYS 

This chapter focuses on introducing and explaining of the domain knowledge and its 

context that are heavily used in this project, which do not just originate in computer 

science but also come from the field of precision engineering. It covers: GPS and an 

overview of surface texture, evaluation of current Database Management Systems 

(DBMS), knowledge-based system review and eXtensible Markup Language 

(XML)/eXtensible Stylesheet Language Transformation (XSLT) descriptions. These 

research domains provide the foundations to develop the VirtualGPS system.    

2.1 GPS and Surface Texture Overview 

2.1.1 Introduction of GPS Framework 

Traditionally, when a machining part is being designed, designers will only work on 

nominal specifications – that is workpieces expressed as ideal geometries without any 

geometrical errors, i.e., parts with perfect surfaces. However, any actual parts being 

produced in the real world will be far from perfect. Various deviations could exist in 

the forms of shape distortions, differences on dimensions and surface roughness, etc. 

Furthermore, the process of assembling parts is also error-prone where additional 

deviations easily occur, resulting in non-satisfying products. In a real production 

scenario, despite these deviations, a product may still be regarded as acceptable if the 

errors are properly controlled within certain limitations, which leads to the concept of 

tolerances. Therefore, there should have some standards to define these tolerances and 

ensure the real geometrical products are limited in certain extent of deviations. 

Moreover, during the last a couple of decades, manufacturing industry become more 

and more flexible and global through outsourcing. Geographically dispersed (remote) 

design and manufacturing practices are rapidly increasing (Humienny et al., 2001 [3]). 

This move is another major contributing factor to the generation of a set of universal 

standards and rules to unify the characteristics of workpieces using the so-called 

Geometrical Product Specification and Verification (GPS) Standards. 

2.1.1.1 GPS Definition 

The Geometrical Product Specification and Verification (GPS) matrix system is a 

tolerancing specification tool for expressing geometrical tolerances in technical 

drawings, which currently is the only worldwide symbol language available for 

communicating geometrical requirements (Bennich and Nielsen, 2005 [2]). The GPS 
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is developed based on the Geometrical Dimensioning and Tolerancing (GD&T) with 

the addition of more detailed definitions of the requirements. This allows designers to 

express functional requirements much more precisely than before. 

2.1.1.2 GPS Advantages 

Users can gain technical, competitive, and economic advantages by using GPS as the 

tolerancing language in their drawings through following points (Bennich and Nielsen, 

2005 [2]; Humienny et al., 2001 [3]): 

 GPS drawings impose artificial constraints on manufacturing, which can help 

users to define non-functional parts. Therefore, GPS can save manufacturing 

cost through reducing work stoppages due to non-functional parts jamming 

assembly lines or lack of functional parts idling production. 

 GPS can greatly improve communications between designers, manufacturers 

and metrologists. Therefore, savings come from reducing misunderstandings 

amongst the various roles involved in manufactures. This is very important for 

those companies that subcontract or outsource the manufacturing of parts to 

reduce unqualified products. 

 GPS can quantify the ambiguity in a tolerance requirement when it is applied 

to a real part through specification uncertainty. This can be used to improve 

product designs. 

2.1.1.3 The Framework of the GPS Standards 

GPS aims to cover the whole spectrum of manufacturing design and production stages 

through specifying and verifying parts’ sizes and dimensions, geometrical tolerances, 

and surface properties and to ensure the consistency of some essential properties of 

products no matter where they are designed and produced (Humienny et al., 2001 [3]). 

Generally, GPS standards are applied to ensure the following essential properties of 

products:  

 Functionality. For example, if elements of a machine tool meet certain 

geometrical tolerances such as straightness of bebways, the machine can work 

properly. 

 Safety. For example, the crankshaft pin is ground according to specifications 

concerning vibration to avoid fatigue cracking which will destroy the engine.  

 Dependability. This is to guarantee the long work life of a machine.  

 Interchangeability. This is to benefit new machine assembly and to facilitate 
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repair.  

Figure 2.1 shows a simplified diagram of a typical GPS standards framework.  

 

Figure 2.1: An Example of a GPS framework. 

The key word “tolerance” in Figure 2.1 normally contains three parts: feature, 

characteristics and condition. Taking surface texture as an example, the feature is 

point, line or surface. It includes the integral feature and the derived feature. The 

integral feature is the surface or profile sections on a surface and the derived feature 

comprises the centrepoint, median line, median surface or offset feature from one or 

more integral features. A characteristic is the single property of one or more features 

expressed in linear or angular units. The features are described by characteristics, 

including different mathematical parameters and their numerical values, based on a set 

of data points from the features under consideration. Conditions are added to define 

acceptable limits for the measured value of a characteristic (tolerance values). Thus, 

these parts together can be used to determine the functional properties of a surface.  

2.1.1.4 Forms of GPS Standards (Matrix) 

According to the technical report ISO/TR 14638 published in 1995 (known as the 

Masterplan), the standards in GPS can be classified into fundamental GPS standards, 

global GPS standards, general GPS standards and complementary GPS standards 

(ISO/TR 14638, 1995 [4]). The general GPS standards are the kernel of the 

Masterplan. They are ordered in a matrix in which all the rows constitute 18 chains of 

standards in total (size, distance, radius, angle etc.) with each column defining various 
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characteristics of geometrical features. Therefore, the whole GPS (ISO/CEN) is also 

called as the GPS matrix system (Humienny et al., 2001 [3]). Table 2.1 shows the 

chain of standards relating to size parameter that are grouped into six aspects: the 

product documentation indications, definition of tolerances, definitions of 

characteristics of actual feature, assessment of the workpiece deviations, measurement 

equipment and calibration requirements, and measurement standards. In an ideal case, 

based on each chain of standards, the process of manufacturing a part can be clearly 

defined by taking into factors such as setting up unambiguous specifications, and 

interpreting manufacturing specifications and verification information.  

1 2 3 4 5 6 

ISO 129 
ISO 286-1 

ISO 286-1 
ISO 286-2 

ISO 286-1 
ISO 8015 

ISO 14660-2 
ISO 14253-1 

ISO 463 
ISO 9121 
ISO 9493 

ISO 10360-1 
ISO 10360-2 
ISO 13225 
ISO 13385 

ISO 14253-1 

ISO 3650 
ISO 14253-1 

Table 2.1: The chain of standards relating to the “size” (the 1st   row of the 
general GPS Matrix). 

The latest version of general GPS matrix system is composed of 108 cells (6 by 18) 

and each of them contains at least one standard. In the future, there will be more 

standards to be filled into those cells. Hence the GPS matrix system will become more 

complex and difficult to be handled. 

2.1.1.5 The Framework of Surface Texture  

This project intends to research and develop a software solution that will provide a 

unified platform for designers and manufacturers to overcome these GPS application 

difficulties discussed in Chapter 1. It is intended to benefit industry by allowing the 

use of modern GPS standards, e.g. surface texture specification and verification.  

As demonstrated in Section 2.1.1.3, the GPS covers three aspects: Dimensional 

tolerances, Geometrical tolerance and Tolerances on surface texture. Among them, 

surface texture is of the crucial state in the GPS. It represents the local deviations of a 

surface from its ideal shape in terms of roughness, waviness and form, which covers a 

wide spectrum of production activities, from the design function to specification on a 

drawing, from the manufacturing process to verification. It is an important factor in 

production for monitoring the production processes, preventing failures of the 

products, ensuring surface quality and inferring the functional performance of a 
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surface. Due to its importance in ensuring the quality of the final product, surface 

characteristics are rigorously checked throughout the whole production lifecycle.  

Table 2.2 lists the GPS matrix chains relating to surface texture (Humienny et al., 

2001 [3]). 

Chain link number 

1 2 3 4 5 6 Geometrical 
characteristic of 
feature 

14 Roughness profile ISO1302 

ISO 4287, 
12085, 
13565-1, 
13565-2, 
13565-3 

ISO 4288, 
12085, 
11562, 
13565-1 

ISO 
4288, 
12085 

ISO 
3274 

ISO 
5436, 
12179 

15 Waviness profile ISO1302 
ISO 4287, 
11562, 
12085 

ISO 
11562, 
12085 

ISO 
12085 

ISO 
3274 

ISO 
5436, 
12179 

16 Primary profile ISO1302 
ISO 4287, 
11562, 
13565-3 

ISO 4288 ISO 4288 ISO 
3274 

ISO 
5436, 
12179 

Table 2.2: Position of surface texture standards in the GPS matrix model. 

As the prototype system taken surface texture as an example, the ISO chains in Table 

2.2 provided foundation knowledge for the surface texture part of the VirtualGPS 

system (see Chapter 5). 

2.1.2 GPS Application Difficulties  

The aforementioned four major shortcomings relating to applying of ISO/CEN GPS 

standards indicate that there is need for development of “new” software systems to 

facilitate GPS applications. However, the current computer aided design and 

manufacturing software systems are still struggling to meet the demands of the global 

and dynamic manufacturing environments and fail to cope with the complexity of the 

whole GPS world due to the following reasons:  

 Most systems do not provide precise drawing indication. For example, they 

have no function associate to drawing indication  30  0.1.  

 Different types of measurement methods may lead to very different results. 

The lack of effective communications has resulted in wide misunderstanding 

between the design concept and the real product. Experience has shown that 

the average costs resulting from such shortcomings of incomplete GPS 

technical documentation can amount to as much as 20% of the production 

turnover (ISO TC/213, 2002 [9]).  

 Almost all current computer aided manufacturing software are based on the 
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old technical standards without applying the modern GPS, such as: 

1) STEP: Standards for Exchange of Product Model Data (STEP) is a set of 

standardized protocols for computer-interpretable product information 

developed by ISO/TC 184/SC4. It relies on CAD vendors to provide 

translators that can read and write STEP formats. The product information 

defined by the STEP only defines how it can be exchanged between 

CAD/CAM systems using standardized protocols. It does not provide 

functions such as automatically generating product specifications based on 

GPS standards according to the required product functions. It also provides 

little support on issues like suggesting manufacturing processes, 

verification methods, and calibration equipments. 

2) Geometric Tolerance: VisVSA (UGS, 2003 [10]) and CETOL (Sigmetrix, 

2002 [11]) are popular commercial packages for tolerance calculation. The 

modern CAT (Computer Aid Tolerance) package (CATIA 3D Functional, 

VSA-GDT, VisQuality, and VisVSA) is implemented on CAD platforms 

(CATIA, UNIGRAPHICS, Pro/Engineer) that utilize solid modelling 

representation systems based on variation geometry. These CAT packages 

have functions such as associative intelligent, 3D tolerance specifications, 

annotation verification, and simulation/ prediction of manufacturing 

processes with variations at the assembly level. 

3) Limit and Fits: There are a number of software implementations of the 

ISO standards for the so-called “Limits and Fits” being developed in 

various countries (examples can be found on www.hexagon.de). These 

software systems can decode the size limits specified by the tolerance 

classes into deviations to calculate the fit clearance/interference, and to 

determine the fit type as well as providing tolerance zone visualizations. 

4) CMM Software: The latest CMM software permits interactive graphical 

inspection planning and programming based on the 3D CAD data with 

automation of the probe path generation (Jiang, 2004 [8]). CMM software 

such as Umess, Calypso (Zeiss), QUINDOS (Brown&Sharpe) and so on 

are often based on 3D CAD/CMM programming software for measuring, 

evaluating, simulating, curve-data importing, and model comparison 

(Humienny et al., 2001 [3]; Carl Zeiss Industrial, 2004, 2006 [12, 13]; 

Brown&Sharpe, 2006 [14]). For example, QUINDOS dimensional 
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measurement software provides flexibility for the inspection of prismatic 

parts such as engine blocks or gearboxes.  Besides that QUINDOS can also 

measure and evaluate special shapes or geometry produced in today’s 

industry (Brown & Sharpe, Inc., 2006 [14]). However, these metrology 

packages which set the measurement standard through direct and seamless 

integration with CAD data, rarely make assessment using ISO geometrical 

tolerance definitions (Humienny et al., 2001 [3]; Jiang, 2004 [8]). For 

example, when the perpendicularity of a cylinder axis to a plane is 

calculated, the associated derived axis is often used rather than the 

extracted derived axis required by ISO. 

5) Surface Texture Analysis System. An internet-based surface texture 

analysis and information system, developed by Center for Precision 

Metrology in the University of North Carolina, claimed to solve the 

problem that current surface texture analysis systems are weak in 

developing process knowledge or mapping the observed effect to causes.  

For example, after taking several measurements on a workpiece, users can 

use traditional systems to filter the profile at a standard cut_off length and 

then get a table of calculated parameter values. However, these systems 

can not provide a documentation mechanism to store process parameters 

with metrology data for observing how process parameters relate to 

variability in the surface parameters. This system focuses on filter selection, 

filtering calculations and measured data analysis. 

In general, the major software systems at present are still weak on functionality and 

relying on ambiguous dimensioning and tolerancing practices based on the nominal 

model methodology and geometry theory. Features such as product function, surface 

properties and the related verification principles, measuring equipment, calibration 

requirements, uncertainty and measurement traceability are often largely ignored. One 

of the major reasons for causing these drawbacks is that the traditional database 

systems applied by all the current engineering aided design and manufacturing 

software tools can not efficiently support complex data structures to reflect the 

complicated relationships among parts and GPS standards, which are essential for 

comprehensive analysis and data manipulations to solve practical production problems. 

The next section will discuss these classical traditional database system solutions with 

their advantages and disadvantages demonstrations. 
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2.2 Current Database System Solutions 

2.2.1 Definitions and History 

A database is a self-describing collection of integrated data with different structures 

designed to meet the information needs of an organization (Martin, 1977 [15]). A 

Database Management System (DBMS) is a compute program that controls the 

organization, storage and retrieval of data in a database and a database application is a 

compute program that interacts with a DBMS (Connolly and Begg, 2001 [16]). DBMS 

did not come into the market until 1960’s and the first commercial DBMS − IMS 

appeared in early1970 (Lin, 2003 [17]).  The modern DBMSs are raised to solve the 

problems of file systems, which support retrieving and storage of large amount of data 

in a computer (Molina, 2008 [18]). Researchers in the database field found that data 

has value and semantic meaning, so data models are required to be introduced to 

improve the reliability, security, efficiency of the access (Lin, 2003 [17]).  Data 

models provide a way to describe what information is to be contained in a database, 

how the data organization of information is structured, and how the data will be 

related to each other for quick access and efficient management. As every DBMS has 

a data model behind it, so DBMSs can be classified into five basic types according to 

the data models that they are applying: 

 Hierarchical DBMS (e.g. IMS) 

 Network DBMS (e.g. CODASYL) 

 Relational DBMS (e.g. MySQL, SQLServer) 

 Object-relational DBMS (e.g. P/FDM) 

 Object-oriented DBMS (e.g. ObjectStore, DB4O) 

These data models describe not only the structure of the target databases but also the 

operations that can be performed on them. Each database has a “schema” that is a 

computing language description of its data model. Therefore, a data model often 

contains: 

(1) Structure. The structure formed by classes, attributes, inter- or intra- 

associations. The structure is represented in both diagrammatic symbols and 

expressed as a schema by using a data definition language. 

(2) Manipulation/Operation. Manipulation is formed by a query language in terms 

of searching, deleting or updating of the database. 

(3) Rule. Rule is the restriction on the data model, for example, integrity 
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constraints. 

Figure 2.2 shows the timeline of the history of these five major data models. 

 

Figure 2.2: Timeline of the history of five data models (Tupil, 2008 [19]) 

The hierarchical and network databases had not become popular in modern database 

applications because of several fundamental limitations. For example, in hierarchical 

and network databases, data accesses are through low-level pointer operations to link 

records. Users need to know the physical database structure to query and update 

information. The first generation data models (hierarchical, and network) and the 

second generation (relational) are all record based and using simple data types, which 

have limited application supports. The third generation of data model (object-oriented) 

started in late 1980’s, which can better support complex data types, having band to 

object-oriented programming languages such as Smalltalk, C++ and Java. All DBMSs 

contain its own Data Definition Language (DDL) and Data Manipulation Language 

(DML) (Cattell, et al., 2000 [20]). The DDL allows users to define their data types and 

interfaces. The DML allow programs to create, delete, retrieve and update the 

instances of those data types. In object-oriented DBMSs, the DDL is called Object 

Definition Language (ODL), which defines the characteristics of types (classes) 

including their properties and operations. For this thesis, the following sections 

concentrate on giving a detailed overview on relational, object-relational and object-

oriented DBMSs. 

2.2.2 Relational DBMS 

In 1970, E.F. Codd proposed the relational model for databases that enabled database 

designers to focus on describing logic aspects (schema) of data without considering 
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the physical storage strategies (Gray, 1992 [21]). Based on the relational model, a set 

of commercial products such as Oracle, DB2, MySQL and Sybase had been developed 

during the 1980’s and 90’s. Since then, the relational database has become the 

mainstream basis for high performance database applications. 

2.2.2.1 Relational DBMS Standards 

From the 1986, Structured Query Language (SQL) began to be widely used in 

relational DBMSs and in the same year, the American National Standards Institute 

(ANSI) standardized SQL (Devarakonda, 2001 [22]). This standard was updated in 

1989, in 1992 (called SQL2), and again in 1999 (called SQL3). Standard SQL is 

sometimes called ANSI SQL or SQL92 and all major relational DBMSs support this 

standard but each has its own proprietary extensions (Stanezyk, 1993 [23]). Thus, the 

world wide accepted standard for relational DBMS formed by the SQL (containing 

both DDL and DML) and the relational data model. SQL includes statements for data 

definition, modification, querying and constraint specification. 

2.2.2.2 Relational DBMS Overview 

During the development of the last three decades, there are around 40s relational 

DBMS products developed by various vendors. This sub-section introduces three most 

popular DBMSs: Oracle, SQLServer and MySQL. The Table 2.3 gives a brief 

introduction on the background of these three relational DBMS. 

Vendors Latest Products Started 
Oracle Corporation Oracle (8i) 1979 
Sun Microsystems MySQL(5.0.67) 1996 

Microsoft SQLServer (2005 SP2) 1989 

Table 2.3: Current relational DBMSs. 

The Table 2.4 shows a comparison of the basic characteristics of relational DBMSs. 

Products Oracle (8i) MySQL(5.0.67) SQLServer (2005 SP2) 

Atomicity, Consistency, 
Isolation, 

Durability(ACID) 
YES YES YES 

Referential integrity  YES YES YES 
Transactions  YES YES YES 

Intersect YES NO YES 
Inner joins YES YES YES 
Outer joins YES YES YES 

BLOB YES YES YES 
Interface SQL SQL SQL 

Table 2.4: Comparison of the basic characteristics of three relational DBMSs 
(Wikipedia, 2006 [24]). 

Table 2.5 shows the operating system supports of the three relational DBMSs: 
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Systems Windows Mac OS X Linux Unix 
Oracle (8i) YES NO YES YES 

MySQL(5.0.67) YES YES YES YES 
SQLServer (2005 SP2)  YES YES No No 

Table 2.5: Comparison of operating system supports of three relational DBMSs. 

The basic features in relational DBMSs are demonstrated as follows: 

(1) The relational data model uses the Set Theory as its formal mathematic 

foundation. 

(2) The relational model uses keys (primary key, component key) to uniquely 

represent data records whilst using use foreign keys to form relationships. 

(3) Relational DBMSs use 2D “Tables” to represent entities and relationships 

between them. 

(4) The “Tables” must obey the Normal Forms (such as, 3NF, BCNF). 

(5) Relational DBMSs normally use SQL language to query and define data and 

data constraints. 

2.2.2.3 Advantages  

The advantages of relational DBMSs based on the relational data model can be 

summarized as: 

(1) Relational DBMSs supported by the relational data model are based on 

matured and stable mathematic theory (i.e. Set Theory), which enables them to 

keep rigor integrity and have good reliability and changeability (Stanezyk, 

1993 [23]). This is one of major reasons for the success of the relational 

DBMSs. 

(2) The relational data model in relational DBMSs disconnects the conceptual data 

modelling with physical data storage and its access strategies. 

(3) Relational DBMSs often support storage of large amount of data. 

(4) Relational DBMSs have easy-to-use query, view, update, addition, deletion 

mechanisms. The SQL language and normalization rules can efficiently 

support these mechanisms. 

(5) There are various powerful relational DBMS commercial products that can 

give database users other supplementary features such as storage plans, 

concurrency strategies, transaction managements, and backup strategies. 

2.2.2.4 Disadvantages 

The disadvantages of relational DBMSs are also prominent in the following areas: 
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(1) The relational DBMSs are limited in dealing with scientific applications and 

other applications that involve complex interrelationships of data. In order to 

minimize data redundancy, reduce design flaws and ensure the integrity of 

databases after addition, deletion, and modification on data sets, relational 

DBMSs must follow a certain Normal Forms (such as 3NF, BCNF), so they 

are weak in dealing with many-to-many relationships and other complex 

nested and embedded structures. It is unavoidable to face the tasks of storing 

and accessing those complex forms (as shown in Table 2.6):      

 

Table 2.6: Example of a classification of surface function together with a 
relationship table for motif parameters taken from ISO 12085 (ISO 12085, 

1996 [25]). 

For example, to store information from a complex matrix-style form as in 

Table 2.6, a relational DBMS has to divide the matrix into a number of smaller 

normalized tables linked via foreign keys, which may cause integration 

problems since a “join” operation has to be performed every time when queries 

are performed on the “Has-a” relationship between objects. Moreover, 

relational DBMSs also extremely inefficient at handling new data types such as 

images and video streams. 
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(2) Relational DBMS applications often suffer from “impedance mismatch” 

problem, which means that there is a large gap between object-oriented 

programming languages and relational DBMSs. For example, database 

applications use object-oriented programming languages to create and manage 

object instances that will have difficulties in converting them into table 

formats for storage and retrieving. The computing resources cost of relational 

DBMSs for converting very complex data structures will be dramatically 

increasing when the data volume becomes large. Figure 2.3 demonstrates the 

impedance mismatch in relational database applications:  

 

Figure 2.3: Impedance mismatch problem in Relational DBMSs. 

(3) Relational DBMSs often use ER (Entity-Relationship) diagrams to model the 

static parts of an application and use another distinctive way to model 

operations and behaviors for entities in that application, which increases the 

difficulty for the modelling processes and prone to breaking the logical 

consistencies.  

(4) Relational DBMSs are weak in “real word” representation (Lin, 2003 [17]). 

For example, relational DBMSs are difficult to represent “inheritance” and 

“aggregation” in the real word. Relational DBMS can only store data as 

entities. However, modern objects- and rules-based applications such as 

various knowledge-based systems for engineering, scientific (molecular 

biology) and multimedia applications often have specific operations (e.g. 

setZResolution(String zResolution) in the “Instrument” class category). These 
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data type specific operations are required to be encapsulated with the type 

rather than defining the stored procedures in separate way (Fu, 2002 [26]). 

(5) Relational DBMSs are also incapable of supporting recursive mechanism and 

dealing with information inference (Hirao, 1990 [27]). 

(6) As in commercial DBMS area, in order to support advanced applications, 

relational DBMS developed by Oracle, Microsoft, SUN and others attempted 

to incorporate some object-oriented features. Thus, for advanced applications 

supported by relational DBMSs, a large-sized management system has to be 

involved, which may cause prolonged running time and heavy system 

resources cost. 

2.2.3 Object-relational DBMS 

To help relational DBMSs to overcome problems highlighted in Section 2.2.2.4, 

various database vendors such as Oracle and SQLserver have devised the concept of 

“object-relational” DBMSs. The intention of object-relational DBMS is to integrate 

object-oriented features into relational DBMS, while still maintaining its relational 

DBMS background. There are no independent data models or standards used in 

object-relational DBMSs. Data models used in object-relational DBMSs extend the 

relational data model by providing additional inclusion of classes, inheritances and 

functions (e.g. query for complex data constructs) (Gray, 1992 [21]; Hirao, 1990 [27]). 

The functional data model is actually one of these extended data models. Therefore, 

this section focuses on discussing the functional data model and a DBMS base on it— 

P/FDM (Gray, 1992 [21]). 

2.2.3.1 P/FDM Overview 

The functional data model views a database as a collection of extensively defined 

functions that can be queried by functional query languages (Buneman, 1997 [28]). In 

the opinions of researchers attending the functional data model workshop in 1997, the 

functional data model is the “lowest common denominator” of data models, which can 

be seen as the basis for any other models used in relational, object-relational, and 

object-oriented databases (Buneman, 1997 [28]; Gray, 1997 [29]). Therefore, the 

functional data model can be used to explain the object-oriented concept. This sub-

section will look in particular at the object-relational system ─ P/FDM, a research 

development by the Object Database Group at the University of Aberdeen (Embury, 

1995 [30]). The P/FDM is based on functional data model having both a DAPLEX 
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query interface and a query language in SICStus prolog (Intelligent Systems 

Laboratory, 2006 [31]). The basic features of the P/FDM are: 

(1) In the P/FDM, database entities are represented as special functions that are 

devoid of parameters. Attributes in database entities are represented as 

functions that are applied to entities and return values of certain data types as 

results. Relationships between entities are also represented as functions that 

are applied to entities and return entities as results. Figure 2.4 shows examples 

of database entities, attributes and relationships defined in the functional 

database schema. 

 

Figure 2.4: An example of functional database schema. 

(2) Relationship functions in P/FDM can be reversed. 

(3) Most Functional DBMSs are using DAPLEX language as a high-level query 

language.  DAPLEX is a declarative language allowing non-experts to express 

what one wants without considering how the desired result is to be computed. 

2.2.3.2 Advantages 

The advantages of object-relational DBMSs can be summarized as: 

(1) The data models in object-relational DBMSs keep the advantages of relational 

data model. For example, the functional data model is based upon functions 

and is a conceptual data model, which disconnects conceptual data model 

designs from those storage notions such as arrays, lists and other storage types 

(Gray, 1992 [21]; Gray, 1997 [29]). 

(2) The extended data models in object-relational DBMSs provide better support 

for complex objects. For example, the functional data model integrates entities 

and behaviors in a unified model. It has capabilities for dealing with complex 

data structures such as potential embedded constructions and many-to-many 

relationships 

(3) Object-relational DBMSs based on functional data model can have a function 

compositional query language, which can be recognized as a basis for the 

Object Query Language (OQL). 

(4) Object-relational DBMSs based on functional data model have ability to 

integrate data from heterogeneous models in a multi-database scenario. 
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2.2.3.3 Disadvantages 

The disadvantages of object-relational DBMSs can be summarized as: 

(1) As the object-relational DBMSs are developing to offer virtually all the 

functionality currently required by object-oriented applications, they have 

become very large and cumbersome systems, which affect their usability. 

(2) The Set Theory-based relational model has been extended in several ways that 

break the essential scope of Set Theory and without a comprehensive 

theoretical basis (Nelson, 1998 [32]). 

(3) Data models for object-relational DBMSs still lack well-defined graphic 

notations and structures to represent complex structures. Complex objects and 

abstractions such as inheritance are more naturally represented by graphs than 

as sets (Levene and Poulovassilis, 1991 [33]; Poulovassilis and Levene, 1994 

[34]). 

(4) Data modellings in object-relational DBMSs still have weaknesses in semantic 

supports. For example, because the functional data model is the “lowest 

common denominator” of data models (refer to Section 2.2.3.1), there is lack 

of semantic foundations for knowledge-based applications. Compared to E-R 

model, the functional data model cannot clearly represent the stratification of 

entities, attributes, and relationships. 

2.2.4 Object-oriented DBMS 

To solve the problems presented by the aforementioned object-relational DBMSs, 

especially for these scientific and engineering applications, the next generation of 

database paradigm —object-oriented DBMSs are emerging. Several standards were 

proposed to develop object-oriented DBMSs, which include three manifestos, and 

standards from Object Data Management Group (ODMG93, ODMG2.0, ODMG3.0) 

as well as Object Management Group (OMG). 

2.2.4.1 Object-oriented DBMS Standards 

There are three manifestos for specifying the object-oriented DBMSs. The first 

manifesto provided 13 features that an object-oriented DBMS must include, should 

include and may include (Atkinson, 1990 [35]). However, there are no details and 

largely ignored the important part of object-oriented DBMSs − the data model. So it is 

just a vision not a formal standard (Committee for Advanced DBMS Function, 1990 

[36]). The second manifesto detailed the first manifesto and proposed three tenets for 
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the definition of the third generation DBMS: object-oriented DBMS. However, they 

focus too much on the evaluation of relational DBMSs to object-oriented DBMSs and 

ignored the intrinsic properties of object-oriented DBMS. It still absents the formal 

data model for object-oriented DBMSs. The third manifesto just follows and improves 

the earlier two manifests, and introduced how to add object-oriented features in 

relational DBMSs according to the different levels of object-oriented suggestions: 

object-oriented prescriptions, object-oriented proscription, and object-oriented very 

strong suggestions. These three so-called “object-oriented DBMS” manifestos are just 

guidance for extending relational DBMSs with object-oriented features, which are not 

real standards for object-oriented DBMSs. 

The OMG is an international non-profit organization supported by information 

systems vendors, software developers and users. OMG was founded in 1989, now has 

over 600 member organizations, and meets bi-monthly. OMG provides a widely 

supported framework for open, distributed, interoperable, scalable, reusable, portable 

software components based on OMG-standard object-oriented interfaces (OMG, 1997 

[37]). The object model of OMG provides minimum capabilities for object modelling. 

From 1993, the ODMG developed a set of ODMG standards − ODMG93 in 1993, 

ODMG2.0 in 1997, ODMG 3.0 in 2000 (Cattell, et al., 1993 [38]; Cattell, et al., 1997 

[39]; Cattell, et al., 2000 [20]). After ODMG3.0, the ODMG disbanded in 2001. The 

ODMG is a consortium of vendors and related organizations that work on 

standardization for object database and object-relational mapping products (Lin, 2003 

[17]).The newest ODMG standard−the ODMG 3.0 defines a portability specification 

for persistent object storage, which enables portable applications that could run on 

more than one product. The ODMG3.0 binds object-oriented languages such as Java, 

C++ and Smalltalk, so application developers can entirely develop their database 

applications within the native language environment. Unlike to the aforementioned 

three manifestos, ODMG 3.0 is not developed on relational model, but directly built 

by scratching from object-oriented programming paradigms. It can also satisfy all core 

features defined in the first manifesto. The major components of ODMG 3.0 are 

(Cattell, 2000 [20]): 

1. Object model. The object model defined in ODMG is developed based on the 

object model of OMG. The OMG object model is based on a small number of 

basic concepts: objects, operations, types, and subtypes (OMG, 1992 [40]), 

which is a common basis for Common Object Request Broker Architecture 
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(CORBA), object-oriented databases, and other object programming. ODMG 

refined the OMG’s object model to specially satisfy the demands of object-

oriented DBMSs by adding constructions such as relationships and 

transactions. 

2. Object specification languages. Two specification languages defined in ODMG 

3.0: Object Definition Language (ODL) and Object Interchange Format (OIF). 

The ODL is a specification language used to define the specifications of object 

types that conform to the ODMG object model. The ODL defined in ODMG is 

intended to define object types that can be implemented in a variety of 

programming languages, and it is not tied to the syntax of a particular 

programming language. The OIF is a specification language used to dump and 

load the current state of an object database to or from a file or set of files. 

3. Object Query Language (OQL). The OQL is a declarative language for 

querying and updating objects developed on SQL-92. 

4. Language Binding. The ODMG standard does not provide an Object 

Manipulation Language (OML) specification, instead ODMG provides 

language bindings. There are bindings of ODMG implementations to C++, 

Smalltalk, Java languages respectively. Due to the differences inherent in the 

object models native to these programming languages, it is not always possible 

to achieve consistent semantics across the different programming language-

specific versions of ODL. 

The ODMG Java language binding was the basis for Java Data Objects (JDO), an 

API for transparent persistence. The JDO API is a standard interface-based Java 

model abstraction of persistence, which developed under the auspices of the Java 

Community Process (SUN/JDO, 2008 [41]). The JDO focuses on standardizing the 

interfaces between host Java applications and databases. As the JDO has good 

portability, application programmers can focus on their domain object model, leaving 

the details of persistence (field-by-field storage of objects) to the JDO implementation. 

Therefore, JDO actually is the API working with both relational and object databases 

and it is not a database or a data model: it is a persistence API that can be used with a 

variety of data stores, including relational databases. 

Besides standards discussed above, there are several other standards for defining 

object models, such as CFI (electrical CAD), PCTE (CASE), and ISO ODP (Lin, 2003 

[17]). None of these standards have been widely accepted in the commercial market. 



 26

Hence, most of these standards are not specific to object-oriented DBMSs. The formal 

data model with mathematical foundation and a visualized diagramming mechanism is 

largely ignored in these standards. Nowadays, modern object-oriented programming 

languages enable object-oriented DBMSs to be developed more simply than before, so 

a data model that can ensure the integrity and consistency of stored objects becomes 

very important for object-oriented DBMS developments 

2.2.4.2 Object-oriented DBMS Overview 

In recent years from 1985, object-oriented DBMSs have received more attention and 

many experimental and theoretical practices have been done. An object-oriented 

DBMS integrates object-oriented features with database capabilities. It aims to 

address the limitations of relational databases by allowing complex data structures 

(objects and behaviors) to be stored in the database as objects. The object-oriented 

DBMS uses object-oriented programming languages to implement the attributes and 

behaviors of objects according to users’ special demands and supports distributed 

applications. A number of object-oriented DBMSs come into markets in the past 15 

years and Table 2.7 lists four object-oriented DBMS products that dominate today’s 

market. 

Vendors Latest Products Started 
DB4O Db4o (Database for Objects) v7.0 2004 

The Ozone Database Project Ozone v1.2 2002 
Objectivity, Inc. Objectivity/DB v9.0 1993 

Versant Corporation Versant v7.0 1988 

Table 2.7: Current object-oriented DBMSs. 

The Table 2.8 shows a comparison of the basic characteristics of object-oriented 

DBMSs listed in Table 2.7. 

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0) 
User defined data 

types support 
YES YES YES YES 

Inheritance (IS_A 
relationship) 

support 
YES YES YES YES 

Aggregation 
(PART_OF 
relationship) 

Support 

YES YES YES YES 

Version Support YES YES YES YES 
The cardinality 
between objects 

check 
NO NO YES YES 

Support of data 
replication 

YES NO YES YES 
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Data encryption 
support 

YES NO YES YES 

Languages for 
defining attributes 

and methods of 
objects 

JAVA, C# JAVA 

C++ 
JAVA 

SMALLTALK 
SQL 

C, C++ 
JAVA 

SMALLTALK 

Application 
programming in  

JAVA  
YES YES YES YES 

Store methods of 
objects in the DB

NO, METHODS 
ARE   

STORED IN 
THE CLIENT 

NO, METHODS 
ARE   

STORED IN 
THE CLIENT 

NO, METHODS 
ARE   

STORED IN THE 
CLIENT 

YES 

Lock strategy OBJECT LEVEL OBJECT LEVEL OBJECT LEVEL 
CONTAINER 

LEVEL 

Table 2.8: A Comparison of the basic characteristics for these four object-
oriented DBMSs. 

Table 2.9 shows a comparison of the standards supported by these four object-oriented 

DBMSs. 

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0) 
ODMG ODL 

support 
NO Partially Partially NO 

ODMG OQL 
support 

NO Partially 

YES(supports all of 
SQL-92 which 
includes sql select 
with method 
execution, but not oql 
typing that differs 
from SQL-92) 

NO 

ODMG Java 
bindings 

NO YES NO 

YES(all basis 
capabilities (ref, 

relationships, 
etc.), but not 
collections 

SQL query 
support 

YES YES YES YES 

Table 2.9: A Comparison of the standards supported by these four object-
oriented DBMSs. 

Table 2.10 shows a comparison of the schema modification support of these four 

object-oriented DBMSs. 

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0) 
Ad-hoc queries 
updates of the 

database schema 
with a GUI 

YES NO YES YES 

Ad-hoc updates 
of the database 
schema with a 
object-oriented 

language 

YES YES YES YES 

Table 2.10: A Comparison of the schema modification support for these four 
object-oriented DBMSs. 
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Table 2.11 shows a comparison of the queries support of four object-oriented DBMSs. 

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0)
Ad-hoc queries 

with GUI 
YES NO YES YES 

Ad-hoc queries 
with SQL 

YES YES YES YES 

Ad-hoc queries 
with a object-

oriented 
language 

YES NO YES YES 

Table 2.11: A Comparison of the queries support for these four object-oriented 
DBMSs. 

Table 2.12 is a comparison of system environment support of these four object-

oriented DBMSs. 

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0)
 Architecture 

Multi-user 
environment 

support 
YES YES YES YES 

Single-user multi-
tasking 

environment 
support  

YES YES YES YES 

Client-server 
architecture 

support  
YES YES YES YES 

The physical data 
can reside on 

client side 
YES YES YES YES 

The application 
can run 

autonomously on 
the client side 

YES YES YES YES 

 Platform  
MS-windows 

support 
YES YES YES YES 

Sun OS support YES YES YES YES 

Table 2.12: A Comparison of system environment support for these four object-
oriented DBMSs. 

Table 2.13 is a comparison of library file sizes, weak reference cache support and 

prices of these four object-oriented DBMSs. 

Products Db4o(v7.0) Ozone(v1.2) Objectivity(v9.0) Versant (v7.0) 

Library file sizes 3.5M 14M 
165.7M(with 

objectivity/assist 
perspective) 

YES 

Weak Reference 
Cache 

YES NO YES NO 

Price Open Source Open Source 
About 3000$ per 

seat 
About 3500$ per 

seat 

Table 2.13: A Comparison of the accessibility for these four object-oriented 
DBMSs. 
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The core features of the object-oriented are highlighted as: 

(1) All information is represented in the form of “object” and objects are stored 

persistently (Bancilhon, 1992 [42]).  

(2) Objects in object-oriented DBMSs have properties (attributes) and behaviors 

(methods), which can be regarded as instances of entities in real world. Each 

of the objects has a uniquely assigned Object Identity (OID) and objects allow 

inheriting and overriding by arbitrary levels (Connolly and Begg, 2001 [16]).  

(3) Object-oriented DBMSs combine database principles (Atomicity, Consistency, 

Isolation, and Durability) with object-oriented programming language 

principles (Encapsulation, Inheritance, and Polymorphism). 

(4) Object-oriented DBMSs have query languages for accessing information.  

2.2.4.3 Advantages 

The advantages of using object-oriented DBMSs can be summarized as: 

(1) Object-oriented DBMSs can deal with arbitrary complexity of object structures 

and object relationships of the real world in an efficient way ― objects in an 

object-oriented DBMSs can hold arbitrary number of data of any types or even 

as other objects. Moreover, object-oriented DBMSs can use multi-valued 

properties to express complex data structures whilst in the relational model it 

can only be achieved by using additional relations and joins. 

(2) Object-oriented DBMSs can encapsulate objects and their behaviors as an 

integrated whole, which is great benefit for certain types of applications. For 

example, multimedia applications use operations stored with objects to ensure 

the correct interpretation of special data (Bancilhon, 1992 [42]). It also means 

that the object-oriented DBMSs can use one data model to handle both static 

(entities and relationships) and dynamic (behaviors) aspects of an application. 

(3) There are no impedance mismatch problems in object-oriented DBMSs 

applications. The conversions between object-oriented programming 

languages and databases (objects to table tuples) are not required since objects 

are using a uniform format in both object-oriented programming languages and 

databases, hence reducing the time cost for the unification tasks relating to 

transfer objects into tuples and vice versa (Obasanjo, 2001 [43]). Figure 2.5 

shows an improved model in comparison with the model in the Figure 2.3: 
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Figure 2.5: Unification between object-oriented application and object-
oriented DBMS. 

(4) Object-oriented DBMSs can automatically assign a unique ID for each object, 

which cannot be modified by applications and is independent of how an object 

is manipulated or structured (Bagui, 2003 [44]). This feature has avoided the 

daunting tasks facing by database designers in terms of defining keys. Most 

object-oriented DBMSs can convert the ID stored in an object to memory 

pointer when the object is loaded into the memory, therefore objects can be 

retrieved directly. Furthermore, two objects with different IDs will be 

considered as different objects even if their structures and property values are 

the same. 

(5) Object-oriented DBMSs can naturally use class inheritance concept to model 

the hierarchy structures in real applications.  

(6) Rather than using joins through primary-foreign key matches between tables, 

object-oriented DBMSs use object direct reference (e.g. reference pointer). 

(7) Data access can be faster in object-oriented DBMSs than relational DBMSs 

since object-oriented DBMSs do not needs to search through tables using the 

time consuming join operations as in relational DBMSs. Furthermore, there are 

no needs to involve Call Level Interfaces (CLI) such as ODBC, ADO, and 

JDBC (Bagui, 2003 [44]).  

(8) Additional query languages are not necessary for object-oriented DBMSs. The 

object-oriented programming languages such as Java, C# could be used to 

express queries − Native Queries (NQ). 

2.2.4.4 Disadvantages 

The disadvantages existing in object-oriented DBMS are: 

(1) At present, object-oriented DBMSs are still lack of universal agreed standards 

and a formal basis to ensure the database systems remain a coherent and 

reliable system as new knowledge is being added and vendors of object-
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oriented DBMSs are all relatively small (McClure, 1997 [45]). 

(2) Object-oriented DBMSs are lack of a formal mathematical foundation, which 

leads to weaknesses in query and updating supports of object-oriented DBMSs. 

(3) A contradiction exists between the encapsulation requirement of object-

oriented DBMSs programming languages and database natures. For example, 

the query results are often formed by data values which will break the 

encapsulation rules. They are difficult or impossible to be stored back to 

object-oriented DBMSs or used in further queries. 

(4) Difficulties exist when database schema changes (Obasanjo, 2001 [43]). In 

traditional relational DBMSs, the schema updating operations such as creation, 

deletion and modification of tables are actually independent with the host 

application. However, in an object-oriented DBMS based application, 

modifying database schema using similar operations on a persistent class may 

cause changes on other classes referring or interacting with the old instances 

of the class. 

(5) There is a lack of portability. Object-oriented DBMSs are application specific, 

which are especially suitable for specific applications with specific purposes 

such as image processing, biological analysis, engineering standards handling, 

and physics applications. They are not particularly appealing to mainstream 

commercial applications. 

(6) Due to lack of advanced features such as query facilities, query optimizations, 

view supporting, security issues and consistency checking, object-oriented 

DBMSs do not have the maturity as relational DBMSs (Bagui, 2003 [44]). 

2.3 The Survey of Knowledge-based System 

2.3.1 Definition of a Knowledge-based System 

There are various definitions of a knowledge-based systems defined by various 

authors, researchers and software system experts. In many papers or books, a number 

of authors imply that an expert system and a knowledge-based system are equivalent 

since knowledge-based systems are used to capture the problem-solving expertise of 

human beings, which is closing to the generally accepted definition of expert systems. 

In 1989, Mockler gives a definition for a knowledge-based system as “designed to 

replace the functions performed by a human expert”. Dym and Levitt in 1991 

explicitly make no distinction between a knowledge-based system and an expert 
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system. They define a knowledge-based/expert system as “a computer program that 

performs a task normally done by an expert or consultant and which, in so doing, uses 

captured, heuristic knowledge” (Dym and Levitt, 1991 [46]). On the other hand, there 

are also definitions that make an explicit distinction between a knowledge-based 

system and an expert system. In this project, researchers make an expert system is a 

subset of a knowledge-based system, which means that the expert systems have more 

advanced inferences than knowledge-based systems in solving decision-making 

problems. Therefore, a definition that focuses on the knowledge carrying in systems 

rather than broader or advanced inference powers is used in this project (Harmon and 

King, 1985 [47]): 

“Today’s knowledge systems are confined to well-circumscribed tasks. They 

are not able to reason broadly over a field of expertise. They cannot reason 

from axioms or general theories. They do not learn and, thus, they are limited 

to using the specific facts and heuristics that they were ‘taught’ by a human 

expert. They lack common sense, they cannot reason by analogy, and their 

performance deteriorates rapidly when problems extend beyond the narrow 

task that they were designed to perform.” 

Figure 2.6 illustrates the relationship of the knowledge-based system, expert 

system and artificial intelligent applications in a tree structure (Partridge and Hussain, 

1995 [7]). 

 

Figure 2.6: A Classification of information systems. 

2.3.2 Knowledge-based System Overview 

Knowledge-based systems originated in 1943, and have evolved during the last sixty 

years in several branches: artificial intelligence applications, expert systems, decision 

support systems and so on. Table 2.14 lists the milestones related directly to the 

development of knowledge-based systems (Partridge and Hussain, 1995 [7]). 
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Years Milestones 

1943 
McCulloch and Pitts published the pioneering work that led to neural 
networks. 

1950 Alan Turing’s article that led to the Turing test. 

1956 
Newell, Simon, and Shaw developed the general problem solver at Rand 
Corporation. 

1958 McCarthy developed LISP at Massachusetts Institute of Technology (MIT). 

1963 
Samuel’s article on the first learning computer program (Samuel’s draughts 
program) and in the use of techniques of search and reasoning. 

1970 Rousel and Colmerauer developed PROLOG. 

1972 
Newell and Simon’s book “Human Problem Solving” introduced the general 
idea of production systems. 

1973 
Van Melle, Shortliffe, and Buchanan developed the EMYCIN shell from 
MYCIN 

1976 Minsky developed the concept of frames for knowledge representation 
1977 Forgy created OPS for programming expert systems. 

1978 
McDermott started developing R1 (later released as XCON, the first large 
commercial expert system) at Digital Corporation. 

1980 Symbolics started the development of LISP machines. 

Table 2.14: The development milestones for knowledge-based systems. 

In real world applications, there are many kinds of knowledge-based systems, 

which mixed by different kinds of knowledge sources, see Table 2.15 (Partridge and 

Hussain, 1995 [7]). 

Knowledge Types Characteristics Output Attributes 
Relationship of 
knowledge to 
problem solving 

Facts Statement of 
existence 

What is Truth Data 

Heuristics 
Rule of thumb 

Why and why 
not 

Discovery Tactics 

Rules 
Relationship of 
factual conditions 
and conclusions 

What should 
be 

Conditions 
associated 
with actions 
and 
conclusions 

Tactics 

Procedure  How things work How it is done Algorithms Procedure 
Declarative(descriptive) 

How things are 
Why it is done Association 

with truth 
Strategies 

Table 2.15: Knowledge types. 

These five kinds of knowledge are all mixed in the VirtualGPS system and Table 

2.16 lists examples. 

Knowledge Types Examples in VirtualGPS system 
Facts Parameter types and tolerance values 

Heuristics Patterns in pattern language for function reports 

Rules 
Constraints between symbols in a completed callout 
(e.g. between parameter types and sampling lengths)

Procedures Comparison processes in Verification 

Declaratives 
Manufacture reports for suggesting manufacture 
strategies(manufacturing processes and tools) 

Table 2.16: Knowledge types in VirtualGPS. 
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The next section gives an introduction into the hierarchy of knowledge and their 

relationships. 

2.3.3 Knowledge Hierarchy 

According to Russell Ackoff, a system theorist and professor of organizational 

changes, the content of the human mind can be classified into five categories (Ackoff, 

1989 [48]): 

(1) Data. Data is a symbol set, which is raw and has no significance beyond its 

existence. In the computing world, data is records, signals or other encoded 

items. 

(2) Information. Information is data that has been given meaning by way of 

relational connection. This “meaning” can be useful, but does not to be. 

(3) Knowledge. The knowledge is application of data and information to answer 

“how” questions. Knowledge must have useful meaning. 

(4) Understanding. Understanding is an interpolative and probabilistic process, 

which human beings can take knowledge and synthesize new knowledge from 

the previously held knowledge. The difference between understanding and 

knowledge is the difference between the “learning” and “Memorizing”.  

Artificial Intelligent systems process understanding in the sense that they are 

able to synthesize new knowledge from previously stored information and 

knowledge. 

(5) Wisdom. The wisdom is an extrapolative and non-deterministic, non-

probabilistic process, which is used to evaluate understandings to make 

judgments on understandings. 

Figure 2.7 illustrates the hierarchy of data, information and knowledge. 

 

Figure 2.7: The hierarchy of knowledge. 
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At present, this project not aim to yield wisdom by judging existing knowledge, but 

the VirtualGPS focus on representing and inferring knowledge based on rules and 

cases retrieved from GPS standards. 

2.3.4 Knowledge Acquisition and Representation 

Figure 2.8 shows a classic architecture for a knowledge-based system (Partridge and 

Hussain, 1995 [7]; Hopgood, 2001 [49]). 

Inference engine

Explanation sub-
system

Knowledge base 
editor

Knowledge base

General knowledge 
base

Case specific 
information

Sub-knowledge 
bases

Storage

retrieve

Knowledge acquisition

Knowledge representation

Knowledge support

 

Figure 2.8: The classic architecture for knowledge-based systems. 

According to Figure 2.8, knowledge acquisition and knowledge representation are the 

first two steps which need to be gone through during the developing process of a 

knowledge-based system. Knowledge acquisition is the first step in creating a 

knowledge base. There are three distinct approaches to acquiring the relevant 

knowledge for a particular domain (Hopgood, 2001 [49]): 

 The knowledge is teased out of a domain expert. 

 The builder of the knowledge-based system is a domain expert. 

 The system learns automatically from examples. 

The first approach is commonly used for knowledge acquisitions, but has a major 

problem: misunderstandings between knowledge system developers and domain 

experts. The communication difficulties can be avoided or alleviated through defining 

a clear knowledge representation mechanism. Knowledge bases require special 

representations for knowledge. After evaluating common data models such as 
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hierarchical, network, and relational that are used in DBMSs, Partridge and Hussain 

claimed that these traditional data models for DBMSs are not adequate for AI 

applications where knowledge is used to make inferences (Partridge and Hussain, 

1995 [7]). Therefore, knowledge base developers developed some special data 

representations for knowledge like rules, the frame, the semantic network, logic, and 

the object-oriented approach. This leads to a gap between data in the database and 

data in the knowledge base. Actually, the knowledge representation and knowledge 

bases do not replace data representation and databases. Instead, they are all necessary 

parts for a knowledge-based system. The DBMS is used to store and manage data for 

knowledge-based system while knowledge base uses data stored in DBMS to organize 

information or knowledge for users. Hence, researchers in this project devised a 

categorical object model that can be used for both in knowledge base for knowledge 

representation, and in a DBMS for object and complex relationship modelling. This 

project also devised representation mechanism for reasonings based on Category 

Theory (coequalizer) that can be used to control the logical manipulations of objects 

to generate new knowledge from old (see Section 3.6 of Chapter 3). Another example 

on using Category Theory to represent heuristics and theories can be seen in Section 

3.7.1 of Chapter 3. Furthermore, while using the categorical object model for 

representing inference rules or constraints in a diagrammatical way with certain level 

of abstraction, the traditional knowledge representation mechanisms− rule and frame 

are also used in this project to specify rule contexts and heuristics in detail. The rule is 

a knowledge representation for making inferences as a human expert does, which is 

applied to knowledge to get a conclusion or activate an action (Partridge and Hussain, 

1995 [7]). The basic format for a rule is (Tansley and Hayball, 1993 [50]): 

IF x THEN 1. 
ELSEIF y THEN 2. 

List 2.1: The basic format for a rule. 

Chapter 5 demonstrates a set of rules in the VirtualGPS system. These rules are held 

in the knowledge base of this system to inference knowledge from existing knowledge 

stored in the categorical DBMS. The frame is a data structure for representing a 

stereotyped situation, which contains a set of slots and nodes organized in logic 

groups (Partridge and Hussain, 1995 [7]). Slots containing rules, values, pointers to 

other frames and procedures are used to define an event or a concept at each node. A 

node is a point where an item links to another item. Frames are very useful when the 



 37

content of information is important in solving problems containing patterns. The 

pattern language (see Section 3.7.1 of Chapter 3) and PRIMA (Manufacturing Process 

Information Map) (see Section 5.4.2 of Chapter 5) are two kinds of frames in this 

project and they are formatted by using Category Theory. 

This section shows that the Category Theory provides a high unification and 

abstraction for knowledge acquisition and knowledge representation for this project to 

eliminate knowledge design complexity and communication misunderstandings 

between knowledge designers and system developers.  

2.4 XML/XSLT 

2.4.1 XML Definition 

Extensible Markup Language (XML) is  

“A technology for making up structured data so that any software with an XML parser 

can understand and use its content. Data independence, the separation of content 

from its presentation is the essential characteristic of XML” (Deitel et al., 2003 [51]).  

Like any other markup languages, XML has a set of rules, which the user can use to 

add special meanings or provide extra information to a document. However, unlike 

HTML, tags used in XML are not pre-defined, users can define their own tags to make 

up data and these user-defined tags only relate to the actual content of the document, 

not the way to display it. Therefore, “HTML is used to define how a document should 

be rendered, whereas XML is used to define the data contained within that document” 

(Reynolds, 2000 [52]). Because XML based on user-defined tags, the browser will not 

know how to display an XML document, so users often use Extensible Stylesheet 

Language (XSL) to tell the browser how to display it. In order to make the XML 

document more readable, XML also use Document Type Definition (DTD) or an 

XML Schema to define the legal elements in an XML document. 

Data often communicates between different platforms, systems, and applications in 

different formats. XML can define the content of a document separately from its 

formatting and presentation, making it easy for data communication between different 

platforms, systems and applications. 

2.4.2 Advantages of XML 

XML is a nice tool to exchange data. XML documents are simple text files marked up 

in a special way, so all applications can use XML data expediently.  XML provides a 

basic syntax that can share information between different kinds of computers, 
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applications, and organizations without needing to pass through many layers of 

conversion. XML is not complex to use. It has a set of syntax rules, which protect a 

developer to build a correct XML document. XML has very good extensibility. The 

extensibility of XML shows in two ways: user can use DTDs to define rules for their 

own tags and XML can support many other standards such as XSL, XPointer, CSS, 

Xlink. Finally, XML is completely open, freely available on the web. 

2.4.3 XSLT  

The Extensible Stylesheet Language (XSL) provides rules for formatting XML 

documents (Deitel et al., 2003 [51]). XSL Transformation Language (XSLT) is a core 

part of XSL, which can transforms an XML to other text-based forms such as 

XHTML pages, WML cards or PDF files. 

2.4.4 DOM 

An XML document is represented by a hieratical tree structure in memory. This 

structure includes the elements, attributes and content of the document (Deitel et al., 

2003 [51]). Document Object Model (DOM) was developed by W3C, which can 

dynamically build a hierarchical tree in memory for a XML document and each node 

in DOM tree represents an element, attribute or content of a XML document. 

2.5 Summary 

This chapter gives a brief overview and discussion on the problem domains relating to 

this project. It also illustrates why this project needs to be done and why new 

techniques need to be involved. 
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CHAPTER 3 CATEGORY THEORY APPLICATIONS  

This chapter focuses on discussing the Category Theory modelling capability used in 

this project. It covers: introduction of necessary notations and constructs of Category 

Theory used in this project, discussion of related previous researches of Category 

Theory, justification of the rationales for choosing Category Theory in this project, 

and explanations for the categorical modelling mechanism. The categorical modelling 

mechanism devised in this project contains three parts: the categorical object model, 

the categorical software design process and the inference identifying square, which 

covers all aspects of object-oriented knowledge-based system modellings. 

3.1 Category Theory 

Category Theory is a form of constructive mathematics, which is devised to describe 

various structural concepts from different mathematical areas in a uniform foundation. 

As claimed by Goguen in 1991, Category Theory can contribute the major six points 

for the modern computing science (Goguen, 1991 [53]): 

 Formulating definitions and theories. The Category Theory provides a 

symbolic language with a convenient symbolism that allows for visualization 

of quite complex facts in form of diagrams (Adamek et al., 1990 [54]). 

 Dealing with abstraction and representation independence. Category Theory 

can grasp the essence of the researching targets as it focuses on the properties 

of mathematical structures instead of on their detail representations. For 

example, the diagram in Category Theory is similar to the graph in Topologic 

Theory, which is used to model pairwise relations between objects in a certain 

domain instead of focusing too much on precise positions of those objects. 

 Carrying out proofs. By using diagram chasing and calculus deductions, 

Category Theory can reduce all complex proofs to simple calculations. 

 Discovering and exploring relations with other fields. Sufficiently abstract 

formulations can reveal surprising connections. For example, an analogy 

between Petri nets and the λ-calculus might suggest looking for a closed 

category structure on the category of Petri nets (Meseguer and Montanari, 

1988 [55]) 

 Formulating conjectures and research directions. Connections with other fields 

can suggest new questions in your own field. For example, if a special functor 
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has been found, the investigations of its adjoints can be very valuable.  

 Unification. Computing science is very fragmented with many different 

subdisciplines, so the Category Theory can provide a conceptual unification. 

3.1.1 Notations of Category Theory 

Category Theory has two basic notations − category and arrow. A category C is for 

specifying complex structures and formalisms, which can contain (Barr and Wells, 

1996 [56]; Pierce 1991 [57]). 

 A collection of internal objects (More specially, if an internal object I in C has 

a unique arrow to every other internal object of C, it is defined as initial object 

and denoted as 0. The dual notion is the terminal object T denoted as 1 that 

there has exactly one arrow X → T for each object X of C). 

 A collection of arrows/morphisms (e.g. f: A → B). An arrow in Category 

Theory is similar to a function in Set Theory, which defines a mapping from a 

source to a target internal object. Functions or behaviors assigning to each 

arrow f with an object dom(f) (domain) and an object cod(f) (codomain) (e.g. f: 

A → B, dom(f) = A, cod(f) = B), the collection of all arrows with domain A and 

codomain B in category C is represented as ( , )CHom A B . 

 a composition operator on each pair of arrows f and g satisfying cod(f) = 

dom(g) (a composite g   f : dom(f) → cod(g));  

 satisfying the associative law: for any arrows f: A → B, g: B → C and h: C → 

D has h   (g   f) = (h   g)   f; 

 an identity arrow Aid : A → A, for each object A satisfying the identity law as 

for any arrow f: A → B, Bid    f = f and  f   Aid  = f;  

Figure 3.1 shows a basic category: 

 

    Figure 3.1: A basic category. 

For an instance, the Set category is a category where the internal objects are sets and 

the arrows are total functions. The subcategory S of a category C is a category that 

every internal object of S is an internal object of C; for all objects O and O’ in S, 
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SHom (O, O’) CHom  (O, O’).   

Arrows in Category Theory have three important types: monomorphisms, 

epimorphisms, and isomorphisms (Barr and Wells, 1996 [56]). The definition for 

monomorphism (as shown in Figure 3.2) in Category Theory is:  

“An arrow f: A → B is a monomorphism (also called a monic morphism or a 

mono), if for any object C of the category and any arrows 1g , 2g  : C → A such 

that f   1g  = f   2g  implies 1g  = 2g .” 

 

          Figure 3.2: Diagram representation of the definition of monomorphism. 

The monomorphism in Set category corresponds to the concept of injective 

function. The definition for epimorphism (as shown in Figure 3.3) in Category Theory 

is:  

“An arrow f: B → A is an epimorphism (also called an epic morphism or an 

epi), if for any object C of the category and any arrows 1g , 2g : A → C such 

that 1g    f = 2g    f implies 1g  = 2g .”  

 

        Figure 3.3: Diagram representation of the definition of epimorphism. 

The epimorphism in Set category corresponds to the concept of surjective 

function. An epimorphism is a monomorphism in the dual category. The dual category 

opC of category C contains all internal objects same as C and all arrows of C inverted. 

The inverted arrow means, given an arrow f: A → B then the inverted arrow opf of f is 

an arrow opf : B → A. The notion of duality in Category Theory is very useful as it 

reduces proof obligations: the dual of a theorem is also a theorem. 

The definition for isomorphism in Category Theory is: 

 “An isomorphism is arrow f: A → B if there exists opf : B → A, such 

that opf   f = Aid  and f  opf = Bid . The objects A and B are isomorphic if there 

is an isomorphism between them.” 

The isomorphism in Set category is corresponding to the concept of bijective 

function. 

Category Theory also provides several high-level concepts based upon the above 
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basic ideas for the “category of categories” scenarios. There are four high-level 

concepts which give the multi-level mathematical capability considered relevant to 

this project: 

 A high-level concept that is a special type of structure preserving mapping 

(arrow) between categories named as “functor”. The formal definition of a 

functor is (Barr and Wells, 1996 [56]): 

“Let C and D be categories. A functor F: C→D is a map taking each object A 

in C to an object F(A) in D and each arrow f:A→B in C to a arrow F(f):F(A) 

→F(B) in D while holding the following two properties: 

 F( Aid ) = ( )F Aid  

 F(g   f) = F(g)   F(f) for all arrows f:A→B and g:B→C.” 

 Functors again can be considered as categories (functorial categories), so an 

arrow between functorial categories is the “natural transformation” as shown 

in Figure 3.4.  

“If F and G are covariant functors between the categories A and B, then a 

natural transformation   from F to G associates to every object X in A a 

arrow : F(X) → G(X) in B called the component of   at X, such that for 

every arrow f : X → Y in A the following diagram commutes as Y   F(f) = 

G(f)   X ” (Saunders, 1998 [58]). 

 

Figure 3.4: Commutative diagram for covariant natural transformation. 

Thus, the Natural transformation provides a way for transforming between 

functors while respecting the internal structure of the categories involved 

(Saunders, 1998 [58]). The covariant functors indicate that the domain F(X), 

G(X) must have same type and codomain F(Y) and G(Y) must have same type. 

This is used to ensure the comparison mapping of natural transformation is 

meaningful. Thus, natural transformations used in this project are isomorphic, 

which map between functors in same structure. 

 Category Theory uses the concept of “diagram” to represent complex 
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structures in a world scenario. Before giving the definition of diagram, the 

definition of “graph” should be given first as follows (Rydeheard and Burstall, 

2003 [59]): 

“A graph is a pair N, E of sets (of nodes and edges) together with a pair of 

mappings s, t: E → N called source and target respectively. The f: a b 

represents when f is in E and s(f) = a and t(f) = b. A finite graph is one in 

which N and E are finite sets.” 

Based on the above definition, a definition of diagram can be defined as 

(Rydeheard and Burstall, 2003 [59]): 

“A diagram in a category C is a graph (N, E, s, t) (its shape) and two 

functions f : N →Obj(C), g : E→Arrow(C) which respect sources and 

targets in the following sense: For each edge eE, f(s(e)) = As  (g(e)) and 

f(t(e)) = At  (g(e)), where As and At  are source and target objects of arrows 

in C.” 

After analyzing the above definitions, it is clear that the diagram in categorical 

view is a similar concept to the indexed family in the Set theory that can be 

treated as a functor D: T→C where category T is the index category and the 

diagram D is indexing a collection of objects and arrows (morphisms) in C 

using pattern T.  A diagram is said to “commute” if every path between two 

objects in its image can be determined through composition of the same arrow. 

 The notion cone can be defined as:  

“let D: T→C be a diagram in C and N be an object of C, thus a cone from 

N to D is a set of arrows (morphisms) — X :N→D(X) and for each object 

X of T such that for every arrow f: X→Y there has D(f)  X = Y .”  

as Figure 3.5 demonstrating (Saunders, 1998 [58]). 

 

Figure 3.5: Commutative cone. 

Therefore, a dual notation of cone is cocone, as shown in Figure 3.6. 
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Figure 3.6: Commutative cocone. 

3.1.2 Constructs 

Based on the notations discussed above, a set of fundamental constructs has been 

formed, and will be used in this project. 

(1) Product. A “product” in Category Theory can be diagrammatically illustrated 

by “cone” shown in Figure 3.7. 

 

Figure 3.7: Product diagram. 

A and B are internal objects in a category and A × B is also an object formed by 

A and B with specific relationships. The 1m  and 2m  are called as coordinate 

projections or simply projections which are functions: 1m : A × B → A and 2m : 

A × B → B. A formal definition of a categorical product is:  

“The product of two objects A and B is an object U, together with two 

projection arrows 1m : U → A and 2m : U → B, such that for any object C 

and pair of arrows f: C → A and g: C → B there is an exactly one 

mediating arrow <f, g>: C → U making the commute – that is, such 1m    

<f, g> = f and 2m  <f, g> =g” (Pierce, 1991 [57]).  

In the Set category, products are in correspondence to the notion of cartesian 

products. See Figure 3.8. 
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Figure 3.8: Commutative product diagram for objects A and B. 

In Figure 3.8, U is the universal product of A × B. A pullback is a product with 

restricted objects (See Section 3.7.2). The product construct can also be 

applied to arrows:  

“A product of two arrows f: A→A’ and g: B→B’ is an arrow f × g : A ×B 

→ A’ × B’ such that the following diagram commutes:” (Guo, 2002 [60]). 

 

Figure 3.9: Commutative product diagram for two arrows. 

The concept of diagram commutative is of vital importance for researchers to 

prove proofs and definitions and express equations. 

(2) Coproduct. The construct of a “coproduct” in Category Theory can be 

diagrammatically illustrated by “cocone” in Figure 3.10.  

 

     Figure 3.10: Coproduct diagram for object A and B. 

The dual notion of a product is coproduct and its formal definition is: 

“A coproduct of two objects A and B is an object A + B, together with two 

injection arrows 1n : A → A + B and 2n : B → A + B such that for any 

object C and pair of arrows f: A → C and g: B → C there is exactly one 

mediating arrow [f,g]: A + B → C making the diagram commute – that is, 

such 1n    [f, g] = f and 2n    [f, g] =g ” (Pierce，1991 [57]).  
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In the Set category, a coproduct corresponds to the notion of disjoint union. 

See Figure 3.11.    

           

            Figure 3.11: Commutative coproduct diagram for objects A and B. 

This definition for coproduct of objects can also be extended to arrows:  

“A coproduct of two arrows f: A→A’ and g: B→B’ is an arrow f + g : A’ + 

B’→ A + B such that the following diagram commutes:” (Guo, 2002 [60]). 

 

Figure 3.12: Commutative coproduct diagram for two arrows. 

(3) Limit and colimit. “limits” and “colimits” are universal cones/cocones. The 

formal definition of limit is (Barr and Wells, 1996 [56]): 

“A limit for a diagram D is a cone X : N→D(X) with the property that if 

X : L→D(X) is another cone for D then there is a unique arrow v: L→N 

such that the following diagram commutes for every object X in D.” 

 

3.13: A Limit for a diagram D. 

Figure 3.13 provides a simplified illustration of a limit. The colimit can be 

defined as dual notion of a limit. If treating a diagram D with limit as a 

category, thus a limit is an initial object. In similar way, a colimit is a terminal 

object of a category that is a diagram with colimit. If a category C has an initial 

object, then it is unique up to isomophism and same true for its terminal object. 
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With a limit construct, the finite complete category can be formed when all 

finite limits exist (i.e. limits of diagrams indexed by a finite category). Dually, 

a category is finitely cocomplete if all finite colimits exist.  

The concepts and constructs introduced above demonstrate that Category Theory has 

rich set of mathematical notions for both diagrammatic and algebraic theories. These 

notions can naturally model object-oriented applications, and are especially good at 

modelling multi-level architectures. 

3.2 Pilot Researches into Category Theory  

Category Theory originally rose in mathematics and was defined as an abstract way to 

deal with mathematical structures and relationships between them. It offers a formal 

basis and abstraction for handling the passage from one type of mathematical structure 

to another through mappings that preserve structures (Barr and Wells, 1996 [56]).  It is 

still a maturing mathematical subject, which first emerged in 1945 in Eilenberg & 

MacLane's paper entitled “General Theory of Natural Equivalences” (Eilenberg and 

MacLane, 1945 [61]). In last three decades, Category Theory has found new 

applications in the theoretical computer science, algebra and database applications 

attributing to its firm mathematical roots, which contributed, among other things, to 

the development of semantic programming and new logical systems. In the literature, 

several papers has been published on the studies of Category Theory in computer 

science area such as database applications, software engineering, semantic algebra, 

information flow, etc. A short overview on previous researches relating this project is 

discussed in following paragraphs. 

In 1985, Cartmell first used the categorical logic in database and then later in 1987, 

Ehrich, et.al., discussed using coproducts to model aggregation (Cartmell, 1985 [62]; 

Ehrich et al., 1987 [63]). 

Goguen published a categorical manifesto in 1989, which focuses on discussing 

why and how the Category Theory is useful in computing science especially for 

expressing programming semantics (Goguen, 1989 [53]). This paper also gave 

guidelines for applying seven basic category notions: category, functor, natural 

transformation, limit, adjoint, colimit and comma category with some examples. 

In 1990, a manifesto for categorizing database theory published by Cadish and 

Diskin gave proofs that the Category Theory can be naturally incorporated into object-

oriented database modelling (Kadish and Diskin, 1997 [64]). They highlighted the 
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graphic, algebraic and polymorphic nature of Category Theory, which can give an 

algebraic graph-oriented formal language for specifying structure and dynamics of the 

world. However, this manifesto contains too many slogans and lacks real cases or 

examples. 

In 1991, Lellahi and Spyratos devised a categorical data model supporting 

structured objects and inheritance using concepts of graph, category and diagram. The 

directed labeled graphs are used to represent the database schemas: using the node 

concept in graph to represent class concept in object-oriented database, so these nodes 

are structured; directed edges with labels to represent inter-relationships. Then every 

structured node will be mapping to the limit of a diagram that is actually a finite 

category with limit. The limit of a diagram and limit of universal cone concepts used 

in Lellahi and Spyratos’s data model are very valuable for defining the class category 

notion in this thesis. However, the gold points − rich semantic constructs and multi-

level mappings of Category Theory are largely ignored in Lellahi and Spyratos’s data 

model. The category and diagram concepts are only used to populate the database. 

David Nelson and Nick Rossiter (Nelson and Rossiter, 1994 [65]; Nelson et al., 

1994 [66]) developed a semantic data model for object-relational DBMS in 1994, 

which is an extension of the functional data model based on the Category Theory. 

This research gave the further proofs that Category Theory can be gracefully used in 

the database area. A prototype has been built based on P/FDM system. However, 

because of the limits of P/FDM, this DMBS is weak in dealing with dynamic aspects 

since arrows and functors in the DBMS can only perform static relationships between 

internal objects or categories. 

In 1996, ter Hofstede designed a conceptual data model using the Category Theory, 

which extended the Lellahi and Spyratos’s work (Hofstede et al., 1996 [67]).  This 

approach devised a type graph, and then populated it with category theoretic 

formalizations. The later process mapped the object types in the type graph onto 

objects in the instance category, with their edges turn into arrows of the category. This 

method actually used a type graph to define the conceptual data model, as well as 

using the Category Theory formalizations to handle semantics of the data model. 

However, the work only focused on building specialized formalisms based mainly on 

graph theory and did not make the full use of the Category Theory to build a uniform 

data model for real database applications.  

In 2001, Colomb adopted “fibration” concept in Category Theory for data 



 49

refinement for data models in information systems (Colomb, 2001 [68]). This project 

used his methods to ensure the consistency between initial abstract modelling 

diagrams and final implementable modelling diagrams (see Section 3.5). 

In 2002, the Guo claimed “in today’s large systems, the variety of encountered 

interconnection relationships (such as implements, uses and extends) is very large, 

while the complexity of protocols for managing them can be very high”. In addition, 

there are three problems for current software designs caused by the failure of many 

current tools to recognize software component interconnection as a distinct design 

entity. The three problems are: discontinuity between architectural and 

implementation models; difficulties in application maintenance; and difficulties in 

component reuse (Guo, 2002 [60]). This paper also pointed out that one of the major 

reasons for this failure is the lack of expressive means for representing 

interdependencies or coordination protocols as distinct and separate entities. In order 

to solve this problem, Guo tried to use Category Theory to provide distinct construct 

for modelling of the software component dependencies.  However, the paper is just 

the initial thoughts of the author, which focuses so much on introducing 

formalizations of Category Theory, so no real example can be found in this paper. 

In 2005, Lu and her colleagues developed types for morphisms and got the typed 

category for the abstract description of knowledge and knowledge processing (Lu, 

2005 [69]). The paper published by Lu proposed that the typed Category Theory can 

be a mathematical abstraction of a set of various knowledge representation 

mechanisms such as semantic networks of Quillian, conceptual graph of Sowa, entity 

relationship diagrams of Chen and Allen’s time algebra. The typed Category Theory is 

proposed differing from traditional Category Theory in two aspects: all morphisms 

(arrows) are typed and the composition of morphisms is not necessary to be a 

morphism. In this mathematical mechanism, the objects of typed category are 

mathematical abstraction of nodes in Quilian semantic networks, Sowa’s concepts, 

Chen’s entities or Allen’s events, while typed morphisms are Sowa’s conceptual 

relations, Chen’s relationships or Allen’s time interval relations. The morphism types 

in this paper refer to abstractions of different semantics inherent in these links and 

relationships, such as is-a, part-of and before or after an action. Based on these 

definitions, this paper devised a way to model knowledge complexity reducible 

process and the mathematical characterizations of knowledge completion. As the 

knowledge used in this thesis is all circumscription and default logic based, so the 
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reduction of the complexity of knowledge is not key issue for the VirtualGPS project. 

However, The functors used in areas of linking problem space to solution space or 

linking the pieces of isolated knowledge together to get the knowledge completion are 

very useful for this project. 

These previous works have proved that Category Theory can be used as a formal 

mathematical basis for object-oriented knowledge applications. However, these 

researchers have focused on specific aspects without providing a unified mechanism 

for the multi-functional knowledge-based system, and the implementation part of 

these previous works has lagged behind. Moreover, this project focuses on addressing 

knowledge interpretation and knowledge processing (e.g. store knowledge) in a direct 

manner, without using a mechanism to model them, and then use a separate 

mathematical theory to implement these models. Therefore, based on the 

aforementioned investigation findings, the researcher in this project devised a 

categorical mechanism for modelling and implementing the knowledge-based system, 

which contains three major parts: a categorical object model; a categorical software 

design process; and an inference identifying square (natural transformation square).  

The categorical object model devised in Section 3.4 is used to model structures of 

entities in knowledge for knowledge acquisition and knowledge representation.  

Section 3.7 and 3.8 are two examples of using the categorical object model to model 

structured knowledge for knowledge base design and to model objects for database 

schema design respectively. The categorical software design process defined in 

Section 3.5 is used to model the whole system architecture and business logics in the 

system. The inference identifying square is used to specify how inference properties 

are interacted with inference rules in detail. The Section 3.6 is an example of using 

this square to model the comparison process by using the comparison rules defined in 

GPS.  

3.3 Category Technique Rationales 

To development of a software system, a suitable system modelling strategy needs to 

be chose and clarified in advance for the whole system design process. As the 

VirtualGPS is a knowledge-based system, the system design should focus on the 

knowledge/application modelling and database modelling. To avoid the error-prone 

and misunderstanding process of mapping the data stored in a database into objects in 

the knowledge base of the VirtualGPS system or vice versa, researchers in this project 
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devised a unified modelling mechanism which can be used both on the application 

side and on the database side.  In this research, Category Theory is used for solving 

six important factors relating to the design of the VirtualGPS: 

1. Category Theory is applied to define a stable measurement procedure. As 

claimed by Kappel and Vieweg, the process modelling step is of vital 

importance to manufacturing applications (Kappel and Vieweg, 1994 [70]).   

Within which, measurement procedures are key to the final quality of a 

manufactured product. Category Theory serves well in terms of improving the 

stability of a selected measurement procedure. 

2. Category Theory was adopted to acquire and represent the knowledge 

extracted from existing GPS matrixes. Category Theory has rich semantic 

constructs and notations in both diagrammatic formalisms, as in geometry, 

along with symbolic notations as in algebra. Diagrammatic constructs were 

used to handle complexity issues whilst symbolic notations were used for 

proofs and computation (Nelson and Rossiter, 1994 [65]).  It guides 

knowledge-base designers a tool to build categorical object models that can 

clearly reflect knowledge-base structures with formal mathematical 

formulizations. Moreover, the Category Theory can be sufficiently used to 

unify traditional knowledge representation mechanisms, such as frames and 

rules, to provide a high degree of unification in knowledge acquisition and 

representation processes. 

3. The system architecture can also be described by Category Theory, with a high 

level of abstraction. The knowledge bases, mappings, and database schemas 

with multi-level architectures can be more naturally modeled by the multi-

level framework of Category Theory. This can be done by using features such 

as subcategories, functors, natural transformations, fibration and adjointness in 

the modularized manner. Thus, the multi-level relationships and constraints 

will not be lost during the implementation, and it also facilitates the 

incremental development (data refinement process) for future expansion. 

Designers are able to add new features or update existing features in the 

system without requiring major changes on the software structure. The 

Category Theory can also devise a topological graph to model the deployment 

of system components on computing resources. 

4. The categorical object model was also used in the “categorical” Database 
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Management System (DBMS) developed for the VirtualGPS system. In this 

project, system designers used Category Theory to model the software 

framework and the knowledge base of the system. So it was wise to use same 

modelling mechanism in the database side since there is no need to program 

any mapping between the data in the database and the data in the application. 

Thus, an object-oriented DBMS fully supporting the categorical object model 

is required in this project. Comparing with a conventional relational data 

model based on the Set Theory, this categorical DBMS relies on the Category 

Theory to provide a rigorous mathematical foundation, which can support 

handling of complex data structures and manipulations. For example, as 

discussed in section 3.4.3, the identifier for a class category is the vertex 

representing a “limit” in the universal cone, so each internal 

relationship/method arrow existing between internal objects must commute 

with the arrows from the initial object to the corresponding internal objects 

that are involved in the internal relationship or method. 

5. Both dynamic features (e.g. methods) and static features (e.g. attributes, 

objects) of the object-oriented database schemas can be modeled uniformly 

using arrows. The type and definition of arrow will determine what its role 

actually is. This is much better than Set Theory that uses two different notions 

− set and function to represent static and dynamic aspects in separate way. 

6. Category Theory is a form of Constructive Mathematics. All notions, no matter 

in diagrammatic or symbolic formats, are themselves formal proofs. It 

formulates complex object structures and behaviors from basic constructs and 

notations. This ensures a clear structure for object storage and the algebraic 

manipulations based on categories.  Thus, diagram chases and algebra deduces 

can be used to prove the integrity and consistency of the whole system after 

any updating, deleting or addition operations.   

All in all, Category Theory provided a good unified tool that enabled the system 

design from high-level system architecture down to the knowledge base, and from 

static aspects to dynamic aspects in same mathematic mechanism. Thus, different 

modelling powers from different modelling mechanisms can be unified in single 

mathematical foundation. Moreover, it provides good abstractions that provide a deep 

insight into the essence of knowledge and knowledge processing, which can not be 

obtained simply from a large number of details.  
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3.4 Categorical Object Model 

For this project, application objects are extracted from GPS- matrixes, which can be 

used to synthetically guide the whole manufacturing life cycle including function, 

specification, manufacture and verification. These objects have complex structures 

(especially in a hierarchical level format) and relationships with various types. In this 

section, a categorical object model will be discussed. This object model is intended to 

support the core mandatory features for a data model to be qualified as object-oriented 

data model (object model) claimed in the manifesto for object-oriented DBMSs 

published by Malcolm Atkinson et al. in 1990 (Atkinson et al., 1990 [35]). Based on 

the manifesto and the other data model reviewed in section 2.2 of Chapter 2, the core 

features for the categorical object model are summarized as following: 

 Complex class and object support 

 Attribute and Method 

 Object identity 

 Encapsulation 

 Types 

 Relationships/dependencies 

 Inheritance/ class hierarchies 

 Integrity/Consistency checking 

A brief introduction on key notions of Category Theory used in following sections can 

be found in section 3.1. 

3.4.1 Complex Class and Object Support 

The class notion used in the proposed object model is similar to the type notion used 

in type system. It contains the common features of a set of related objects. In object-

oriented applications, real world entities are represented as classes and the instances of 

entities are represented as objects. From this point of view, the categorical object 

model uses the “category” notion to represent a class denoted as iCLS  (1  i   n, n is 

the number of classes in the database schema). The categorical object model 

represents all attributes defined in a class as internal objects in a category (internal 

objects can be another categories or primitives) and each category iCLS  has a 

collection of arrows mapping between internal objects where these arrows can either 

represent behaviors (methods) or associations (dependencies). A category with a set of 
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arrows inside in it can be used to describe the structure of a class. All arrow constructs 

such as composition and dependency must conform to basic laws defined in Section 

3.1.1. The instance category ( )
iCLSjOBJ  (1   j   m, m is the number of objects 

created on iCLS ) denotes the instance object created on the class iCLS . For example, 

if (1)OBJ represents an object, 2CLS  represents a class category, so 
2

(1)CLSOBJ  

indicates that (1)OBJ is the first object created on 2CLS . The notation CLS represents 

all class categories defined in the database schema and 
iCLSOBJ represents all instance 

categories (objects) created on the iCLS . Therefore, this thesis uses the term of class 

category equaling to class and the term of instance category equaling to object. The 

both kinds of categories are required to be stored in the categorical database: class 

categories are stored as metadata and instance categories are stored as real application 

data. In practice, the creation of an instance object on a class category iCLS  is 

actually assigning a functor from a class category iCLS to an instance 

category ( )
iCLSjOBJ . Every class modeled in the categorical object model is labeled 

with a unique meaningful name that is the same as class name defined in object-

oriented programming (e.g. Java programming). The name is a special label used to 

identify classes and to convey the meaning of classes. In this model, a class category 

is actually a kind of finite complete category. 

3.4.2 Attribute and Method 

The categorical object model represents all attributes defined in a class as internal 

objects in a category. iARR  = { jf │1   j   v, v is the number of arrows in the 

category}} is used to represent all arrows in a category iCLS . Each category iCLS  has 

a collection of arrows where these arrows can either represent behaviors 

(transformations) or associations (dependencies). In this project, behaviors correspond 

to methods defined in the class, and associations correspond to dependencies between 

attributes of the class. In this model, the notation ME is used to represent a set of 

method arrows and DP is used to represent a set of functional dependency arrows. 

Each arrow is named uniquely with names of methods or dependencies. As introduced 

before in Section 3.1.1, every arrow f has a domain dom(f) and a codomain cod(f). 

Thus, if iATT  is used to represent all internal objects (attributes) in the category iCLS , 
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then iATT  is a collection of {dom( jf ) cod( jf )} for all { jf │1   j   u, u is the 

number of arrows in the category}}. The transitivity of functional dependency arrows 

must conform to transitivity law defined in Category Theory.  

3.4.3 Object Identity 

Object identity is a unique key for applications sharing of objects. Assigning a unique 

identifier to every instance of database entities (classes) is vital important for object-

oriented DBMS. The vertex of the universal cone (limit) can be used to model the 

unique identifier. If viewing the universal cone as a category, the vertex of the 

universal cone is actually the initial internal object in this category with an arrow from 

itself to every other internal object in the category. This kind of dependency arrows 

has an exclusive name − “attribute arrow” in this categorical object model.  Therefore, 

the unique identifier can be represented by iID  (the initial object of iCLS ). The initial 

internal object stores a unique system automatically generating identifier value. This 

ID value cannot be modified by applications and is independent of how an object is 

manipulated or structured. By modelling the database in this way, database users have 

no need to define keys (primary keys or candidate keys). 

3.4.4 Encapsulation 

For object-oriented applications, the good encapsulation means both related data part 

and operation part should be treated as a unit (class) with clearly defined interfaces, so 

related information can be changed as a whole. The “category” notion of Category 

Theory can satisfy this encapsulation principle: data part is modelled as a set of 

internal objects of a category while operation part is modelled as operation (method) 

arrows between internal objects. Furthermore, a message passing is defined as 

function arrow mapping from one method arrow to another method arrow. This 

mapping can occur within a category (intra-class) or between different categories 

(inter-class). In this case, a higher level category can be formed ─ the arrow category, 

denoted as C that uses all arrows in the category C as internal objects with function 

arrows as internal arrows mapping between internal objects in C ( Nelson, 1998 [32]; 

Barr and Wells, 1996 [56]). For example, if there is a message f  delivering 

information (function invocation, signals, and data packets) from an arrow 

(method pm ) in class iCLS to an arrow (method qm ) in class jCLS , then f  can be 

represented as f : pm → qm ( pm  iME , qm  jME , iME  and jME  are methods arrow 
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collections in iCLS  and jCLS ) with diagrams in Figure 3.14 commutes as 

qm 
domf =

codomf  pm . 

 

 Figure 3.14: Commutative diagram for message passing. 

In fact, if iCLS  and jCLS  are different class categories and there is a functor 

mapping from CLS to CLS , then the message passing process can be regarded as a 

natural transformation mapping between pairs of CLS to CLS  functors. In addition, 

the types of message senders and recipients conform to the types of method arrows 

participating in the message passing.  

3.4.5 Types 

In Category Theory, one discrete item is identified by the single category 1 (Nelson et 

al., 1994 [66]). Hence, typing can be added to show the types upon which the item is 

taken from in form of 1TYP, where TYP can be the base types in object-oriented 

programming language (e.g. String), other class categories, or other defined 

complexity such as arrows, arrays and lists. When 1 denotes class categories or arrows, 

the values of 1 are names of these class categories or arrows. Arrows are typed in 

form of f: a  TYP1  b, where the a is the source internal object, b is the target internal 

object, 1TYP is the type. In arrow composition situation, such as the f: a  TYP11  b and 

g: b  TYP21  c, the f  g: a     TYP2  TYP11  c, where the 1TYP1 × TYP2 is the type 

composition. 

3.4.6 Relationships 

The generalization abstraction between class categories are modeled using “forgetful” 

functor mapping from subclass to superclass. Forgetful functor is a structure 

preserving mapping from one category to another category with some attributes and 

methods dismissed.  The aggregation abstraction between class categories are 

modeled using “faithful” functors which inject one category into another category 
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while preserving its structure. For other common relationships occurred at category 

level, comparing with relational algebra that defines relationship as projection or 

cartesian product, the categorical representation of relationships is product. At 

category level, the product is formed by categories and functors instead of internal 

objects and arrows defined in section 3.1.2. See Figure 3.15. 

    
    

    
 F

    
 G

 

Figure 3.15: The relationship R between A and B. 

Normally, the F and G are forgetful functors (mapping some of related arrows into 

the target category). The product relationships in this object model are also 

represented as categories { iREL │1   i   w, w is the number of product relationships 

in the database schema}. Therefore, in Figure 3.15, A and B are class categories, R is 

a relationship category between them. The relationship category R is represented in 

the form {< iIDR , r’ >│r’(arrow set in A and arrow set in B)}, where iIDR  is the 

identifier of the relationship category that is assigned by DBMS automatically, and r’ 

is any information generated from this link. The link itself contains an element in the 

powerset of arrow set in A and arrow set in B. The related arrow compositions in A or 

B will be preserved. For every r in R, F(r) = a in instance set of A and G(r) = b in 

instance set of B must exist for referential integrity. 

The functors shown in the Figure 3.15 can be typed into universal monomorphisms 

(M), universal epimorphisms (EP), and universal isomorphisms (an arrow that is both 

monomorphism and epimorphsim is called isomorphism, ISO). Therefore, functors F 

and G can carry useful information (constraints) relating to relationships: 

 If F is in type of M, then each instance of A is involved only once in the 

instance set of R. However, if F is not M, then an instance of A may be 

involved more than once in the relationship. There may have some instance of 

A which does not participate in the instance of R, so the membership of A is 

optional. The same situation applies for functor G. 

 If F is in type of EP, then every instance of A is involved at least once in the 
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instance set of R. Therefore, all instances of A participate in the relationship, 

which means the membership of A is mandatory. However, if F is not EP, 

then not every instance of A is involved in the relationship and the 

membership of A is optional. The same situation applies for functor G.  

 If F is in type of ISO, then every A must participate once and only once in the 

relationship and the membership of A is mandatory. The same situation 

applies for functor G. 

In the categorical object model, membership is represented by typing of the 

functors, which is much formal than the traditional way using labels. This modelling 

method can be extended to satisfy the modelling of n-ary relationships by using n-ary 

product construction. Multiple relationships between same class categories are 

identified by different relationship categories. For example, R1(A×B) and R2(A×B) are 

two different relationship categories between class categories A and B. To help 

designers to comprehend class category and product relationship between class 

categories, the following two rules are devised for calculating the cohesion for a class 

category as well as the coupling for a product relationship category: 

 The cohesion of a class category (Ce) can be calculated as the average number 

of the dependencies and behaviors for each internal object. Let Rn be the 

number of dependency and behavior arrows between internal objects in a class 

category, which should also include all dependency and behavior arrows of the 

sub-categories (except all attribute arrows). Let On be the number of internal 

objects in the class category. Then, Ce = Rn/On. 

 The coupling of a product relationship (Cp) can be calculated by the using 

number of internal objects in a relationship category, which are gathered from 

all class categories that participate in this relationship link. Let In be the 

number of internal objects in a relationship category, which are gathered from 

participating class categories and En be the number of the rest internal objects 

in these participating class categories. Then, Cp = In / (In + En), where Cp 

range from 0 to 1. 

The above two rules illustrate the fuzzy logic applied in the categorical object 

model at different hierarchical levels: 

1) Attribute values: the [0, 1] interval can be used to express the explicit 

uncertainty that affects an attribute value. 

2) Class extents: a class category can be extended in a fuzzy way to define its 
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domain in the interval [0, 1]. 

3) Relationship coupling: use appropriate truth scales for expressing strength or 

connection uncertainty. 

3.4.7 Inheritance/Class Hierarchies 

The “pushout” construction is an extension of the coproduct construction which 

provides the complex sum structures (i.e. amalgamated sums) in the categorical object 

model for two or more class categories. This is superior to the simple disjoint unions 

(Nelson, 1998 [32]). The inheritance hierarchies in this model can be naturally 

constructed by coproduct construct since the ancestry of each class in the hierarchy is 

preserved through using the pushout structures. Let 3CLS  be a class category 

representing a subclass category of class category 1CLS , the 3CLS  contains a set of 

arrows ARR3 (methods or dependencies) and internal objects 3ATT  (attributes). The 

coproduct 1CLS + 3CLS  is the disjoint union of the arrows (ARR1 + ARR3) and the 

attributes ( 1ATT  + 3ATT ). Figure 3.16 shows an example that the class category 

3CLS inherits from the class category 1CLS . 

 

Figure 3.16: Coproduct diagram for class inheritance. 

In Figure 3.16, 1CLS  contains all attributes (internal objects) and methods (arrows) 

for a parent class category and 3CLS  contains attributes (internal objects) and 

methods (arrows) for a subclass category. The 1CLS  + 3CLS  is the disjoint union of 

attributes (internal objects) and methods (arrows) of 1CLS  and 3CLS  combined 

together. The arrow inf shows the direction of the inheritance.  

3.4.8 Implementing Operations 

In order to improve reusability, communication and class sharing, interfaces and 

abstract methods are often used in real world applications, especially some large 

applications. The interface is like a skeleton, which contains only method signatures 

and variables. Methods must be public, abstract and their variables must be public 
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static final. It is advisable to design relatively large applications using interfaces 

because it makes the whole system easier to modify, extend and integrate new features. 

To start with, system designers may only have one implementation of a given 

interface, but when slightly different behaviours are required in special circumstances 

during the design process, designers only need to devise a class that conforms to one 

of the existing interfaces and it will drop in place without major modifications. 

Interfaces also allow programmers to adopt a class from a different hierarchy to work 

in an existing application. The class only needs to declare itself implementing a 

specific interface, provide the necessary methods and it can be integrated directly as if 

it were created for the job. In the categorical object model, the index category, 

category and functor are used to model the interface concept. Interface is modelled as 

an index category of a concrete class category, which contains only a collection of 

internal objects typed in “1final_static” and a set of methods typed in “1Abstract”. A functor 

in type of “1Implements” is used to map from the index category T to the class category C 

while preserving the structure of index category T in C. See Figure 3.17. 

 

Figure 3.17: A part of categorical object model for determining the 
manufacturing processes. 

Figure 3.17 shows an implement functor F1 mapping from the index category 

“ManufactureProcessResultInterface” to the concrete class category 

“ManufactureProcessResult”. The index category 

“ManufactureResultProcessInterface” (interface) contains an indexed arrow (2) and 
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an indexed method “inference_engine” (1).  

3.4.9 Physical Storage Linkages 

In the physical storage level, both class categories and their instance categories will be 

stored in the files, where class categories store metadata of class and instance 

categories store real values. Therefore, there need to define linkages linking metadata 

in class categories to metadata in internal objects (attributes/lower level categories) 

and class categories to their corresponding instance categories. Functors are used to 

record these linkages. 

3.4.10 Integrity/Consistency Checking 

Integrity or consistency checking in the categorical object model contains two levels: 

inner category level and inter category level. Inner category level integrity refers to 

ensure that every internal object should be typed and 3NF should be enforced to 

eliminate partial and transitive functional dependencies on IDs. To satisfy this, 

categorical object models used in DBMS should remove all functional dependency 

arrows between internal objects (except those attribute arrows) in those class 

categories defined for modelling of the knowledge bases.  The inter category level 

integrity is the referential integrity that ensures a category (class, instance, relationship) 

actually exist when they are referred by other categories. Therefore, by using diagram 

chasing, when updating or deleting categories that reside on the target side of arrows 

or functors, the source side of these arrows or functors must do the corresponding 

deletions or updating. 

3.4.11 Query 

To provide manipulation capability for the categorical object model, an object query 

language is also produced based on functor mappings and functor compositions. In 

this query strategy, the inputs and outputs of queries are all instance categories 

associated with either certain class or relationship categories. The forgetful functor is 

used to choose some of necessary arrows of a class category as the “Select” clause in 

SQL language did. The detail example for the query strategy is illustrated in Section 

4.4.1.5 of Chapter 4. 

3.4.12 Statement 

According to the definition, a data model contains logical concepts and mechanisms to 

describe how data is represented and accessed. Therefore, the fundamental paradigms 

for choosing a suitable data model are (Kappel and Vieweg, 1994 [70]): 
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 Whether the information of the application can be easily mapped to the data 

model.   

 Whether the data model is powerful and clear enough to representing complex 

data structures. 

 Whether the data model is easily to be implemented in the programming. 

The above eleven points 3.4.1-3.4.11 have justified that the categorical object model 

based on Category Theory is a suitable data model for this project.  

3.5 The Categorical Design Process 

Because of the large size and high complexity of the VirtualGPS knowledge-based 

system, researchers in this project needed to provide a unified theoretical framework 

for representing the system through appropriate mathematical formalizations. The 

aims for defining the unified theoretical modelling strategy for describing the 

VirtualGPS are: 

 Reducing the complexity of managing the whole system through clearly and 

gracefully representing modules and their interconnections. The modelling 

strategy should also facilitate the realization of new modules and extension of 

the software system. Moreover, such strategy should be formal and avoid high 

level ambiguities.  

 Close the gap between software designs and implementations. The 

implementation aspect of this system contains a set of modules which in turn 

contain a set of components. Therefore, clear definition of the business logics 

among different modules or components are of vital importance in the design 

stage of the system development. 

 Providing rich set of semantic means for easing implementation. By offering 

the sufficient semantic constructs with a high level of abstraction, designers 

can concentrate on describing the semantic aspects of applications rather than 

representational issues. 

These aims indicate Category Theory is an excellent tool. The overall VirtualGPS 

system architecture contains two major parts: system modularized framework and 

system deployment graphs. The system modularized framework focuses on specifying 

the functions of all the modules, their mutual interactions and transformations. The 

system deployment graph is emphasized on specifying the system allocation and how 

system users can access this system. Therefore, the basic categorical principles that 
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researchers adopt in dealing with these two parts are:  

1. As VirtualGPS contains a set of modules which in turn contain a set of 

components, modules are corresponding to categories whose internal objects 

are corresponding to components. The detail representation of components can 

be modeled as lower level categories and functors are used to connect lower 

level categories with their higher level categories.  

2. The dependencies such as constraints or interactions between different 

modules or components are modeled by using the product constructs of 

Category Theory. The components, modules and dependencies between them 

can be realized by using the two rules discussed in Section 3.4.6. For example, 

if the coupling of a product relationship (Cp) between two components are 

very high (near to 1), so either a module or a new bigger component should be 

organized for holding these two components. 

3. The extraction of similarities between different components is modeled by 

using the coproduct construct of Category Theory. This can also be useful in 

realizing new components or modules. For example, in order to improve the 

reusability and independent ability of the system, some fragment programming 

codes shared by several components will be removed from the disjoint union 

of the corresponding components to form a separate new module.  

4. The coordination protocols (e.g. message/signal passing, invocation 

mechanism and communication rules) and business logics/rules (e.g. 

information exchange or communication) among modules or components are 

modeled by using the structure preserving construct − natural transformation. 

5. The deployment topologic graphs of the VirtualGPS system are represented by 

using the diagram notion of Category Theory. 

Based on the above five points, a unified refinement design process can be developed 

using Category Theory. In traditional software designs, the Unified Software 

Development Process (USDP) is used throughout the whole lifecycle. The USDP is a 

software development process, which includes a set of activities needed to transform a 

user’s requirements into a software system. It is a generic process framework that can 

be specialized for a very large class of software systems, for different application 

areas, different types of organizations, different competence levels and different 

project sizes. The USDP is component-based design process, which uses the Unified 

Modelling Language (UML) when preparing all blueprints of the software system 



 64

(Jacobson, 2004 [71]). The basic design steps by using UML in a USDP incremental 

development process are: 

1. The first step is the business map design. This step is used for capturing the 

requirements of users. The outputs of this step are business maps and use cases. 

A business map shows the business scope of the target software system. Based 

on the business map, a set of use cases can be produced to detail specify the 

meaningful interactions within this computerized system. The use cases often 

become modules in the final software system. 

2. The Second step of USDP process is to create the analysis model from the use 

cases model.  The analysis model is used to obtain a more precise specification 

of requirements than the requirements captured during use case modelling. 

The output of this step is a set of the initial analysis classes for the software 

system. The analysis classes often become components in the final software 

system. 

3. The third step is to create the design model from the analysis model. In this 

step, the design classes in the design model are defined to trace the analysis 

classes in the analysis model. The design classes are refined from the analysis 

classes. Therefore, design classes are more adapted to the implementation 

environment. Several design classes can be organized together to form a 

reusable component. 

4. The fourth step is to create the sequence diagram for realization of every 

design class in the design model. The sequence diagram shows how the focus-

starting at the upper left corner-moves from design class to design class as the 

use case is performed and messages are sent between design classes. 

5. The final step is to divide the design classes in the design model into 

subsystems based on outputs of points 3 and 4. This step is contributing to 

form the topology of the system allocations (deployment model). 

Points 1 to 3 are actually a refinement and incremental process to determine the real 

design classes (modules or components) for a software system from initial use cases 

offered by users. After the components of a software system have been determined, 

point 4 is the key step to define the potential inter-relationships or inter-activities 

between modules or components, and help to define interfaces for them. Therefore, 

the key features of USDP are use-case driven, architecture-centric, iterative and 

incremental (Jacobson, 2004 [71]). The categorical design process devised in this 
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thesis is also an incremental and refinement process. However, unlike to the USDP 

from points 1 to 3, the designers need to build different models or diagrams to achieve 

this refinement process, the categorical design process start by determining some 

high-level general categories and then to elaborate and refine them by: 

 In the horizontal level, general categories may need to be separated into 

several elaborated small categories. The separated small categories are 

required to be linked together by using the product relationship construct. 

 In the hierarchical level, the internal objects of some higher level categories 

need to be detailed in the form of lower level categories. The lower level 

categories are injected into their corresponding higher level categories by 

using the “faithful” functor. 

This refinement process is used to convert a simplified abstract model into a complex 

implementable model. In order to ensure the consistency between two models, the 

functor mappings used in this refinement process need to satisfy the following 

requirements: 

(1) Integrity: every abstract category and abstract relationship/constraint in an 

abstract model must map correspondly in its implementable model. 

(2) Composition: All the transitive relationships in an abstract model should be 

preserved in its implementable model. 

(3) Completeness: every target concrete category for a refined relationship in an 

implementable model is a target abstract category for its corresponding 

abstract relationship in its corresponding abstract model. 

(4) Pattern reservation: every concrete category and relationship in the 

implementable model is part of a pattern with the same structure as in the 

abstract model. 

As it has been proved by Colomb, et al., the functor with fibration feature can satisfy 

these four requirements above (Colomb et al., 2001 [68]). A functor F mapping from 

an abstract model to an implementable model with fibration can be defined in detail as: 

 Associates to each object X   A (abstract model) with an object F(X)   I 

(implementable model); 

 Associates to each morphism u: X → Y   A with a morphism F(u): F(X) → 

F(Y)   I; 

 F(idX) = idF(X) for every object X A; 
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 F(v u) = F(v) F(u) for all morphisms u: X → Y and v: Y → Z; 

 A functor F is a fibration, if and only if for every object F(Y) of I and every 

map u: X → Y in A, there exists a Cartesian morphism F(u): F(X) → F(Y) in I. 

The Cartesian morphism is used to ensure completeness in an implementable 

model. 

This refinement process can also be used to refine the categorical object modelling 

diagrams defined in this thesis for modelling of structured knowledge refinements. 

The examples for demonstrating a complete categorical design process for designing 

the VirtualGPS can be referred in Chapter 5. This section focuses on giving detailed 

explanations on building a categorical sequence diagram and a categorical system 

deployment diagram (see subsection 3.5.1 and 3.5.2 respectively).  

3.5.1 An Example for Building the Categorical Sequence Diagram 

The detailed description on the design of the VirtualGPS system is given in the 

Chapter 5 of this thesis. This section concentrates on giving a detailed explanation for 

building the categorical sequence diagram using the example of the comparison 

process in the Verification module as illustrated in Figure 3.18. 

 

Figure 3.18: The categorical sequence diagram for comparison processes. 
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The diagram “ComparisonProcess”, shown in Figure 3.18, is an indexed category 

with initial internal object “Interface” and four other internal objects: “Measurand”, 

“MeasuredValue”, “ToleranceValue”, and “Comparison”. These four internal objects 

are low level categories. Arrows in the categorical sequence diagram are in the type of 

message arrow. Message arrows are responsible for sending messages between 

internal objects with two default sending properties in form of “<sequenceNo, 

messageName>” where “sequenceNo” is used to identify message sending sequence 

and messageName is a string to describe this message in general. 

3.5.2 An Example for Building the Categorical System Deployment Model 

The final stage in the categorical design process is to build the categorical system 

deployment models. For example, based on the sequence diagram of Figure 3.18, the 

following steps should be adopted to build a categorical system deployment model: 

1. Refine the internal objects of the categorical sequence diagram to get the 

refined low level categories. In Figure 3.18, the initial object “Interface” 

becomes two refined lower level categories “ParameterReceiver” and 

“ParameterCreator” that are responsible for receiving and creating 

measurand/value pairs. In Figure 3.18, the internal objects “Measurand” and 

“SuggestedMeasurand” are holding data in same structure, so these two 

internal objects can be merged to form the class category “Measurand”. For 

the same reason, the “measuredValue” and “ToleranceValue” become the 

class category “Value”. Different functor instances are used to distinguish the 

pairs for suggested measurands with tolerance values from pairs for 

measurands with measured values entered by users. 

2. Link functional related categories to form the components of a software 

system. In this case, Figure 3.18 clearly shows the comparison process can be 

separated into three components: interface component, natural transformation 

square for comparison process, and comparison component. The detailed 

discussion of the natural transformation square for the comparison process 

(see Figure 3.22) is demonstrated in section 3.6. The interface component 

contains the “ParameterReceiver” and “ParameterCreator” categories. The 

comparison component contains the class category “Comparison” and the 

class category “ComparisonManager” that is responsible for storing the final 

comparison results. 
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3. Link functional related components to form modules or subsystems of a 

software system. A module (subsystem) can consist of components, interfaces, 

and other modules (recursively). 

4. Components and modules are allocated on a system deployment topological 

graph to form the deployment model.  In the same way as other topological 

graphs that are formed by a set of nodes and edges between nodes, the nodes 

in the categorical system deployment topologic graph are computational 

resources such as servers, clients, processors or similar hardware devices 

while the edges represent relationships or communications between nodes 

such as Internet, intranet, bus and so on. Figure 3.19 is a categorical 

deployment topological graph for the comparison process. 

 

Figure 3.19: Categorical representation of a deployment topological graph. 

Figure 3.19 is a deployment topological graph for deploying the software 

components relating to the comparison process on the physical computational nodes, 

which is formed in a categorical view: every node is a category and edges between 

nodes become functors to represent communications. The functors in the deployment 

models can have loops (i.e. functors from a category to itself just like identity arrow 

notation) and multi-functors (i.e. functors that have the same source category and the 

same target category). In Figure 3.19, there contain three categories: 

“SurfaceTextureClient”, “SurfaceTextureModuleServer”, and “Categorical DBMS”, as 

well as two typed functors: “Internet” and “Intranet”. Any functor F here should 



 69

mapping from source node to target node while preserving their structures through 

that: (1) for every component A in source catgory S, a component F(A) should be in 

the categoty node T; (2) for every relationship or communication f: A→B in S, a 

relationship or communication F(f):F(A) → F(B) should be in T; (3) every 

relationship or communication composition in S should be preserved in T. According 

to Figure 3.19, the VirtualGPS system should provide an interface for users to enter 

measured values on the client side. The measured values with measurands will be sent 

to “ParameterReceiver” category which in turn communicates with 

“ParameterCreator” to create measurand/measured value pairs and suggested 

measurand/tolerance value pairs. Then, these pairs will be sent to the 

“ComparisonManager” that is responsible for holding pairs and creating natural 

transformation squares. The “ComparisonManager” has a product relationship with 

“Comparison” to form a relationship category “ComparisonResult”. The 

“ComparisonResult” is used to store comparison results based on the comparison 

information in “Comparison” and natural transformation squares in 

“ComparisonManager”. The detailed information for the construction of these natural 

transformation squares can be referred in Figure 3.22. Finally, the comparison results 

will be stored in the categorical DBMS through Intranet (sockets). 

3.6 Categorical Representation for the Measurement Theory 

One of the main attractions of Category Theory in this project is that it provides a 

rigorous mathematical foundation to define the measurement theory. As has been 

successfully proven in the past, the representational measurement theory can be used 

to define the stability of the measurement procedure (Scott, 2004 [72]; Scott, 2006 

[73]). The measurement procedures relating to this project contains three key points in 

terms of the applied representational measurement theory: 

(1) An empirical relational system (ERS); consisting of a set of objects on which a 

measurand is defined together with the relations between other relevant 

measurands. 

(2) A numerical relational system (NRS); comprising numbers (derived values) 

and the relationships between them.  

(3) A set of mappings; referred as the measurement procedures, map from ERS to 

NRS, in such a way that the relationships between measurands are matched by 

relationships between numbers. 
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A measuring procedure is regarded as mathematically stable, when a “small” 

difference in the derived values can imply a “small” difference in the measurand. 

Relationships between measurement values should reflect functional significant 

properties between the measurands; if not, the measurement is rendered unusable 

(Scott, 2006 [73]). Since in Topology an open set can be used to define “small” 

differences between points, the stability condition of measuring procedure can be 

described using the Topology and Set Theory. In 2004, Scott devised stability 

corollaries that can be used to justify when a measurement procedure is stable or not 

using following rules (Scott, 2006 [73]):  

Corollary 1: “Finite sets of measurands and derived values with partial pre-

orders and increasing mappings map one-to-one onto finite topologies with 

continuous mappings.” 

Stability Corollary: “If for a measurement procedure, the relational structures 

of the measurand and the derived values are both partial pre-orders and the 

mapping between them are also increasing mappings then the measurement 

procedure is stable.”  

Based on the above rules, if define topologies on the space of measurands and the 

space of derived values, the stability condition is just a continuous mapping from the 

measurands to the derived values (if the inverse image of every open set on the 

topological space of the derived values is an open set on the topological space of the 

measurands, this is a topological definition of a continuous mapping). Researchers in 

this project found Category Theory can provide a visual framework to vigorously 

represent the corollary1 and stability corollary using notions and constructions 

defined in Category Theory. The following points give a short explanation on how 

Category Theory represents the stability corollary: 

(1) In order to satisfy the stability corollary, both ERS and NRS for a 

measurement procedure should be partial pre-orders with properties of 

reflexive and transitive, so categories are used to represent ERS and NRS 

while arrows inside the category are used to represent partial pre-order. 

Moreover, objects in ERS or derived values in NRS are represented as internal 

objects of category. See Figure 3.20. 
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Figure 3.20: Categorical representation of ERS. 

In Figure 3.20, the Aid , Bid , and Cid  are identity arrows (an identity arrow Aid : 

A → A, for each object A satisfying the identity law as for any arrow f: A → B, 

Bid    f = f and f   Aid  = f), which are used to satisfy reflexive property of 

partial pre-order. For the transitive property, if arrow f: A → B and g: B→ C 

represent binary relations in ERS, so g   f: A→ C is the categorical 

representation of transitive property in partial pre-order. 

(2) A high-level notion that is a special type of structure preserving mapping 

(arrow) between categories named as “functor”. The formal definition of a 

functor can be found in Section 3.1.1 of Chapter 3. From the definition, 

functor must preserve identity arrow and the compositions of arrows inside 

categories. Therefore, a functor can gracefully represent increasing mappings 

between ERSs or NRSs with partial pre-orders defined. 

Based on the above two definitions, the categorical way of defining a stability 

corollary can be restated as:  

“If for a measurement procedure, the relational structures of the measurands 

and the derived values are both partial pre-order categories and the mapping 

between them is functor then the measurement procedure is stable”.  

Table 3.1 gives a summary to show the relation between categorical terms and the 

concepts of representational measurement theory. 

Category Theory Explanations 
Representational 

measurement theory 

Category 
Collection of internal objects and 

arrows 
Relational System 

Functor 
Structure preserving mapping 

between categories 

Structure preserving 
mapping between relational 

systems 
Natural 

Transformation 
Structure preserving mapping 

between functors 
Comparison 

Table 3.1: Categorical terms for representational measurement theory concept. 
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The development of the stability corollary in a categorical way is beneficial for 

retrieving useful features from the observable data relating to this project, and 

ensuring consistency of the knowledge acquisition for this knowledge-based system. 

Moreover, by adding the “natural transformation” notion of Category Theory, the 

whole verification procedure can be refined as Figure 3.21. 

Non-ideal 
Surface Model 
(Specification)

Real Surface 
(Verification)

- Partition
- Extraction
- Filtration
- Association
- Collection
- Construction

Evaluation

- Physical Partition
- Physical Extraction
- Filtration
- Association
- Collection
- Construction

Specified 
characteristics

Evaluation

Result of measurement

Comparison for 
Conformance

Mirror Operation

Manufacturing 
ProcessesFunction

Specification

 

Figure 3.21: Comparison between specification and verification. 

The Figure 3.21 also shows a refined general GPS model for the VirtualGPS 

system. To ensure the stability of measurement, relational structures of measurands in 

ERS and derived values in NRS of a measurement procedure must be partial pre-order 

categories.  

In verification module of the VirtualGPS system, the inference rules are 

comparison rules, the inferred properties are measurand/value pairs and the inference 

results are {accept or not accept}. There are two kinds of measurand/value pairs: the 

suggested GPS parameter/tolerance value from Specification component of the 

VirtualGPS system and the measurand/measured value inputted by users. The 

mappings in each pair should be defined as functors. Therefore, every measurement 

procedure must have functors mapping from measurands to the measured values while 

preserving the internal partial pre-order structures. As a natural transformation 

provides a feasible way for transforming between functors while respecting the 

internal structure of the categories involved, the final comparisons are achieved by 

natural transformations with comparison rules. Figure 3.22 shows an example of the 

comparison process in the categorical view (inference identifying square). 
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Figure 3.22: Categorical view of comparison processes. 

In Figure 3.22, F1 and F2 are functors mapping from partial pre-order category 

“Measurand” to partial pre-order category “Value”. The σ is natural transformation 

mapping from F1 to F2. The F1, F2 and σ form a natural transformation square. Figure 

3.22 also shows a 2-ary pullback relationship structure between a natural 

transformation square and a class category “Comparison”.  

This example also shows how to model the interrelationships between inference 

properties, inference rules and inference results: 

(1)  Functors are used to link inference properties together. 

(2)  Natural transformations are used to get the solution space from the problem 

space with respect to inference rules while preserving the structures of 

inference properties.  

In the some simple situations that we do not need to keep the linkage structures 

between inference properties, so functors can be directly used to map from problem 

space (inference properties) to solution space (results). Moreover, the reasoning power 

of Category Theory can be used for the knowledge deduction for the VirtualGPS 

system by using the equalizer and co-equalizer constructs (Lu, 2005 [69]). For 

example, the Manufacture component of the VirtualGPS can be used to determine the 

manufacturing processes: to select suitable manufacturing processes to match the 

specification of the designed product.  The Figure 3.23 shows an example of 
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coequalizer diagram for reasoning the suitable manufacturing processes. 

 

Figure 3.23: The coequalizer for manufacturing process reasoning. 

In Figure 3.23, the F1 and F2 represent a set of criteria applied to the inference 

properties (e.g. material and quantity of PRIMA Matrix or limit value, texture lay and 

cut-off wave length gathered from Specification report). If any inference property a 

with F1 (a) ≠ F2 (a) (the same property under different inference criteria may get 

different manufacturing process suggestions), the coequalizer functor in the 

coequalizer diagram can equalize in the way that for all these a, F3 (F1 (a)) = F3 (F2 

(a)). This means that the different manufacturing processes suggested by different 

criteria for same inference property will be unified with extra considerations such as 

economic considerations, and typical applications. If this final unification has multiple 

results, F5 is used to link them together with weight value calculations. In real 

applications of this case, the coequalizer can be extended to multiple dimensions. In 

order to calculate weight of different manufacturing process suggestions, fuzzy logic 

is applied in this project.  There has a knowledge representation problem for 

traditional knowledge-based systems to handle uncertain or incomplete information. 

To represent vagueness or uncertainty, fuzzy logic is developed, with a continuous 

range of possibilities from 0.0 to 1.0 for uncertainty (an example can be found in 

Section 5.4.3) (Sowa, 2000 [74]). 

3.7 Categorical Representation for the Knowledge Base 

As pointed out by Lu, the development of a mathematical tool to deal with structural 

properties of knowledge is a basic part of knowledge science (Lu, 2005 [69]), this 
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project provides an innovative way for manufacturing engineers to establish 

knowledge bases derived from GPS raw standards without requiring specialised expert 

computer skills. The knowledge base of the pilot system contains four derived sub-

knowledge bases (modules): Surface Texture, Form, Size and Position and each 

module contains four derived sub-components: Function, Specification, Manufacture 

and Verification. The detail introduction on the architecture of the VirtualGPS system 

can be referred in Section 5.1 of Chapter 5. The following two subsections explain the 

modelling of the knowledge in Function and Specification components for the Surface 

Texture module in Category Theory terms. The other two – Manufacture and 

Verification – were modelled in similar manner. 

3.7.1 Knowledge Modelling in Function Component for Surface Texture 

In the Function component, Category Theory is applied through representing function 

requirements in a so-called “pattern language”, which guides the inference engine to 

generate a function performance report highlighting the suggested specific surface 

roughness parameters according to the inputted function performance requirements. A 

single pattern in a pattern language is defined as a common problem or decision with 

its best solution in a target task. Each pattern has a name, a descriptive entry and 

cross-references to other patterns. A pattern language is made of several linked 

patterns that should be organized in a logical and semantic structure as a spoken 

language in a specific problem domain. The pattern language is used here for 

facilitating function decomposition and to structure the connection process. This 

section gives an example on using the partial order set and the product order of 

Category Theory to represent and record decomposition alternatives (Neggess and 

Kim, 1998 [75]). 

 A partial order is a binary relation R over a set S, which is reflexive, 

antisymmetric and transitivity. The set S with a partial order is called a partially 

ordered set (poset). The function performance report generated from the Function 

component contains six patterns specified in the explained pattern language format. 

These patterns are connected with each other by the context of each pattern, and 

ordered by the design sequence: 

 Pattern 1 specifies the surface requirements. 

 Pattern 2 analyses the functional performances according to the output of 

Pattern 1. 
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 Pattern 3 selects suitable specification to ensure the surface functions 

correctly. 

 Pattern 4 suggests a function correlation approach between surface texture 

parameters and the functional performances. 

 Pattern 5 provides an alternative route through the surface change monitoring 

approach to find the relations between functional performances and surface 

parameters. 

 Pattern 6 specifies the tolerance values for the parameter selected from 

pattern 4 and 5. 

In this project, the pattern language provides some possible solutions allowing users to 

make their own judgements. Every pattern in the Function component is represented 

as a class category which contains seven internal objects: name, context, problem, 

solution, forces, examples, next pattern. All of them are represented in posets. As 

illustrated in Figure 3.24, all patterns are connected with each other, which form also 

an integrated poset. 

 

Figure 3.24: Product order of Function component. 

Actually, Figure 3.24 is a product order which is a Cartesian product of two posets: 
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namely, patterns collection poset and internal object poset. As the transitivity 

definition of poset, all arrows among internal objects must commute (e.g. if f: 

context1→ name, g: name → problem, so f g must equal to k: context1→ problem). 

The Pattern 4 and Pattern 5 are two optional approaches to find the relations between 

function performances and surface parameters, which uses injection functors to form 

Pattern 6 together. The seven internal objects are key elements in the pattern language 

(Rising, 1998 [76]):  

 Name: A clear format header to describe the pattern.  

 Context: Suitable scenarios to apply the application problem. 

 Problem: A statement of the application problem. 

 Solution: A viable solution to the problem. Many problems might have more 

than one solution. The fitness of a particular solution is determined by the 

context of problem domain. 

 Example: A case analogy on the problem solution. 

 Force: There often exists contradictions when choosing a solution to a 

problem. Each solution is ranked with weights described by certain forces.  

 Next pattern: Pointing to the next pattern required to form an integrated 

pattern language instance. 

The discussion above illustrates that the Category Theory can give a complete 

implementable representation for a pattern language in the Function component with 

an open platform for GPS experts to add more knowledge in future. This pattern 

language can help users to find the best way to carry out their tasks with a clearly 

guided procedure. Moreover, users can record their valuable knowledge (e.g. a surface 

parameter for a specific function) within a logical linked structure. 

3.7.2 Knowledge modelling in Specification Component for Surface Texture 

The Specification component provides detailed geometrical specifications for the 

selected surface parameters including information obtained from partition, extraction 

and filtration operations. For example, to satisfy the functional requirements of a 

cylinder liner, the Function component of VirtualGPS system suggests using the 

surface texture parameter Rz with a tolerance value at 4um. The Specification 

component in turn recommends the complete information relating all these operational 

procedures such as evaluation length for extraction, and the bandwidth for filtration. 

Due to the complexities and intertwined attribute relationships and constraints among 
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all viable operational procedures, Category Theory is used to model them in diagrams 

devised in the categorical object model. Figure 3.25 gives an example of the modeling 

diagram when defining a default constraint between the operations of extraction and 

partition. 

 

Figure 3.25: Pullback representation of the constraint “equals”. 

As shown in Figure 3.25, extraction and filtration are modelled as class categories. 

The c1 demonstrates a constraint relationship between extraction and partition, which 

is structured by the construct of a “pullback” of Category Theory. A pullback is a 

product with restricted objects. In the case of Figure 3.25, the expression “equals:: 

sampling_length × up_limit” is the name and type of the pullback, where 

“Extractionc1×Filtration” is the restricted product over c1 (c1 represents the restricted 

object – “ExtractionToFiltration” with restricted condition “equals” here). The 

notations 1r  and 2r  are projections of the product into the initial instance 

categories of the “Extraction” and “Filtration” respectively. While 1r , 2r  are 

represented as arrows injecting the initial instance categories into the pool of instances 

of this constraint relationship. The detailed explanations on the construct of 

“pullback”, and how it can be used in representing constraints among entities, can be 

found in a paper published by Nelson etc. in 1994 (Nelson et al., 1994 [66]). The 

reason why knowledge base designers use pullback rather than universal product to 

represent the relationships or constraints in modelling of the GPS knowledge base is 

that the pullback can express stricter semantic construct for relationship linkages. The 

stricter semantic construct is of vital importance for knowledge base designers to 

clarify their design thoughts especially in a refinement design process and to 

communicate with other designers. In a contrast, the object-oriented database 

developers focus more on object-oriented development issues, so they do not need 

such strict semantic construct but the well defined relationship category (restricted 

object). The restrict object will become relationship category, the restrict condition 
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will become methods in the relationship category, and the relationship category will 

be stored the same as a class category.  The detailed example on how to mapping the 

pullbacks in knowledge base modellings into categorical products for database schema 

is demonstrated in Section 3.8. Figures 3.26 and 3.27 show the other two default 

constraints in the Specification component, which are modelled in same way as Figure 

3.25. 

 

Figure 3.26: Pullback representation of the constraint 
“determine_sampling_length”. 

 

Figure 3.27: Pullback representation of the constraint “determine_up/low_limit”. 

A higher level relationship − “Callout” is demonstrated as Figure 3.28. 
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Figure 3.28: Pullback representation of the “Callout” relationship. 

Figure3.28 shows how these three lower level constraints (Figure 3.25, Figure 3.26 

and Figure 3.27) form the overall modelling of the knowledge base in the 

Specification component. The dashed line arrows in Figure 3.25, 3.26, 3.27, and 3.28 

represent method arrows, while the dotted line arrows are functional dependency 

arrows between internal objects (except attribute arrows). Thus, by representing 

surface texture operational procedures as categories, attributes of them as internal 

objects, and the corresponding relationships and constraints as pullbacks between 

categories, the whole Specification component can be logically and structurally 

expressed. All arrows in Figure 3.25, 3.26, 3.27, and 3.28 must commute in a manner 

to ensure consistency. 

3.8 Categorical Representation for a Database Schema 

After describing the knowledge base in Category Theory terminology, this project 

moves on to the next phase of developing an innovative DBMS with the ability of 

fully supporting the devised categorical object model. The first step in developing this 
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categorical DBMS is to do further refinements on these categorical object modelling 

diagrams devised in knowledge base design stage. Once these refined object models 

are established, the DBMS will have a sound mathematical foundation to ensure the 

integrity of the database schema when applying operations such as addition, deletion, 

and modification. The object models in categorical DBMS refines object models in 

the GPS knowledge base (see Section 3.7.2) by allowing them more computing 

focused from following aspects: 

 As this project has chosen Java to implement the system and Java is a strongly 

typing language, the categorical object model for categorical DBMS should be 

added with a typing mechanism. The detail explanation on the typing 

mechanism is discussed in Section 3.4.5. The example of defining types for 

internal objects can be seen in Figure 3.30. 

 The “pullback” construct for relationships or constraints in modelling of a 

knowledge base is generalized to be the “product” construct. Compared with 

relational algebra which defines relationship as projection or Cartesian product, 

the categorical representation of relationships in the categorical DBMS is the 

categorical product. As a product for a relationship or a constraint is mapped 

on the category level, it is formed by categories and functors, instead of 

internal objects and arrows defined in the basic definition. Moreover, the 

vertex of the product becomes a category – relationship category. The 

relationship categories are stored and managed in the DBMS in the same way 

as class categories and instance categories. See Figure 3.30. 

 As an object-oriented DBMS assigns a unique identifier to every instance of a 

database entity, the vertex of the universal cone (limit) can be used to model 

the unique identifiers (see Figure 3.30) (Nelson and Rossiter, 1995 [77]). If we 

view the universal cone as a category, the vertex of the universal cone is 

actually the initial object in this category with an arrow from itself to every 

other internal object (attribute arrows) in the same category, which stores a 

unique automatically generating identifier values. These identifier values 

cannot be modified by applications at run time and they are independent of 

how objects are created and manipulated. By modelling the database in this 

style, users have been spared the task of defining keys (primary keys or 

candidate keys). 
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 The categorical object modelling diagrams in the categorical DBMS are also 

required to remove all transitive functional dependencies on initial internal 

objects in the models used in knowledge base modelling to satisfy the BCNF 

normal Form (except the atomic requirement in 1NF). This is achieved by 

removing functional dependency arrows in categories through building new 

lower level categories, and then linking them with their corresponding higher 

level categories by using “faithful” functors.  The functional dependency 

arrows that need to be removed do not include these attribute arrows. For 

example, the arrow d1 in Figure 3.26 indicates that the internal object 

“parameter_name” is functional dependent on internal object 

“parameter_type” in the class category of “Measurand”, which again make the 

“parameter_name” transitive depending on the initial object of “Measurand”. 

Therefore, a new class category named “ParameterInfo” needs to be devised 

and a faithful functor injects this class category into the “Measurand”. See 

Figure 3.29. 

 

Figure 3.29: Two level class category construct. 

Based on the above four points, Figure 3.30 gives an example of a refinement of 

Figure 3.28 for database schema modelling, which is actually a 5-ary product 

relationships ― “Callout :: direction symbol × manufacture type symbol × 

manufacture method × num_cutoff × filter type × up limit × low limit × tolerance 

type × parameter type × value × machine allowance”. The P#, E#, F#, CR# and M# 

in the diagram are unique identifiers for “Partition”, “Extraction”, “Filtration”, 

“Comparion” and “Measurand” respectively. The F1, F2, F3, F4 and F5 are functors 

that project from relationship category “Callout” into the five class categories. In 

“Extraction” class category, the “evaluation length = num_cutoff   sampling_length” 

clause indicates the two arrows (m and n) are method arrows and the other arrows are 

dependency arrows. In Figure 3.30, 1x indicates primitive types such as double, 
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integer or string in Java and ClassNamex indicates class category types, arrow types or 

other complex data structure types such as Tree, List and Collection. 

 

Figure 3.30: The 5-ary product relationship for the “Callout”. 

The detailed implementation explanations (inference rule specifications) for all 

method arrows defined in Figure 3.30 can be referred to in Section 5.3.3 of Chapter 5. 

Compared with Figure 3.28, Figure 3.30 is more structured and computing oriented, 

which focus on objects and relationships or constraints among these objects. However, 

Figure 3.28 is more semantic oriented and focus more on system logics and rules. 

3.9 Summary 

This chapter illustrates how to use Category Theory to model the whole VirtualGPS 

system with a set of detailed examples. This chapter also proves that the Category 

Theory can serve as a formal mathematical basis for object-oriented knowledge 

applications. 
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CHAPTER 4 IMPLEMENTATION OF THE CATEGORICAL 

DBMS 

This chapter records in detail the implementation of the categorical DBMS. The 

implementation includes discussions on how the DB4O (Database for Objects) was 

chosen to be a basis for the implementation, the categorical ODMG architecture for 

the categorical DBMS, extensions on the physical level of the DB4O, and how to 

implement the categorical object model on it.  

4.1 Basic Criteria for Implementation 

By making use of the basic features of existing object-oriented DBMS products such 

as physical storage mechanism, indexing strategy and transactional controller etc., the 

so-called “categorical” DBMS based on Category Theory can be developed in an 

efficient manner. As Table 2.9 shown in Section 2.2.4.2 of Chapter 2, it is legitimate 

to choose the Objectivity/DB as basis to develop the categorical DBMS for its ODMG 

standard compliance. However, this project has chosen the DB4O to form the internal 

level of the categorical DBMS for the following reasons: 

4.1.1 Conformability 

As Table 2.9 highlighted, there are currently no matured DBMSs that can fully 

support ODMG 3.0. Figure 4.1 illustrates the architecture of ODMG 3.0. 
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Figure 4.1: The architecture of ODMG 3.0. 

Figure 4.1 also highlighted the development process of an ODMG compliant Object-

oriented Database Management System (ODMS): first, database designers start with 

representing object models in a diagrammatic way (e.g. E-R diagram) and then using 

an Object Definition Language (ODL) to translate the diagrammatic model into the 

programming language independent schema codes. The ODMG compliant ODMSs 

should offer a pre-processor that can automatically generate source codes in the form 

of Java class declarations according to the schema code generated. After database 

programmers bind the detailed implementation  codes (methods) into these Java class 

declarations, a set of objects holding real data will be created on these Java classes, 

and both Java classes and their objects will be compiled by a standard Java compiler. 

If required, objects can be saved into a file following an Object Interchangeable 

Format (OIF) to enable data sharing in different ODMSs. Finally, the input processor 

will link necessary ODMS control files for maintaining objects storing in the 

underlying database.  The ODMS standard also defined an Object Query Language 

(OQL) based on the SQL-92, with the output processor in charge of translating the 

OQL into internal codes understandable by the ODMS.  

However, there are three main obstacles in this architecture design: 
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 Object Model Inefficiency. The ODMG 3.0 did not define any specific 

diagrammatic facility to represent its object model. Most of the ODMG 

compliant ODMSs use E-R or E-R extension diagrams to visualize 

representations of applications. Moreover, the object model defined in ODMG 

suffers from the same drawback as other object-oriented data models due to 

the weak mathematic foundations and lack of semantic constructs to support 

new applications. For example, the object model in ODMG can only support 

the definition of binary relationships, without supporting n-ary relationships. 

In this project, Category Theory was adopted to model the complex 

relationships and constraints among GPS standards, which avoided any 

mapping code generation between the data in a database and the data from an 

application through using the same model mechanism in both sides. Thus an 

object-oriented DBMS that can fully support the categorical object model is 

required in this project. 

 Intrinsic Implementation Obstacles. Some theoretical points defined in the 

ODMG standards are difficult to be implemented in ODMSs. For example, it 

is challenging to build a pre-processor that can fully support automatic 

translating of ODL into object-oriented languages. In Objectivity/DB, the 

ODL is actually the standard C++ 3.0 language with extensions to support 

persistence-capability and object associations (Objectivity, Inc., 2006 [78]). 

Therefore, although several current mainstream ODMSs claimed to be ODMG 

compliant, in reality they fall short of the bar. 

 Out of date of OIF. The latest version of ODMG was defined in 2000. Almost 

at the same time, a “new” universal data interchange technique −XML was 

published (XML 1.0) in 1998 (Harold, 2004 [79]). Since then, XML has 

become the most studied and adopted standard for describing structured data 

to be exchanged between applications (e.g. database application), especially 

acrossing the global Internet and World Wide Web (WWW) (Harold, 2002 

[80]). 

4.1.2 Compatibility 

Based on the discussions above, this project needs to devise a new object model which 

can represent all potential constructs required in the GPS knowledge base; to develop 

a pre-processor to translate the extended ODL codes into standard Java classes; and to 
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apply XML to substitute the obsolete OIF defined in the ODMG for data exchanges. 

This in turn required the internal programming routines of the selected DBMS to be 

updated accordingly. Although, Objectivity/DB and Versant are products developed 

by large corporations, with lots of extra functions for helping users to create and 

manage their databases. They are both pre-packed and do not allow changes to their 

internal codes. Moreover, the costs of both products were also prohibitive for such a 

research project. Another open source object-oriented DBMS evaluated − Ozone − is 

lack of application and learning supports, which have not been improved since Ozone 

1.2 released in 2004. 

4.1.3 Robustness 

DB4O is an open source native object database for Java and .NET, which can support 

all features defined in the first manifesto that an object-oriented DBMS must include 

and should include (Db4objects, Inc., 2007 [81]). The DB4O can be directly 

embedded in the host Java or .NET applications without requiring any extra 

installations or setups on local platform in advance. It has small memory foot-print 

(500kb library) while supporting object caching, native garbage collection, ACID 

transaction (Atomicity, Consistency, Isolation, and Durability), client/server 

architecture, automatic management and versioning of database schema (ETH, 2007 

[82]). The DB4O provides the General Public License (GPL), which enables easy 

download, studying, evaluation and usage of DB4O in GPL compliant projects. 

Moreover, DB4O members can get free developer licenses to contribute to the 

DB4O’s ongoing developments. It was decided in this research that the DB4O is a 

suitable tool and template for implementing the categorical object model devised in 

this project. A detailed introduction of DB4O will be presented in Section 4.2. 

It was concluded based on the above considerations that this project decided to 

produce an ODMG 3.0 extension named “categorical ODMG” for forming the 

following architecture as illustrated in Figure 4.2. 
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Figure 4.2: The architecture of categorical ODMG. 

The customised categorical ODMG extends the ODMG 3.0 with a categorical object 

model, an extended ODL which supports all semantic constructs of the categorical 

object model (e.g. definition of n-ary relationship and auto-persistent definition), a 

series of Java binding Application Program Interfaces (APIs) to support categorical 

object model, and a categorical OQL based on functor mappings and compositions.   

4.2 Native Design of DB4O 

Built on new object database technology, DB4O is currently the only viable database 

that is compatible to both Java and .NET for providing cross-platform portability that 

liberates users from proprietary vendors' high licensing fees (Db4objects, Inc., 2008 

[83]). DB4O (database for objects) was developed by Db4objects, Inc., which is a 

privately-held company based in San Mateo, California (Paterson, 2006 [84]). It was 

firstly created by the chief software architect Carl Rosenberger and shipped in 2001. 

More than one hundred commercial and private pilot customers formed a loyal user 

community that endorsed the DB4O from its earliest days and proved it ready for 

mission-critical applications prior to its commercial launch in 2004. The visions of 

DB4O can be summarized as followings (Db4objects, Inc., 2005 [86]):  
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 Development of a lightweight, apt object-oriented persistence solution with the 

availability of a popular, affordable, embeddable and open source. 

 Becoming the mainstream persistence architecture on all mobile and 

embedded devices running on Java or .NET. 

 Achieving consolidation in a market that overruns with hundreds of vertical 

niche vendors offering predominantly outdated or unsuited pre-relational or 

relational technology at exorbitant prices at present. 

The DB4O provides a wide array of unique, object-oriented database 

functionalities by harnessing the benefits of object-oriented programming languages: 

seamless object-oriented storage (store any complex object with just one line of code); 

object-oriented replication (dRS); and object-oriented queries (e.g. Native Queries, 

and Simple Object Database Access (SODA)). The core features of DB4O can be 

summarized as followings (ETH, 2007 [82]; Paterson, 2006 [84]):  

 No requirement on data conversion or mapping (directly object storage support) 

 No changes required to classes to make objects persistent 

 Single line of code to store objects of any complexity and persistence by 

reachability 

 Embeddable to large and complex systems 

 Support Java generics 

 ACID transaction support 

 BTree index support 

 Client/Server support 

 Automatic management and versioning of database schema 

 Object caching and integration with native garbage collection 

 Seamless Java or .NET language binding 

 Native Queries/SODA 

 Portability and cross-platform deployment 

Based on these core features, the architecture of DB4O can be illustrated as in Figure 

4.3: 
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Figure 4.3: System architecture of the DB4O. 

In comparison with closed-source products such as Objectivity/DB and Versant, 

the DB4O has five distinctive advantages: 

1. DB4O is an open source database with small library files (500k). Database 

developers in this project can study its structure and make necessary changes 

to support the categorical object model. 

2. DB4O focuses on the embedded and portable database market driven by 

object-oriented programming environments. For example, a German company 

− Mobilanten gained a competitive edge in its new product range by providing 

a Personal Digital Assistant (PDA)-based solution for field workers of mid-

sized utilities using DB4O, whereas competitors using the relational DBMS 

required bulky laptops to process assets, orders, and customer information 

(Replicating some 300,000 objects was just not feasible using relational 



 91

databases on a PDA, while synchronizing objects via DB4O proved to be 

extremely efficient) (Db4objects, Inc., 2005 [85]).  Through embedding the 

DB4O core, this project can be moved to any compatible platforms without 

requiring complex installation procedures. 

3. DB4O is quicker at runtime than other bulky object-oriented DBMSs. Various 

tests run by INDRA Sistemas’s new real-time control system on the Spain’s 

high speed bullet train, the AVE, had shown that no other systems except the 

DB4O can handle the huge load of processing over 200,000 heterogeneous 

objects per second (Db4objects, Inc., 2005 [85]). 

4. ACID transaction support. 

5. Professional and stable user community. DB4O has more than 35000 

registered users up to 2008 who are contributing to DB4O’s online community 

for its further development (DB4O Developer Community, 2008 [86]). 

In addition to adding codes for supporting the categorical object model on the DB4O, 

the categorical DBMS also provides five extensions on the physical level of DB4O, 

which enabled the DB4O customisation and superior performance for the VirtualGPS 

system in this research. The five extensions will be illustrated in section 4.3. 

4.3 DB4O Customisation 

The five extensions of DB4O supported by the VirtualGPS development in this 

research are: the extension of the Simple Object Database Access (SODA) in DB4O 

to support functor mappings and compositions, the extension for supporting automatic 

persistence, the extension for supporting the storage of physically clustered objects, 

the extension for supporting referential integrity checking, and the extension for 

supporting the categorical Object Definition Language (ODL). The detailed 

demonstration of the extension of the SODA to produce the categorical manipulation 

language in this DBMS can be found in sub-section 4.4.1.5. The other four are 

discussed in Section 4.3.1, 4.3.2, 4.3.3 and 4.3.4 respectively. 

4.3.1 Automatic Persistence 

This means persistence capabilities can be automatically granted to instance categories 

of class categories that extends the “PersistCategory” class category. The purpose for 

adding this feature into the categorical DBMS is to support the automatic result 

storage: all instance categories extending the “PersistCategory” class category 

generated during a categorical query process will be automatically stored back to the 
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database (e.g. the “Callout” class category as example). 

4.3.2 Physically Clustered Objects Storage 

This extension enables a group of related instance categories to be stored physically 

together in the categorical DBMS by using the “ClusterContainer” class. The 

“ClusterContainer” has a “cluster (Category category)” method to add an instance 

category into a cluster. The main motive to do this is to let the categorical DBMS to 

retrieve, delete or update a group of related instance categories quickly and efficiently. 

4.3.3 Referential Integrity 

Referential Integrity is added into DB4O to check whether an instance category is 

referred by other instance categories or not. A special byte will be added to the storage 

schema on every instance category to record its reference number. 

4.3.4 ODL support 

The ODL used in this categorical DBMS is based on the ODL defined in ODMG 3.0 

with extensions to support automatic persistence capability, n-ary relationship 

definitions, and arrow mappings etc., in the forms shown below: 

class ExtractionToFiltration : extent PersistCategory { 
         attribute double sampling_length; 
         attribute double up_limit; 
         relationship { 
               ary =2; 
               functor1 = <Extraction::sampling_length(1)> // 1:1 relationship 
              functor2 = <Filtration::up_limit(1)> // 1:1 relationship 
       } 
 }       

List 4.1: ODL definition for “ExtractionToFiltration” class category. 

Once the ODL schema conforms to the diagrams of the object model being specified, 

it needs to be validated against the categorical ODL specification to determine if the 

syntaxes in the ODL schema are correct. The Java Compiler Compiler (JavaCC) tool 

performs this syntax checking. JavaCC is a parser generator designed for using with 

Java applications (Java Net, 2007 [87]). JavaCC reads a grammar specification and 

generates a parser (Java program) that is used to recognize matches to the specified 

grammar. This parser is specified in a file with a ‘.jj’ extension. For example, after the 

“ExtractionToFiltration” has been correctly parsered by JavaCC, the categorical 

DBMS will automatically generate an “ExtractionToFiltration” Java class (class 

category). The Table 4.1 shows the mapping relations from ODMG collection data 

types in ODL to Java classes defined in the categorical DBMS. 

 



 93

ODMG Interface Java  Bindings 
Categorical 

database 
Implementations 

Description 

DArray java.util.List CTArray Ordered, fixed size 

DList java.util.List CTTree 

Ordered, variable size, 
used to add/remove 
instance categories(Java 
objects) 

DSet java.util.Set CTSet 

Unordered, no 
duplications, used to 
check duplicated instance 
categories 

DCollection java.util.Collection CTCollection Ordered, fixed size 

Table 4.1: The Java binding APIs in the categorical DBMS. 

The next section focuses on discussing processes to implement the categorical 

object model on the DB4O. 

4.4 Implementation of the Categorical DBMS 

The categorical DBMS devised in this research satisfies the classic three-level 

architecture defined in ANSI/SPARC: a physical database level, a conceptual database 

level and an external database level (Tsichritzis and Klug, 1978 [88]). Figure 4.4 

shows the architecture of the categorical DBMS.  

Categorical Database System

Database User Interfaces/Views

Database Management System

Connecting Interfaces

Kernel

Physical Storage Files

XML Output XML Output
Categorical database model

 

Figure 4.4: The architecture of the categorical DBMS. 

As Figure 4.4 demonstrated, the physical database level of the categorical DBMS 

contains a set of physical storage files and a kernel (file manager), which is in charge 

of controlling the physical data storage, building physical storage schemas and 

handling manipulations. The categorical object model is resided on conceptual 

database level, which is responsible for describing the problem domain (database 

schema) and to specify what needs to be stored in the database while ensuring the 

database integrity at all times. The conceptual database level also contains a collection 
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of connecting interfaces which are responsible for translating physical raw data into 

conceptual objects, controlling concurrent accessing and passing objects and their 

relationships or constraints to user interfaces. The categorical DBMS contains two 

kinds of data: metadata and application data. Besides performing queries on 

application data, the metadata (database schema) itself can also be queried for 

information such as get the details of a class category defined in a database schema 

including the class name, its field names, its field types, number of its instance 

categories and so on. The external database level can display appropriate data on the 

user interfaces for different users. This DBMS can also generate XML reports to 

record and demonstrate querying results, which supports internet and multi-user 

applications through a unified consistent view port for the data crossing through whole 

manufacturing enterprise. The Section 4.4.1 discusses the implementation of the 

categorical object model following the specification of the object model discussed in 

section 3.4. 

4.4.1 Realizing the Categorical Object Model 

The categorical DBMS in this research is a compact and autonomous object-oriented 

database management system implemented by pure Java language. As with all main 

stream relational DBMS products, it also contains a data model, a database entity 

definition language, a database entity query language, the physical storage and 

retrieving mechanism, and a small visual management software package. The database 

entity definition language and the query language were both developed using Java to 

support semantic constructs of the categorical object model. The database entity 

definition language contains a set of Java classes (e.g. “Category”, “Pullback” and 

“Functors”) to create database entity specifications. These Java classes are basically 

organized by Java object operations such as accessor and mutator. An accessor 

examines the state of an object but does not change it. It typically returns a result in a 

pre-defined form (Sun Developer Network (SDN), 2005 [89]). Accessors are often 

call "getters", and their names often start with a “get”. A Java method that changes the 

state of an object is called a mutator (Sun Developer Network (SDN), 2005 [89]). 

Mutators typically do not return a result (are declared to return “void”), although some 

mutators can both change state and return a result (e.g., nextToken in StringTokenizer). 

Mutators are often called "setters", which just change state without looking at the 

current values, and their names often start with a “set”. Accessors and mutators will 
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increase the overhead on an application programme, but are usually trivial, especially 

when compared with other factors, such as questionable database designs (Ambler, 

2000 [90]). Accessors and mutators can improve the maintainability of the object 

model in the following ways for this research (Ambler, 2000 [90]): 

 To provide a single point for updating instance categories (Java objects). 

Parent applications can only have controlled points for updating each attribute, 

making it easier to modify and to test. Thus, internal objects in instance 

categories (attribute values in Java objects) are safely encapsulated. 

 To enable constraint encapsulation. For example, in a category, values of some 

internal objects may be constrained by values of other internal objects. These 

constraints can be defined in mutators using bulk setter method (update several 

attributes at once to keeping constraints among them). Thus, the constraints 

will be automatically enforced when programmers set values of the constraint 

internal objects. Moreover, if a critical constraint should be enforced on a 

internal object, such as “a value must less than 10.0 µm”, then a logical place 

to put this clause will be a mutator (setter). 

 To enable change encapsulation.  If the business rules pertaining to several 

attribute changes, accessors and mutators can both be potentially modified to 

respond to the business rules. 

 To reduce coupling cost between a subclass and its superclasses. Accessors 

reduce the risk of the fragile base category problem where changes in super 

categories ripple throughout its sub categories. 

Therefore, accessors and mutators are widely used in this project to reduce 

coupling of the database with its host application. The remainder of this section 

focuses on discussing the implementation of the categorical object model for this 

categorical DBMS — an object-oriented DBMS with a formal object model, as well 

as the object definition and query languages. Some fragments of the actual Java codes 

are also demonstrated for explaining the function tasks and forms. 

4.4.1.1 Complex classes and objects 

The definitions of database entities (class categories) are treated as subclasses of a 

Java class named “Category” — the base class category.  The “Category” class 

contains an object instance ID and a class category ID. These two unique internal IDs 

are assigned automatically by the categorical DBMS using the physical storage 



 96

addresses of the class category metadata and its instances in the physical storage files. 

All internal objects of a category can then become the “target” of arrow attributes 

defined in a class category. As specified in Section 3.4.1, each subclass of the 

“Category” (class category) should hold a collection of arrows where these arrows can 

either represent behaviors (methods) or associations (dependencies). For dependency 

arrows, the “Arrow” class is developed for holding a dependency between two internal 

objects in a category, for example, arrows from the unique object instance ID to other 

internal objects in a class category. There are two kinds of behaviour arrows – the 

ones between internal objects in the same class category and the others between 

different class categories. These two kinds of behaviour arrows will both become 

methods of the corresponding Java classes. The main difference between these two is 

when operating in the same class category, the behaviour arrows will become methods 

in this class category but when crossing different class categories, a class category 

extending the “Product” class category will be defined and the behaviour arrow will 

become a method in this subclass. As discussed in Section 3.4.1, the creation of an 

instance on a iCLS  is actually assigning a functor from a class category iCLS to an 

instance category ( )
iCLSjOBJ . This functor is implemented by the “new” operation in 

Java, which can automatically maintain a relation between the object instance and its 

belonging class. Java can automatically check whether objects are conforming to the 

definitions of their classes (e.g. values are in correct types, a method has correct 

parameters).  

package cpt.ctdb.dataModel; 
import java.lang.reflect.*; 
 
public class Category { 
 private int classInternalId; 
 long objectInternalId; 
           String name; 
 Arrow[] arrows; 
  
 public void setClassInternalId(int classInternalId){   
                this.classInternalId=classInternalId; 
          } 
  
 public void setObjectInternalId(long objectInternalId){ 
       this.objectInternalId = objectInternalId; 
 } 
           
         public void setName(String name){ 
       this.name = name; 
 } 
  
 public void setArrowSources(Object obj,int internalID){ 
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         Field[] fields=obj.getClass().getDeclaredFields(); 
    for(int i=0; i<fields.length;i++){  
         if((fields[i].getType().getName()).endsWith("Arrow")){ 
             try{                                         
                                     ((Arrow)fields[i].get(obj)). 
                                     setSource(Integer.valueOf(internalID));   
            }catch (Exception e){ 
           e.printStackTrace(); 
            }  
       }      
          } 
 } 
  
 public void addArrows(Arrow[] arrows){ 
        this.arrows = arrows; 
 } 
  
 public int getClassInternalId(){ 
                 return this.classInternalId; 
          } 
  
 public long getObjectInternalId(){ 
       return this.objectInternalId; 
 } 
           
          public String getName(){ 

return this.name; 
 } 
  
 public Arrow[] getArrows(){ 
  return this.arrows; 
 } 
} 

List 4.2: Java codes for “Category” class category. 

As demonstrated in the List 4.2, the “Category” class contains a set of interface 

methods to “set” and “get” unique internal IDs. The kernel part of the categorical 

DBMS contains codes which can automatically generate unique internal IDs and 

assign them to instance categories through the “setClassInternalId()” and 

“setObjectInternalId()” interface methods of “Category” class. Moreover, a 

“setArrowSources()” method is also devised here to set the source (unique object 

instance IDs as discussed before) to the “source” property of every dependency arrow. 

package cpt.ctdb.dataModel; 
public class Arrow { 
      String name; 
      Object source; 
      Object target; 
     
      public void setName(String name){   
            this.name=name; 
     } 
  
      public void setSource(Object source){ 
   this.source = source; 
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     }  
  
     public void setTarget(Object target){ 
   this.target = target; 
     } 
  
     public String getName(){ 
           return this.name; 
     } 
  
    public Object getSource(){ 
  return this.source; 
    } 
  
    public Object getTarget(){ 
   return this.target; 
    } 

} 

List 4.3: Java codes for “Arrow” class category. 

As shown in the List 4.3, the “Arrow” class contains the source and target internal 

objects and a unique name for this arrow. The “Arrow” class is used to record 

dependency arrows in the categorical object model. 

4.4.1.2 Relationships 

As discussed in Section 3.4.6, if relationships occurred at the categorical level, they 

are represented as categorical products between categories with consistency checks 

such as cardinality, as well as the membership of a product, in terms of epimorphisms 

and monomorphisms. The following code snippet in List 4.4 shows an example of 

defining a product relationship. 

public class Product{ 
 String name; 
 int ary; 
           Object vertex; 
  
 public void setName(String name){ 
        this.name=name; 
 }  
 
          public void setAry(int ary){ 
       this.ary=ary; 
 } 
 
          public void setVertex(Object vertex){ 
      this.vertex = vertex; 
 }  
  
 public String getName(){ 
      return this.name; 
 } 
 
          public Object getVertex(){ 
       return this.vertex; 
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 } 
 
          public CTDBObjectSet getAllInstances(Class a_class){ 
             //get all instance categories for a class or a relationship                    

//category.  
 } 
} 

List 4.4: Java codes for “Product” class category. 

The “Product” class implements the product construct in the categorical object model, 

which contains the name and ary number of the product. The “vertex” is an instance 

category that holds all information of the relationship. The process of creating a 4-ary 

product relationship “ProductForCallout” in the DBMS is illustrated as following: 

 Creating class categories that participate in this relationship. An example of 

creating “Measurand” class category is shown in Appendix A, where 

“Filtration”, “Extraction”, and “Partition” are created in same way as 

“Measurand”. The “Measurand” class must be extended from the “Category” 

class defined in Section 4.4.1.1 to enable the DBMS to treat it as a category. 

 Creating a class category — “Callout” — to be the “vertex” in a “Product” 

class. The “Callout” class must be extended from the “PersistCategory” class. 

The “PersistCategory” enables the “Callout” with automatic storage capability. 

Appendix B shows the detail of its implementation. 

 Creating a class category “ProductForCallout” that is extended from the 

“Product” class category defined in section4.4.1.2 to allow the DBMS dealing 

with it as a product relationship category. Appendix C highlights the detail of 

this process. The categorical DBMS offers methods for users to check the 

types of functors involved in the product construct through verifying the 

cardinality and membership of each class category participating in this 

relationship linkage. These “checkXXX()” methods in the class category 

“ProductForCallout” carry out the checks for the cardinality and membership 

of “Measurand” class category. The detailed definition of the “Functor” class 

category will be explained in Section 4.4.1.4. 

 Creating instances for class categories defined above and using them to 

populate the “ProducForCallout” class category. Once the instances for 

“ProductForCallout” are created, they will be stored in the database. A code 

snippet of this process is listed in Appendix D: 
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4.4.1.3 Encapsulation 

The categories in this project encapsulate all the relevant attributes and operations 

together as a collection of internal objects and arrows among them. Every class 

category has been implemented as a Java class, where the internal objects become 

attributes of a class category in appropriate data types, and the method arrows become 

methods with correct parameters. All the properties of a category can be referenced or 

navigated through using Java’s native reference and name space mechanisms. The 

internal unique identifier (initial internal object) can be used to distinguish a instance 

category from others created on the same class category. 

4.4.1.4 Functors and Natural Transformations for Comparison Processes 

In this project, functors and natural transformations were mainly used to model 

comparison operations for every stable measurement procedure in the verification 

stage. To implement these comparison operations, the following steps had been taken: 

 Devising a “Functor” class to hold arrow mappings from one category to 

another and an “ArrowMapping” class to record the details of an arrow 

mapping, as shown in List 4.5. 

import cpt.ctdb.CTCollection; 
public class Functor { 

String name; 
Category source; 
Category target; 
CTCollection arrow_mappings; 

  
public void setName(String name){ 

    this.name = name; 
} 

  
public void setSource(Category source){ 

this.source = source; 
} 

  
public void setTarget(Category target){ 

     this.target = target;   
} 

  
public void setArrowMappings(CTCollection arrow_mappings){ 

     this.arrow_mappings = arrow_mappings; 
} 

  
public String getName(){ 

     return this.name; 
} 

  
public Category getSource(){ 

     return this.source; 
} 
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public Category getTarget(){ 
     return this.target; 

} 
} 
 
public class ArrowMapping { 

Arrow source_functor; 
Arrow target_functor; 

  
public void setFunctorSource(Arrow source_functor){ 

   this.source_functor = source_functor; 
} 

  
public void setFunctorTarget(Arrow target_functor){ 

    this.target_functor = target_functor; 
} 

  
public Arrow getFunctorSource(){ 

    return source_functor; 
} 

  
public Arrow getFunctorTarget(){ 

    return target_functor; 
} 

} 

List 4.5: Java codes for “Functor” and “ArrowMapping”class categories. 

 Devising a “MeasurandForComparison” class to hold all measurands and their 

corresponding information for every measurement procedure, as displayed in 

List 4.6.  

import cpt.ctdb.CTTree; 
import cpt.ctdb.dataModel.*; 
 
public class MeasurandForComparison extends CTTree{ 
  
   public Arrow interObjId_id; 
   public Arrow interObjId_measurandType; 
  
   public void setArrows(Arrow interObjId_id, Arrow   
                                         interObjId_measurandType){ 
         this.interObjId_id= interObjId_id; 
         this.interObjId_measurandType= interObjId_measurandType; 

   } 
    
   public void setTargetForIdArrow(int id){ 
         this.interObjId_id.setTarget(Integer.valueOf(id)); 
   }  
  
   public void setTargetForMeasurandTypeArrow(String  

meaurandType){ 
        this.interObjId_id.setTarget(meaurandType); 
   }   
} 

List 4.6: Java codes for “MeasurandForComparison” class category. 

 Devising a “Value” class to hold the suggested tolerance values or measured 
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values as shown in List 4.7 

public class Value extends CTTree{ 
    public Arrow interObjId_id; 
    public Arrow interObjId_Value; 
  
   public void setArrows(Arrow interObjId_id, Arrow  

interObjId_Value){ 
        this.interObjId_id= interObjId_id; 
        this.interObjId_Value= interObjId_Value; 
   } 
    
   public void setTargetForIdArrow(int id){ 
         this.interObjId_id.setTarget(Integer.valueOf(id)); 
   }  
  
  public void setTargetForValueArrow(double meauredValue){ 
        this.interObjId_id.setTarget(Double.valueOf(meauredValue)); 
   }  

  } 

List 4.7: Java codes for “Value” class category. 

 Devising a “NaturalTransformation” class to implement mappings between 

functors, as shown in List 4.8. 

public class NaturalTransformationSquareMaps { 
       Category source_functor_left; 
    Category source_functor_right; 
    Category target_functor_left; 
    Category target_functor_right; 
  
     public void setSourceFunctorLeft(Category source_functor_left){ 
        this.source_functor_left = source_functor_left; 
     } 
  
     public void setSourceFunctorRight(Category source_functor_right){ 
       this.source_functor_right = source_functor_right; 
  } 
  
     public void setTargetFunctorLeft(Category target_functor_left){ 
        this.target_functor_left = target_functor_left; 
  } 
   
  public void setTargetFunctorRight(Category target_functor_right){ 

 this.target_functor_right = target_functor_right; 
    }  
    ……………//getter methods 

} 
 
public class NaturalTransformation { 
       String name; 
    Functor source; 
    Functor target; 
    List NaturalTransformationSquareMaps; 
  
     public void setName(String name){ 
        this.name = name; 
  } 
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     public void setSource(Functor source){ 
        this.source = source; 
   } 
  
  public void setTarget(Functor target){ 

this.target = target;   
  } 
  
  public void setNaturalTransformationSquareMaps(List   
           NaturalTransformationSquareMaps){ 
      this.NaturalTransformationMaps =  
                                                               NaturalTransformationMaps; 
     } 
  
     public String getName(){ 
       return this.name; 
   } 
  
   public Functor getSource(){ 

 return this.source; 
     } 
  
   public Functor getTarget(){ 
         return this.target; 
     }  
  
   public List getNaturalTransformationMappings(){ 
         return this.NaturalTransformationMappings; 
  } 

} 

List 4.8: Java codes for “NaturalTransformation” class category. 

The “NaturalTransformationSquareMaps” class was used to ensure the 

consistency and commutations of the natural transformation square as shown 

in Figure 3.22 in Chapter 3. The “Comparison” class category uses 

“NaturalTransformation” to implement comparisons in a stable measurement 

procedure. The “Comparison” class category offers comparison methods in 

form as shown in List 4.9. 

      public int compare() { 
                 List temp = this.getNaturalTransformationSquareMaps(); 
                 For(int i=0;  

i<temp.size();i++){              If(!((Double)this.interObjId_ 
measuredValue.getTarget()).compareTo((Double)((( Com 
parisonValue )(NaturalTransformationSquareMaps)  
temp.get(i)).getTargetFunctorRight()).getValueArrow().ge 
tTarget()){ 

                        return false; 
               } 

} 

List 4.9: Java codes for “Compare()” method. 

4.4.1.5 Query Formations 

The query strategy defined in the VirtualGPS system uses functors to map from 
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inputting instance categories to outputting instance categories. The final results are 

also in the form of instance categories to ensure correct query closure.  For example, 

the inner process of a query “Print the semi-complete callout symbols for ‘Ra 3.3’ 

(without manufacturing methods, direction and machine allowance)” can be 

performed in the following order: 

1. Query1: OBJMeasurand→ Result1 

(The selected arrows in Result1 is Hom = {M# → tolerance_type, M# → 

parameter_type, M# → parameter_name, value → parameter_extends}; The 

internal object (attribute) set in Result1  is Att = {M#, tolerance_type, 

parameter_type, parameter_extends | parameter_type = ‘Ra’, parameter extends 

= getParameterExtends(3.3)}) 

2. Query2: OBJMeasurandToExtraction→ Result2 

(The selected arrow set in Result2 is Hom = {ME# → sampling_length, ME # 

→ parameter type, ME # → parameter_extends, (parameter type × 

parameter_extends) → sampling_length}; The internal object (attribute) set in  

2TMP  is Att = {ME#, sampling_length, parameter_type, parameter_extends | 

parameter_type, paramete_extends   Att of Result1}) 

3. Query3: OBJExtraction→ Result3 

(The selected arrow set in Result3 is Hom = {E# → sampling_length, E# → 

evaluation_length, E# → num_cutoff, (num_cutoff × sampling_length) → 

evaluation_length}; The internal object (attribute) set in Result3 is Att = {E#, 

sampling_length, evaluation_length, num_cutoff| sampling_length  Att of 

Result2}) 

4. Query4: OBJExtractionAndMeasurandToFiltration→ Result4 

(The selected arrow set in Result4 is Hom set = { EF#→ up_limit,  EF#→ 

sampling_length, (sampling_length × parameter_type) → up_limit }; The inner 

object (attribute) set in  4TMP  is Att =  (E#, sampling_length, F#, up_limit, 

low_limit | up_limit   Att of Result3 and parameter_type   Att of Result1}) 

5. Query5: OBJFiltration→ Result5 

(The selected arrow set in Result5 is Hom set = {F#→ up_limit,  F#→ 

low_limit; up_limit→low_limit}; The internal object (attribute) set in Result5 is 

Att = {up_limit, low_limit, F# | up limit  Att of Result4}) 
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6. (OBJMeasurand × OBJExtraction × OBJFiltration)→OBJCallout 

(The arrow set in OBJCallout is Hom set = { C# → num_cutoff, C# → up_limit, 

C# → low_limit, C# → tolerance_type, C# → parameter_type, C# → 

sampling_length, C# → evaluation _length, C# → value }; The internal object 

(attribute) set in  4P  is Att = { C#, num_cutoff, up_limit, low_limit, 

tolerance_type, parameter_type, sampling_length, evaluation_length, value | 

num_cutoff   Att of Result3, up_limit   Att of Result5, low_limit   Att of 

Result5, tolerance_type   Att of Result1, parameter_type   Att of Result1, 

sampling_length  Att of Result3, evaluation_length   Att of Result3, value   

Att of Result1}) 

The M#, E#, F# represent the unique identifiers of all instance categories created 

on the categories “Measurand”, “Extraction”, and “Filtration” respectively. The 

“value” is the transient internal object. The Result1, Result2, Result3, Result4, and 

Result5 represent sets of instance categories selected during the query process. For 

example, the Result1 represents instance categories for “Measurand” that was output 

from Query5. The arrows “value → parameter_extends”, “parameter_type × 

parameter_extends) → sampling_length”, “num_cutoff × sampling_length) → 

evaluation_length”, “sampling_length → up_limit”, and “up_limit→low_limit” are 

the corresponding method arrows. Thus, this query strategy enables the dynamic 

method queries during query processes. The “OBJMeasurand × OBJExtraction × 

OBJFiltration” is categorical product, which generates instance categories (OBJCallout) 

for “Callout” with the selected arrrows. 

This query strategy was implemented in the research based on the Simple Object 

Database Access (SODA) methods from DB4O with extensions of a set of Java 

methods to handle the functor mappings and compositions. In this example, the query 

is formed as the following Java clauses when the first time to create the “Callout” 

instance categories (See List 4.10).  

query1.constrain(Measurand.class); 
query1.descend("interObjId_measurand_paraType").descend("target").constrain("Ra").and(
query1.descend("interObjId_parameterExtends").descend("target").constrain((new 
Measurand()).getParameterExtends(3.3))); 
objectSet result1 = query1.execute(); 
result1.AddSelectArrows("interObjId_measurand_paraType"); 
result1.AddSelectArrows("interObjId_parameterExtends"); 
result1.AddSelectArrows("interObjId_tolerance_type"); 
Callout callout1 = result1.StoreSelectArrowsTo(Callout.class); 
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query2.constrain(MeasurandToExtraction.class); 
query2.descend("interObjId_parameterExtends").descend("target").constrain(((Measurand)r
esult1.next()).getParaExtendArrow().getTarget()).and(query2.descend(("interObjId_measura
nd_paraType").descend("target").constrain((((Measurand)result1.next()).getParaTypeArrow
().getTarget()))); 
objectSet result2 = query2.execute(); 
result2.AddSelectArrows("interObjId_roughness_sampling_length"); 
result2.StoreSelectArrowsTo1(callout1); 
 
query3.constrain(Extraction.class); 
query3.descend("interObjId_parameterExtends").descend("target").constrain((new 
Extraction()).getEvaluationLengthArrow(((MeasurandToExtraction)result2.next()).getSampli
ngLengthArrow().getTarget()); 
objectSet result3 = query3.execute(); 
result3.AddSelectArrows("interObjId_roughness_evaluation_length"); 
result3.AddSelectArrows("interObjId_num_cutOff"); 
result3.StoreSelectArrowsTo1(callout1); 
 
query4.constrain(ExtractionAndMeasurandToFiltration.class); 
query4.descend("interObjId_roughness_sampling_length").descend("target").constrain(((Me
asurandToExtraction)result2.next()).getSamplingLengthArrow().getTarget())and(query4.desc
end(("interObjId_measurand_paraType").descend("target").constrain((((Measurand)result1
.next()).getParaTypeArrow().getTarget())));; 
objectSet result4 = query4.execute(); 
result4.AddSelectArrows("interObjId_up_limit"); 
result4.StoreSelectArrowsTo1(callout1); 
 
query5.constrain(Filtration.class); 
query5.descend("interObjId_low_limit").descend("target").constrain((new 
Filtration()).getLowLimitArrow(((MeasurandToExtraction)result2.next()).getUpLimitArrow(
).getTarget()); 
objectSet result5 = query4.execute(); 
result5.AddSelectArrows("interObjId_Low_limit"); 
result5.StoreSelectArrowsTo1(callout1); 

List 4.10: Java codes for a “Callout” query process. 

The VirtualGPS system also offers SQL3 interface to form high-level SQL queries. 

This system can translate SQL queries into internal Java methods for retrieving 

information.  

4.4.1.6 View Mechanism 

The view mechanism in the system was achieved through adding a set of selected 

arrows from a class category into its superclass category − “Category” − using the 

“addArrows()” method. Through defining unique view instructions, the categorical 

DBMS can offer customised views for different users. 

4.4.1.7 Physical Storage Structures 

Same as other relational and object-oriented DBMSs have both logic and internal 

schemas for databases, the categorical DBMS also contains a Category Theory based 

internal storage schema to store and retrieve objects physically. In this research, it was 

developed by extending the DB4O’s physical storage mechanism. The DB4O’s 
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physical storage mechanism is based on the generics and reflection mechanisms in 

Java language. In order to keep the referential integrity, a special byte indication is 

automatically added to every instance category to indicate whether it is referred by 

other instance categories. If so, this instance category can not be deleted from the 

current DBMS operation. 

4.4.2 The Visual Management Interface for Categorical DBMS 

The categorical DBMS design also provided an embedded visual management 

interface for managing the stored GPS objects, their relationships, and constraints. It 

produces visual diagrams at runtime to represent all relevant data stored in the 

database according to the specified categorical object models. For example, as shown 

in Figure 4.5, by pressing the UI components on the visual diagram, the system can 

automatically generate optional query clauses for users and display the query results 

on screen.  

 

Figure 4.5: The main interface for the categorical DBMS. 

This interface can also illustrate the metadata information (e.g. name and attribute 

types of a class category) for all class categories stored in the categorical DBMS. It 

can provide statistics on how many instance categories were created on a class 

category and the detailed information for a product relationship such as its cardinality, 

and participating class categories. Users can also update a class category (e.g. change 
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types of attributes). After users presses the “Submit” button on the interface, a formed 

query will be executed with the query results being displayed on the relevant viewing 

windows. The Figure 4.6 shows the query results for a query clause “SELECT * 

FROM ‘surfaceTexture Callout’” in the XML format. 

 

Figure 4.6: An example for query results in XML format. 

4.5 Summary 

This chapter provided details on the design and implementations of a categorical 

DBMS that is a core part for realizing the VirtualGPS system. The categorical DBMS 

is a prototype to prove the applications of the Category Theory based object-oriented 

modelling. Although the current categorical DBMS implementation is not a full-

fledged DBMS that can be compared with other commercial DBMSs, the research has 

demonstrated that the categorical DBMS can handle the complex operations such as 

storing and managing advanced data structures gained from current GPS standards 

with good consistency in database schema. 
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CHAPTER 5 DESIGN AND IMPLEMENTATION OF THE 

VIRTUALGPS SYSTEM 

The Chapter 3 of the thesis has discussed how the Category Theory can be used as a 

mathematical foundation for the whole VirtualGPS system. This Chapter starts with a 

detailed introduction to the design of the VirtualGPS system, after which the 

implementation will be discussed. Finally, the Chapter concludes with a test case 

analysis to assess the design functions of the system. 

5.1 The Design of the VirtualGPS System 

The system design process conforms to the categorical incremental/refinement design 

process devised in Section 3.5 of Chapter 3. The following paragraphs give a 

complete example of the VirtualGPS system design. 

5.1.1 The Categorical Business Map Construction for VirtualGPS 

The first stage of the categorical design process is to design the categorical business 

map. In this design stage, the user requirements were captured.  As described in the 

literature review of Chapter 2, the GPS matrix system is a universal tool for 

expressing geometrical requirements on product design drawings. It benefits product 

designers through providing a detailed description of functional requirements for 

geometrical products, and through reference to corresponding manufacturing and 

verification processes. Modern GPS standards aim at integrating all the data 

concerning essential steps of a production cycle right down to the macro or nano scale 

(ISO/TR 14638, 1995 [4]; ISO TC/213, 2001 [5]; Wang et al., 2004 [6]). The Figure 

5.1 is the business scope of GPS, which links Function, Specification of macro- to 

nano-scale components, Manufacture, and Verification for different roles such as 

designers, production engineers and metrologists. Thus, they can exchange 

unambiguous information through the GPS specification. 
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Figure 5.1: The business scope of GPS. 

The Figure 5.1 shows how GPS standards can be related to a complete industrial 

procedure of producing a geometrical workpiece: design of the workpiece by setting 

up unambiguous specifications, manufacture of the workpiece under the guidance of 

specifications, and metrology of workpiece through the verification of specification. 

This also illustrates that the verification is of vital importance for modern 

manufacturing industries, since verification results can be evaluated to refine the GPS 

standards relating to new GPS parameters, suggest specific tolerance values and 

update manufacturing procedures and so on. Therefore, a cyclic quality chain for 

refining the quality of geometrical products can be formed. The Figure 5.2 gives an 

example of this quality chain on a surface manufacture. 

 

Figure 5.2: A cyclic surface quality chain. 

The “Measurement” and “Evaluation” in Figure 5.2 are both relating to “metrologist” 

in Figure 5.1.  
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Furthermore, a high level categorical business map for the VirtualGPS system can 

be formed as Figure 5.3 demonstrated.  

 

Figure 5.3: Overall framework of the VirtualGPS system. 

Figure 5.3 shows that the proposed VirtualGPS framework contains four main 

knowledge bases (Surface Texture, Form, Position and Size), describing different 

knowledge domains in a categorical view — each knowledge base becomes a module 

(category) and faithful functors are used to inject these four modules (categories) into 

the VirtualGPS system.  

5.1.2 The Categorical Analysis Model Construction for VirtualGPS 

The second stage of the categorical design process is to design the categorical analysis 

model. This project has so far partially completed the Surface Texture and the Form 

modules. Therefore, this thesis focuses on illustrating the design and implementation 

details of the Surface Texture module, which can be further divided into four sub-

knowledge bases based on Figures 5.1 and 5.2: Function, Specification, Manufacture, 

and Verification. These four sub-knowledge bases become components of the Surface 

Texture module.  

F1 F2 F3 F4

Function Specification Manufacture Verification

Surface Texture

 

Figure 5.4: Components in Surface Texture module. 

In Figure 5.4, the four components of Surface Texture module are represented as 

lower level categories.  
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5.1.3 The Categorical Design Model Construction for VirtualGPS 

The third stage of the categorical design process is to design the categorical design 

model. The categorical design model is used to detail and refine the four components: 

Function, Specification, Manufacture and Verification. The detailed designs of these 

four components are discussed in Section 5.2, 5.3, and 5.4, which use same process as 

discussed here to refine each component. 

5.1.4 The Categorical Sequence Diagram Construction for VirtualGPS 

The fourth stage of the categorical design process is to create the sequence diagrams 

for modules in VirtualGPS. Figure 5.5 shows a sequence diagram for the Surface 

Texture Module. 

 

Figure 5.5: The sequence diagram for the Surface Texture module. 

The diagram highlights the perceived process flow for utilising the Surface Texture 

module in a typical manufacturing cycle, which can be described as follows: 

(For designers) Product designers activate the VirtualGPS system; the “Function” 

component will search and advise users by translating functional performances (e.g. 

fluid friction or dry friction) into surface texture parameters defined in GPS-matrices; 

and then generates a function analysis report using a so-called “pattern” language. 

Therefore, the function component is responsible for translating the design intent into 

requirements of GPS characteristics for designers. 

 (For designers and manufacturing engineers) The generated “Specification” 

component produces the details of the GPS specification on the technical drawing in 

the form of complete ‘callouts’, based on the selected surface texture parameters.  

 (For manufacturing engineers) In accordance with the deduced specification 
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report and any extra criteria defined (such as material types and quantity), the 

“Manufacture” component can suggest appropriate manufacturing processes for the 

designers. In order to enable cross comparing among different processes, a 

manufacturing process report for each recommended process plan will be formed, 

which includes details such as process description, material suitability, process 

variations, costing issues and sample applications.  

(For metrologists) The final “Verification” component enables metrologists to 

choose from recommended measurement instruments and filtering techniques to 

formulate a measurement strategy. 

5.1.5 The Categorical Deployment Model Construction for VirtualGPS 

The fifth stage of the categorical design process is to divide the design classes of the 

design model into subsystems based on outputs of Section 5.1.4. 

  

Figure 5.6: Overall architecture of the VirtualGPS system. 

The overall system architecture for the devised VirtualGPS is illustrated in Figure 

5.6. The system design has adopted a classic three-tier architecture (the accessing 

client, the knowledge manipulation server, and the database server). Object-oriented 

concepts and techniques have been adopted to ensure encapsulation and system 

robustness with several rigidly defined interfaces for inter-module operations. With 

the modularized design and its inherent structural adaptability, this system can change 
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existing features and functions or add new ones efficiently.  

The client-side browser provides users with an interface to access GPS knowledge 

organised by rules and standards devised in the knowledge base. Moreover, users can 

also add new information using the pattern language format offered by the user 

interfaces of the VirtualGPS system. This system can then automatically organize the 

inputted information into knowledge for users. Each knowledge base (module) of the 

knowledge-based system contains four components: Function, Manufacture, 

Specification, and Verification as explained earlier sections. The former two can 

generate and export reports for reference in a pattern language style format, while the 

latter pair can output reports in the XML format for web-based operations. The system 

supports web applications through secured socket communications for knowledge 

distribution and sharing on Intranet and Internet. 

Also shown in Figure 5.6, for forming accurate and comprehensible ‘knowledge’ 

from the maze of GPS-matrices, this project had also developed a back-end database 

and its management system based on Category Theory to store the complex GPS-

matrices and their constraints. The database is referred as the “categorical DBMS” in 

this thesis based on its nature of adopting Category Theory notions for forming the 

database model.  

Based on the explanations of the previous four sub-Sections (from Section 5.1.1 to 

Section 5.1.4), the overall architecture of the VirtualGPS has been defined. This high 

level architecture can clarify the following software aspects: 

 Which modules should be contained in this system. 

 Which components should be included in each module. 

 What are the computing functions of these modules and components. 

 How these modules and components interact or communicate with each other. 

 How these modules or components are deployed on the computing resources. 

After getting this high level architecture of the VirtualGPS system, several lower level 

refinement and incremental processes need to be taken to get details for design classes 

contained by each component. Therefore, components are also designed following the 

five stages of the categorical design process, and the outputs of component designs 

should clarify the following aspects: 

 Which design classes are contained in each component. 

 What are the computing functions of these design classes. 
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 How the design classes interact or communicate in a component. 

The Sections 5.2, 5.3, 5.4 and 5.5 give detailed explanations on designs of the 

Function, Specification, Manufacture and Verification components in the Surface 

Texture module. These four components in other modules such as Form, Size and 

Position can be designed in the same manner after acquiring enough knowledge.  

5.2 The Function Component Design 

This section aims to provide a detailed discussion of the design of the Function 

component, which focuses on discussing the knowledge acquisition and knowledge 

organization. The Function component is used to suggest surface roughness 

parameters based on functional performance analysis.  

5.2.1 The Categorical Business Map Model Construction for Function 

This step is used to analyze the user requirements and then define the business map to 

illustrate the business scope for the Function component in a high abstraction level. 

Surfaces can be divided into two types: functional and non-functional (Mummery, 

1990 [91]). A non-functional surface means the surface does not affect the quality of 

the product, which can be either mirror smooth or sand paper roughness. However, a 

functional surface has a function that is closely related to the quality of the product. 

For example, the outside of an engine block is a non-functional surface ,which has no 

specific function; while the contact area between the cylinder liner and the piston 

rings are functional surfaces performing the sealing function. For the functional 

surface, the surface texture has a direct influence on the quality of the product. 

Therefore, quality of a geometrical product can be optimized by analysing the 

relationship between surface topography and function of the product (Mummery, 1990 

[91]). 

However, because of the lack of references, it is difficult for users to select 

appropriate surface texture parameters and their corresponding tolerance values 

specified on technical drawings. Thus, the Function component in the VirtualGPS 

system aims to help users to select surface texture parameters according to surface 

functions. The main software functions for the Function component can be 

summarized as: 

 Provide suitable surface texture parameters with tolerance values based on 

exiting cases. 

 Provide a set of parameters selection rules for user references. Users can select 
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suitable parameters through systematic consideration of these selection rules. 

 Provide an open platform for users to add their expert knowledge on specific 

cases. 

Based on these user requirement captures, a business map can be built, see Figure 5.7. 

Input interface for 
designers

Patterns for specifying 
parameters/values

Input interface 
for experts

F1

F2

F3

F4

Designers

Experts

F
F6

 

Figure 5.7: The business map for Function component. 

Figure 5.7 demonstrates that two users of differing expertise can interact with the 

Function component: 

(1) Designers. Designers input surface requirements, functions or surface 

tribology and then the system infers suitable roughness parameters with 

tolerance values. The parameters and tolerance values should be organized in a 

specific pattern language format. 

(2) Experts. Experts can add new knowledge by using the same pattern language 

format to form new cases. 

The roles for designers and experts can be interchanged. For example, designers can 

add new knowledge based on their design experiences. By doing like this, the quality 

of products can be improved constantly. 

5.2.2 The Categorical Analysis Model Construction for Function 

Based on the discussions in Section 5.2.1, the core target for Function component is 

finding the relationship between functions and surface texture parameters. However, 

at present, there is no a systematic way to define all aspects of functions and to link 

them to surface texture parameters. At the moment, only a little information can be 

retrieved from GPS to link surface texture parameters with functions. Therefore, at 

present, the Function component can not totally support reasoning about surface 
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texture parameters and tolerance values based on the arbitrary functions or surface 

descriptions inputted by users. However, the Function component provides a basis of a 

guidance procedure for linking the functions with surface texture parameters, which 

was achieved by using some basic inference rules retrieved from GPS. Users can use 

them to find the suitable surface texture parameters for their specific tasks, and then 

store these tasks as cases in the VirtualGPS system in a specific pattern format. As the 

number of cases increases and relating GPS standards are enriched, the Function 

component will be trained, and then the well-trained Function component can make 

use of fuzzy logic to infer surface texture parameters with suitable tolerance values 

that match the functions. The Category Theory based pattern language for organizing 

the cases has been discussed in Section 3.7.1 of Chapter 3, so this section will only 

discuss the guidance procedure for choosing surface texture parameters with several 

inference rules. The procedure can be simplified as following: 

(1) Determine surface requirements according to surfaces. This can be 

achieved by investigating the counter parts, the properties and the relative 

motion of the workpiece, and then specify the surface requirements to match 

those attributes.  

(2) Determine the classification of Functions. The classification of functions is 

very difficult because they are so numerous and diverse that is impossible to 

carry out a systematic approach to cover them.  Actually, at present, tribology 

is a good tool for function classification. Tribology is the science and 

technology of friction, wear and lubrication (Kalpakjian and Schmid, 2005 

[92]). The Figure 5.8 is classification of functions by using tribological 

applications such as contact, wear, lubrication and failure mechanism, which is 

a simplistic generic approach to provide basic guidance (Whitehouse, 2002 

[93]). 
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Figure 5.8: The function map. 

The horizontal axis of Figure 5.8 represents the relative velocity of the two 

surfaces, while the vertical axis represents the gap between the two surfaces. 

The scales are omitted from the diagram. It is supposed that the vertical axis is 

in micrometers and the horizontal axis has a maximum realistic value of 

5m/sec.  

(3) Match different functions with different surface requirements. This can be 

achieved by finding a relationship between tribology and surface requirements. 

Once the relationship between tribology and surface requirements are defined, 

the transitive relationships between functions and surface requirements can be 

defined. The Table 5.1 is another function classification by using types of 

wears, relative motions and contact bodies (Filetin, 2002 [94]). 

Elements 
Relative motions Type of wear Mechanism of wear 

Type Schemes Type AD AB WF TC 

Solid body 
Lubricant 
Solid body 

Sliding 
 

Hydrodynamic   ● ○ 

Solid body 
Solid body 

Sliding 
 

Sliding wear ● ○ ○ ● 

Rolling Rolling wear ○ ○ ● ○ 

Impact 
 

Impact wear ○ ○ ● ○ 
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Vibration 
 

Fretting ● ● ● ● 

Solid body 
Particles 

Impact Abrasion  ● ● ○ 

Sliding Abrasion  ●  ○ 

Solid body 
Particles 

Solid body 

Sliding 
 

Abrasion ○ ● ● ○ 

Rolling Abrasion ○ ● ● ○ 

Impact 
 

Abrasion ○ ○ ● ○ 

Solid body 
Particles 

Fluid 
Flow 

 
Erosion  ● ● ○ 

Solid body 
Particles 

Gas 
Flow 

 
Erosion ○ ● ● ○ 

 
Erosion ○ ● ● ○ 

Solid body 
Fluid 

Flow 
Cavitation 

Erosion 
  ● ○ 

Impact 
 

Erosion   ● ○ 

Flow 
 

Erosion by fluids   ○ ● 

Solid body 
Gas 

Gas 
Erosion  

Cavitation 
Erosion 

   ● 

AD – Adhesion, AB – Abrasion, WF – Wear Fatigue, TC – Tribocorrosion, 
●Most important ○ Less important 

     Table 5.1: Examples of functions. 

(4) Select surface parameters with corresponding tolerance values for surface 

requirements. By doing this, the relationship between surface texture 

parameters and functions can be transitively defined. Therefore, inferences 

from functions to surface parameters can be achieved. 

Besides this guidance procedure, several other tables gathered from GPS matrices 

are also included in the VirtualGPS. For example, Table 5.2 shows relationships 

between motif parameters and functions of surface, defined in ISO 12085 1996 (ISO 

12085, 1996 [25]). 
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Table 5.2: Parameters selection example. 

All these tables for guiding the selection of surface texture parameters from functions 

become class categories that in turn serve as inference rules for the Function 

component. 

5.2.3 The Categorical Design Model Construction for Function 

In the previous section, a set of class categories for inferring surface texture 

parameters have been determined. At the design model construction stage for the 

Function component, these class categories are refined by defining their lower level 

subclass categories, which themselves form tree structures, to represent these tables 

specified in Section 5.2.2. This section takes Table 5.2 as an example. The Figure 5.9 

illustrates a tree structure that is represented in the categorical way. 

 

Figure 5.9: Categorical representation of parameters selection example table. 
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Figure 5.9 shows that the complex tree structure of Table 5.2 can be gracefully 

modelled, and which is difficult for relational data model to handle it. After defining 

design classes (class categories) for Function component, the next stage is specifying 

the interactions among these class categories belonging to the Function component. 

5.2.4 The Categorical Sequence Diagram Construction for Function 

The design classes discussed in Section 5.2.3 serve as inference rules in the Function 

component, which can be grouped into three sub-components: inference rules for 

linking surface requirements with surface texture parameters; inference rules for 

linking functions with surface texture parameters; and inference rules used in cases. 
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Figure 5.10: The sequence diagram for Function component. 

Figure 5.10 is organized according to business requirements defined in Figure 5.7. 

However, as stated earlier, the current VirtualGPS can not support inferences of 

surface texture parameters according to descriptions or key words for specifying 

surface requirements or functions due to lack of knowledge in GPS. The prototype 

VirtualGPS can only suggest surface parameters with corresponding tolerance values 

based on existing case scenarios. Thus, we call this system as knowledge-based 

system or partially rule-based expert system. However, when cases and other related 

knowledge are enriched, the VirtualGPS will become a real rule-based expert system. 

5.2.5 The Categorical Deployment Model Construction for Function 

Based on analysis of the sequence diagram that shows the interactions between design 
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classes in the Function component, a deployment topological graph for specifying the 

allocation of these design classes on computing resources can be constructed as Figure 

5.11 demonstrates. 

 

Figure 5.11: The deployment topological graph for Function component. 

The inference rule base in Figure 5.11 contains two parts: rules for surface 

requirements and rules for functions. A product relationship is built between case 

receptor and class categories for organizing the pattern language to form instances of 

cases in categorical pattern language format. These case instances will be stored in 

categorical DBMS for future case based inferences. 

5.3 The Specification Component Design 

This section aims to provide a detailed discussion of the Specification component’s 

design, which focuses on discussing the knowledge acquisition and organization. The 

Specification component is used to provide detailed geometrical specifications for the 

selected surface parameters, including information obtained from partition, extraction, 

filtration and comparison processes. The main software functions for the Specification 

component can be summarized as:  
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 Generate a complete callout from a simple callout on a drawing by providing 

default values. For example, the complete callout “U 0.008-2.5 / Ra516% 3.3” 

can be generated for the simple callout “Ra 3.3”. 

 Explain each symbol in a complete callout in detail. Users can get detail 

explanations and descriptions of each symbol in a complete callout. For 

example, parameter names will be rendered for each parameter type. 

 Referred to as basis for Manufacture and Verification components. This 

includes two aspects: 

(1) The complete callout is “shallow” knowledge for inferring “depth” 

knowledge in Manufacture and Verification. 

(2) The complete callout can guide operations in Manufacture and Verification. 

For example, the comparison rule in a complete callout is used in a 

comparison process of Verification. The methods for the “max-rule” or 

“16%-rule” will be programmed in the Verification component according 

to the indications of complete callouts. 

5.3.1 The Categorical Business Map Construction for Specification 

After capturing the user requirements, the inputs and the outputs of Specification 

component have been determined: the inputs of the Specification component are 

specific surface parameters while the outputs of the Specification component are 

complete “callout” symbols gathered from three feature operations: partition, 

extraction and filtration. The Figure 5.12 shows the structure for a complete callout 

symbol (ISO 1302, 2002 [95]). 
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Figure 5.12: Complete surface texture callout symbol. 

The key explanations for Figure 5.12 are: 

a. Indication of specification limit. 

b. Filter type “X”.  

c. The transmission band, including the lower limit and the upper limit.  

d. Profile (R – roughness profile, W – waviness profile or P – primary profile). 

e. Characteristic/parameter.  

f. Evaluation length as the number of sampling lengths. 

g. Comparison rule (“16 %-rule” or “max-rule”).  

h. Limit value in micrometres.  

i. Machining allowance. 

j. Type of manufacturing process.  

k. Surface texture lay.  

l. Manufacturing methods.  

The measurement of the surface texture is generally determined in terms of its 

roughness, waviness and form. The roughness is the process marks or witness marks 

produced by the action of the cutting tools or machining processes, but may include 

other factors such as the structure of the material. The waviness is usually produced 

by instabilities in the machining process, such as an imbalance in a grinding wheel, or 

by deliberate actions in the machining process. Waviness has a longer wavelength 
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than roughness which is superimposed on the waviness. The form is the general shape 

of the surface, ignoring variations due to roughness and waviness. Deviations from the 

desired form can be caused by many factors. There are three principal groups of 

surface texture parameters relating to this project: profile parameters defined in ISO 

4287 (e.g. amplitude parameter Ra, spacing parameter Rsm, and hybrid parameter Rda) 

(ISO 4287, 1997 [96]), motif parameters defined in ISO 12085 (e.g. mean motif 

height R, mean motif width AR and maximum motif height Rx) (ISO 12085, 1996 [25]) 

and parameters based on material ratio curve defined in ISO 13565-2 and ISO 13565-

3 (e.g. Rk, Rpk, Rvk, etc.) (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]). Detailed 

introductions on these surface texture parameters can also be found in the book − 

“Geometrical Product Specifications Course for Technical Universities”, which will 

not be described in this thesis (Humienny et al., 2001 [3]). Figure 5.12 illustrates that 

besides the surface texture parameters and their corresponding limit values (tolerance 

values), there is also some other information relating to the partition, extraction, 

filtration and comparison operations. For example, the complete callout for “Ra 3.3” 

is “0.008-2.5/Ra516% 3.3”, where the missing information is supplied by the ISO 

1302 (ISO 1302, 2002 [95]). By organizing the surface texture parameters, tolerance 

values, and other information relating to partition, extraction, filtration and 

comparison operations into complete callouts, the knowledge base for the 

Specification component can be formed. Therefore, the Specification component can 

relieve users from the burden of cross referencing a set of ISO file based papers to 

obtain the complete GPS specifications.    

Based on the user requirement analysis above, the knowledge base of the 

Specification component has to contain five use cases: the measured surface partition, 

finite data point extraction, profile filtration, measurand definition, and the chosen 

comparison rule. Therefore, the business map for Specification component was built 

as Figure 5.13. 

 

Figure 5.13: The business map for Specification component. 
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5.3.2 The Categorical Analysis Model Construction for Specification 

After getting the business map for Specification component as Figure 5.13 illustrated, 

the next step is to analyse the computing functions of all these use cases defined in 

business map and then obtain a set of analysis classes. According to ISO files for GPS, 

the following use case refinements can be clarified: 

(1) Measurand definition. In the Specification component under the Surface 

Texture module, the measurand is the surface texture parameters defined in the 

GPS. The surface texture parameters in the GPS contain several types of 

affiliating information: tolerance type, parameter type, parameter name, 

tolerance value, machining allowance. The parameter type includes two parts: 

profile indication and characteristic indication, where the profile has three 

possible indications: R (roughness profile), W (waviness profile) and P 

(primary profile). For example, in Rz, the “R” indicates the roughness profile 

and “z” indicates the characteristic feature. There are three groups of surface 

texture parameters in GPS to deal with these three kinds of profile. The Table 

5.3 shows a set of surface texture parameters contained in material ratio curve 

group (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]). 

       Parameters 

R-profile parameters 
based on linear 
material ratio curve 

Rk Rpk Rvk Mr1 Mr2 

Rke Rpke Rvke Mrle Mr2e 

R-profile parameters 
based on the material 
probability cure 

Rpq Rvq Rmq 

p-profile parameters 
based on the material 
probability curve 

Ppq Pvq Pmq 

Table 5.3: Parameters based on material ratio curve. 

Therefore, an analysis class (class category) “Measurand” can be defined with 

internal objects: tolerance_type, parameter_type, parameter_name, 

parameter_category, tolerance value and machine_allowance. 

(2) Surface Partition. The feature operation − partition is used to identify the 

bounded surface which is to be characterized. The bounded surface texture is 

influenced by the detailed form of the profile curve, while the profile curve is 

usually determined by the manufacturing processes (ISO 1302, 2002 [95]). 

Therefore, the feature information for partition includes the direction of 

surface texture lay, the manufacture type and manufacture methods of the 



 127

surface, which catch the initial properties of the surface being evaluated. The 

detailed introduction of the feature information relating to partition can be 

referred in ISO 1302 (ISO 1302, 2002 [95]). Therefore, an analysis class (class 

category) “Partition” can be defined with internal objects: direction_symbol, 

direction_definition, manufacture_type_symbol, manufacture_type_meaning, 

and manufacture_method.  

(3) Finite data point extraction. The feature operation extraction is used to 

determine a finite number of points on the surface that are extracted for 

measurement and evaluation. The feature information for extraction includes 

number of sampling lengths (num_cutOff) and evaluation length of the 

evaluated surface. The num_cutOff indicates the number of sampling lengths 

within an evaluation length. A cut_off is the wavelength which is used as a 

means of separating or filtering the wavelengths of a surface. Sampling length 

is the length in the direction of the X-axis used for identifying the irregularities 

characterizing the profile under evaluation (ISO 4287, 1997 [96]). The Figure 

5.14 shows an example of the relationships of traverse length, evaluation 

length, and sampling length (cut_off).  

 

Figure 5.14: Example of traverse length, evaluation length and Sampling 
length. 

Therefore, a class category “Extraction” can be defined with internal objects: 

num_cutoff, sampling_length, and evaluation_length. 

(4) Surface profile filtration. The feature operation − filtration is used to separate 

the surface profile into roughness profile and waviness profile. The feature 

information for filtration includes filter type, and transmission band. In this 

project, various filters such as “Gaussian”, “2RC” were used. The transmission 

band consists of all required wavelengths, which is defined at the short wave 

length by a short wavelength filter (lower limit) and the long wavelength by a 
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long wavelength filter (upper limit) (ISO 1302, 2002 [95]). The Figure 5.15 

demonstrates a transmission band for roughness profiles formed with a short 

wavelength filter λs and a long wavelength filter λc as well as a transmission 

band for waviness profiles formed with a short wavelength filter λc and a long 

wave length filter λf (ISO 4287, 1997 [96]).  

 

Figure 5.15: Examples of transmission band. 

The band of sinusoidal profile wavelengths are transmitted at more than 50% 

when two phase correct filters of different cut-off wavelengths are applied to 

the profile. The transmission band shall be indicated by the inclusion of the 

cut-off values of the two filters (in millimetres), where the short-wave filter 

indicated at first and the long-wave follows the short one, and they are 

separated by a hyphen (“-“). For example, “0.0025-0.8” indicates a short-wave 

cut-off value of 0.0025 millimetres and a long-wave cut-off value of 0.8 

millimetres, which will allow wave lengths between 0.0025mm and 0.8mm to 

be assessed with wavelengths below 0.0025mm and above 0.8mm being 

reduced in amplitude. Therefore, a class category “Filtration” can be defined 

with internal objects: filter_type, up_limit, and low_limit. 

(5) Comparison rule.  The comparison rule is used to compare the measured 

values with the tolerance values suggested by the Specification component, 

which determines whether the produced surface is within the tolerance. GPS 

includes two kinds of comparison rules: “max-rule” and “16%-rule”. When the 

upper specification limit is used, the “16%-rule” indicates that the surface is 

considered acceptable if not more than 16% of all the measured values on an 

evaluation length exceed the tolerance value suggested by Specification. When 

the lower specification limit is used, the “16%-rule” indicates that the surface 

is considered acceptable if not more than 16% of all the measured values on an 



 129

evaluation length are less than the tolerance value suggested by Specification. 

The “max-rule” indicates that the surface is considered acceptable if none of 

the measured values for the suggested parameter over the entire surface exceed 

the tolerance value specified by specification. Therefore, a class category 

“Comparison” can be defined with internal objects: rule_type and 

rule_indication. 

5.3.3 The Categorical Design Model Construction for Specification 

In the analysis model construction stage, five analysis class categories have been 

defined. As stated before, in real applications, users often use default indications in the 

complete callout symbols. These default indications are inferred from the simple 

callout symbols by using GPS standards (e.g. “Ra 3.3”). Therefore, in the categorical 

design model construction stage, inference rules are added for these five class 

categories to form refined design classes. In the Specification component of 

VirtualGPS, the inference rules are a set of basic rules/constraints defined in the GPS 

standards, which uses some properties of a callout symbol to get other properties in 

the callout symbol. Furthermore, the complete callouts are actually “shallow” 

knowledge in the VirtualGPS system, which are used as illumination knowledge for 

inferring other “depth” knowledge in the Manufacture or Verification Component. 

The following paragraphs in this section focus on discussing these inference rules in 

or between these five class categories that form a complete callout symbol. 

In the “Measurand” class category, there are two inference rules: 

 Inference rule for setting default tolerance types. There are two types of 

tolerance limit for a surface, the upper tolerance limit and the lower tolerance 

limit. The indication can be of an upper type with indication “U” or of a lower 

type with indication “L” (ISO 1302, 2002 [95]). If not otherwise indicated, the 

default tolerance type is upper limit “U”. Therefore, the inference rule for 

setting default tolerance types is represented as List 5.1: 

RULE_NO 1 
IF no value indicated for tolerance_type 
THEN tolerance_type = “U” 

List 5.1: Inference rule No.1. 

This inference rule is applied on the internal object level, so it is represented 

as a method identity arrow mapping from the internal object “tolerance_type” 

to the same internal object “tolerance_type” of the “Measurand” class 
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category. 

 Inference rule for setting default machining allowance. The machining 

allowance is a planned deviation between an actual dimension and a nominal 

dimension, which is usually indicated only in those cases where more process 

stages are shown in the same drawing (ISO 1302, 2002 [95]). It allows an area 

of excess metal to be left to complete subsequent machining. The machining 

allowance is indicated in millimetres. Therefore, the inference rule for setting 

default machining_allowance is represented as List 5.2: 

RULE_NO 2 
 IF no value indicated for machining_allowance 
THEN machining_allowance = NULL 

List 5.2: Inference rule No.2. 

This inference rule is applied on the internal object level, so it is represented 

as a method identity arrow mapping from the internal object 

“machining_allowance” to “machining_allowance” of the “Measurand” class 

category. 

In the “Partition” class category, there are three inference rules for setting the 

default values for the direction symbol, manufacture type and manufacture method 

respectively. These three inference rules can be represented in the same way as the 

inference rule for setting the default tolerance type in “Measurand” class category. 

For example, the inference rule for setting default direction symbol is represented as 

List 5.3: 

RULE_NO 3 
IF no value indicated for direction_symbol 
THEN direction_symbol = “Not Indicated” 

List 5.3: Inference rule No.3. 

Therefore, unless explicitly specified by users, the default values for direction symbol, 

manufacture type and manufacture method in the “Partition” are “Not Indicated”. If 

manufacture method is not indicated in a complete callout generated by the 

Specification component, the Manufacture component can be used to determine 

suitable manufacturing processes matching the specification of the designed product 

(see Section 5.4). 

In the “Extraction” class category, there are three inference rules: 

 Inference rule for setting default num_cutOff. Two tables can be used to 

form the inference rule for setting default num_cutOff (see Table 5.4 and 



 131

Table 5.5). The Table 5.4 lists the indication of the number of sampling 

lengths for the three profile parameters (ISO 1302, 2002 [95]).  

Profile Num_cutOff indication 

R-profile 
(roughness 
parameters) 

If not otherwise indicated, the default number of cutOff wavelengths is 5 derived 
from ISO 4288 (ISO 4288, 1996 [99]). 
If the number of sampling lengths within the evaluation length differs from the 
default number of 5, it shall be indicated adjacent to the relevant parameter 
designation. For example Rp3 or Rv3 or Rz3..., RSm3 ...all indicate that an 
evaluation length of 3 sampling lengths is desired. 

W-profile 
(waviness 
parameters) 

The number of sampling lengths shall always be indicated adjacent to the 
parameter designation of waviness. For example Wa3 or Wz3 ...all indicate that 
an evaluation length of three sampling lengths is desired. 

P-profile 
(primary profile 
parameters) 

The indication of the number of sampling lengths in the parameter designation of 
primary profile parameters is not relevant, as the evaluation length equals the 
sampling length and also equals the length of the feature being measured. 

Table 5.4: Num_cutOff for profile parameters. 

Table 5.5 lists the number of sampling lengths for parameters based on 

material ratio curve (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]). 

Profile Num_cutoff indication 

R-profile 
(roughness 
parameters) 

1. If not otherwise indicated, the default number of cutoff wavelengths is 5 
derived from ISO 13565-1 (ISO 13565-1, 1996 [100]). 

2. If the number of sampling lengths within the evaluation length differs 
from the default number of 5, it shall be indicated adjacent to the 
relevant parameter designation. For example, Rk3 or Rpk3 ...all indicate 
that an evaluation length of 3 sampling lengths is desired. 

P-profile 
(primary profile 

parameters) 

The indication of the number of sampling lengths in the parameter designation 
of primary profile parameters is not relevant, as the evaluation length equals the 
sampling length and also equals the length of the feature being measured. 

Table 5.5: Num_cutOff for parameters based on material rate curve. 

Based on Table 5.4 and 5.5, the inference rule for setting default num_cutOff 

is represented as List 5.4: 

RULE_NO 4 
IF  parameter_type ENDWITH a number 
THEN num_cutOff = a number 
ELSE IF no value indicated for num_cutOff 
AND parameter_type STARTWITH “R” 
THEN num_cutOff = 5 
ELSE IF no value indicated for num_cutOff 
AND parameter_type STARTWITH “P” 
THEN num_cutoff=0 

List 5.4: Inference rule No.4. 

This inference rule is applied on the internal object level, so it is represented 

as a method identity arrow mapping from the internal object “num_cutOff” to 

the same internal object “num_cutOff” of “Extraction” class category. 

 Inference rule for setting default sampling length. Table 5.6 lists values for 

the sampling length for profile parameters (ISO 1302, 2002 [95]). 
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Profile Sampling length 

R-profile The sampling length may be indicated as the upper limit λc in the callout symbol c, 
see Figure 5.12. If there is no indication in the callout, tables 5.7 ~ 5.9 can be used to 
choose the roughness sampling length from the suggested parameter values, according 
to ISO 4288 (ISO 4288, 1996 [99]). 

For example take the surface parameter Ra with a limit value of 3.3 micrometers, 
according to table 5.7, the parameter value belongs to the range of 2 < Ra ≤ 10, and 
the related sampling length shall be 2.5 millimetres. 

W-profile 

 

There are no defaults for waviness sampling length given in ISO standards, so the 
sampling length is indicated as the upper limit in the callout symbol c, see Figure 5.12. 
For example, 0,8-25 / Wz3 10, the sampling length 25 millimetres is indicated as the 
upper limit in the callout symbol. 

P-profile 
 

In the default case, P-parameters do not have any sampling lengths. It may be 
indicated if required for the function of the workpiece where it is indicated as the 
upper limit in the callout symbol c, see Figure 5.12. 

For example -25 / Pz 225, the sampling length 25 millimetres is indicated. 

Table 5.6: Default sampling lengths for profile parameters. 

Based on Table 5.6, the inference rule for setting default sampling length with 

profile parameters is represented as List 5.5: 

RULE_NO 5 
IF parameter_category EQUALS “profile parameter” 
AND  parameter_type STARTWITH “R” 
AND no value indicated for sampling_length 
THEN USE Inference Rule RULE_NO 6 
ELSE IF parameter_category EQUALS “profile parameter” 
AND  parameter_type STARTWITH “R” 
AND up_limit has value up_limit 
THEN sampling_length = up_limit 
ELSE  sampling_length =NULL 
ELSE IF parameter_category EQUALS “profile parameter” 
AND parameter_type STARTWITH “W” 
AND up_limit has value up_limit 
THEN sampling_length = up_limit 
ELSE  sampling_length =NULL 
ELSE IF parameter_category EQUALS “profile parameter” 
AND parameter_type STARTWITH “P” 
AND up_limit has value up_limit 
THEN sampling_length = up_limit 
ELSE  sampling_length =NULL 

List 5.5: Inference rule No.5. 

A sub rule (rule No.6) is nested in the above rule, which is built upon the 

Table 5.7, 5.8 and 5.9. 

Ra (μm) 
Roughness sampling length 

Lr (mm) 
Roughness evaluation length 

Ln (mm) 

(0,000) < Ra ≤ 0,02 0,08 0,4 

0,02 < Ra ≤ 0,1 0,25 1,25 

0,1 < Ra ≤ 2 0,8 4 

2 < Ra ≤ 10 2,5 12,5 
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10 < Ra ≤ 80 8 40 

Table 5.7: Roughness sampling lengths for the measurement of Ra, Rq, 
Rsk, Rku, RΔq and curves and related parameters for non-periodic 

profiles.  

Rz, Rz1max (μm) 
Roughness sampling length 

Lr (mm) 
Roughness evaluation 

length Ln (mm) 

0,025 < Rz,Rz1max ≤ 0,1 0,08 0,4 

0,1 < Rz,Rz1max ≤ 0,5 0,25 1,25 

0,5 < Rz,Rz1max ≤ 10 0,8 4 

10 < Rz,Rz1max ≤ 50 2,5 12,5 

50 < Rz,Rz1max ≤ 200 8 40 

1) Rz is used when measuring Rz, Rv, Rp, Rc and Rt  

2) Rz1max is used when measuring Rz1max, Rv1max, Rp1max and Rc1max 

Table 5.8: Roughness sampling lengths for the measurement of Rz, Rv, Rp, 
Rc and Rt of non-periodic profiles.  

RSm (μm) 
Roughness sampling length Lr 

(mm) 
Roughness evaluation lengthLn 

(mm) 

0,013 < RSm ≤ 0,04 0,08 0,4 

0,04 < RSm ≤ 0,13 0,25 1,25 

0,13 < RSm ≤ 0,4 0,8 4 

0,4 < RSm ≤ 1,3 2,5 12,5 

1,3 < RSm ≤ 4 8 40 

Table 5.9: Roughness sampling lengths for the measurement of R-
parameters of periodic profiles, and RSm of periodic and non-periodic 

profiles. 

The inference rule for Table 5.7 is given below and other two tables can be 

defined in same way as List 5.6 shown. 

RULE_NO 6 
IF  parameter_category EQUALS “profile parameter” 
AND parameter_type Equals “Ra” 
AND 0.000<parameter_value<=0.02 
THEN sampling_length = 0.08 
ELSE IF  parameter_category EQUALS “profile parameter” 
AND parameter_type Equals “Ra” 
AND 0.02<parameter_value<=0.1 
THEN sampling_length = 0.25 
ELSE IF parameter_category EQUALS “profile parameter” 
 AND parameter_type Equals “Ra” 
AND 0.1<parameter_value<=2 
THEN sampling_length = 0.8 
ELSE IF  parameter_type Equals “Ra” 
AND parameter_category EQUALS “profile parameter” 
AND  2<parameter_value<=10 
THEN sampling_length = 2.5 
ELSE IF  parameter_category EQUALS “profile parameter” 
AND parameter_type Equals “Ra” 
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AND 10<parameter_value<=80 
THEN sampling_length = 8 

List 5.6: Inference rule No.6. 

The motif parameters do not use the concept of sampling length. The operator 

used to calculate motif parameters has its own limit values, so sampling 

length concepts do not exit (ISO 12085, 1996 [25]). Table 5.10 lists the 

default value for the sampling length for parameters based on material ratio 

curve (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]). 

Profile Sampling length 

R-profile If not otherwise indicated, the default sampling length for parameters based on 
material ratio curve is 0,8 millimetres derived from ISO 13565-1 (ISO 13565-1, 
1996 [100]). 

P-profile In the default case, P-parameters do not have any sampling lengths. The sampling 
length equals the evaluation length and also equals the length of the feature being 
measured. 

Table 5.10: Sampling lengths for parameters based on material ratio 
curve. 

Based on Table 5.10, the inference rule for setting the default sampling length 

for parameters based on material ratio curve is represented as List 5.7: 

RULE_NO 7 
IF  parameter_category EQUALS “material ratio curve” 
AND no value indicated for sampling_length 
AND parameter_type STRATWITH “R” 
THEN sampling_length = 0.8 
ELSE IF  parameter_category EQUALS “material ratio curve” 
AND no value indicated for sampling_length 
AND parameter_type STRATWITH “P” 
THEN sampling_length = evaluation_length 

List 5.7: Inference rule No.7. 

The inference rules (number 5, 6) are applied on category level between 

“Measurand” and “Extraction”, so a pullback construct 

“determine_sampling_length” is built to contain these two inference rules (see 

Figure 3.26 of Chapter 3). As the inference rule − number 7 may also be used 

for parameters based on material ratio curve, so the pullback construct 

“determine_sampling_length” is typed with “optional”. 

 Inference rule for setting default evaluation length. The Table 5.11 lists 

default values of the evaluation length for profile parameters (ISO 1302, 2002 

[95]).  
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Profile Evaluation length 

R-profile 

If not otherwise indicated, the default length of the feature for roughness analysis 
consists of five sample lengths, so the evaluation length equals the num_cutoff x 
sampling_length. 
i.e. evaluation_length = num_cutoff x sampling length  
For example, take the surface parameter Ra with a limit value of 3.3 micrometers, i.e. Ra 
3,3, according to table 5.7, the sampling length is 2.5 millimetres, and num_cutoff uses 
the default value 5, therefore, the evaluation length for this parameter is 5 x 2.5 = 12.5 
millimetres. 

W-profile 

The default evaluation length of the waviness profile equals the num_cutoff x sampling 
length of the waviness profile. 
i.e. evaluation length = num_cutoff  x sampling length  
For example, 0,8-25 / Wz3 10, the num_cutoff is indicated as 3 adjacent to the 
parameter designation Wz, and the sampling length 25 millimetres is indicated as the 
upper limit in the callout symbol, therefore, the evaluation length is 3 x 25 = 75 
millimetres. 

P-profile 

For primary profiles, the evaluation length equals the sampling length and also equals 
the length of the feature being measured. 
i.e. evaluation length = sampling length  
For example, -25 / Pz 225, the evaluation length equals the sampling length of 25 
millimetres as indicated in the callout. 

Table 5.11: Evaluation lengths for profile parameters. 

For motif parameters, the default evaluation length is 16 millimetres. Table 

5.12 lists default values of the evaluation length for parameters based on 

material ratio curve (ISO 13565-2, 1996 [97]; ISO 13565-3, 2000 [98]). 

Profile Evaluation length 

R-profile 

The evaluation length of the roughness profile equals the num_cutoff x sampling length 
of the roughness profile. The default num_cutoff of the roughness profile equals five and 
the default sampling length of the roughness profile is 0,8 millimetres. 

i.e. evaluation length = num_cutoff  x sampling length 

P-profile 
For primary profiles, the evaluation length equals the sampling length which is also 
equal to the length of the feature being measured. 
i.e. evaluation length = sampling length 

Table 5.12: Evaluation lengths for parameters based on material ratio 
curve. 

Based on the Table 5.11, 5.12 and the default evaluation length for motif 

parameters, the inference rule for setting evaluation length is represented as 

List 5.8: 

RULE_NO 8 
IF  parameter_category EQUALS “profile parameter” 
AND no value indicated for evaluation_length 
AND parameter_type STRATWITH “R” 
THEN evaluation_length = 5× 0.8 
ELSE IF  parameter_category EQUALS “profile parameter” 
AND no value indicated for evaluation_length 
AND parameter_type STRATWITH “W” 
THEN sampling_length = num_cutOff ×sampling_length 
ELSE IF  parameter_category EQUALS “profile parameter” 
AND no value indicated for evaluation_length 
AND parameter_type STRATWITH “P” 
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THEN evaluation_length = sampling_length 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND no value indicated for evaluation_length 
THEN evaluation_length = 16 
ELSE IF  parameter_category EQUALS “material ratio curve” 
AND no value indicated for evaluation_length 
AND parameter_type STRATWITH “R” 
THEN evaluation_length = 5× 0.8 
ELSE IF  parameter_category EQUALS “material ratio curve” 
AND no value indicated for evaluation_length 
AND parameter_type STRATWITH “P” 
THEN evaluation_length = sampling_length 

List 5.8: Inference rule No.8. 

This inference rule is applied on internal object level, so it is represented as 

two method arrows mapping from internal object “sampling_length” and 

“num_cutOff” to “evaluation_length” respectively in “Extraction” class 

category. However, the default evaluation_length is not always determined by 

“sampling_length” and “num_cutOff” (e.g. motif parameter), so these two 

method arrows are optional. 

In “Filtration” class category, there are four inference rules: 

 Inference rule for setting default upper and lower limit of the 

transmission band. For profile parameters, the cut-off value of the upper limit 

equals to the sampling length. Therefore, the inference rule for setting the 

default upper limit of a transmission band with profile parameters is 

represented as List 5.9: 

RULE_NO 9 
IF  parameter_category EQUALS “profile parameter” 
AND no value indicated for up_limit 
THEN up_limit = sampling_length 

List 5.9: Inference rule No.9. 

For motif parameters, two bounds A and B are used in the motif algorithms 

according to ISO 12085 for defining the maximum widths of the roughness 

and waviness motifs respectively. The width for the roughness motif ARj 

should be greater than the value of λs and less than or equal to A, see Figure 

5.16. 

 

Figure 5.16: Roughness motifs. 
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The width for the waviness motif AWj should be greater than the value of A 

and less than or equal to the value of B, see Figure 5.17. 

 

Figure 5.17: Waviness motifs. 

The A and B can be obtained from Table 5.13 according to the evaluation 

length. 

Evaluation length 
(mm) A (mm) B (mm) λs (μm) 

0,64 0,02 0,1 2,5 
3,2 0,1 0,5 2,5 
16 0,5 2,5 8 
80 2,5 12,5 25 

Table 5.13: Transmission band for motif parameters. 

Based on the Table 5.13, the inference rule for setting upper limit with motif 

parameters is represented as List 5.10: 

RULE_NO 10 
IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “ARj” 
AND evaluation_length=0.64 
THEN up_limit = 0.02 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “ARj” 
AND evaluation_length=3.2 
THEN up_limit = 0.1 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “ARj” 
AND evaluation_length=16 
THEN up_limit = 0.5 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “ARj” 
AND evaluation_length=80 
THEN up_limit = 2.5 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “AWj” 
AND evaluation_length=0.64 
THEN up_limit = 0.1 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “AWj” 
AND evaluation_length=3.2 
THEN up_limit = 0.5 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “AWj” 
AND evaluation_length=16 
THEN up_limit = 2.5 
ELSE IF  parameter_category EQUALS “motif parameter” 
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AND parameter_type EQUALS “AWj” 
AND evaluation_length=80 
THEN up_limit = 12.5 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type NOT EQUALS “ARj” OR “AWj” 
THEN up_limit = NULL 

List 5.10: Inference rule No.10. 

For parameters based on material ratio curve, the upper limit λc is defined as 

equal to the sampling length according to ISO 1302 and ISO 13565-1 (ISO 

1302, 2002 [95]; ISO 13565-1, 1996 [100]). As the default sampling length 

for parameters based on material ratio curve is 0.8 millimetres (refer to the 

inference rule for setting default sampling length with parameters based on 

material ratio curve), the inference rule for setting upper limit with parameters 

based on material ratio curve is represented as List 5.11: 

RULE_NO 11 
IF  parameter_category EQUALS “material ratio curve” 
AND no value indicated for up_limit 
THEN up_limit = 0.8 

List 5.11: Inference rule No.11. 

Therefore, the up limit for the transmission band can be defined in two 

optional ways: 1. for motif parameters, the up limit is defined by evaluation 

length and parameter type; 2. for profile parameters and parameters based on 

material ratio curve, the up limit is defined by sampling length. In the first 

case, a 3-ary pullback construct “determine_up/low_limit” among 

“Measurand”, “Extraction” and “Filtration” is built to contain the 

corresponding inference rule (see Figure 3.27 of Chapter 3). In the second 

case, a pullback construct “equals” between “Extraction” and “Filtration” is 

built to contain the corresponding inference rule (see Figure 3.25 of Chapter 

3). These two pullback constructs are all typed in optional. 

Table 5.14 lists the values of the lower limit for profile parameters (ISO 1302, 

2002 [95]). 

Profile Lower limit 

R-profile 

Lower limit λs may be indicated as the lower limit in the callout symbol c, see Figure 
5.12.  
If there is no indication in the callout, lower limit λs can be obtained from ISO 3274 
according to the value of upper limit λc, seeTable 5.15 (ISO 3274, 1996 [101]). 

W-profile 
The lower limit of the W-profile transmission band is λc (short-wave filter), and will 
be indicated as the lower limit in the callout symbol c, see Figure 5.12. 

P-profile 
The lower limit of the P-profile of the transmission band is λs (short-wave filter), and 
will be indicated as the lower limit in the callout symbol c, see Figure 5.12. 

Table 5.14: Lower limit for profile parameters. 
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λc (mm) λs (μm) λc/λs rtip max (μm) Maximum sampling spacing 

0,08 2,5 30 2 0,5 

0,25 2,5 100 2 0,5 

0,8 2,5 300 2 0,5 

2,5 8 300 5 1,5 

8 25 300 10 6 

Table 5.15: Relationship between the roughness cut-off wavelength λc, tip 
radius and roughness cut-off ratio λc/ λs. 

Based on the Table 5.14 and 5.15, the inference rule for setting lower limit 

with profile parameters is represented as List 5.12: 

RULE_NO 12 
IF  parameter_category EQUALS “profile parameter” 
AND parameter_type STRATWITH “R” 
AND no value indicated for lower_limit 
THEN USE inference Rule RULE_NO 13 
ELSE IF  parameter_category EQUALS “profile parameter” 
AND parameter_type STRATWITH “W” 
AND no value indicated for lower_limit 
THEN lower_limit = NULL 
ELSE IF  parameter_category EQUALS “profile parameter” 
AND parameter_type STRATWITH “P” 
AND no value indicated for lower_limit 
THEN lower_limit = NULL 

List 5.12: Inference rule No.12. 

The inference rule for Table 5.15 is given below as List 5.13: 

RULE_NO 13 
IF  parameter_category EQUALS “profile parameter” 
AND parameter_type STRATWITH “R” 
AND up_limit = 0.08 
THEN lower_limit = 0.0025 
IF  parameter_category EQUALS “profile parameter” 
AND parameter_type STRATWITH “R” 
AND up_limit = 0.25 
THEN lower_limit = 0.0025 
IF  parameter_category EQUALS “profile parameter” 
AND parameter_type STRATWITH “R” 
AND up_limit = 0.8 
THEN lower_limit = 0.0025 
IF  parameter_category EQUALS “profile parameter” 
AND parameter_type STRATWITH “R” 
AND up_limit = 2.5 
THEN lower_limit = 0.008 
IF  parameter_category EQUALS “profile parameter” 
AND parameter_type STRATWITH “R” 
AND up_limit = 8 
THEN lower_limit = 0.025 

List 5.13: Inference rule No.13. 

Table 5.16 lists the value of the lower limit for motif parameters. 
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Profile Lower limit 

R 
profile 

As mentioned in Figure 5.16, the width for the roughness motif ARj should be greater 
than the value λs according to ISO 12085 (ISO 12085, 1996 [25]). The lower limit λs 
can be obtained from Table 5.13 according to the evaluation length. 

W 
profile 

As mentioned in Figure 5.17, the width for the waviness motif AWj should be greater 
than the value A according to ISO 12085 (ISO 12085, 1996 [25]). The lower limit A can 
be obtained from Table 5.13 according to the evaluation length. 

Table 5.16: Lower limit for motif parameters. 

Based on the Table 5.16, the inference rule for setting lower limit for motif 

parameters is represented as List 5.14:  

RULE_NO 14 
IF  parameter_category EQUALS “motif parameter” 
AND parameter_type STRATWITH “R” 
AND no value indicated for lower_limit 
THEN USE Inference Rule RULE_NO 15 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type STRATWITH “W” 
AND no value indicated for lower_limit 
THEN USE Inference Rule RULE_NO 16 

List 5.14: Inference rule No.14. 

The inference rule of number 15 based on Table 5.13 is represented as List 

5.15: 

RULE_NO 15 
IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “ARj” 
AND no value indicated for lower_limit 
AND evaluation_length=0.64 
THEN lower_limit = 0.0025 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “ARj” 
AND no value indicated for lower_limit 
AND evaluation_length=3.2 
THEN lower_limit = 0.0025 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “ARj” 
AND no value indicated for lower_limit 
AND evaluation_length=16 
THEN lower_limit = 0.008 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “ARj” 
AND no value indicated for lower_limit 
AND evaluation_length=80 
THEN lower_limit = 0.025 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “AWj” 
AND no value indicated for lower_limit 
AND evaluation_length=0.64 
THEN lower_limit = 0.02 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “AWj” 
AND no value indicated for lower_limit 
AND evaluation_length=3.2 
THEN lower_limit = 0.1 
ELSE IF  parameter_category EQUALS “motif parameter” 
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AND parameter_type EQUALS “AWj” 
AND no value indicated for lower_limit 
AND evaluation_length=16 
THEN lower_limit = 0.5 
ELSE IF  parameter_category EQUALS “motif parameter” 
AND parameter_type EQUALS “AWj” 
AND no value indicated for lower_limit 
AND evaluation_length=80 
THEN lower_limit = 2.5 
ELSE IF parameter_category EQUALS “motif parameter” 
AND no value indicated for lower_limit 
AND parameter_type NOT EQUALS “ARj” OR “AWj” 
THEN lower_limit = NULL 

List 5.15: Inference rule No.15. 

Table 5.17 lists the values of the lower limit for parameters based on material 

ratio curve. 

Profile Lower limit 

R 
profile 

If not otherwise indicated, the default lower limit λs for roughness profiles is 0,0025 
millimetres according to ISO 1302 and ISO 13565-1 (ISO 1302, 2002 [95]; ISO 13565-
1, 1996 [100]) 

P 
profile 

The lower limit for primary profiles of the transmission band is λs (short-wave filter), 
which has no default value to be defined according to ISO 1302 (ISO 1302, 2002 [95]).  

Table 5.17: Lower limit for parameters based on material ratio curve. 

Based on the Table 5.17, the inference rule for setting lower limit with 

parameters based on ratio curve is represented as List 5.16:  

RULE_NO 16 
IF  parameter_category EQUALS “material ratio curve” 
AND parameter_type STRATWITH “R” 
AND no value indicated for lower_limit 
THEN lower_limit=0.0025 
IF  parameter_category EQUALS “material ratio curve” 
AND parameter_type STRATWITH “W” or “P” 
AND no value indicated for lower_limit 
THEN lower_limit=NULL 
OR lower_limit= NOT INDICATED 

List 5.16: Inference rule No.16. 

Therefore, inference rules (No.12, 13, 14, and 15) for setting the default low 

limit of transmission band are applied on the internal object level, so it is 

represented as a method arrow mapping from internal object “up_limit” to 

“low_limit”  in “Filtration” class category. This method arrow is optional. 

The inference rule No.16 is represented as a indentity arrow mapping from 

internal object “lower_limit” to the same internal object “lower_limit” of 

“Filtration” class category. 

 To finally form a complete callout, an inference rule should be built as List 

5.17: 
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RULE_NO 17 
IF QUERYING Callout 
AND Getting all default values for Partition 
AND Getting all default values for Extraction 
AND Getting all default values for Filtraction 
AND Getting all default values for Measurand 
AND Getting all default values for Comparison 
THEN Generating Callout 

List 5.17: Inference rule No.17. 

This inference rule is actually the procedure knowledge for generating complete 

callouts. The complete callout can be regarded as shallow knowledge that is used for 

reasoning other deeper knowledge. Besides adding these inference rules in these class 

categories, a set for functional dependencies arrows should also be added in the design 

model construction stage. For example, in “Measurand” class category, the internal 

object “parameter_name” is functional dependent on “parameter_type” to provide the 

complete parameter names. So a functional dependency arrow is mapping from 

“parameter_type” to “parameter_name”. After adding all these inference rules and 

functional dependencies in or between class categories, the categorical diagrams for 

graphically representing the structured knowledge in Specification component can be 

devised as Figure 3.25, 3.26, 3.27 and 3.28 of Chapter 3. 

5.3.4 The Categorical Sequence Diagram Construction for Specification 

The sequence diagram for Specification component is used to clarify the process to 

generate a complete callout from a simple callout on drawing, see Figure 5.18. 

 

Figure 5.18: The sequence diagram for Specification component. 
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5.3.5 The Categorical deployment model Construction for Specification 

Based on the Figure 5.18, a deployment topological graph for Specification can be 

devised as Figure 5.19. 

Deployment model for 
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Figure 5.19: The deployment topological graph for Specification component. 

Figure 5.19 shows how to allocate difference design classes in Specification 

component on computing resource nodes, and how these design classes interacted 

with other modules or components such as user interfaces and the categorical DBMS. 

An inference engine should be built to control the inference rules defined for the 

knowledge base in Specification, which also needs to communicate with the database 

to retrieve existing complete callouts for users. The complete callout can be outputted 

in XML format as a specification report for different user communications. 

5.4 The Manufacture Component Design 

This section aims to provide a detailed discussion of the design of the Manufacture 

component, which focuses on discussing the knowledge acquisition and knowledge 

organization. The Manufacture component is used to help users to select suitable 

manufacturing processes matching the callout specification provided by Specification 

component. 

5.4.1 The Categorical Business Map Construction for Manufacture 

Manufacture is a transformation process from raw material into finished products, 
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which includes the design of the product, the selection of raw materials and the 

sequence of processes (manufacturing processes) through which the product will be 

made (Kalpakjian and Schmid, 2005 [92]). The manufacturing process is one of the 

core parts for manufacturing industry. Generally, a manufacturing process can be 

classified into six groups in general: casting processes, moulding processes, forming 

processes, machining processes, joining process and rapid manufacturing (Schey, 

2000 [102]). Since there are various kinds of processes, the selection of a suitable 

process becomes a difficult job for new manufacturers. Therefore, the main software 

functions for the Manufacture component can be summarized as: 

 Generate suitable comprehensive manufacturing processes by organizing a set 

of sub-processes for users. 

 Provide a broad overview for each suggested process through giving detailed 

information including material suitability, design considerations, quality issues, 

general economics, process fundamental and variations. This overview should 

be organized in a standard format. 

Based on these two software functions, a business map for Manufacture 

component can be developed as Figure 5.20 illustrated. 

 

Figure 5.20: The business map for Manufacture component. 

The Figure 5.20 shows that the Manufacture component needs to contain three use 

cases: a set of inputted inference properties, a set of inference rules based on several 

matrices and a class category for holding all stored manufacturing processes. 

5.4.2 The Categorical Analysis Model Construction for Manufacture 

In this section, the analysis model is used to separate these three use cases defined in 

Figure 5.20 into main class categories (analysis classes) as the following three points 

demonstrate: 

(1) Inference properties. The inference properties can be separated into two 

groups: specification related properties and PRIMA (Manufacturing Process 
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Information Map) related properties. The specification related properties 

include the texture lay, surface parameter type, tolerance value and cut-off 

wavelength, which can be obtained from the specification report (complete 

callout) provided by Specification part. Two PRIMA selection matrices are 

used in Manufacture based on two properties: material type and production 

quantity. Therefore, two class categories should be devised to represent these 

two groups − “SpecificationProperties” and “PRIMAProperties”. 

(2) Inference rules. According to the discussion in point one, two groups of 

inference properties indicate two groups of inference rules. The PRIMA 

selection matrices are used for PRIMA related properties. This is a simple 

inference method based on material and production quantity, which is 

designed to enable users to focus their attentions on the most relevant PRIMAs. 

For instance, a complete PRIMA matrix used in the Manufacture component 

can be referred in Appendix E (Swift and Booker, 2003 [103]). On the other 

hand, the surface texture is also an important issue that needs to be considered 

when selecting the manufacturing processes. 

 Texture lay. Texture lay is the directionality of the surface, which is an 

important factor affecting the interaction between the surface and the 

environment. Table 5.18 lists some examples of typical manufacturing 

processes suitable to different texture lays (Griffiths, B., 2001 [104]). 

Lay 
symbol 

Interpretation 
Typical 

Manufacturing 
processes 

═ 
 
┴ 

Parallel to plane of projection of view in which symbol is 
used 
Perpendicular to plane of projection of view in which 
symbol is used 

milling, drilling, 
turning, shaping 

X 
Crossed in two oblique directions relative to plane of 
projection of view in which symbol is used 

cross-honing 

M Multi-directional lapping, abrading 

C 
Approx. circular relative to centre of surface to which 
symbol applies 

facing, parting-off 

R 
Approx. radial relative to centre of surface to which symbol 
applies 

face-grinding 

P Lay is particulate, non-directional, or protuberant EDM, ECM, peening 

Table 5.18: Texture lay with typical manufacturing processes. 

 Surface roughness values. A typical manufacturing process has the ability 

to produce a limited range of surface roughness values Ra, between 1.6 
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µm – 6.3 µm, see Table 5.19 (BS 1134-2, 1990 [105]). 

                          Key:                       average application                           less frequent application 

Process                                       Roughness values (µm Ra) 
                                            50      25     12.5    6.3    3.2     1.6     0.8      0.4     0.2     0.1    0.05 
0.025  0.0125 
 
Flame cutting 
 
Snagging 
 
Sawing 
 
Planing, shaping 

             

 
Drilling 
 
Chemical 
milling 
 
Electro-
discharge
 
Broaching 
 
Reaming 
 
Boring, turning 
 
Barrel finishing             

 
Electrolytic 
grinding 
 
Roller 
burnishing 
 
Grinding 

     
     
     
     
     
     
     
     
            

 
Polishing 
 
Lapping 
 
Superfinishing 

     
     
     
     
     
     
            

 
Sandcasting 
 
Hot rolling 
 
Forging 
 
Permanent 

     
     
     
     
     
     
     
     
            

 
Investment 
casting 
 
Extruding 
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Cold rolling, 
drawing

     
     
     

Note: The ranges shown above are typical of the processes listed. Higher or lower values may be 
obtained under special conditions. 
 

Table 5.19: Surface roughness values produced by common 
production processes and materials. 

 Cut-off wavelength. The cut-off wavelength is used to distinguish 

roughness values and waviness values. Table 5.20 shows the suitable cut-

off wavelength for different manufacturing processes (Leach, 2001 [106]). 

 Cut-off wavelength (mm) 
Process 0.25 0.8 2.5 8.0 25.0 

Milling  √ √ √  
Turing  √ √   

Grinding √ √ √   

Shaping  √ √ √  
Boring  √ √ √  

Planning   √ √ √ 
Reaming  √ √   

Broaching  √ √   
Diamond boring √ √    

Diamond turning √ √    
Honing √ √    

Lapping √ √    
Super finishing √ √    

Buffing √ √    
Polishing √ √    

Electro discharge √ √    
Burnishing  √ √   

Drawing  √ √   

Extruding  √ √   
Moulding  √ √   

Electro polishing  √ √   

Table 5.20: Choice of cut-off wavelength for a number of common 
machining operations. 

The Tables 5.18, 5.19 and 5.20 become class categories “CriteriaOne”, 

“CriteriaTwo” and “CriteriaThree”. These three class categories can 

manage all inference information defined in Table 5.18, 5.19 and 5.20 and 

hold the inference methods. 

(3) Manufacturing process. In order to assist users in making final decisions 

after getting a set of suggested manufacturing processes through matrices and 

tables defined in the previous point,   a standard format is required to represent 

each manufacturing process. The PRIMA format defined by Swift and Booker 
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has been chosen to achieve this requirement. The PRIMA format is a 

deliberate standard format, which gives detailed information on the 

characteristics and capabilities of each process with specific headings 

including: material suitability, design considerations, quality issues, general 

economics and process fundamentals and variations. Therefore, in order to 

support the manufacturing process report rendered in the PRIMA format, a 

class category “ManufacturingProcess” was devised to record all information 

relating to a manufacturing process for PRIMA with following internal objects 

(Swift and Booker, 2003 [103]): 

 Process Description: an explanation of the fundamentals of the process 

together with a diagrammatic representation of its operation. (e.g. the 

drilling is a process that removal of material by chip processes using 

rotating tools of various types with two or more cutting edges to produce 

cylindrical holes in a workpiece) 

 Materials: describes the materials currently suitable for the given process 

(e.g. the materials suitable for the drilling process are all metals and some 

plastics and ceramics). 

 Process Variations: a description of any variations of the basic process 

and any special points related to those variations (e.g. wide ranges of 

cutting tool materials are available for the drilling process). 

 Economic Considerations: a list of several important points − production 

rate, minimum production quantity, tooling costs, labour costs, lead times 

and any other points which may be of specific relevance to the process (e.g. 

the tooling costs and finishing costs for the drilling process are low). 

 Typical Applications: a list of components and parts that have been 

successfully manufactured using the process (e.g. one of the typical 

applications for the drilling process is any component requiring cylindrical 

holes).  

 Design Aspects: any points, opportunities or limitations that are relevant to 

the design of the part as well as standard information on minimum section, 

size range and general configuration (e.g. flat-bottomed holes should be 

avoided for the drilling process). 

 Quality Issues: standard information includes a process capability chart, 
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surface roughness, as well as any information on possible faults, etc (e.g. 

surface roughness values ranging 0.4 – 12.5 µm Ra are obtainable for the 

drilling process).  

5.4.3 The Categorical Design Model Construction for Manufacture 

This section refines the six analysis classes determined in Section 5.4.2 by adding 

relationships and constraints between them. Based on the Figure 3.23 that shows the 

coequalizer construct for reasoning the suitable manufacture procedures, the diagram 

Figure 5.21 can be defined to model design classes involved in the Manufacture 

component in detail. 

 

Figure 5.21: The categorical object model for Manufacture component. 

Figure 5.21 shows a categorical object modelling diagram used to represent class 

categories and their relationships relating to the Manufacture component. This 

categorical object model contains a 5-ary relationship that specifies the criteria1, 

criteria2, criteria3 and PRIMA matrix are working together with “inference_engine” 

method to infer the suitable manufacturing processes. Besides managing inference 

rules defined in three criteria and the PRIMA matrix, the “inference_engine” also 
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contains an algorithm to calculate the weight of each suggested manufacturing process, 

see equation 5.1. 

W1 = μCriteria1(c) + μCriteria2(c) + μCriteria3(c) 

{c manufacturing processes set in VirtualGPS} (5.1) 

List 5.18: Equation 5.1. 

In equation 5.1, if a manufacturing process c can be got through criteria1, the 

μCriteria1(c) = 0.3, otherwise μCriteria1(c) = 0.0. The same result is applied to μCriteria2(c) 

and μCriteria3(c). The W1 indicates the weight value for a manufacturing process after 

inferred by criteria1, criteria2 and criteria3, which is an intersection value for 

μCriteria1(c), μCriteria2(c) and μCriteria3(c). For PRIMA matrix, the weight calculation is 

achieved by equation 5.2. 

W2 =σPRIMAMatrix(c) 

{c  manufacturing processes set in VirtualGPS} (5.2) 

List 5.19: Equation 5.2. 

In equation 5.2, if a manufacturing process c can be got through PRIMA matrix, the 

σPRIMAMatrix(c) = 0.5, otherwise σPRIMAMatrix(c) = 0.0. The Manufacture component 

considers five top weights for W1 and five top weights for W2 together to get final five 

top weight manufacturing processes that will be rendered to users initially. 

5.4.4 The Categorical Sequence Diagram Construction for Manufacture 

The sequence diagram in Manufacture is used to clarify the process to generate 

PRIMA reports for top five weight manufacturing processes is shown in Figure 5.22. 
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Figure 5.22: The sequence diagram for Manufacture component. 

Figure 5.22 further detail the reasoning process of Figure 3.23 through a set of 

sequential arrows.  

5.4.5 The Categorical Deployment Model Construction for Manufacture 

Based on the Figure 5.22, a deployment topological graph for Manufacture can be 

devised as shown in Figure 5.23. 

 

Figure 5.23: The deployment topological graph for Manufacture component. 

Figure 5.23 shows how to allocate difference design classes in the Manufacture 

component on computing resource nodes and how these design classes interacted with 
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other modules or components (e.g. Specification component) and the categorical 

DBMS. The inference engine in “ManufacturingProcessResultInterface” class 

category is responsible for inferring suitable manufacturing processes, calculating 

weight values and formatting them into PRIMA format for users.   

5.5 The Verification Component Design 

This section aims to provide a detailed discussion for the design of the Verification 

component, which focuses on discussing the knowledge acquisition and knowledge 

organization. The Verification component is used to determine the verification 

procedures: to select an appropriate measuring instrument for determining how to 

obtain the features from real surfaces; to suggest how to calculate the measured 

parameter value; and to compare the measured value with the tolerance value. 

5.5.1 The Categorical Business Map Construction for Verification 

A complete measurement procedure should contain: instrument chosen, partition, 

extraction, filtration, parameters to be calculated and comparison rule. For verification 

of a manufactured product, the following steps should be taken: 

(1) Getting a set of surface texture specifications for the manufactured product, 

which includes surface texture parameters and their tolerance values. 

(2) Choosing a suitable instrument to match the measuring requirements defined 

in specifications. 

(3) Calculating values for measured parameters generated by suggested filters. 

(4) Comparing measured values of suggested surface texture parameters with the 

tolerance values corresponding to these suggested surface texture parameters. 

Therefore, verification contains two parts: measurement procedure and comparison 

process. The Verification component in VirtualGPS system aims to cover these two 

parts: 

 Measurement procedure in the Verification component contains: defining 

traverse length, defining filtering technique, selecting measurement 

instruments. 

 Comparison process in the Verification component contains: defining 

comparison rules. 

The detailed software functions of Verification component can be summarised as 

follows: 

(1) Refer the measurement procedure definitions and contents. Users can obtain 
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the detailed explanation of each operation within the measurement procedure, 

such as the definition of traverse length, the sampling spacing and etc. 

(2) Generate a suitable measurement procedure, including traverse length, traverse 

direction, sampling length, cut-off wavelength of filters, filter type, instrument 

and comparison rule.  

(3) Infer suitable candidate measurement instruments for users. 

(4) Check detailed characteristics of candidate instruments. Users can carry out 

further comparison of suggested instruments and make a final decision. 

(5) Provide the comparison result after inputting both the measurand and the 

measured value. The system can calculate the result by using certain 

comparison rules and determine whether the surface is within the tolerance.  

(6) Further refer to the Function, the Specification and the Manufacture sub-

knowledge bases. The Verification component is connected with the others 

and users can easily traverse through them. 

Based on analysis above, the categorical business map for the Verification component 

can be built as Figure 5.24 shown. 

 

Figure 5.24: The business map for Verification component. 

The Figure 5.24 shows that the Verification component contains five use cases: 

“Instrument”, “Partition”, “Extraction”, “Filtration”, and “Measurand/measured 

values pairs”. 

5.5.2 The Categorical Analysis Model Construction for Verification 

The five use cases defined in Figure 5.24 are refined into class categories (analysis 

classes) in this section through following five points: 

(1) Partition. Since surface texture is influenced by the detailed form of the 

profile curve, the feature information needed for carrying out the partition 

must include the traverse length of the surface profile being evaluated and the 

traverse direction of the measurement instrument. The traverse length is the 

length of surface traversed by the measurement instrument and the traverse 
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direction is the direction traced by the measurement instrument during a 

measurement (Leach, 2001 [106]). The traverse direction should be 

perpendicular to the direction of the surface texture lay unless otherwise 

indicated. Therefore, the “Partition” class category defined in the 

Specification component (see Section 5.3.3) is also used in Verification, but 

adds the items of two other internal objects: traverse_length and 

traverse_direction. 

(2) Extraction. In the Verification component, lower limit, sampling spacing and 

sampling length are used to identify a finite number of measuring points from 

the surface. To obtain the lower limit, if no default value is indicated in 

Specification component, the Verification component will ask users to input 

values for lower limit. The sampling spacing is the width length between two 

adjacent measuring points on the surface, which can be obtained from ISO 

3274 according to the value of upper limit λc or lower limit λs (see Table 5.21) 

(ISO 3274,1996 [101]). 

λc 
mm 

λs 
μm 

Maximum sampling spacing 
μm 

0,08 
0,25 
0,8 
2,5 
8 

2,5 
2,5 
2,5 
8 

25 

0,5 
0,5 
0,5 
1,5 
5 

Table 5.21: Relationship between the roughness cut-off wavelength λc 
and maximum sampling spacing. 

Based on Table 5.21, the inference rule for setting default sampling spacing is 

represented as List 5. 20: 

RULE_NO 18 
IF  λc = 0.08  
THEN sampling_spacing  = 0.0005 
ELSE IF  λc = 0.25 
THEN sampling_spacing  = 0.0005 
ELSE IF  λc = 0.8 
THEN sampling_spacing  = 0.0005 
ELSE IF  λc = 2.5 
THEN sampling_spacing  = 0.0015 
ELSE IF  λc = 8 
THEN sampling_spacing  = 0.005 

List 5.20: Inference rule No.18. 

To obtain a sampling length: if no default value is indicated in the 

Specification component, the Verification component will ask users to 

provide values for sampling length (e.g. motif parameters do not use the 
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concept of sampling length). After capturing the knowledge above, the 

“Extraction” class category defined in Section 5.3.3 is also used in the 

Verification component. However, the “Extraction” class category is refined 

in Verification through adding an internal object “sampling_spacing” with an 

inference rule No.18. The inference rule No.18 is depicted in Figure 5.27 by 

adding a method arrow mapping from “low_limit” to “sampling_spacing” and 

this method arrow is optional. Other structures and inner- or inter-

relationships/inference rules of “Extraction” class category defined in the 

Specification component are preserved in the Verification component.  

(3) Filtration. In the verification stage, the filter type and cut-off wavelength are 

used for guiding users to separate the surface profile into a roughness profile 

and a waviness profile. The cut-off wavelength is used as a means of 

separating or filtering the wavelengths of a surface. The value of cut-off 

wavelength is equal to the upper limit defined in “Filtration”. Therefore, the 

“Filtration” class category defined in the Specification is also be used in the 

Verification with all inference rules and relationships preserved. For example, 

getting the default value for the cut-off wavelength is same as getting the 

default for the upper limit defined in Specification through using inference 

rules defined for upper limit (see Section 5.3.3). 

(4) Measurand/measured value pairs. The Measurand and value pairs are 

modelled using categorical object model as shown in Figure 3.22. Figure 3.22 

also shows how knowledge is structured and interacted in a comparison 

process. The detailed modelling of a measurement procedure can be referred 

in Section 3.6 of Chapter 3. 

(5) Instrument. Measurement of surface topography plays an important role in 

manufacturing, which is used for both control of manufacturing processes and 

for determining whether the final product is acceptable or not. More 

importantly, in the modern manufacturing industry, the measurement of 

surface topography can also help manufacturers improve their product designs. 

Different measurement procedures can be performed using different 

instruments which have different capabilities and limitations (ISO 13565-1, 

1996 [100]). There are three groups of instruments: 

 The stylus instruments. Stylus instruments are contact instruments, which 

use styluses as the central components of the probes. 
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 The optical instruments. Optical instruments use the optical probes, and 

involve projecting light on to a surface. They are non-contact instruments. 

 Other instruments that include the new generation of scanning microscopes 

such as the Scanning Electron Microscope (SEM), the Scanning 

Tunnelling Microscope (STM) and the Atomic Force Microscope (AFM) 

(Whitehouse,1997 [107]). They use scanning probes that utilize electrons 

rather than light. 

The instruments selection is required to match instrument attributes with 

measuring requirements. In real applications, the measurement range and 

resolution of different instruments are the most important factors that need to 

be considered.  The A-W diagram is used to help the selection of instruments 

by defining an amplitude-wavelength plot, see Figure 5.25. 

 

Figure 5.25: Selection of a measurement instrument. 

In Figure 5.25, the vertical axis represents the resolution while the lateral axis 

represents the range of the instruments. For example, the      symbol in Figure 

5.25 illustrates the Ra 3.3, the horizontal coordinate of which can be located 

by the sampling spacing, and the vertical coordinate can be located by the 

parameter value. In this case, after inferred by VirtualGPS system, the 

sampling space for Ra 3.3 is 1.5μm and the parameter value is 3.3 μm, so an 

A-W plot can be defined as (1.5 μm, 3.3 μm) in Figure 5.25. According to the 

A-W diagram, three instruments have the capability of carrying out the 

measurement for Ra 3.3: Stylus, Focus and SEM. After getting candidate 
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instruments from A-W diagram, the Verification component can provide a 

reference table (Table 5.22) for users to check the detailed characteristics of 

these candidate instruments. After which users can choose the most suitable 

instrument for the measurement (Whitehouse, 1997 [107]). 

Method 
Measurement 

tool 
Spatial 

resolution
Spatial 
range 

Z 
resolution

Range z
Frequenc

y 
Comment

s 

Stylus Stylus tip 0.1μm 100mm 0.3nm 1000μm 20Hz 
Contacts 
workpiece

Focus Optical probe 0.5μm 50mm 0.5nm 100μm  
Non-
contacting

Interfero
meter 

Optical probe 1μm 10mm 0.01nm 10μm minutes 
Non-
contacting

SEM Detection 0.01μm 1mm 2nm 10μm minutes 
Vacuum 
needed 

STM 
Conductive 

probe 
0.0001μm 0.1mm 0.001nm 0.1μm minutes 

Only for 
the 
conducting 
surfaces 

AFM Atom force tip 0.005μm 0.08mm 1nm 0.1μm minutes 

Both for 
conducting 
and non 
conducting 
surfaces 

Table 5.22: The characteristics for typical instruments. 

The system can also allow users to insert new instruments into the knowledge 

base of Verification. Users are required to add the new instruments with 

essential attributes: z resolution, z range, spatial resolution and spatial range. 

The system can automatically generate a new polygon on the A-W diagram 

for a new instrument according to its attributes, and insert a new row in the 

characteristics table for it as well. Therefore, based on the analysis above, a 

class category “Instrument” should be defined as Figure 5.26. 

Instrument

z_resolution

z_range

Spatial resolution

Spatial range
 

Figure 5.26: Categorical representation for “Instrument” class category. 
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5.5.3 The Categorical Design Model Construction for Verification 

This section refines five analysis classes determined in Section 5.5.2 through adding 

relationships and constraints between them (see Figure 5.27). Figure 5.27 shows a 

categorical object model for the Verification component which contains five class 

categories: “Partition”, “Extraction”, “Filtration”, “Instrument” and 

“ComparingSquare”. 

 

Figure 5.27: The categorical object model for Verification component. 

In Figure 5.27, the “λXC” is a 5-ary pullback relationship which is used to represent 

the organizing and rendering of knowledge such as instrument suggestions, comparing 

results, interfaces for inputting new instruments, and measured values based on five 

class categories. The arrow in dashed line with number (2) indicates an inference rule 

for determining A-W plot using sampling spacing and the value of a suggested surface 

texture parameter. This inference rule is represented as a pullback relationship in 

Figure 5.27. The arrow in dashed line with number (1) is a constraint to specify that 

the “traverse_length” in “Partition” should be greater than the “evaluation_length” in 

“Extraction”. The three pullback relationships in Figure 5.27 can be constructed in 

same way as pullback relationships defined for the Specification in Section 3.7.2. 
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Furthermore, according to the Figure 3.21 of Chapter 3, mirror relationships exist 

between Specification and Verification. Therefore, pullback relationships defined 

among “Partition”, “Extraction”, “Filtration”, “Comparison” and “Measurand” in 

Specification should also be preserved in Verification.  

5.5.4 The Categorical Sequence Diagram Construction for Verification 

The detailed explanation for constructing a sequence diagram for Verification is 

specified in Section 3.5.1 of Chapter 3. The “Comparison” class category contains 

comparison rules and their instructions that can be used to guide specific comparison 

processes. 

5.5.5 The Categorical Deployment Model Construction for Verification 

The detailed explanation for constructing a deployment topological graph for 

Verification is specified in Section 3.5.2 of Chapter 3. The 

“MeasurementProcedureManager” in Figure 3.19 is responsible for generating 

suitable measurement procedure reports for users. The measurement procedure reports 

are generated based on the mirror relationships of class categories in specification 

reports. 

5.6 Implementation of the VirtualGPS System 

This section starts with a brief explanation on tools and platform for implementation 

of the VirtualGPS system. It then moves on to demonstrate how to use XML DOM + 

XSLT to dynamically generate reports such as function report or manufacture report 

for users. This section concludes with a test case analysis to assess the design 

functions of the system. 

5.6.1 Tools and Platform for Developing the VirtualGPS  

As the VirtualGPS is a distributed Java project, the following tools are used in this 

project: 

 Java 2 SDK (Java for Software Developer Kit) in version 1.4.2.10. The Java 2 

SDK contains: Java Compiler, Java Virtual Machine, Java Class Libraries, 

Java AppletViewer, Java Debugger, and other tools, which supports compiling 

and running Java program on Microsoft Windows (Sun, 2007 [108]). 

 The Eclipse Platform in version 3.2. The Eclipse Platform is designed for 

building integrated development environments (IDEs). It can be used to create 

diverse end-to-end computing solutions for multiple execution environments 
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(Erickson and McIntyre, 2001 [109]). In this project, the Eclipse platform is 

used to help programmer in developing the VirtualGPS faster and easier. It can 

also benefit to organize different modules and software components of 

VirtualGPS in a unified framework. 

 Standard Widget Toolkit (SWT) plug-in for Eclipse − swt_win32.jar (Eclipse, 

2007 [110]). This plug-in is used to visually develop the graphic user 

interfaces.  

 JfreeChar.jar plug-in for Eclipse (JFreeChart, 2007 [111]). This plug-in is used 

to dynamically draw various charts and diagrams for the VirtualGPS system. 

The detailed introduction on how to set up a Java project using Eclipse can be found 

in tutorials published on the Eclipse official web site (Eclipse, 2005 [112]). 

5.6.2 XML/XSLT Reports 

In this project, XML is widely used in organizing various reports for users. XML was 

firstly defined in 1998 (XML 1.0) recommended by the World Wide Web Consortium 

(W3C) (Harold, 2002 [80]). At present, XML is the most widely used data interchange 

technique for holding structured data and controlling data communication. As XML is 

not designed to specify the rendering of data information as HTML did, XSLT is used 

to transform an XML file into another text-based form such as HTML pages that can 

be browsed on client screens. In order to generate a report, such as a function report in 

the VirtualGPS system, the following steps should be adopted: 

(1) Querying or inferring knowledge from VirtualGPS. 

(2) Formatting knowledge into XML files. The List 5.21 illustrates a XML file 

that is automatically generated by the system after querying function patterns 

from the categorical DBMS. 

<?xml-stylesheet type="text/xsl" href="functionPattern.xsl"?> 
  <root> 
    <surfaceTexture.FunctionPattern InternalId="16889"> 
    <id>3</id> 
   <patternid>pattern3</patternid> 
   <componentName>Cylinder Liner</componentName> 
   <context>The designers need to select the suitable specification for a surface in order 

to ensure the surface functions correctly. 
   </context> 
   <problem>Determination of the surface parameters to satisfy Pattern 2 - Functional 

performance of the surface. 
   </problem> 
   <solution>There are two basic approaches: 1. Establish Pattern  

4 - Functional correlation with texture parameters; 2.  First 
establish a stable surface generation process that produces acceptable 
surfaces and then Pattern 5 - Monitor for surface changes. 

   </solution> 
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  <forces>The functional correlation approach is superior in quality of results but is 
more expensive in time and cost to establish correlation and more 
sophisticated measuring equipment is required than establishing a stable 
surface generation process and monitoring for surface changes. 

   </forces> 
<example>The surface requirements for a cylinder liner on an engine block are that it 

needs to have a good bearing surface but also retain a reservoir of oil for 
lubrication.  1. The texture parameters Rk and friends have been shown to 
have a functional correlation with the desired surface tasks.  2. One 
approach for manufacture is with a plateau-honed surface. Rq &amp; Rsk 
can be used to monitor for surface changes. 

    </example> 
   <nextPattern>After the surface parameters selection, try Pattern 4 - Functional 

correlation and Pattern 5 - Monitor for surface changes. 
 </nextPattern> 

</surfaceTexture.FunctionPattern> 
</root> 

List 5.21: A function report in XML format. 

(3) Using XLST to transform XML into HTML. The List 5.22 illustrates a XLST 

file that is used to render function report based on patterns specified in Section 

3.7.1. 

<?xml version = "1.0"?> 
<!-- functionPattern1.xsl --> 
<!-- XSLT stylesheet for transforming content generated by --> 
<!-- GetProductServlet into XHTML--> 
<xsl:stylesheet version = "1.0" xmlns:xsl =  

"http://www.w3.org/1999/XSL/Transform"> 
 <xsl:output method = "xml" omit-xml-declaration = "no"  
     indent = "yes" doctype-system = "DTD/xhtml1-strict.dtd" 
     doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/> 
      
 <xsl:template match = "root"> 
  <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang = "en" lang = "en"> 
   <head>   
    <link rel = "StyleSheet" href = "CSS.css"/>   
    <title>Pattern 1(Surface Requirements)<xsl:value-of select  

="surfaceTexture.FunctionPattern/componentName"/> 
</title>     
  </head> 
 
  <body> 
   <div class="div3"> 
    <table border="2" cellpadding="0" cellspacing="0" class="table2" 
      bordercolorlight="#ffffff" bordercolordark="#ffffff"> 
     <tr> 
      <td  class="table3" bordercolorlight="#000000"  

bordercolordark="#ffffff" colspan="2"> 
       <p class="p1">=== Surface Requirements ===</p> 
      </td>                                      
     </tr> 
     <tr> 
      <td class="td12"><br/>Name: <xsl:value-of select =  

"surfaceTexture.FunctionPattern/componentNa 
me"/><br/><br/></td> </tr> 

………………… 
     <td class="td7"><br/><xsl:value-of select =  



 162

"surfaceTexture.FunctionPattern/nextPattern"/><br/><br/></td></tr>   
    </table> 
   </div> 
   <br/>   
  </body>   
 </html> 
</xsl:template> 
</xsl:stylesheet>  

 List 5.22: An example of XLST codes for the function report. 

The Figure 5.30 illustrates the final function report rendering for users. (See Section 

5.6.3) 

5.6.3 A Test Case Analysis for Cylinder Liner Design 

As mentioned in previous sections, the VirtualGPS system can be used by designers to 

design products, and by metrologists to verify the design specifications. This case 

study analyses and demonstrates the design process for a cylinder liner. A cylinder 

liner is one of the central working parts of a reciprocating engine, and it is the space in 

which a piston travels. The movement of a piston inside the cylinder can drive a 

vehicle moving. Normally, a piston moves inside each cylinder with several metal 

piston rings fitted around its outside surface in machined grooves —typically two for 

compressional sealing and one for oil sealing. They are commonly made of spring 

steel and have close contact with the hard walls of the cylinder bore, which rides on a 

thin layer of lubricating oil to prevent the engine from seizing up. The contact 

between the cylinder liner and its counterpart piston rings requires the cylinder to have 

a good bearing surface but also retain a reservoir of oil for lubrication. Furthermore, 

the space surrounded by the cylinder bore and piston rings need a tight seal to contain 

the compression of fuel and air mixtures.  

Among all the design features, the most important functional demands on the 

cylinder and piston rings are oil consumption, blow-by, and wear; especially at the 

top-dead centre (TDC). The surface texture parameters defined in the latest GPS 

standards have direct influences on the functional performance of the cylinder and 

piston. After performing a factorial designed experiment (FDE) where surface 

roughness was correlated to important functional performance indicators − oil 

consumption, wear, and blow-by, in a 10−litre truck engine, it was proved that ‘oil 

consumption’ is strongly correlated to the Rz parameter measured on the cylinder liner. 

The biggest influence on ‘blow-by’ is the Ra parameter measured on the piston rings 

with a negative variation. The ‘wear’ is also strongly correlated to the Ra value 

measured on the piston rings, followed by the Rz measured on the cylinder; both have 
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the same variation with the ‘wear’. 

To demonstrate the functionality and usage of the VirtualGPS system, the design 

of a cylinder liner is performed on the platform in the following steps: 

Step 1: launching the system. Figure 5.28 shows a snapshot of the main user entry 

of the VirtualGPS. 

 

Figure 5.28: The main user entry interface. 

Step 2: choose the “Surface Texture” button to enter the specific function page, in 

this case, the Surface Texture module interface. By activating the “Classic 

Components” menu on the menu bar, users can select the “Cylinder Liner” 

from the list and then move on to the “Design” sub-menu item. From here, 

users can enter the cylinder liner design process, which is consisted of four 

stages. Figure 5.29 shows the main user interface for the Surface Texture 

module. 
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Figure 5.29: The Surface Texture working page. 

Step 3: By double clicking the “Function” tree node on the Surface Texture page, 

a function analysis report is generated based on the calculation performed 

by the inference engine. It provides options for engineering designers with 

suitable surface parameters that match the required functional 

performances in the predefined patterns as shown below: 

Pattern 1 — Surface requirements 

For a cylinder liner on an engine block, the counterpart is the piston ring; 

the surface requirement is to maintain a good bearing surface while 

retaining a reservoir of oil for lubrication. 

Pattern 2 — Functional performance 

The most important functional demands in this case are correct oil 

consumption, blow-by, and wear especially at the top-dead centre (TDC).  

Pattern 3 — Surface parameters selection 

The texture parameters Rk and Rz have been shown to have a functional 

correlation with the desired surface tasks given in patterns 1&2. One 

option for the manufacturing process is to adopt a plateau-honed surface. 
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Rq & Rsk can be used to monitor for surface changes. 

Pattern 4 — Functional correlation 

The surface texture parameters Rk and Rz have been shown to have a 

functional correlation with the desired surface tasks. 

Pattern 6 — Suggestion of limit values 

According to the factorial designed experiment (FDE), when Rz of the 

cylinder increased, oil consumption, blow-up and wear all increased since 

they have the same variation. Therefore, the limit value of Rz is suggested 

at 4 µm in this case. 

 

Figure 5.30: An example of a function performance report. 

Figure 5.30 gives an example of a function analysis report generated in this 

case. It also provides a set of GPS matrices and function maps for users to 

adopt and refer to when making decisions on choosing surface texture 

parameters and their corresponding limited values (see Appendix F-J). 

Moreover, the Function component also provides an interface for users to 

add new cases based on the pattern language defined in this thesis, see 

Figure 5.31. 
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Figure 5.31: The new case inputting interface for users. 

Step 4: After retrieving the function analysis report, the next design stage will 

move on to the Specification component. It provides users the complete 

‘callout’ on drawing for the specific surface texture, defined by sampling 

length, evaluation length, bandwidth for the filter, and so on. Figure 5.32 

shows the output of this module for the cylinder liner with Rz defined at 4 

µm. 
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Figure 5.32: Output of a specification report. 

Step 5: After acquiring the detailed specification report, designers will enter the 

Manufacture component of the VirtualGPS system. The Manufacture 

component searches for appropriate manufacturing processes for users. 

Based on material types and quantity entered by designers, as well as  

texture lay and limit values calculated by the specification report, this 

component infers suitable manufacturing processes among several GPS 

matrices (e.g. manufacturing process PRIMA selection matrix) using a set 

of in-built inference rules. Figure 5.33 is an interface to allow users to 

input inference properties for the Manufacture component. 
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Figure 5.33: Inputs of the Manufacture component. 

In this case, after inputting material with the value of “steel” and limit 

value (tolerance value) of 0.004mm, the Manufacture component can 

generate a manufacturing process report for guiding users to choose 

suitable manufacturing processes, see Figure 5.34. 
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Figure 5.34: Output of a manufacture report. 

Step 6: The final design step uses the Verification component to find out suitable 

measurement information for the cylinder liner, which can include traverse 

length, sampling space, measuring instruments. Figure 5.35 shows the 

interface of the generated verification report. 
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Figure 5.35: Output of a verification report. 

In the verification phase, valid suggestions of accurate measurement 

instruments are very important. In this project, the so-called ‘A-W’ 

diagram is used to make this decision. As shown in Figure 5.36, the small 

triangle (“∆”) symbol in the figure represents an ‘A-W’ plot for parameter 

Rz 4 µm with sampling spacing 0.16mm. The user interface can also allow 

users to zoom in and out of the diagram to check details of the coordinate 

plot information. 
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Figure 5.36: Visual representation of an A-W diagram. 

The Figure 5.37 shows an output of a comparison process. 
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Figure 5.37: Output of a comparison result. 

5.7 Summary 

The entire VirtualGPS system is designed and implemented conforming to the 

Category Theory and the object-oriented programming rules. After the initial tests and 

analysis performance, it is evident that the system can facilitate the entire geometric 

product manufacturing lifecycle and benefit the manufacturers and engineers alike 

from function designs to manufacture and verification. Future work of this project 

aims at adding more task specific features to help GPS users to improve the design 

and manufacture geometrical products. A fuzzy logic-based inference engine has also 

been planned to improve the “intelligence” of the VirtualGPS. 
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CHAPTER 6 TESTS AND EVALUATIONS  

This chapter records in detail the tests and evaluations of the VirtualGPS system, 

which contains two main parts — categorical DBMS evaluation and the host system 

evaluation. The evaluations of such a categorical DBMS in this project were carried 

through comparing with other classic relational, object-relational and object-oriented 

DBMSs. Qualitative analysis was performed based on several selected evaluation 

cases. 

6.1 Tests and Evaluations on the Categorical DBMS 

In this section, selected test cases will be used to demonstrate and assess the 

categorical DBMS through comparison with other types of DBMSs. Based on the test 

results, critical evaluations will be performed to analyse the pros – and – cons of the 

categorical DBMS for the VirtualGPS system. 

6.1.1 Data Model Comparisons 

As the categorical DBMS developed in this research was based on the categorical 

object model, the first test at the evaluation stage had been focused on the comparison 

in between the categorical object model and the other two main stream data models 

widely used at present: the relational data model and the ODMG object model. 

Currently, there are around 40 commercial relational DBMS products developed by 

various vendors (e.g. Oracle, SQLServer and MySQL), which have been the 

dominating force in the database market for the last three decades. One of key factors 

contributing to the success of relational DBMSs is that they all share a formal and 

stable basis – the relational data model based on the Set Theory in mathematics. On 

the other hand, the current ODMG standard 3.0 adopted by most mainstream object-

oriented DBMSs such as Objectivity, Versant and ObjectStore, had suffered from the 

lack of a rigid mathematical definition and practical abilities in dealing with new and 

innovative data forms (Cattell et al., 2000 [20]). Table 6.1 demonstrates a comparison 

of these three data models in respect of their modelling capabilities and mathematical 

supports. 
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Relational data 

Model  
ODMG Object 

Model 
Categorical 

Object Model 

Modelling Capability 

Formal relationship structure 
(including n-ary) 

YES  
(Based on the 
Descartes in Set 
Theory) 

NO 

YES  
(Based on the 
product 
construct in 
Category 
Theory) 

Trees/Collections/Arrays  NO YES YES 
Inheritance NO YES YES 
Aggregation NO YES YES 
Multi-level mappings NO NO YES 
Object nests NO YES YES 

Mathematical Support 

Manipulations 

YES 
 (Based on set 
operations, 
algebra and 
calculus) 

NO 

YES  
(based on arrow 
mapping, arrow 
composition 
and functor 
composition) 

Methods/Dynamic 
Constraints 

NO 

YES  
(Based on Object 
Definition 
Language without 
mathematical 
support) 

YES  
(Based on 
method arrows)

Normalization 

YES  
(Based on 
functional 
dependency 
checking on sets) 

NO 

YES  
(Based on arrow 
composition 
checking on 
categories) 

Referential Integrity 
YES  
(Based on foreign 
key definitions) 

YES (Based on 
object identifiers) 

YES 
 (Based on 
initial internal 
objects of 
categories) 

Membership/cardinality 
YES  
(by labels) 

NO 
YES  
(by typing 
functors) 

Table 6.1:  Comparison of three data models. 

As highlighted in Table 6.1, the key features for the relational data model can be 

summarised as: a structure with a sound mathematical foundation that supports a clear 

and formal construct (“table”) for data modelling and it also provides a rigorous data 

manipulation mechanism based on the relational algebra and calculus on sets. 

However, it is relatively weak in modelling of complex object structures, especially 

when modelling multi-level constraints/mappings and object nests architecture. On the 

other hand, the key features for ODMG object model can be summarized as: the 



 175

ODMG object model has strong capability for modelling complex object structures, 

but lack of a formal mathematical foundation. So it is difficult to ensure the integrity 

and consistency of a database schema in an object model driven database when 

manipulations such as deletion, updating and adding occurred, which had been 

observed by database developers when designing “pure” object-oriented DBMSs. 

However, Table 6.1 shows the categorical object model can satisfy both objectives 

well − having sufficient capability for modelling complex object structures, especially 

in handling the multi-level constraints and mappings, while offering a rigorous 

mathematical foundation based on the Category Theory, similar to the Set Theory in a 

relational data model. The categorical object model provides a uniform way to model 

both static (attributes) and dynamic (methods) aspects of an object by using different 

types of arrows. In addition, it defines a manipulation language based on the functor 

mappings and compositions to ensure integrity and consistency of a database schema 

through diagram chase and algebraic deduction.  This is the rationale for devising an 

object-oriented DBMS based on the categorical object model to provide a stable and 

powerful foundation for the virtualGPS system. 

6.1.2 Test Case 1: Comparing with a Relational DBMS 

As stated in Section 2.2.2.4 of Chapter 2, relational DBMSs in general are relatively 

weak in dealing with many-to-many relationships and other complex nested and 

embedded structures. As a common practice, dynamic data structures such as lists, 

collections or other linked data structures are avoided in relational DBMSs. In this 

section, two examples derived from this project will be used to highlight why 

relational DBMSs were not adopted in this project. A classic relational DBMS − 

MySQL was chosen for this analysis. 

6.1.2.1 Operations on Object Nests 

This test was based on a simple object nest example to show the basic differences 

between the categorical DBMS and relational DBMSs.  Table 5.1 in Chapter 5 has 

provided guidance to link the surface requirements with functional performances. For 

example, if the surface requirements are two solid bodies in contact with a rolling 

motion between them, then the most important functional demands for the surface is 

the wear fatigue. As almost all relational DBMSs do not support object nests (table 

embedded), the data in Table 5.1 must be separated into several small tables (BCNF 

obeyed) and to be “glued” using foreign keys, which can be interpreted into MySQL 
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in following form: 

CREATE TABLE MECHANISMOFWEAR (Wear_ID char(5) NOT NULL, Name char(20), 
Important_Level char(20), Primary Key (Wear_ID)); 
CREATE TABLE RELATIVEMOTIONS (Motion_ID integer NOT NULL, Type char(10), 
Scheme blob NOT NULL, Primary Key(Motion_ID)); 
CREATE TABLE SURTOFUN (Element char (20) NOT NULL, Motion_ID integer, 
Type_Of_Wear char(20), Mechanism_of_wear char(5), Primary Key(Element), Foreign Key 
(Mechanism_of_wear) references MECHANISMOFWEAR (Wear_ID) AND (Motion_ID) 
references RELATIVEMOTIONS (Motion_ID)); 

List 6.1:  SQL code list for creating linked tables. 

Based on List 6.1 above, a query can be formed as “Print the most important 

surface functional demands for two solid bodies contacting with a sliding motion 

between them”: 

SELECT Element, RELATIVEMOTIONS.Type Relative_motions_type, 
 RELATIVEMOTIONS.Scheme Relative_motions_scheme, 
Type_of_wear, MECHANISMOFWEAR.Name mechanism_of_wear_name,  
MECHANISMOFWEAR.Important_level mechanism_of_wear_importantLevel 
FROM SURTOFUN, RELATIVEMOTIONS, MECHANISMOFWEAR 
WHERE ELement = “Solid body/Solid body” AND Motion_ID = { 
            SELECT Motion_ID FROM RELATIVEMOTIONS 
             WHERE Type = “Sliding” 
  } 
AND Mechanism_of_wear = { 
            SELECT Wear_ID FROM MECHANISMOFWEAR 
            WHERE Important_Level = “Most important” 
}; 

List 6.2:  SQL code list for querying linked tables. 

The results for this query operation can be displayed on screen by MySQL as Table 

6.2 shown: 

Element Relative 
_motions_
type 

Relative_ 
motions_scheme 

Type_of_we
ar 

mechanism_of
_wear_name 

mechanism_of
_wear_import
antLevel 

Solid 
body 
Solid 
body 

Sliding 

 

Sliding wear Adhesion Most important

Solid 
body 
Solid 
body 

Sliding 

 

Sliding wear Tribocorrosion Most important

Table 6.2: MySQL query results. 

In contrast, due to the object nest supporting, the Figure 6.1 demonstrates a 

categorical modelling of Table 5.1, which can be directly stored in the categorical 

DBMS. 
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Figure 6.1: A categorical object model for the linkage between surface 
requirements and functional performances. 

F1 and F2 are “faithful” functors which injects subclass categories — 

“RelativeMotion” and “MechanismOfWear” into a superclass category 

“SurfaceToFunction” while preserving their structures. The Figure 6.1 actually 

represents a tree structure that indicates a high-level aggregate category containing 

two lower-level sub-categories. Therefore, the class category “SurfaceToFunction” 

can be formed as in List 6.3: 

public class SurfaceToFunction { 
public Arrow interObjId_id; 
public Arrow interObjId_Element; 
public Arrow interObjId_RelativeMotion; 
public Arrow interObjId_TypeOfWear; 
public Arrow interObjId_MechanismOfWear; 

 
public void setArrows(Arrow interObjId_id, Arrow  

interObjId_RelativeMotion, Arrow  
interObjId_TypeOfWear, Arrow  
interObjId_MechanismOfWear){ 

           this.interObjId_id = interObjId_id; 
           this.interObjId_Element = interObjId_Element; 
           this.interObjId_RelativeMotion = interObjId_RelativeMotion; 
           this.interObjId_TypeOfWear = interObjId_TypeOfWear; 
          this.interObjId_MechanismOfWear =  

interObjId_MechanismOfWear; 
} 

    
public void setTargetForIdArrow(int id){ 

    this.interObjId_id.setTarget(Integer.valueOf(id)); 
}  

 
public void setTargetForRelativeMotionArrow(RelativeMotion 

                                                                             relativeMotion){ 
  this. interObjId_RelativeMotion.setTarget(relativeMotion); 

} 
 

public void setTargetForMechanismOfWearArrow(MechanismOfWear 
                                                                                   mechanismOfWear){ 
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   this. interObjId_MechanismOfWear.setTarget(mechanismOfWear); 
} 
…………  
//set and get methods for arrows   

} 

List 6.3:  Code list for “SurfaceToFunction” class category. 

The class categories “RelativeMotion” and “MechanismOfWear” can be defined in 

same way as the “SurfaceToFunction”. Therefore, a query can be formed as in List 6.4. 

query.constrain(RelativeMotion.class); 
query.descend("interObjId_Element").descend("target").constrain("Solid body/Solid body 
").and(query.descend("interObjId_RelativeMotion  
").descend("target").descend("interObjId_Type").descend("target").constrain("Slibing").and
(query.descend("interObjId_MechanismOfWear 
").descend("target").descend("interObjId_ImportantLevel").descend("target").constrain("mo
st important"); 

List 6.4:  Categorical query codes for the linkage between surface requirements 
and functional performances. 

The results are then displayed by the categorical DBMS as a hierarchical tree structure 

as Figure 6.2 demonstrated. 

 

Figure 6.2: The query result in tree structure. 

This innovative form for generating and displaying query results has enabled potential 

applications such as enable faster and safer database queries, prevent data corruption, 
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reduce table joins and provide simple integrity checking. Some important differences 

between the relational DBMSs and the categorical DBMS can be summarized as 

shown in Appendix K. 

6.1.2.2 Test on the Comparison Processes in Verification  

In the verification step, the VirtualGPS system users can verify the measured values of 

a product in accordance with tolerance values of GPS parameters suggested by the 

Specification component of the system. In order to support this function, the DBMS 

should have the ability to store the measurands, measured values, comparison related 

information and comparison results for further queries. A test case for testing this 

ability is defined at here: the surface texture knowledge base of the VirtualGPS 

system suggests that the measurand for a cylinder liner is the surface parameter Rz 

with a tolerance value of 4 µm. Table 6.3 lists the measured values of Rz calculated on 

a manufactured cylinder liner. 

Cylinder liner Rz (µm) 

No.1 3.245 

No.2 3.132 

No.3 3.675 

No.4 3.565 

No.5 3.175 

No.6 3.432 

Table 6.3: Surface parameter Rz calculated on a manufactured cylinder liner. 

The comparison information contains the comparison rule − “max-rule” (where the 

requirements specify a maximum value of the parameter, none of the measured values 

of the parameter over the entire surface can exceed the suggested tolerance value.), the 

measurement instrument (revolution, space), and the comparison result etc. By using 

the inference identifying square illustrated in Figure 3.22 and as well as the 

corresponding categorical sequence diagram in Figure 3.18, the knowledge generated 

from the comparison processes can be directly stored in the categocial DBMS. In 

Figure 3.22, F1 and F2 are functors mapping from the category 

“MeasurandForComparison” to the category “Value”. The σ is a natural 

transformation mapping from F1 to F2. The F1, F2 and σ form a natural transformation 

square in the form explained in Figure 3.4 of Chapter 3. The natural transformation σ 

should keep the diagram commuting as defined in the Category Theory, which means 

that two paths drawn from the values for domains of arrows in the source category 
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F1(dom(fi)) to the values for the codomains of arrows in the target category F2(cod(fi)) 

should be equal. In this case, a natural transformation square is used to link the 

suggested measurement pairs (from the GPS surface texture parameters to the 

tolerance values suggested by the specification part) to the measured pairs (from the 

measurands to the measured values) inputted by users. As mentioned earlier, Figure 

3.22 also contains a 2-ary product relationship structure between the natural 

transformation square and a class category “Comparison”. The “ComparisonResult” is 

a class category for storing all information generated from this relationship link (e.g. 

comparison result, resolution of measurement instrument, traverse range of 

measurement instrument, meansurands, and measured value). Keeping these multi-

level mappings intact in the database is very important, because it is useless to store 

only comparison results for verification without knowing the corresponding suggested 

measurement pairs and measured pairs. Using the instance categories of the 

“MeasurandForComparison”, “Value”, “Functor”, “NaturalTransformation” and 

“Comparison” as input of the verification inference rules (e.g. max-rule) in the 

VirtualGPS, the final comparison result together with related comparison information 

will be stored in the instance categories of the “ComparisonResult”. All arrow 

mappings, functor mappings, will be preserved and all constraints (e.g. the parameter 

type in source side of natural transformation σ must equal to target side) will be 

checked.  

To implement this case in a relational DBMS, the first problem is that it is 

impossible to store dynamic data structures in relational DBMSs. The data structures 

that are dynamic indicate their data size can grow and shrink while computing 

programs are running. Table 6.4 shows the performance differences between static 

and dynamic data structures. 

 Static Data Structures Dynamic Data Structures 
Data Size Size is fixed when declared Size is not fixed 

Storage efficiency 

Inefficient storage due to 
oversizing (e.g.  a partially full 
array, but space has been 
allocated for the full size) 

Efficient storage(e.g. space can 
be allocated as a partially full 
linked list required) 

Flexibility of update 

Inflexible(e.g. if one more value 
needs to be added overrunning 
the maximum size, the array 
needs to be redeclared and 
populated) 

Flexible(If one more value 
needs to be added overrunning 
the maximum size, the linked 
list increases automatically) 

Execution speed Fast at execution Slow at execution 

Table 6.4: Static vs. dynamic data structures. 
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It became obvious at the system design phase that dynamic data structures are much 

more suitable for holding data at runtime due to the unknown size of the measured 

values in advance. Hence, the ability for storing and retrieving dynamic data structures 

is an important feature for the system implementation. In the devised categorical 

DBMS, the class category “Value” that extends a dynamic data structure “CTTree” 

can be used to store an arbitrary size of measured values.  

The second problem is that the relational DBMSs are incapable of recording the 

natural transformation mappings in a traceable manner since they do not conform to 

the normalization rules, which will cause loss of constraints during a persistence test. 

6.1.2.3 Result Analysis 

Based on the experiments explained above, several advantages of the devised 

categorical DBMS over conventional relational DBMSs can be summarized as: 

 Uniform mapping from design to implementation. In the relational design 

stage, database developers model business applications in the form of E-R 

diagrams. Then when implemented, developers need to translate the E-R 

diagrams into “Table” based database schema based on Normal Form, primary 

key definitions and foreign key linkages, which is a time consuming and error 

prone process. In the categorical process, database developers only need to 

model business applications in the categorical object model forms and then 

directly store them in the categorical DBMS. 

 Novel support for the object nest (category nest) and multi-level mapping 

structures. Categorical DBMSs can directly store and retrieve nested objects 

without any extra hierarchical definitions on links. It also provides a visual 

tree structure to facilitate the display of nested objects (as shown in Figure 6.2), 

which is much clearer than table based results displayed in Table 6.2.  

 Supporting storage and retrieval of dynamic data structures. Also, categorical 

DBMS can store and retrieve dynamic objects computed through a method. 

  Simple query strategy with robust query closure. Queries from relational 

DBMSs are often cumbersome since the PSJ operations (Project, Select, Join) 

have to be called frequently to reconstruct objects. The categorical DBMS has 

avoided this drawback through implementing a more natural and robust 

querying mechanism. 

It has been observed during the aforementioned experiments, due to the clear and 
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logical mappings between applications and databases; natural representations of data 

structures and database results in fewer codes; and Java based garbage collector, the 

devised categorical DBMS is in average 10 times faster than an analogical mySQL 

product when processing a query operation. The system is also capable of updating or 

deleting an object nested more than 10 levels in any object hierarchical tree, as well as 

average 1/3 memory cost of traditional relational DBMSs when contain more than 

500k data in memory.  

6.1.3 Test Case 2: Comparing with a Object-relational DBMS 

This section examines the performance differences between the categorical DBMS 

and an object-relational system ─ P/FDM, a research development by the Object 

Database Group at the University of Aberdeen (Embury, 1995 [30]). The P/FDM is 

based on a functional data model using a hybrid DAPLEX and SICStus prolog query 

interface (Intelligent Systems Laboratory, 2006 [31]). The functional data model was 

formed by entities and functions mapping from entities to other entities. Both entities 

and functions are become tables in the P/FDM’s physical level.   The P/FDM contains 

three object-oriented extensions: 

 Entity nest 

 Entity Inheritance 

 Function can either be persistent relations or derived methods 

For storing functions in the database, the so-called “function table” in P/FDM was 

used, which can support none atomic columns (Table nests). To compare with the 

devised categorical DBMS, an example of using the P/FDM to implement the callout 

schema defined in the Specification module of the VirtualGPS had been carried out. 

The database schema definitions for the complete callout in the P/FDM are expressed 

in Appendix L. 

Figure 6.3 graphically shows this database schema in the functional data model 

form, which is an extension of E-R diagram for modelling object-relational DBMSs.  
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Figure 6.3: The functional data model for callouts generated by the P/FDM. 

After defining the entities and functions, the database can be populated with real 

data. Some snippet codes for populating callouts in P/FDM can be found in Appendix 

M. Appendix M contains a set of nested tables for realizing functions (e.g. function 

“default_determines”) and relationships (e.g. “bandwidth”). The query clause “Print 

the default semi-completed callout symbols for ‘Ra 3.3’ was then generated (without 

manufacture methods, direction and machine allowance)” in the internal P/FDM form 

as List 6.5: 

for each n0 in name such that name(n0)="Ra" 
for each p1 in p_type such that p1=determine(n0,"p") 
for each v2 in value such that value(v2)=3.3 
for each t3 in type_value such that types(t3)=p_type(p1) and range(t3)=range(v2) 
for each b4 in bandwidth such that b4=default_determines(t3) 
for each u5 in uplimit such that u5=has_uplimit(b4) 
for each b6 in bandwidth such that b6=b4 
for each l7 in lowlimit such that l7=has_lowlimit(b6) 
for each d8 in direction such that d_name(d8)="" 
for each f9 in f_type such that f_name(f9)="" 
for each t10 in t_type such that t_name(t10)="" 
for each n11 in num_cutoff such that n_name(n11)="" 
for each c12 in c_type such that c_name(c12)="" 
print(name(n0),p_type(p1),value(v2)," "," ",uplimit(u5),"  
",lowlimit(l7),direction(d8),f_type(f9),t_type(t10),num(n11),c_type(c12)); 

List 6.5:  P/FDM query clause for the callouts. 

 The query results are shown in Figure 6.4: 

 

Figure 6.4: Output for the semi-completed callout symbols from the P/FDM. 

The P/FDM DBMS also defines constraints for enabling integrity checks. For example: 

constrain each v in Value  to have value(v) <10.0  

List 6.6: Example for a constraint definition in the P/FDM. 
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Thus, values input by users for the “Value” entity can only be floating values less then 

10.0.  Further features of the P/FDM DBMS can be summarized: 

 All database entities are stored in tables with some of the tabular entries may 

have richer data structure ─ Abstract Data Types (ADTs). 

 Supports constraint definition. 

 Supports user defined data types and complex object query. 

 Query results of P/FDM are also table or tuple (row) formats, so query results 

can be stored back to the database to form further queries. 

The database schema definitions and populations for callouts in the categorical DBMS 

have been explained in Section 4.4.1. After instances of “Callout” class category have 

been populated by the initial query in the Section 4.4.1.5, the direct query clause for 

“Print the completed callout symbols for ‘Ra 3.3’ (without manufacture methods, 

direction and machine allowance)” in categorical DBMS can be generated as List 6.7: 

query.constrain(Callout.class); 
query.descend("interObjId_measurand_paraType").descend("target").constrain("Ra").and(q
uery.descend("interObjId_limitedValue").descend("target").constrain(3.3)); 

List 6.7: A direct query for callouts in the categorical DBMS. 

In summary of above discussions, the devised categorical DBMS has four main 

advantages over conventional object-relational DBMSs: 

 Although object-relational DBMSs and the categorical DBMS can both 

directly map data models into implementations, the data models for object-

relational DBMSs are still weak in terms of semantic supports. For example, 

the functional data model in the P/FDM does not have a structure like the 

“product” as in the categorical object model. Therefore, Figure 6.3 can only 

tell database programmers that the database entity “Callout” is a relationship 

entity generated by linking the “Feature”, “Tolerance” and “Comparule” 

without indicating what the real information should be held in the database 

entity “Callout”. This also leads to the situation where the P/FDM can not 

support direct query on the “Callout” entity as the categorical DBMS did in 

this section. In the categorical DBMS, with the product construct, the 

relationship category “Callout” can be defined clearly in advance with all the 

essential information in respect of constraints, so an initial query (see Section 

4.4.1.5) can be devised to populate instances for “Callout”, and then the query 

results can be stored back for a direct query on the “Callout” as illustrated in 
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this section.  

 By Comparing Figure 3.30 and Figure 6.3, it is clear that the callout schema 

modelled in the categorical object model is much clearer and simpler than that 

is in a functional data model. The functional data model extends the relational 

data model with some object-oriented features such as inheritance and entity 

nests, but is largely behavioring in a relational manner, for instance: 

1) Objects need to be identified by primary keys. Foreign keys are used to 

link with other entities. Moreover, the entity nests are achieved in form of 

key nests. 

2) Relationship functions are used to define relations, which supports many 

to many relationships and entity nests. However, they are also based on 

key or key nests. 

 Although object-relational DBMSs such as the P/FDM support 

method/behaviours, they are incapable of supporting dynamic methods. The 

so-called “method” in the P/FDM still carries heavy overhead. For example, 

database application developers need to populate every function with all its 

possible inputs and all possible outputs in advance (e.g. function 

“default_determines”), which is a heavy overhead and error prone process. In 

addition, in order to obtain the default roughness sampling length based on the 

recommended surface parameters, the inference rules explained in table 5.6, 

5.7, 5.8, 5.9 and 5.10 of Chapter 5 will need to be applied. For keeping sound 

encapsulation of application objects and simplifying business logics in an 

application, the best solution is to define those rules as dynamic methods in 

corresponding application objects, which is beyond reach of the P/FDM and 

other object-relational DBMSs. 

 As suffered by other object-relational DBMSs, the P/FDM is also weak in 

dealing with relationship or constraints crossing multiple levels, which only in 

favour of the flat functions in a single level as defined in the Set Theory.  

6.1.4 Comparing with an Object-oriented DBMS 

The main problem for other “pure” object-oriented DBMSs, such as DB4O, in 

implementation of the test case discussed in Section 6.1.2.2 is that they can not 

support the categorical object model directly. Different database application 

developers could end with totally different approaches to define classes, which cause 
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great difficulties for code reusability and modularized design. Misunderstandings can 

easily occur in between GPS knowledge base designers and the database application 

developers, as objects in a database are very different from objects in an actual 

application. Due to the absence of the multi-level mapping constructs in most of the 

conventional object-oriented DBMSs, the multi-level relationships and constraints 

will be largely missed out during persistence tests. A classic usage of object-oriented 

DBMSs is to directly merge one class into another class to form a relationship 

between these two classes, which causes the following problems: 

 Lack of a rigorous class definition for holding the information generated from 

the relationship linkage. Hence, queries for the relationship information are 

difficult to form. The query closure also becomes difficult due to the lack of a 

formal relationship structure. 

  It is difficult to check the cardinality and membership for a relationship. This 

also leads to the unnecessary complexity for updating or deleting objects 

involved in a relationship from the database. 

 The BCNF normalization rule violation. 

Table 6.5 gives a summary of performance differences between the devised 

categorical DBMS and the object-oriented DBMSs 

 Categrical DBMS 
Object-Oriented 

DBMS 

Structures 
Formal relationship structure (including n-
ary) 

YES NO 

Trees/Collections/Arrays  YES YES 
Inheritance YES YES 
Aggregation YES YES 
Multi-level represenation YES NO 
Rules 

Normalization Support 
YES(without  atomicity rule 

of 1NF) 
NO 

Referential Integrity YES NO 
Membership YES(by typing functors) YES(by labels) 
Manipulation 

Algebra/Calculus 

YES(based on arrow 
mapping, arrow composition 

and functor composition 
NO 

Declarative Query YES YES 
Closure YES NO 
View YES NO 
Methods YES YES 

Table 6.5: A Comparison between the categorical DBMS and the object-oriented 
DBMSs. 
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Based on Table 6.5, the realized extensions of the devised categorical DBMS and its 

advantages can be summarized as: 

 An innovative categorical object model.  

 A distinct mechanism for dealing with multi-level architecture. 

 A manipulation language with the intrinsic query closure capability.  

 An integrity checking mechanism in both intra and inter category levels.  

The detailed discussions on the four points above can be found in Section 7.1.2 of 

Chapter 7. During the system test and performance evaluation, it was observed that 

the main shortcoming of the current categorical DBMS is its heavy dependency on the 

Java language. Although greatly simplified the development cycle, database 

application developers adopting the categorical DBMS must possess sound knowledge 

in Java programming. Researcheres in this project try to devise an Object Definition 

Language (ODL) that is independent of any real programming languages based on the 

ODMG standard 3.0 to alleviate this shortcoming. This work is ongoing. The 

categorical DBMS is not intended to support more database concepts than other 

DBMSs. Rather it aimed at and successfully achieved to provide a formal 

mathematical basis for modern object-oriented DBMSs. It formed the backbone for 

fully supporting the design and implementation requirements of the VirtualGPS in 

Java.  

6.2 Evaluation of the VirtualGPS System 

During past three decades, various computer aided manufacturing software system 

have been developed to benefit the broader product ranges, shorter model lifetimes, 

and the ability to process orders in arbitrary lot sizes in global distributed areas, that 

are common in modern industry. In general, the major software systems at present 

have three shortcomings: 

 The functionality features such as product function specifications, the 

suggestions of surface properties, the related verification principles, measuring 

equipment selections, and the measurement traceability mechanism are often 

largely ignored in current software systems. 

 The current systems rely on ambiguous dimensioning and tolerancing practices 

based on the nominal model methodology and geometry theory. The powers of 

GPS standards are not fully applied in these systems. 

 The current systems have limited ability to provide documentation and storage 
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mechanisms. Therefore, it is difficult for users to perform systematic 

measurement analysis or to store relevant knowledge for further 

communications.  

Hence, the VirtualGPS system can be used to remedy the above functionality 

shortcomings by using the universal GPS standards and Category Theory. 

6.3 Summary 

This chapter provided detailed discussions on the tests and evaluations carried out on 

the categorical DBMS and VirtualGPS system. The categorical DBMS forms the 

foundation and served as a core module for the VirtualGPS system. The devised 

prototype in this project has proven the feasibility and advantages of the Category 

Theory based modelling. Although the devised categorical DBMS is still falling short 

of a fully-fledged DBMS compared with other commercial DBMSs, it has been 

clearily demonstrated that the categorical DBMS is capable of storing and managing 

complex data structures inherited from contemporary GPS standards and is also ideal 

for providing data consistency when generating database schema. The final part of the 

evaluation exercises in this project shows that the VirtualGPS system can provide 

distinctive functional sets in supporting product function specification, surface 

property description, and verification principle recommendation etc., backed up by 

formal documentation mechansims. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the outcomes from the project and highlights the 

contribution to knowledge in the relevant research domains, which were detailed in 

previous chapters. Further works on the VirtualGPS are also discussed at the end. 

7.1 The Summary of Contributions 

7.1.1 A Categorical Modelling Mechanism for Knowledge-based Systems 

The first main contribution of this project is the production of an innovative and 

efficient graph-based categorical modelling mechanism. This categorical modelling 

mechanism contains three components: a categorical object model, a categorical 

software design process and an inference identifying square. Based on those, the 

categorical modelling mechanism has provided a highly unified and abstract 

modelling approach for handling all aspects relating to a knowledge-based system 

design. The following sub-sections conclude the each individual component. 

7.1.1.1 The Categorical Object Model 

The categorical object model was developed to model both the application domain 

knowledge and the database schemas with six distinctive advantages over other 

conventional data models: 

 The multi-level mappings defined in the Category Theory enabled the 

categorical object model to handle the multi-level features of knowledge 

structures and database schemas with ease. For example, the natural 

transformation square discussed in Section 3.6 is difficult to be represented in 

the Set Theory. 

 The diagrammatical notations of the Category Theory provide designers with a 

high-level abstraction view on system architectures, knowledge structures and 

database schemas. 

 Different types of arrows (e.g. method arrows, functional dependency arrows 

and functors) provide a powerful and unified style for natural modelling of 

both dynamic (methods, operations, inferences) and static (attributes, 

properties, classes) aspects of the knowledge and database schemas. 

 The typing mechanism of the categorical object model allows the assignment 

of types to all instance categories and arrows, which ensures the consistency 

and robustness for implementions. 
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 It has provided a formal refinement mechanism. 

 The diagram chase and algebra deducing abilities of the categorical object 

model ensures the integrity of a knowledge base or a database schema as well 

as assisting version management. 

These six advantages listed above demonstrated that the categorical object model 

is suitable for acquiring and modelling complex structured knowledge with a unique 

and powerful set of inference rules to support its operations. 

7.1.1.2 The Categorical Software Design Process 

A categorical software design process was devised in this project based on the 

Category Theory. It can facilitate software engineers to design and implement the 

entire system architecture in a well defined framework. This design process is an 

incremental and refineable one formed by five stages: the categorical business map 

design, the categorical analysis model design, the categorical design model design, the 

categorical sequence diagram design, and the categorical deployment model design. 

This design process provides a set of standard procedures for engineers to carry out 

the design and implement tasks for a knowledge-based system: analysing and 

gathering user requirements; acquiring knowledge from user requirements and other 

references (e.g. GPS standards for this project); organizing knowledge in the forms of 

class categories or relationship categories for forming the knowledge base; refining 

these class and relationship categories to identify inference rules for generating new 

knowledge; building the sequence diagrams to define category interactions and 

communications; and deploying these categories on the targeted computing resources 

to carry out implementations. 

7.1.1.3 The Inference identifying Square 

The inference identifying square is defined by using the natural transformation and 

coequalizer constructs of Category Theory. It is used to identify inference rules based 

on existing knowledge, and to specify how inference properties are interacted with 

inference rules in detail. 

7.1.2 The Categorical DBMS 

The second main contribution of this project is the development of a categorical 

DBMS. This categorical DBMS is developed based on the aforementioned categorical 

object model. Compared with traditional relational DBMSs, the categorical DBMS 

has strong capabilities in dealing with complex object structures especially for 
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modelling multi-level mapping constraints. Therefore, dynamic data structures and 

complex structured knowledge modelled in the knowledge base of VirtualGPS can be 

directly stored and queried without the need to grogram any mapping codes between 

the data in the database and the data in the application. Furthermore, all arrow and 

functor mappings, will be preserved and all constraints (e.g. the parameter type in 

source side of natural transformation σ must equal to target side in Figure 3.22) will 

be checked when storing or updating data. On comparison with other conventional 

object-oriented DBMSs, the advantages of the categorical DBMS are highlighted as 

follows: 

 An innovative categorical object model that can map complex object structures 

into mathematical formulae in Category Theory. It enables algebra and 

calculus defined in the Category Theory to be used as a formal and rigorous 

mathematical foundation for ensuring integrity of database schema. 

 The categorical object model is powerful and flexible in representing the 

multi-level architectures, which allows advanced constraint specifications and 

good extensibility of database schemas to be realized in an application. 

 The algebra and calculus such as arrow composition, arrow mapping, functor 

composition and functor mapping can be used as the basis for implementing a 

manipulation language with the intrinsic query closure capability. This 

solution tackled the problem of the lack of a formal manipulation language 

faced by current object-oriented DBMSs.  

 The categorical DBMS has a robust integrity checking mechanism at both the 

intra- and inter- category levels. Thus, BCNF normal form and referential 

integrity can be maintained throughout database schemas. 

7.1.3 The VirtualGPS Knowledge-based System 

The third main contribution of this project is the development of a prototype for the 

VirtualGPS system to enable theoritical and practical tests and evaluations. Taking 

surface texture as an example, the Surface Texture module contains four components 

(sub-knowledge base): Function, Specification, Manufacture and Verification: 

 The Function component can help users to select surface texture parameters 

with tolerance values according to functional requirements. Currently, this 

selection is inferred based on cases (e.g. cylinder liner and total hip 

replacement). It also provides an open and modularized platform for engineers 
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or designers to add their own specific cases complying with a specific pattern 

language format. This pattern language is also tested against and conforming 

to the Category Theory (see Section 3.7.1 in Chapter 3). 

 The Specification component can provide a complete geometrical specification 

for any suggested parameters in the Function component. The detailed 

introduction of each symbol in a complete geometrical specification can also 

be reviewed using the Specification component. 

 The Manufacture component contains a rating and ranking inference engine 

for locating and retrieving any GPS-recommended manufacturing processes 

and equipments. The relationships between the manufacturing processes and 

the surface texture parameters can be analyzed. An inputting interface also 

provides users an input channel for adding new manufacturing processes in the 

PRIMA forms. 

 The Verification component contains an inference engine for determining the 

verification procedures: selecting an appropriate measuring instrument for 

determining how to obtain the features from a real surface; suggesting 

algorithms to calculate the measured parameter values; and comparing the 

measured values with the recommended tolerance values. 

Every component disscussed above can generate a XML report for 

communications and archiving. This system can also be customized into a piece of 

training software for helping users to understand and apply the GPS standards in their 

daily working activities. 

7.2 Future Works 

Based on project reviews and system evaluations detailed in Chapter 6, some future 

works to the VirtualGPS system are listed below: 

(1) Applying more comprehensively advanced notations and constructs defined in 

the Category Theory to elaborate the categorical modelling mechanism 

devised in this project. For example, the advanced diagram injection can be 

used in the category refinement operations and the ‘monads’ can be use as 

states for I/O systems (Gordon and Hammond, 1995 [113]). 

(2) Adding more domain knowledge into the VirtualGPS system. This mainly 

includes works concerning three aspects: 

 To incorporate more cases into the Function component.  
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 To incorporate more matrices into the Manufacture component for 

inferring manufacturing processes based on specifications and other 

inference properties such as quantity and material.  

 To incorporate knowledge for the calibration and uncertainties into the 

Verification component to allow the generation of a complete 

measurement process with more measurement instruments. 

These goals can be achieved by: continuously enriching GPS standards; 

continuously acquiring knowledge from experts’ publications; continuously 

gathering new knowledge from virtualGPS system users. As stated in previous 

Chapters, the current VirtulGPS has limited capability for inferring new 

knowledge based only on existing cases and defined rules. However, once 

equipped with enough GPS knowledge, it will be able to reason broadly over 

the entire field of GPS through applying more advanced inference engines 

based on fuzzy logic. 

(3) Another major development anticipated for the system is to build a portal 

interface to directly hook this system to other Computer Aided Design (CAD) 

systems. Thus, the knowledge stored in the VirtualGPS system can be 

transferred and applied in forming technical drawing pictures automatically. 

For example, the complete callout can be automatically drawn in an AutoCAD 

as illustrated in Figure 7.1 demonstrated.   

 

Figure 7.1: The callout on technical drawing in the autoCAD. 

7.3 Finally 

In short, it is envisaged that the research and development outcomes from this project 

will contribute the wider and better adoption of current GPS standards. It is also hoped 

that the VirtualGPS system will be developed further to handle more complex GPS 

knowledge inferences to link closer with real world manufactures alike. 
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APPENDIX A – CODE LIST FOR “MEASURAND” CLASS 
CATEGORY 

 
import cpt.ctdb.dataModel.*; 
public class Measurand extends Category{ 
  

public Arrow interObjId_id; 
        public Arrow interObjId_tolerance_type; 

 public Arrow interObjId_parameter_type; 
       public Arrow interObjId_parameter_name; 
      public Arrow interObjId_machine_allowance; 
  public Arrow interObjId_parameterExtends;     
  

public void setArrows(Arrow interObjId_id, Arrow  
interObjId_tolerance_type, Arrow interObjId_parameter_type, Arrow  
interObjId_parameter_name, Arrow interObjId_machine_allowance,  
Arrow interObjId_parameterExtends){ 

       this.interObjId_id= interObjId_id; 
       this.interObjId_tolerance_type = interObjId_tolerance_type; 
       this.interObjId_parameter_type = interObjId_parameter_type; 
       this.interObjId_parameter_name = interObjId_parameter_name; 
       this.interObjId_machine_allowance =  

interObjId_machine_allowance; 
      this.interObjId_parameterExtends = interObjId_parameterExtends; 
    } 
   
    public void setTargetForIdArrow(int id){ 
  this.interObjId_id.setTarget(Integer.valueOf(id)); 
    } 
  
    public void setTargetForTolerTypeArrow(String tolerance_type){ 
  //inference rules for setting the default tolerance type.   

 }  
  

public void setTargetForParaTypAndparaNameArrow(String  
parameter_type){ 

//inference rules for setting the default parameter type and parameter  
//name. 

} 
  

 public String setTargetForparameterExtendsArrow(double value){ 
   //inference rules for setting the parameter extends according to    
           //user inputted parameter value. 

} 
  

 public Arrow getIdArrow(){ 
  return this.interObjId_id; 
     } 
   
     public Arrow getTolerTypeArrow(){ 
   return this.interObjId_tolerance_type; 
     } 
  
     public Arrow getParaTypeArrow(){ 
   return this.interObjId_parameter_type; 
     } 
  
     public Arrow getParaNameArrow(){ 
   return this.interObjId_parameter_name; 
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 } 
  
     public Arrow getParaExtendArrow(){ 
   return this.interObjId_parameterExtends; 

 } 
  
     public Arrow getMachineAllowArrow(){ 
   return this.interObjId_machine_allowance; 
     } 
  

public String toString(){   
return ("Measurand   
["+((Integer)getIdArrow().getTarget()).intValue()+"]:  
tolerance_type="+((String)getTolerTypeArrow().getTarget())+"  
parameter_type="+((String)getParaTypeArrow().getTarget())+"  
parameter_name="+((String)getParaNameArrow().getTarget())+"  
parameter_value_extend="+((String)getParaExtendArrow().getTarget 
())+"  
machine_allowance="+((Double)getMachineAllowArrow().getTarget( 
))).toString(); 

} 
} 
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APPENDIX B – CODE LIST FOR “CALLOUT” CLASS 
CATEGORY 

 
import cpt.ctdb.dataModel.Arrow; 
import cpt.ctdb.dataModel.RelationConstraint; 
public class Callout extends PersistCategory { 
  

 public Arrow interObjId_id; 
       public Arrow interObjId_partition_dirSym; 
       public Arrow interObjId_partition_manuTypSym; 
       public Arrow interObjId_partition_manuMethod; 
      public Arrow interObjId_extraction_numCutOff; 

public Arrow interObjId_extraction_sampLength; 
 public Arrow interObjId_extraction_evaLength; 
 public Arrow interObjId_filtration_filterType; 

     public Arrow interObjId_filtration_upLimit; 
 public Arrow interObjId_filtration_lowLimit; 

     public Arrow interObjId_measurand_tolerType; 
     public Arrow interObjId_measurand_paraType; 
     public Arrow interObjId_measurand_machineAllow; 
    public Arrow interObjId_measurand_paraExtends; 
    public Arrow interObjId_limitedValue; 
  
  
   public void setArrows(Arrow interObjId_id, Arrow  

interObjId_partition_dirSym, Arrow interObjId_partition_manuTypSym,  
Arrow interObjId_partition_manuMethod, Arrow  
interObjId_extraction_numCutOff, Arrow  
interObjId_extraction_sampLength, Arrow  
interObjId_extraction_evaLength, Arrow  
interObjId_filtration_FilterType, Arrow interObjId_filtration_upLimit,  
Arrow interObjId_filtration_lowLimit, Arrow  
interObjId_measurand_tolerType, Arrow  
interObjId_measurand_paraType, Arrow  
interObjId_measurand_machineAllow, Arrow interObjId_limitedValue,  
Arrow interObjId_measurand_paraExtends){ 

        this.interObjId_id= interObjId_id; 
        this.interObjId_partition_dirSym = interObjId_partition_dirSym; 
       this.interObjId_partition_manuTypSym = 

 interObjId_partition_manuTypSym; 
      this.interObjId_partition_manuMethod = 

 interObjId_partition_manuMethod; 
      this.interObjId_extraction_numCutOff =  

interObjId_extraction_numCutOff; 
      this.interObjId_extraction_sampLength = 

 interObjId_extraction_sampLength; 
     this.interObjId_extraction_evaLength = interObjId_extraction_evaLength; 
     this.interObjId_filtration_filterType = interObjId_filtration_FilterType; 
        

this.interObjId_filtration_upLimit = interObjId_filtration_upLimit; 
     this.interObjId_filtration_lowLimit =  interObjId_filtration_lowLimit; 
    this.interObjId_measurand_tolerType = interObjId_measurand_tolerType; 
    this.interObjId_measurand_paraType = interObjId_measurand_paraType; 

this.interObjId_measurand_machineAllow = 
 interObjId_measurand_machineAllow; 

    this.interObjId_limitedValue = interObjId_limitedValue; 
this.interObjId_measurand_paraExtends = 

 interObjId_measurand_paraExtends; 
    } 
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   public void setTargetForIdArrow(int id){ 
  this.interObjId_id.setTarget(Integer.valueOf(id)); 
   }  
  
   public void setTargetForPartitionDirSymArrow(String direction_symbol){ 
  this.interObjId_partition_dirSym.setTarget(direction_symbol); 
 } 

  
 public void setTargetForPartitionmanuTypSymArrow(String   

                                                                           manufacture_type_symbol){
 this.interObjId_partition_manuTypSym.setTarget(manufacture_type_sy 

mbol); 
    } 
  

 public void setTargetForPartitionmanuMethodArrow(String  
                                                                                   manufacture_method){ 

this.interObjId_partition_manuMethod.setTarget(manufacture_method); 
 } 

  
 public void setTargetForExtractionNumCutOffArrow(Integer num_cutOff){ 

 this.interObjId_extraction_numCutOff.setTarget(num_cutOff); 
   } 
  
   public void setTargetForExtractionSampLengthArrow(Double  
                                                                                            sampling_length){ 
 this.interObjId_extraction_sampLength.setTarget(sampling_length); 
   } 
  
 public void setTargetForExtractionEvaLengthArrow(Double   

                                                                                      evaluation_Length){ 
  this.interObjId_extraction_evaLength.setTarget(evaluation_Length); 
  } 
  
   public void setTargetForFiltrationFilterTypeArrow(String filter_type){ 
 this.interObjId_filtration_upLimit.setTarget(filter_type); 
   } 
  
   public void setTargetForFiltrationUpLimitArrow(Double up_limit){ 
  this.interObjId_filtration_upLimit.setTarget(up_limit); 

} 
  
   public void setTargetForFiltrationLowLimitArrow(Double low_limit){ 
  this.interObjId_filtration_lowLimit.setTarget(low_limit); 
 } 

  
   public void setTargetForMeasurandTolerTypeArrow(String  

tolerance_type){ 
 this.interObjId_measurand_tolerType .setTarget(tolerance_type); 
} 

  
 public void setTargetForMeasurandParaTypeArrow(String  

parameter_type){ 
this.interObjId_measurand_paraType.setTarget(parameter_type); 

 } 
  
 public void setTargetForMeasurandMachineAllowArrow(Double  

                                                                                         machine_allowance){ 
 this.interObjId_measurand_machineAllow.setTarget(machine_allowan 

ce); 
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}  
 
  public void setTargetForlimitedValueArrow(double limitedValue){    

this.interObjId_limitedValue.setTarget(Double.valueOf(limitedValue)); 
} 

  
  public Arrow getIDArrow(){ 

 return this.interObjId_id; 
}  

  
public Arrow getPartitionDirSymArrow(){ 

 return this.interObjId_partition_dirSym; 
} 

  
   public Arrow getPartitionManuMethodArrow(){ 
 return this.interObjId_partition_manuTypSym; 
   } 
  
   public Arrow getPartitionManuTypSymArrow(){ 
 return this.interObjId_partition_manuMethod; 
} 

  
public Arrow getExtractionNumCutOffArrow(){ 

 return this.interObjId_extraction_numCutOff; 
   } 
  
public Arrow getExtractionSampLengthArrow(){ 

 return this.interObjId_extraction_sampLength; 
} 

  
   public Arrow getExtractionEvaLengthArrow(){ 
  return this.interObjId_extraction_evaLength; 
 } 

  
public Arrow getFiltrationFilterTypeArrow(){ 

 return this.interObjId_filtration_filterType; 
} 

  
………… 

  
   public Arrow getMeasurandTolerTypeArrow(){ 
 return this.interObjId_measurand_tolerType; 
}  

  
public Arrow getMeasurandParaTypeArrow(){ 

 return this.interObjId_measurand_paraType; 
}  

  
   public Arrow getMeasurandMachineAllowArrow(){ 
 return this.interObjId_measurand_machineAllow; 
   }  
  
   public Arrow getMeasurandLimitValueArrow(){ 
 return this.interObjId_limitedValue; 
   } 
  
public String toString(){ 

               ……………… 
  } 

}  
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APPENDIX C – CODE LIST FOR 
“PRODUCTFORCALLOUT” CLASS CATEGORY 

 
package surfaceTexture; 
 
      import cpt.ctdb.dataModel.*; 
      public class ProductForCallout extends Product{ 
     public Arrow interObjId_id; 
     Functor calloutToMeasurand; 
     Functor calloutToExtraction; 
     Functor calloutToFiltration; 
     Functor calloutToPartition; 
  
     public void setFunctors(Functor calloutToMeasurand, Functor  

calloutToExtraction, Functor calloutToFiltration, Functor  
calloutToPartition){ 

               this.calloutToMeasurand= calloutToMeasurand; 
               this.calloutToExtraction = calloutToExtraction; 
               this.calloutToFiltration = calloutToFiltration; 
               this.calloutToPartition = calloutToPartition; 
             } 
  
            public void setTargetForIdArrow(int id){ 
          this.interObjId_id.setTarget(Integer.valueOf(id)); 
            } 
     
           public Arrow getIdArrow(){ 
         return this.interObjId_id; 
           } 
     
           public Functor getCalloutToMeasurand(){ 
        return this.calloutToMeasurand; 
           } 
     
          public Functor getCalloutToExtraction(){ 
        return this.calloutToExtraction; 
          } 
     
         public Functor getCalloutToFiltration(){ 
        return this.calloutToFiltration; 
         } 
     
         public Functor getCalloutToPartition(){ 
        return this.calloutToPartition; 
         } 
 
         public boolean checkMonomorphismForMeasurand(){ 
          CTDBObjectSet result = getAllInstances(Measurand.class); 
            CTDBObjectSet result1 =  

getAllInstances(ProductForCallout.class 
); 

            for (int a=0; a<= result1.size(); a++){ 
        int j=0; 
                    for (int b=0; b<= result1.size(); b++){           

if(((Functor)((ProductForCallout)result1.next()).getCalloutT 
oMeasurand()).getTarget().getObjectInternalId()==  
((Measurand)result.next()).getObjectInternalId()){ 

                     j++;        
               } 
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                   } 
                   if (j>1){ 
                        return false; 
               } 
      }  
      return true; 
       }  
     
      public boolean checkEpimorphismForMeasurand(){ 
          CTDBObjectSet result = getAllInstances(Measurand.class); 
           CTDBObjectSet result1 =  

getAllInstances(ProductForCallout.class); 
          for (int a=0; a<= result1.size(); a++){ 
      int j=0; 
                     for (int b=0; b<= result1.size(); b++){            

if(((Functor)((ProductForCallout)result1.next()).getCallout 
ToMeasurand()).getTarget().getObjectInternalId()==  
((Measurand)result.next()).getObjectInternalId()){ 

                       j++;        
                            } 
                      } 
                     if (j==0){ 
                 return false; 
                     } 
           }  
          return true; 
        } 
     
      public boolean checkIsomorphismForMeasurand(){           

if(checkMonomorphismForMeasurand()&&checkEpimorphismForMeasurand()){ 
            return true; 
        } 
        return false; 
       } 

 } 
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APPENDIX D – CODE LIST FOR CREATING A 
DATABASE SCHEMA FOR CALLOUT 

 
Measurand m = new Measurand(); 
 ……………    
//creating and populating instances for “Measurand”.    
Extraction e=new Extraction(); 
……………  
//creating and populating instance for “Extraction”.   
Filtration f=new Filtration(); 
……………  
//creating and populating instance for “Filtration”.  
Partition p= new Partition(); 
……………  
//creating and populating instance for “Partition”. 
Callout callout= new Callout(); 
……………  
//creating and populating instance for “Callout”. 
ProductForCallout productForcallout = new ProductForCallout(); 
productForcallout. setTargetForIdArrow(1); 
productForcallout.setName("pullback_callout"); 
productForcallout.setAry(4); 
productForcallout.setVertex(callout); 
Functor calloutToMeasurand = new Functor(); 
……………  
// populating instance for functor mapping from instance of “Callout” to  
//“Measurand”. 
Functor calloutToExtraction = new Functor(); 
……………  
// populating instance for functor mapping from instance of “Callout” to  
//“Extraction”. 
Functor calloutToFiltration = new Functor(); 
……………  
// populating instance for functor mapping from instance of “Callout” to  
//“Filtration”. 

 Functor calloutToPartition = new Functor(); 
……………  
// populating instance for functor mapping from instance of “Callout” to  
//“Partition”. 
productForcallout.setFunctors(calloutToMeasurand, calloutToExtraction, 

calloutToFiltration, calloutToPartition)  
db.set(productForcallout); 
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APPENDIX E − MANUFACTURING PROCESS PRIMA 
SELECTION MATRIX 

      Quantity 
 
 
Material 

Very low 
1 to 100 

Low 
100 to 
1,000 

Low to 
medium 
1,000 to 
10,000 

Medium to 
high 

10,000 to 
100,000 

High 
100,000+ 

All 
quantities 

Irons 
[1.5] [1.6] 
[1.7] [4.M] 

[1.2] [1.5] 
[1.6] [1.7] 
[4.M] [5.3] 

[5.4] 

[1.2] [1.3] 
[1.5] [1.6] 
[1.7] [3.11] 
[4.A] [5.2] 

[1.2] [1.3] 
[3.11] [4.A]

[1.2] [1.3] 
[3.11] [4.A] 

[1.1] 

Steel 
(carbon) 

[1.5] [1.7] 
[3.10] [4.M] 
[5.1] [5.5] 

[5.6]  

[1.2] [1.5] 
[1.7] [3.10] 
[4.M] [5.1] 
[5.3] [5.4] 

[5.5] 

[1.2] [1.3] 
[1.5] [1.7] 
[3.1] [3.3] 

[3.10] [3.11] 
[4.A] [5.2] 
[5.3] [5.4] 

[5.5] 

[1.9] [3.1] 
[3.3] [3.4] 
[3.5] [3.11] 
[3.12] [4.A] 
[5.2] [5.5] 

[1.9] [3.1] 
[3.2] [3.3] 
[3.4] [3.5] 

[3.12] [4.A] 

[1.1] [1.6] 
[3.6] [3.8] 

[3.9] 

Steel 
(tool, alloy) 

[1.1] [1.5] 
[1.7] [3.10] 
[4.M] [5.1] 
[5.5] [5.6] 

[5.7] 

[1.1] [1.2] 
[1.7] [4.M] 
[5.1] [5.3] 
[5.4] [5.5] 
[5.6] [5.7] 

[1.2] [1.5] 
[1.7] [3.1] 

[3.4] [3.11] 
[4.A] [5.2] 
[5.3] [5.4] 

[5.5] 

[3.1] [3.4] 
[3.5] [3.11] 
[3.12] [4.A] 

[5.2] 

[4.A] [1.6] [3.6]  

Stainless steel 

[1.5] [1.7] 
[3.7] [3.10] 
[4.M] [5.1] 
[5.5] [5.6] 

[1.2] [1.7] 
[3.7] [3.10] 
[4.M] [5.1] 
[5.3] [5.4] 

[5.5] 

[1.2] [1.5] 
[1.7] [3.1] 
[3.3] [3.7] 

[3.10] [3.11] 
[4.A] [5.2] 
[5.3] [5.4] 

[5.5] 

[1.9] [3.1] 
[3.3] [3.4] 
[3.5] [3.11] 
[3.12] [4.A]

[1.9] [3.2] 
[3.3] [4.A] 

[1.1] [1.6] 
[3.6] [3.8] 

[3.9] 

Copper & 
alloys 

[1.5] [1.7] 
[3.10] [4.M] 

[5.1] 

[1.2] [1.5] 
[1.7] [1.8] 
[3.5] [3.10] 
[4.M] [5.1] 
[5.3] [5.4] 

[1.2] [1.3] 
[1.5] [1.8] 
[3.1] [3.3] 

[3.10] [3.11] 
[4.A] [5.2] 
[5.3] [5.4] 

[1.2] [1.4] 
[1.9] [3.1] 
[3.3] [3.4] 
[3.5] [3.11] 
[3.12] [4.A]

[1.2] [1.9] 
[3.1] [3.2] 
[3.3] [3.4] 
[3.5] [3.7] 

[3.8] [3.11] 
[3.12] [4.A] 

[1.1] [1.6] 
[3.6] [3.8] 
[3.9] [5.5] 

Aluminium & 
alloys 

[1.5] [1.7] 
[3.7] [3.10] 
[4.M] [5.5] 

[1.2] [1.5] 
[1.7] [1.8] 
[3.7] [3.10] 
[4.M] [5.3] 
[5.4] [5.5] 

[1.2] [1.3] 
[1.5] [1.8] 
[3.1] [3.3] 

[3.7] [3.10] 
[3.11] [4.A] 
[5.3] [5.4] 

[5.5] 

[1.2] [1.3] 
[1.4] [1.9] 
[3.1] [3.3] 
[3.4] [3.5] 

[3.11] [3.12] 
[4.A] [5.5] 

[1.2] [1.3] 
[1.4] [1.9] 
[3.1] [3.2] 
[3.3] [3.4] 
[3.5] [3.8] 

[3.12] [4.A] 

[1.1] [1.6] 
[3.6] [3.8] 

[3.9] 

Magnesium & 
alloys 

[1.6] [1.7] 
[3.10] [4.M] 
[5.1] [5.5] 

[1.6] [1.7] 
[1.8] [3.10] 
[4.M] [5.5] 

[1.3] [1.6] 
[1.8] [3.1] 
[3.3] [3.4] 

[3.10] [4.A] 
[5.5] 

[1.3] [1.4] 
[3.1] [3.3] 
[3.4] [3.5] 

[3.12] [4.A] 

[1.3] [1.4] 
[3.1] [3.3] 
[3.4] [3.8] 

[3.12] [4.A] 

[1.1] [3.6] 
[3.8] [3.9] 

Zinc & alloys 
[1.1] [1.7] 

[3.10] [4.M] 
[5.5] 

[1.1] [1.7] 
[1.8] [3.10] 
[4.M] [5.5] 

[1.3] [1.8] 
[3.3] [3.10] 
[4.A] [5.5] 

[1.3] [1.4] 
[3.3] [3.4] 
[3.5] [3.12] 

[4.A] 

[1.4] [3.2] 
[3.3] [3.4] 
[3.5] [4.A] 

[3.6] [3.8] 
[3.9] 

Tin & alloys 
[1.1] [1.7] 

[3.10] [4.M] 
[5.5] 

[1.1] [1.7] 
[1.8] [3.10] 
[4.M] [5.5] 

[1.3] [1.8] 
[3.3] [3.10] 

[1.3] [1.4] 
[3.3] [3.4] 

[3.12] 

[1.4] [3.3] 
[3.4] [4.A] 

 

Lead & alloys 
[1.1] [3.10] 
[4.M] [5.5] 

[1.1] [1.8] 
[3.10] [4.M] 

[5.5] 

[1.1] [1.8] 
[3.3] [3.10] 

[1.3] [1.4] 
[3.3] [3.4] 
[3.5] [3.12] 

[4.A] 

[1.4] [3.2] 
[3.3] [3.4] 

[4.A] 
[3.6] 

Nickel & 
alloys 

[1.5] [1.7] 
[3.10] [4.M] 
[5.1] [5.5] 

[5.6] 

[1.2] [1.5] 
[1.7] [3.10] 
[4.M] [5.1] 
[5.3] [5.4] 

[5.5] 

[1.2] [1.3] 
[1.5] [1.7] 
[3.1] [3.3] 

[3.11] [4.A] 
[5.2] [5.3] 
[5.4] [5.5] 

[3.1] [3.3] 
[3.4] [3.5] 

[3.11] [3.12] 
[4.A] [5.2] 

[5.5] 

[3.2] [3.3] 
[4.A] 

[1.1] [1.6] 
[3.6] [3.8] 

[3.9] 
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[3.10] 

Titanium & 
alloys 

[1.1] [1.6] 
[3.7] [3.10] 
[4.M] [5.1] 
[5.5] [5.6] 

[5.7] 

[1.1] [1.6] 
[3.7] [3.10] 
[4.M] [5.1] 
[5.3] [5.4] 
[5.5] [5.6] 

[5.7] 

[3.1] [3.7] 
[3.10] [3.11] 
[4.A] [5.2] 
[5.3] [5.4] 

[5.5] 

[3.1] [3.4] 
[3.11] [3.12] 
[4.A] [5.2] 

[5.5]  

[4.A] [3.8] [3.9] 

Thermo 
plastics  

[2.5] [2.7] 
[2.3] [2.5] 

[2.7] 
[2.3] [2.5] 
[2.6] [2.7] 

[2.1] [2.3] 
[2.5] [2.6] 

[2.9] 

[2.1] [2.6] 
[2.9] 

 

Thermo sets [2.5] [2.7] [2.2] [2.3] 
[2.2] [2.3] 

[2.4] 
[2.1] [2.3] 

[2.9] 
[2.1] [2.3] 
[2.4] [2.9] 

 

Fr composites 
[2.2] [2.8] 

[5.7] 
[2.2] [2.3] 
[2.8] [5.7] 

[2.1] [2.2] 
[2.3] 

[2.1] [2.3]   

Ceramics 
[1.5] [5.1] 
[5.5] [5.6] 

[5.7] 

[5.1] [5.3] 
[5.5] [5.6] 

[5.7] 

[5.2] [5.3] 
[5.4] [5.5] 

[3.11] [3.7] [3.11] [5.5] 

Refractory 
metals 

[1.1] [5.7] [5.7]  [3.12]  [1.6] 

Precious 
metals 

[5.5] [5.5]  [5.5] [3.5] [3.5] [1.6] 

Key to manufacturing process PRIMA selection matrix: 
[1.1] Sand casting 
[1.2] Shell moulding 
[1.3] Gravity die casting 
[1.4] Pressure die casting 
[1.5] Centrifugal casting 
[1.6] Investment casting 
[1.7] Ceramic mould casting 
[1.8] Plaster mould casting 
[1.9] Squeeze casting 
 
[2.1] Injection moulding 
[2.2] Reaction injection moulding 
[2.3] Compression moulding 
[2.4] Transfer moulding 
[2.5] Vacuum forming 
[2.6] Blow moulding 
[2.7] Rotational moulding 
[2.8] Contact moulding 
[2.9] Continuous extrusion (plastics) 
  
[3.1] Closed die forging 
[3.2] Rolling 
[3.3] Drawing 
[3.4] Cold forming 
[3.5] Cold heading 
[3.6] Swaging 
[3.7] Superplastic forming 
[3.8] Sheet-metal shearing 
[3.9] Sheet-metal forming 
[3.10] Spinning 
[3.11] Powder metallurgy 
[3.12] Continuous extrusion (metals) 
 
[4.A] Automatic machining 
[4.M] Manual machining 
 
[5.1] Electrical discharge machining (EDM) 
[5.2] Electrochemical machining (ECM) 
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[5.3] Electron beam machining (EBM) 
[5.4] Laser beam machining (LBM) 
[5.5] Chemical Machining (CM) 
[5.6] Ultrasonic machining (USM) 
[5.7] Abrasive jet machining (AJM) 
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APPENDIX F − PARAMETERS SELECTION EXAMPLE 
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APPENDIX G − EXAMPLE OF FUNCTION CORELATION 
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APPENDIX H − FUNCTION MAP 
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APPENDIX I − SELECTION OF Ra ACCORDING TO 

FUNCTION 
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APPENDIX J − RELATIONSHIP BETWEEN SURFACE 

FUNCTION AND QUALITY 
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APPENDIX K – A COMPARISON BETWEEN 

RELATIONAL DBMS AND THE CATEGORICAL DBMS 

Relational Notions Categorical Notions Explanations 

Field Internal Object 

A file in relational DBMS must be 
atomic (e.g. string or number) and 
always stored physically. An 
internal object of a category in 
categorical DBMS can be 
structured, e.g. they can be 
represented by other categories. 
Internal object can also be 
computed through a method. 

Row/Record Instance Category 

Records must be formed by 
atomic data elements such as 
number, character or date. They 
can not contain other records as 
inner fields. However, instance 
category can contain other 
instance categories as internal 
objects of a category. Instance 
object categories are not always 
stored directly, but are computed 
dynamically by methods. Instance 
object categories generated by 
methods can also be stored in 
categorical database. 

Definition of 
Row/Record 

Class Category 

As magnified by the “impedance 
mismatch” problem of relational 
DBMSs, a record definition does 
not directly map onto a type of a 
programming language. It must 
always be converted back or forth 
for this purpose. Class categories 
can directly describe the real 
world entities, so they are much 
easier to be understood by users. 
Moreover, class category can also 
encapsulate business logics 
(behaviors) together with the 
targeting data, keeping it all 
conveniently in one place. Class 
category can be implemented by 
the Java class directly. A Java 
class is a data definition of Java 
programming language. 

Table CTCollection 

Tables and CTCollections are 
similar in both database notions as 
they both contain many records or 
instance categories. They both 
have indexing structures for faster 
access. However, tables have a 
very rigid structure (e.g. all rows 
in a table must have same 
definition, same fields). 
CTCollection can contain instance 
categories of different class 
categories. 
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Query Functor+Filter 

A relational query can only 
specify a table as the result, which 
means that all records have to be 
in the same type. The result is 
restricted to one dimension. The 
“filter” in a categorical DBMS is 
similar to the “WHERE” clause in 
relational query. The query 
strategy in the categorical DBMS 
is through functor mapping from 
category to another category with 
filters taken out unsatisfied 
instance categories. 

Primary Key Identifier 

Primary keys are used to identify 
one record from others. Relational 
DBMS users are responsible for 
defining keys conforming to 
Normal Forms. In the categorical 
DBMS, a unique identifier is 
assigned to every instance 
category automatically based on 
the physical storage addresses. 
Therefore, users of the categorical 
DBMS can avoid the error prone 
process of defining keys.  

Foreign Key Product 

In a relational DBMS, records 
from different tables are combined 
together using foreign keys.  
While this is a simple mechanism, 
it is quite slow, and hard to 
maintain. On the other hand, a 
categorical DBMS uses product 
construct to link different 
categories, which can link 
categories directly using Java 
object references mechanism. This 
is a faster process than the key 
lookups and can be maintained by 
the categorical DBMS 
automatically.  

Join Coproduct 

Related records in a relational 
DBMSs are brought together 
using the “JOIN” operation. Joins 
are slow when more than a few 
tables are involved. For two tables 
(m × n) combinations, every extra 
table involved this figure has to be 
multiplied by the size of the table. 
Coproduct on the other hand is a 
very fast single step.  
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APPENDIX L – THE DATABASE SCHEMA DEFINITIONS 

FOR CALLOUTS IN THE P/FDM 

create temporary module callout 
 
declare feature ->> entity 
declare feature(feature) -> string 
key_of feature is feature 
 
declare areal ->> feature 
 
declare length ->> entity 
declare length(length) -> float 
key_of length is length 
 
declare num_up ->> entity 
declare num(num_up) -> integer 
declare up(num_up) -> float 
declare determines(num_up,float) -> length 
key_of num_up is num,up 
 
declare num_cutoff ->> entity 
declare n_name(num_cutoff) -> string 
declare num(num_cutoff) -> integer 
declare up_(num_cutoff,integer) -> num_up 
key_of num_cutoff is n_name 
 
declare uplimit ->> entity 
declare uplimit(uplimit) -> float 
declare num_(uplimit,float) -> num_up 
key_of uplimit is uplimit 
 
declare lowlimit ->> entity 
declare lowlimit(lowlimit) -> float 
key_of lowlimit is lowlimit 
 
declare bandwidth ->> entity 
declare has_uplimit(bandwidth) -> uplimit 
declare has_lowlimit(bandwidth) -> lowlimit 
key_of bandwidth is key_of(has_uplimit) 
 
declare f_type ->> entity 
declare f_name(f_type) -> string 
declare f_type(f_type) -> string 
key_of f_type is f_name 
 
declare filter ->> entity 
declare has_bandwidth(filter) -> bandwidth 
declare has_f_type(filter) -> f_type 
key_of filter is key_of(has_bandwidth), key_of(has_f_type) 
 
declare type_value ->> entity 
declare types(type_value) -> string 
declare range(type_value) -> integer 
declare values(type_value) -> float 
declare default_determines(type_value) -> bandwidth 
declare default_determine(type_value,string) -> filter 
key_of type_value is types, range 
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declare p_type ->> entity 
declare p_type(p_type) -> string 
declare value_(p_type,string) -> type_value 
key_of p_type is p_type 
 
declare name ->> entity 
declare name(name) -> string 
key_of name is name 
 
declare parameter ->> entity 
declare has_name(parameter) -> name 
declare has_p_type(parameter) -> p_type 
key_of parameter is key_of(has_name) 
 
declare determine(name,string) -> p_type 
 
declare value ->> entity 
declare value(value) -> float 
declare range(value) -> integer 
declare type_(value,string) -> type_value 
key_of value is range, value 
 
declare t_type ->> entity 
declare t_name(t_type) -> string 
declare t_type(t_type) -> string 
key_of t_type is t_name 
 
declare tolerance ->> entity 
declare has_parameter(tolerance) -> parameter 
declare has_t_type(tolerance) -> t_type 
declare has_value(tolerance) -> value 
key_of tolerance is key_of(has_parameter), key_of(has_t_type),  
key_of(has_value) 
 
declare c_type ->> entity 
declare c_name(c_type) -> string 
declare c_type(c_type) -> string 
key_of c_type is c_name  
 
declare comparule ->> entity 
declare has_c_type(comparule) -> c_type 
declare has_num(comparule) -> num_cutoff 
key_of comparule is key_of(has_c_type), key_of(has_num) 
 
declare direction ->> entity 
declare d_name(direction) -> string 
declare direction(direction) -> string 
key_of direction is d_name 
 
declare profile ->> feature 
declare has_filter(profile) ->> filter 
declare has_length(profile) -> length 
declare has_direction(profile) -> direction 
 
declare sim_callout ->> entity 
declare callout(sim_callout) -> string 
declare has_feature(sim_callout,string) -> feature 
declare has_tolerance(sim_callout,string) -> tolerance 
declare has_comparule(sim_callout,string) -> comparule 
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key_of sim_callout is callout 
 
declare callout ->> entity 
declare callouts(callout) -> string 
declare has_callouts(callout) ->> sim_callout 
key_of callout is callouts; 
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APPENDIX M – THE POPULATING CODES FOR 

CALLOUTS IN THE P/FDM 

entity direction; 
d_name;direction; 
*; 
"";""; 
"_|_";projection; 
c;circular; 
*; 
 
entity f_type; 
f_name;f_type; 
*; 
"";""; 
Gaussian;Gaussian; 
"2RC";"2RC"; 
*; 
 
entity t_type; 
t_name;t_type; 
*; 
"";u; 
l;l; 
*; 
 
entity name; 
name;; 
*; 
Ra;; 
Rq;; 
Rsq;; 
Rku;; 
R_q;; 
Rz;; 
Rv;; 
Rp;; 
Rc;; 
Rt;; 
Rsm;; 
Wa;; 
Pa;; 
*; 
 
entity p_type; 
p_type;; 
*; 
aveamp;; 
maxamp;; 
spacing;; 
*; 
 
function determine; 
name, string; p_type; 
*; 
[Ra], p; [aveamp]; 
[Rq], p; [aveamp]; 
[Rsq], p; [aveamp]; 
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[Rku], p; [aveamp]; 
[R_q], p; [aveamp]; 
[Rz], p; [maxamp]; 
[Rv], p; [maxamp]; 
[Rp], p; [maxamp]; 
[Rc], p; [maxamp]; 
[Rt], p; [maxamp]; 
[Rsm], p; [spacing]; 
*; 
 
entity value; 
range,value;; 
*; 
4,3.3;;  
*; 
 
entity type_value; 
types,range;; 
*; 
aveamp,1;; 
aveamp,2;; 
aveamp,3;; 
aveamp,4;; 
aveamp,4;; 
aveamp,5;; 
maxamp,1;; 
maxamp,2;; 
maxamp,3;; 
maxamp,4;; 
maxamp,5;; 
spacing,1;; 
spacing,2;; 
spacing,3;; 
spacing,4;; 
spacing,5;; 
*; 
 
entity uplimit; 
uplimit;; 
*; 
2.5;; 
8.0;; 
0.8;; 
0.08;; 
0.25;; 
*; 
 
entity lowlimit; 
lowlimit;; 
*; 
0.0025;; 
0.008;; 
0.025;; 
*; 
 
entity bandwidth; 
key_of(has_uplimit); key_of(has_lowlimit);  
*; 
[0.08];[0.0025];  
[0.25];[0.0025];  
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[0.8];[0.0025];  
[2.5];[0.008];  
[8.0];[0.025];  
*; 
 
function default_determines; 
type_value; bandwidth; 
*; 
[aveamp,1];[[0.08]]; 
[aveamp,2];[[0.25]]; 
[aveamp,3];[[0.8]]; 
[aveamp,4];[[2.5]]; 
[aveamp,5];[[8.0]]; 
[maxamp,1];[[0.08]]; 
[maxamp,2];[[0.25]]; 
[maxamp,3];[[0.8]]; 
[maxamp,4];[[2.5]]; 
[maxamp,5];[[8.0]]; 
[spacing,1];[[0.08]]; 
[spacing,2];[[0.25]]; 
[spacing,3];[[0.8]]; 
[spacing,4];[[2.5]]; 
[spacing,5];[[8.0]]; 
*; 
 
entity num_cutoff; 
n_name;num; 
*; 
"";5; 
1;1; 
2;2; 
3;3; 
4;4; 
5;5; 
6;6; 
7;7; 
8;8; 
9;9; 
*; 
 
entity num_up; 
num,up;; 
*; 
5,2.5;; 
8,8.0;; 
*; 
 
entity length; 
length;; 
*; 
12.5;; 
64.0;; 
*; 
 
entity c_type; 
c_name;c_type; 
*; 
"";"16%"; 
max;max; 
*; 


